
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics
submitted by

Jan Sören Breidenbach

born in Frankfurt am Main-Höchst (Germany)

2018





Hadronic vacuum polarization in atoms

This Bachelor Thesis has been carried out by Jan Sören Breidenbach at the
Max Planck Institute for Nuclear Physics in Heidelberg

under the supervision of
PD Dr. Zoltán Harman





Abstract

In this Bachelor thesis the energy shift in atoms due to hadronic vacuum polarization is
evaluated. A hadronic polarization function for the photon propagator is obtained from
experimental e−/e+ → hadronic matter-collision data via the optical theorem and the
Kramers-Kronig relations. An effective central potential is calculated applying a param-
eterization for this polarization function. The energy corrections to a Coulomb potential
originating from hadronic vacuum polarization are calculated using the analytical bound
Dirac-Coulomb wave functions, as well as relativistic bound wave functions considering
the finite nuclear size. These results are compared to results from a non-relativistic the-
ory.

In dieser Bachelorarbeit wird die Energieverschiebung in Atomen aufgrund von hadro-
nischer Vakuumpolarisation berechnet. Eine hadronische Polarisationsfunktion des Pho-
tonenpropagator wird aus experimentellen e−/e+ → hadronischer Materie-Kollisionsdaten
mithilfe der Kramers-Kronig Relationen und des optisches Theorems erstellt. Ein effek-
tives Zentralpotential wird aus einer Parametrisierung der Polarisationsfunktion bes-
timmt. Die Energieverschiebung durch die hadronische Vakuumpolarisation im Ver-
gleich zu einem Coulumbpotential wird mithilfe der analytischen gebundenen Dirac-
Coulomb Wellenfunktionen, sowie mit relativistischen gebundenen Wellenfunktionen für
ausgedehnte Atomkerne, berechnet. Diese Ergebnisse werden mit den Ergebnissen einer
nicht relativistischen Theorie verglichen.
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1 Introduction

In this thesis we investigate the correction to the energy of a lepton in hydrogen-like ions
due to virtual hadronic pair creation. Quantum electrodynamics (QED) has been well
tested in the case of weak fields, therefore the current research is rather interested in the
QED of strong external fields and in explaining more details of the interaction process
itself. Highly charged hydrogen- or lithium-like ions provide possibilities to analyze and
test these strong-field effects because only few electrons are exposed to a very strong
field. Thereby effects other than the pure interaction between the nucleus and the elec-
tron are minimized. Quantities such as the fine structure splitting or the g-factor can
nowadays be measured and evaluated theoretically with high accuracy [1]. Combining
these theoretical estimates with spectroscopic high-precision measurements also enables
to improve the accuracy of fundamental constants. An example is the determination of
the electron mass from the g-factor measurement of H-like carbon ions [2], which yielded
an exceeding one order of magnitude more accurate result compared to the previous
CODATA value. In the future, the value for the fine-structure constant could also be
improved with measurements of heavy ions, such as lead [3], demanding a very precise
theoretical description. One of the key ideas is to minimize the restricting uncertainty
from nuclear effects by a weighted difference of the g factors of an H- and a Li-like ion
from the same element.
This thesis concentrates on the vacuum polarization (VP) correction whose biggest

contribution arises from virtual e+/e− pair creation. This contribution is well under-
stood and will only be discussed here due to its importance and as reference for further
corrections. The next important contribution is µ+/µ− pair creation, which is suppressed
in its effect because the muon is about 207 times heavier than the electron. Apart from
the mass, the muonic-loop description is equivalent to that of the electronic case, al-
though this effect is much more sensitive to nuclear corrections. After this, the next
contributions stem from several different hadronic particles, which ask for a completely
different description since they also interact via the strong interaction. The quantum
field theory to describe strongly interacting particles, quantum chromodynamics (QCD),

2



Figure 1.1: Feynman diagram depicting the hadronic vacuum polarization effect. The
double lines represent a bound electron that interacts with the Coulomb field
of a nucleus (the wave line terminated by a cross) via a photon that is modified
by hadronic vacuum polarization represented by the shaded loop.

can be approached perturbatively only for large energies. The low-energy section yields
the most important contribution for the hadronic VP energy shift, therefore, it has to be
dealt with in another way. We describe how the VP can be characterized by the total
hadronic cross section. First descriptions used contributions of single hadronic particles,
such as the ρ-meson [4], one of the most important contributions to the hadronic VP. In
this thesis a semi-empirical approach will be employed to deal with the whole hadronic
contribution at once. An effective potential can be constructed from a parameterized
hadronic VP function. Then energy shifts can be calculated, using different approaches:
a analytical non-relativistic approximation for a point-like nucleus, the Uehling potential
from an extended homogeneous charged nucleus as a 1st-order perturbation to the an-
alytical Dirac-Coulomb wave functions and as a 1st-order perturbation to the Coulomb
wave functions of an extended nucleus, and finally with the exact wave functions from
the Uehling potential from an extended homogeneously charged nucleus and thereby, for
all orders. These calculations will be done for the hydrogen-like systems H, Si, Ca, and
Pb, and additionally for muonic hydrogen. The results for the different approaches will
then be discussed in their uncertainty and applicability.

All the formulas in this thesis are given in natural units, where the speed of light
and the reduced Planck constant are set to one. Furthermore the Einstein summation
convention and the Feynman slash notation are used, such as:
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~γ · ~p =

3∑
i=1

γipi = γ1p1 + γ2p2 + γ3p3 ,

/p = γµpµ =

3∑
i=0

γipi = γ0p0 − γ1p1 − γ2p2 − γ3p3 . (1.1)

The anti-commutator of two operators a and b is given by

{a, b} = ab+ ba . (1.2)
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2 Vacuum polarization

In the case of strong fields or when precise theoretical predictions are needed one has to
consider several effects in quantum field theory. For quantum electrodynamics (QED),
the appearing contributions can be classified into three categories: self-energy corrections,
vertex corrections and virtual e+/e− pair creation.

(a) Self-energy correction (b) Vertex correction
(c) Virtual e+/e−-pair produc-

tion

Figure 2.1: QED loop corrections: A straight line denotes a free electron propagator, and
a wave line denotes a photon.

2.1 Modification of the photon propagator

This thesis focuses on the latter contribution, which is often called vacuum polarization
(VP). It describes the modification of the Feynman photon propagator which is given in
unperturbed form in Feynman gauge as

iDµν(q) =
−i4πηµν
q2 + iε

. (2.1)

with the momentum q, the Minkowski metric tensor ηµν = diag (1,−1,−1,−1), and ε

representing an arbitrarily small positive real number to ensure causal time ordering in
the Feynman propagator. The first QED correction to the photon propagator D′µν is of
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(a) Unmodified photon propagator

+

(b) 1st-order in α photon propagator cor-
rection

Figure 2.2: Photon propagator correction due to VP represented by a Feynman diagram.

order e2 ≡ α, with the elementary charge e and the fine-structure constant α. Using the
Feynman rules of QED [5], the modified propagator can be written as

iDmod
µν (q) = iDµν(q) + iDµλ

iΠλσ(q)

4π
Dσν , (2.2)

with the VP tensor Πµν(q) given by

Πµν(q) = 4πiα

∫
d4k

(2π)4
Tr(γµ(/k +m1)γν(/k − /q +m1))

(k2 −m2 + iε)((k − q)2 −m2 + iε)
. (2.3)

with the lepton mass m and the integration over the momentum k of one of the loop
particles. The trace originates from the cyclicity of the spinor indices and an additional
factor of (−1) has to be included because of the closed fermionic loop. One can evaluate
this further using γ-trace identities:

Πµν(q) = 16πiα

∫
d4k

(2π)4
kµ(k − q)ν + (k − q)µkν − ηµν(k2 − q · k −m2)

(k2 −m2 + iε)((k − q)2 −m2 + iε)

≡
∫
d4k hµν

(
q, k,m2

)
. (2.4)

This integral diverges quadratically but it can be regularized, for example by the Pauli-
Villars regularization scheme [6]. This regularization method isolates finite parts from
diverging ones and provides counterterms for the diverging terms. The counterterms can
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be thought of as originating from fictitious particles with masses Mi. The regularized
polarization tensor reads

Π̄µν(q) =

∫
d4k

(
hµν

(
q, k,m2

)
+

N∑
n=1

Cifµν
(
q, k,M2

i

))
. (2.5)

The fictitious masses Mi and associated constants Ci are chosen in a way that the reg-
ularized polarization tensor is convergent. The evaluation of the integral is not trivial,
and can be followed in detail for example in [5]. In the end it is apparent that physical
observables are independent of these arbitrarily introduced parameters. The final result
for the regularized polarization tensor Π̄λσ(q) is

Π̄λσ(q) = (q2ηλσ − qλqσ)Π̄(q2) = (q2ηλσ − qλqσ)

[
−α
3π

ln
Λ2

m2
+ ΠR(q2)

]
, (2.6)

with the polarization function Π̄(q2), a cut-off momentum Λ and the regular part of the
polarization function given by

ΠR(q2) =
2α

π

∫ 1

0
dββ(1− β) ln

[
1− β(1− β)

q2

m2

]
. (2.7)

The logarithmically divergent part is included in the definiton of the measurable elemen-
tary charge [6]. From now on, only the regular part of the polarization function will be
evaluated and the charge is assumed to be the measurable renormalized charge.

2.2 The Uehling potential

In order to describe the effect of VP for bound systems like atoms, the potential of the
nucleus can be written as a convolution of the modified photon propagator D′µν(x) with
the current jµ(x). The VP is thereby described by an effective potential, called the
Uehling potential. In momentum space it can be written as a simple multiplication:

Amod
µ (x) =

∫
d4q

(2π)4
e−iq·xDmod

µν (q)jν(q) , (2.8)
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with the modified photon propagator

Dmod
µν (q) =

−4πηµν
q2

+
−4π

q2

(
ηµν −

qµqν
q2

)
ΠR (q2) . (2.9)

The term with qµqν drops out, because the continuity equation in momentum space
states qνjν = 0 and the term is multiplied to such a current in Eq. (2.8). In this thesis
the nucleus is approximated to be infinitely heavy compared to the electron, i.e. recoil
effects get neglected, and the stationary current in position- and momentum space can
be written as

jν(x) = jν(~x) = −Zeρ(~x)δν0 ,

jν(q) = −2πZe δ(q0)ρ̃(~q)δν0 , (2.10)

with the charge number Z and the nuclear charge density ρ(~x). Therefore, the nuclear
Coulomb potential modified by the Uehling potential can be written as

Amod
µ (~x) =− Ze

∫
d3q

(2π)3
ei~q·~xDµ0 (0, ~q) ρ̃ (~q)

[
1 + ΠR (−~q 2) ]

⇔ Amod
0 (~x) =− Ze

∫
d3q

(2π)3
ei~q·~x

4π

~q 2
ρ̃ (~q)

[
1 + ΠR (−~q 2) ] . (2.11)

The modified potential for leptonic VP in the case of a point-like nucleus, which is given
by ρ̃(~q) = 1, can be rewritten further as described in [5]. The result is

Amod
0 (r) =

−Ze
r

[
1 +

2α

3π

∫ ∞
1

dζ

(
1 +

1

2ζ2

)√
ζ2 − 1

ζ2
e−2mζr

]

= ACoulomb
0 (r) +AVP

0 (r) , (2.12)

with r ≡ |~x|. The modified potential is the usual Coulomb potential ACoulomb
0 (r) plus
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Figure 2.3: Uehling potential A0 induced by electronic and muonic vacuum polarization
divided by the Coulomb potential plotted against the radius r in units of the
reduced Compton wavelength of the electron λC/(2π) = 1/me.

the VP contribution AVP
0 (r). From now on, only the potential AVP

0 (r) will be evaluated,
although also taking into account the finite nucleus size.

The extent of the Uehling potential is approximately given by the reduced Compton
wavelength λ/(2π) = m−1 of the loop particle. Therefore, the muonic Uehling poten-
tial rises at a radius about 207 times smaller than the electronic one due to the same
proportion of their masses, as shown in figure (2.3).
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3 Different approaches to the vacuum
polarization function

In this chapter an explicit function for the leptonic VP will be shown, as well as an
approach on how to construct a VP function from another principle.

3.1 Explicit leptonic polarization function

The VP function with a virtual lepton l+/l−-pair from Eq. (2.7) can be rewritten such
that the logarithm is eliminated by partial integration. Substituting v = 2β − 1, the
integral reads [5]

ΠR(q2) = −α
π

∫ 1

0
dv
v2
(
1− 1

3v
2
)

v2 + 4m2

q2
− 1

. (3.1)

Solving this integral is explained in detail for example in [5], here we only show the
approach and the result. Integrals of this form can be related to an integral without a
variable in the numerator:

In − cIn−2 =

∫ 1

0
dv

vn

v2 − c− iε
− c

∫ 1

0
dv

vn−2

v2 − c− iε
=

∫ 1

0
dvvn−2 =

1

n− 1
, (3.2)

with c = 1 − 4m2

q2
. Therefore, only a solution for I0 is needed, which can be solved

piecewise for three restricted domains. The integral has a pole at v =
√
c, this part will

be evaluated with the residuum of the pole in addition to the principal value integral
of the corresponding domain. Now the expression for the polarization function can be
written as

ΠR(q2) =
α

π

[
− 5

9
− 4m2

3q2
+

1

3

(
1 +

2m2

q2

)
d(q2)

]
, (3.3)
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with d(q2) =



√
1− 4m2

q2
ln

√
1− 4m2

q2
+1√

1− 4m2

q2
−1
, for q2 < 0 ,

2
√

4m2

q2
− 1 arctan 1√

4m2

q2
−1
, for 0 < q2 ≤ 4m2 ,

√
1− 4m2

q2
ln

1+

√
1− 4m2

q2

1−
√

1− 4m2

q2

− iπ
√

1− 4m2

q2
, for 4m2 < q2 .

For squared momenta exceeding 4m2, the polarization function obtains an imaginary
part as illustrated in figure (3.1). This can be physically explained by 2m being the
threshold energy for particle-antiparticle production.

Re[Πelec.]

Im[Π elec.]

-10 -5 0 5 10 15 20

-1.0

-0.5

0.0

q² [me²]

Π
e

le
c.
(q

²)
[α
/π
]

Figure 3.1: VP function for virtual e+/e−-pair-creation plotted against the square of the
momentum q in units of the electron mass me.
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3.2 Kramers-Kronig relations

At first used in optics, the Kramers-Kronig relations describe the real part of a complex
polarization function H(x) in terms of its imaginary part and vice versa. They can be
derived by Cauchy’s integral formula and in general can be written as

Re [H (x)] =
1

π
P

∫ +∞

−∞

Im [H (x′)]

x′ − x
dx′ , (3.4)

with P
∫ b
a dx being the principal value integral. For our VP function the relation looks

like this [10]:

Re
[
ΠR (q2)] =

q2

π
P

∫ +∞

−∞

Im
[
ΠR (q′2)]

q′2(q′2 − q2 − iε)
dq′2 . (3.5)

This can explicitly be verified by inserting the imaginary part of the polarization function
from Eq. (3.3):

Im[ΠR(q2)] =
α

3

(
1 +

2m2

q2

)√
1− 4m2

q2
Θ(q′2 − 4m2) , (3.6)

with Θ(x) being the Heaviside step function. The transformation q′2 = 4m2

1−v2 reproduces
the integral formula from Eq. (3.1).

3.3 Optical theorem

So far, the polarization function was completely determined by the fine-structure con-
stant and the mass of the produced particles. For the electron and muon this is sufficient
and their contribution has the greatest impact on VP. However, for the hadronic VP con-
tribution one has to consider that the created particles are strongly interacting. Quantum
chromodynamics (QCD) can be treated perturbatively only for large energies, further-
more, one has to take into account quite a few different hadrons that can be virtually
produced. Another approach is possible due to the optical theorem, which links a mea-
surable total cross section σtot to the forward scattering amplitude f(k; 0). The optical
theorem reads
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σtot(k) =
4π

|k|
Im[f(k; 0)] , (3.7)

with the wavenumber k. This property is a consequence of the scattering matrix S being
unitary (SS† = 1). The theorem can be shown by deconstructing S into a trivial part
1, and an interaction part iT :

1 = SS† = (1 + iT )(1− iT ) ,

= 1+ iT − iT † + TT † ,

⇔ TT † = i(T † − T ) . (3.8)

The implications of the theorem are better visible when wedged between an initial and
a final state:

〈ψf |TT † |ψi〉 = i 〈ψf | (T † − T ) |ψi〉 ,∑
n

〈ψf |T |ψn〉 〈ψn|T † |ψi〉 = i(Tif − T ∗if ) ,∑
n

TfnT
∗
in = 2 Im[Tif ] . (3.9)

The last step is to reduce the identity to the forward scattering amplitude, which means
that the initial and the final state have to be the same. Therefore we get

∑
n

|Tin|2 = 2 Im[Tii] . (3.10)

Roughly speaking, this implies that the amplitude for an initial state to turn into any
state equals two times the imaginary part of a process that has the same initial and
final state, but with any intermediate steps in between. For our case of electron-positron
annihilation to hadronic matter creation the theorem looks like [7]:

σe+/e−→hadrons(q) =
4πα

q2
Im
[
ΠR
had.
]
. (3.11)
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3.4 Muon pair production cross section

In an experiment it is rather difficult to measure a total cross section on an absolute
scale. Thus it is preferable to use a total cross section in relative units, R(q2), in this
case relative to the total cross section of muon creation:

R
(
q2
)

=
σe+/e−→hadrons

(
q2
)

σe+/e−→µ+/µ− (q2)
. (3.12)

The Lorentz-invariant differential cross section for 2→ 2 scattering is, according to [8]:

dσ =
(2π)4

4EpEp′ |~νp − ~ν ′p|
d3k

(2π)32Ek

d3k′

(2π)32Ek′
δ(4)(p+ p′ − k − k′)|Mfi|2 , (3.13)

with the momenta p, p′ and energies Ep, Ep′ of the incoming particles, the momenta k,
k′ and energies Ek, Ek′ of the outgoing particles, and the ratio of the 3-momentum to
the energy of a particle ~νp = ~p/Ep.The invariant matrix element iM of the (e+/e− →
µ+/µ−)-process using Feynman rules reads

iM(q2) =
ie2

q2
v̄s′(p

′)γµus(p)ūr(k)γµvr′(k
′) . (3.14)

Only the q2-dependence of the cross section is of interest for us now. Thus, the informa-
tion on polarization is not needed and the amplitude-square is averaged over incoming
and outgoing polarization states. Using the spinor completeness relations, the expression
can be written as

1

4

∑
s,s′,r,r′

|M |2 =
e4

4q4

[
Tr
(
(γ · p−me1)γµ(γ · p+me1)γν

)
×Tr

(
(γ · p+mµ1)γµ(γ · p−mµ1)γν

)]
. (3.15)

Using trace identities for the γ-matrices, one obtains
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1

4

∑
s,s′,r,r′

|M |2 =
8e4

q4
[
(p · k)(p′ · k′) + (p · k′)(p′ · k)

+(p · p′)m2
µ + (k · k′)m2

e + 2m2
em

2
µ

]
. (3.16)

Now we can switch to the center-of-mass frame to simplify the expression further with
the following substitutions:

p =

(
E

~p

)
, p′ =

(
E

−~p

)
, k =

(
E

~k

)
, ~p · ~k = |~p||~k| cos θ ,

q2 = (k + k′)2 = (p+ p′)2 ,

p · k = p′ · k′ = E2 − |~p||~k| cos θ ,

p · k′ = p′ · k = E2 + |~p||~k| cos θ . (3.17)

The final result for the unpolarized amplitude-square is

1

4

∑
s,s′,r,r′

|M |2 = e4
[(

1 +
4m2

µ

q2
+

4m2
e

q2

)
+

(
1−

4m2
µ

q2
− 4m2

e

q2
+

16m2
µm

2
e

q4

)
cos2 θ

]
.

(3.18)

Further two expressions have to be used:

δ(g(x)) =

n∑
i=1

δ(x− xi)
|g′(xi)|

, with xi being the zeros of g(x) , (3.19)

|νp − νp′ | =
∣∣∣∣ pEp − p′

Ep′

∣∣∣∣ =
4|p|
Ecom

. (3.20)

Plugging Eq. (3.18) into the cross-section formula Eq. (3.13), the total cross section of
the (e+/e− → µ+/µ−)-process can be finally written down [9]:

σe+/e−→µ+/µ−(q) =
4πα2

3q2

√
1− 4m2

µ

q2√
1− 4m2

e
q2

[(
1 +

2m2
µ

q2

)(
1 +

2m2
e

q2

)]
. (3.21)
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If me is neglected because of mµ � me, we can compare the total cross section with
the VP function, since both describe only the modification of the photon propagator.
Comparing this limit of the total cross section in Eq. (3.21) with the imaginary part of
the polarization function from Eq. (3.6), the form of the optical theorem in Eq. (3.11)
can be explicitly verified.
In the ultrarelativistic limit with |~p| � mµ, the cross section is described by a very

simple formula:

σul.-rel. =
4πα2

3 q2
. (3.22)

Using this limit and the total cross section in relative units, R(q2), the hadronic po-
larization function can be written like this [10]:

Re
[
ΠR
had.

(
q2
)]

=
q2

π
P

∫ +∞

−∞

Im
[
ΠR (q′2)]

q′2(q′2 − q2 − iε)
dq′2

=
q2

4π2α
P

∫ +∞

4m2
π

σe+/e−→hadrons
(
q′2
)

(q′2 − q2 − iε)
dq′2

=
αq2

3π
P

∫ +∞

4m2
π

R
(
q′2
)

q′2(q′2 − q2 − iε)
dq′2 , (3.23)

with mπ being the mass of the lightest hadron, the pion. As a result, to construct the
hadronic polarization function, only a total cross section of the hadronic matter created
in the pair annihilation process in relative units is needed.
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4 Dirac equation in a central potential

In this chapter, a brief introduction to relativistic quantum mechanics is given, focusing
on the bound-state solutions of the Dirac equation in a central potential.

4.1 Separation of variables in a central potential

This thesis is about the energy shifts of bound electrons in atoms induced by VP. As an
electron is a spin-12 particle, the correct way to describe it is given by the Dirac equation

(i/∂ −m)ψ(x) = 0 , (4.1)

with the partial derivative ∂ and the wave function ψ(x) of the spin-12 particle, and the
gamma matrices γµ that fulfill the Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2ηµν . (4.2)

We will look at the Dirac equation in another basis

i
dψ

dt
=

(
β̂m− i

3∑
n=1

α̂i
∂

∂xi

)
ψ =

(
β̂m+

3∑
n=1

α̂ip̂i

)
ψ ≡ ĤDψ , (4.3)

with β̂ = γ0 , α̂i = β γi , and they fulfill the following identities

{αi, αk} = αiαk + αkαi = 2δik1 ,

{αi, β} = αiβ + βαi = 0 ,

(αi)2 = (β)2 = 1 . (4.4)
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The Dirac Hamiltonian of an electron in a central potential V (r) is given by

ĤD =

3∑
n=1

α̂ip̂i + β̂m+ V (r) . (4.5)

The approach to rewrite this equation can be seen in length for example in [11]. Here, we
outline the most important steps. Due to the spherical symmetry of the potential, the
parity and angular momentum operators commute with the Hamilton operator. There-
fore, states with defined energy, angular momentum and parity exist. The 4-spinor ψjm
can be written in terms of two 2-spinors, and a separational ansatz can be made because
of the spherical symmetry:

ψjm (~r) =

(
ϕjlm (~r)

χjl′m (~r)

)
=

(
ig(r)Ωjlm (~r/r)

−f(r)Ωjl′m (~r/r)

)
, (4.6)

with the spherical spinor Ωjlm, and l′ = 2j− l to ensure different parity for the small and
large components. The Ωjlm is an eigenfunction of the angular momentum and parity
operators, and fulfills the following identity:(

3∑
n=1

σ̂iri

)
Ωjlm

r
= −Ωjl′m . (4.7)

The following representation of α̂i and β̂ are used:

α̂i =

(
0 σ̂i

σ̂i 0

)
,

β̂ =

(
12x2 0

0 −12x2

)
, (4.8)

with the Pauli matrices σ̂i. Thereby, our stationary Dirac equation ĤDψ = Eψ can be
written as

18



(E −m− V (r))ϕjlm =

(
3∑

n=1

σ̂ip̂i

)
χjl′m ,

(E +m− V (r))χjl′m =

(
3∑

n=1

σ̂ip̂i

)
ϕjlm . (4.9)

We can rewrite the right side by inserting the ansatz from Eq. (4.6) and using the identity
from Eq. (4.7):

(
3∑

n=1

σ̂ip̂i

)
ϕjlm =

dg(r)

dr

(
3∑

n=1

σ̂iri

)
Ωjlm

r
+ ig(r)

(
3∑

n=1

σ̂ip̂i

)
Ωjlm

= −dg(r)

dr
Ωjl′m − g(r)

(
2

r
+

1

r

(
3∑

n=1

L̂iσ̂i

))
Ωjl′m . (4.10)

This can be simplified by introducing a new operator for which the spherical spinors are
eigenfunctions as well:

κ̂ = 1 +

(
3∑

n=1

L̂iσ̂i

)
,

κ̂χκm = −κχκm ,

with κ =

−(j + 1
2) = −(l + 1), for j = l + 1

2 ,

+(j + 1
2) = l, for j = l − 1

2 .
(4.11)

Hence, we get for Eq. (4.10) and in an analogous calculation for the other spinor com-
ponent

(
3∑

n=1

σ̂ip̂i

)
ϕjlm = −Ωjl′m

(
dg(r)

dr
+

(κ+ 1)

r
g(r)

)
,(

3∑
n=1

σ̂ip̂i

)
χjl′m = −iΩjlm

(
df(r)

dr
− (κ− 1)

r
f(r)

)
. (4.12)
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By inserting these relations into Eq. (4.9), the spinors cancel each other. Now the
differential equations for the radial functions can be written as

dg(r)

dr
+ (1 + κ)

g(r)

r
−
(
E +m− V (r)

)
f(r) = 0 ,

df(r)

dr
+ (1− κ)

f(r)

r
−
(
E −m− V (r)

)
g(r) = 0 . (4.13)

The usual representation of the differential equations is achieved by applying the following
substitutions:

G(r) ≡ rg(r) , F (r) ≡ rf(r) . (4.14)

Now the coupled radial differential equations read

dG(r)

dr
+G(r)

κ

r
−
(
E +m− V (r)

)
F (r) = 0 ,

dF (r)

dr
− F (r)

κ

r
−
(
E −m− V (r)

)
G(r) = 0 . (4.15)

4.2 Radial solutions in a Coulomb potential

The Dirac equation in a Coulomb potential can be solved analytically for a point-like
nucleus. The potential is given by

V (r) = −Zα
r
. (4.16)

The approach to solve these equations is given at length in [11] and [12]. We are interested
in the solutions to calculate and compare energy shifts. The solutions are given by
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gnκ(r)

fnκ(r)

}
= N
√
m± E e−λr(2λr)γ−1(2λ) (4.17)

×
[
1F1(1− n+ |κ|, 2γ + 1; 2λr)± 1

n− |κ|

(
κ− Zαm

λ

)
1F1(−n+ |κ|, 2γ + 1; 2λr)

]
,

with n, λ, γ and the confluent hypergeometric function 1F1(a, c;x) given by

n = 1, 2, 3, ... ,

λ ≡
√
m2 − E2 ,

γ ≡
√
κ2 − (Zα)2 ,

1F1(a, b;x) =

∞∑
n=0

an x
n

cn n!
= 1 +

∞∑
n=1

a(a+ 1)...(a+ n− 1)xn

c(c+ 1)...(c+ n− 1)n!
. (4.18)

For the energy eigenvalue Enκ we get

Enκ = m

[
1 +

(Zα)2(
n− |κ|+ γ

)2
]−1/2

. (4.19)

The wave function can be normalized by the condition

∫ ∞
0

(
G2
nκ(r) + F 2

nκ(r)
)
dr =

∫ ∞
0

(
g2nκ(r) + f2nκ(r)

)
r2dr = 1 . (4.20)

For this condition, we get the normalization constant

N = −λ
3/2(n− |κ|)
Γ(2γ + 1)

(
Γ(2γ + n− |κ|+ 1)

2Zαm2(−λκ+ Zαm)(n− |κ|)!

)1/2

. (4.21)

Thus, the complete solutions for g(r) and f(r) in a Coulomb field are

gnκ(r)

fnκ(r)

}
=

√
2λ5/2

Γ(2γ + 1)

(
Γ(2γ + n− |κ|+ 1)(m± E)

(n− |κ|)!Zαm2(Zαm− λκ)

)1/2

e−λr(2λr)γ−1 (4.22)

×
[
− (n− |κ|)1F1(1− n+ |κ|, 2γ + 1; 2λr)∓

(
κ− Zα

λ

)
1F1(−n+ |κ|, 2γ + 1; 2λr)

]
.
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Since the Uehling potential is only important for small radii away from the origin, our
evaluation will focus on the 1S1/2 wave function which has the largest contribution near
the origin. This state is given by

n = 1 ,

κ = −1 ,

1F1(−n+ |κ|, 2γ + 1; 2λr) = 1F1(0, 2γ + 1; 2λr) = 1 . (4.23)

For this state the wave functions simplify to

g(r)

f(r)

}
= ±
√

2λ3/2
(

(m± E)(Zαm+ λ)

Γ(2γ + 1)Zαm2

)1/2

e−λr(2λr)γ−1 . (4.24)

The 1S1/2-wave functions G(r) and F (r) are plotted in the figure below.

G(r)

F(r)

0 2 4 6 8 10 12 14

-0.2

0.0

0.2

0.4

0.6

r [λc /(2 π)]

Figure 4.1: Radial wave functions G(r) and F (r) plotted against the radius r in units of
the reduced Compton wavelength of the electron.
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5 Hadronic vacuum polarization

5.1 Parameterized hadronic polarization function

As discussed in chapter 3, the hadronic polarization function can be constructed with
experimental collision data. This was done for example by Burkhardt and collabora-
tors [7], who used data from different experiments and energy regions, and also gave an
approximate parametrization for the polarization function

Re
[
Πhad.

(
q2
)]

= Ai +Bi ln
(
1 + Ci

∣∣q2∣∣) , (5.1)

with three constants Ai, Bi, Ci, that are given for different q2-regions. For our evaluation,
an updated version of this parametrization with more energy regions will be used, as given
in [13].

Region Range [GeV] Ai Bi Ci

0− k1 0.0− 0.7 0.0 0.0023092 3.9925370

k1 − k2 0.7− 2.0 0.0 0.0022333 4.2191779

k2 − k3 2.0− 4.0 0.0 0.0024402 3.2496684

k3 − k4 4.0− 10.0 0.0 0.0027340 2.0995092

k4 − k5 10.0−mZ 0.0010485 0.0029431 1.0

k5 − k6 mZ − 104 0.0012234 0.0029237 1.0

k6 − k7 104 − 105 0.0016894 0.0028984 1.0

Table 5.1: Parameters for the parameterization from Eq. (5.1) of the hadronic polariza-
tion function given in [13], with the mass of the Z boson mZ

The first four energy regions (k0− k4) of the in total seven are plotted in the following
figure.
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Figure 5.1: Parameterized hadronic VP function plotted against the impulse q in units
of the electron mass me, with parameters taken from [13].

5.2 Hadronic Uehling potential

The Uehling potential for this parameterization is therefore given by

Amod
0 (~x) =

7∑
i=1

[
− Ze

∫ ki

ki−1

d3q

(2π)3
ei~q·~x

4π

~q2
ρ̃(~q)

[
1 +Ai +Bi ln(1 + Ci|q2|)

]]
. (5.2)

For a spherical ρ̃(~q), the angular integrations can be performed easily in spherical coor-
dinates:

Amod
0 (r) = −Ze 2

π

7∑
i=1

[ ∫ ki

ki−1

d|q| j0(|q|r)
[
1 + Ai + Bi ln(1 + Ci|q|2)

]
ρ̃(|q|)

]
, (5.3)

with r ≡ |~x|, |q| ≡ |~q| and the spherical Bessel function of first kind j0(x) = sinc(x) =
sin(x)
x . For a point-like nucleus (ρ̃(~q) = 1) we can solve the integral in the boundaries

from zero to infinity to get a intuition for the integral using the dummy constants A, B
and C that are supposed to apply for the whole integration region:
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− Ze 2

π

∫ ∞
0

d|q| sin(|q|r)
|q|r

[
1 +A+B ln(1 + C|q|2)

]
=− Ze

r

[
1 +A+ 2BE1

(
r√
C

)]
,

with E1(x) = −
∫ ∞
|x|

dt
e−t

t
. (5.4)

This shows the Coulomb potential is corrected by the constant A and the expression
with the exponential integral E1 shows a similar asymptotic behavior to the potential
induced purely by VP. For our given boundaries ki, the Coulomb-like part of the integral
can be evaluated, but no direct analytical solution for the integral of the logarithm was
found. However, the sinc-function can be expanded as a Taylor series, making also the
logarithm part integrable, assuming that summation and integration can be exchanged:

Amod
0 (r) =− Ze 2

π

7∑
i=1

([
(1 +Ai)

Si(|q|r)
r

]ki
ki−1

+

∫ ki

ki−1

d|q|
∞∑
n=0

(−(|q|r)2)n

(2n+ 1)!

[
Bi ln(1 + Ci|q|2)

])

=− Ze 2

π

7∑
i=1

([
(1 +Ai)

Si(kir)− Si(ki−1r)
r

]

+

[ ∞∑
n=0

Bi |q| (−(|q|r)2)n

(2n+ 1)!(2n+ 1)2

×
[
− 2 + 22F1(1,

1

2
+ n;

3

2
+ n;−Ci|q|2) + (1 + 2n) ln(1 + Ci|q|2)

]]ki
ki−1

)
,

(5.5)

with the sine integral Si(x) and the ordinary hypergeometric function 2F1(a, b; c;x) given
by
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Si(x) =

∫ z

0
dt

sin t

t
,

2F1(a, b; c;x) =

∞∑
n=0

anbn x
n

cn n!
= 1 +

∞∑
n=1

a...(a+ n− 1)b...(b+ n− 1)xn

c(c+ 1)...(c+ n− 1)n!
. (5.6)

This expression converges very slowly for large values of |q|r. Therefore, this method is
neglected and the numerical integration routine from Mathematica is used instead which
produces good results.
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muonic VP
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0
(r
)
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Z
e
]

Figure 5.2: Muonic and hadronic Uehling potential divided by the Coulomb potential
plotted against the radius r in units of the reduced Compton wavelength of
the electron.

In figure (5.2) the muonic Uehling potential is compared to the hadronic Uehling po-
tential. It also possesses a logarithmic divergence for small radii, but the gradient is not
as steep as for the muonic Uehling potential. At about 10−6 λC/(2π) and below, an oscil-
lation of the potential becomes visible. This effect is caused by the finite integration limit
that was given in the parameterization, respectively the finite number of modes used to
describe the function. The effect is only visible for very small radii but poses problems
with the numerical integration. One possibility to deal with this effect is to raise the
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highest integration limit, thereby shifting it to even smaller radii. Another possibility
turns up naturally in the next section, when a finite nuclear radius is considered.

5.3 Hadronic Uehling potential for finite nuclear sizes

The muonic VP is already very sensitive to finite nuclear size effects, and this applies even
more to the hadronic effect. Since the numerical integration for the hadronic Uehling
potential already demands more computing time than the leptonic Uehling potential, a
very simple model of a homogeneously charged nucleus is chosen. This is given by the
charge density

ρ(x) =


3

4πR3 , for x ≤ R ,

0, for x > R ,

(5.7)

with R being the radius of the nucleus. The Fourier transform of the charge density is

ρ̃ (|q|) = 3

(
sin(|q|R)− |q|R cos(|q|R)

|q|3R3

)
=

3j1(|q|R)

|q|R
, (5.8)

with the spherical Bessel function j1(x).
In figure 5.3 the effect of the finite nuclear size on the Uehling potential can be seen.

The divergence at the origin vanishes and additionally the oscillations induced by the
finite integration limit are largely suppressed.

5.4 Energy level shifts for the hadronic Uehling potential

The energy correction in an atom due to hadronic VP can be approximated by treating
it as a small perturbation to the Dirac-Coulomb wave function of a finite nucleus. The
first perturbative order is given by
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Figure 5.3: Hadronic Uehling potential with point-like and finite nucleus divided by the
Coulomb potential plotted against the distance r in units of the reduced
Compton wavelength of the electron.

∆Ehad. VP, CD
rel., 1st-order = 〈ψnκ′m′ |V (~x) |ψnκm〉

=

∫ ∞
0

dr V (r)
(
G2
nκ(r) + F 2

nκ(r)
)
δκκ′δmm′

=

∫ ∞
0

dr V (r)
(
g2nκ(r) + f2nκ(r)

)
r2 ,

with
∫ π

0
dϑ

∫ 2π

0
dϕΩ†κ′m′(ϑ, ϕ)Ωκm(ϑ, ϕ) = δκκ′δmm′ (5.9)

using the Dirac-Coulomb wave functions.
To test the energy values for low values of Z and thereby at low energies, the logarithm
in the polarization function can be approximated with the first non-constant element of
its Taylor series. For this approximation only the first energy region of parameterization
has to be used, therefore only the parameters A1, B1 and C1 are needed and we obtain
for our Uehling potential with a point-like nucleus:
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AVP had.
0 (~x) = −Ze

(
1

|~x|
+ 4δ(3)(~x)B1C1

)
= ACoulomb

0 (~x) +AVP had.
0 (~x) . (5.10)

The energy shift induced by the hadronic VP can be calculated using the analytical
non-relativistic Coulomb-wave functions to yield

∆Ehad. VP
non-rel. = 〈Ψnl|AVP had.

0 (~x) |Ψnl〉 =
−4(Zα)4m3

n3
B1C1 ,

with |Ψnl(~x = 0)|2 =
m3(Zα)3

πn3
δl0 . (5.11)

This formula agrees with that of Friar et al. [14]. Numerical results are presented in the
next chapter.
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6 Results

At first we calculate the hadronic energy shift ∆Ehad. VP
non-rel. for hydrogen with the non-

relativistic approximation from Eq. (5.11). This is performed to have a reference for the
later more complicated approaches, and because this approximation is expected to be a
good estimation for hydrogen. The result is

∆Ehad. VP
non-rel. = −1.39538× 10−11 eV

= 0.66465 ∆Emuonic VP
non-rel. , (6.1)

with the energy shift due to muonic VP ∆Emuonic VP
non-rel. . This is in good agreement with

∆Ehad. VP
non-rel. = 0.671(15)∆Emuonic VP

non-rel. from [14], with the difference stemming from using
newer experimental constants B1 and C1 in Eq. (5.11) as compared to [14]. The hydro-
genic systems for which we will show the computed energy shifts induced by hadronic
VP are:

Element Z Rrms [fm]
1H 1 0.8783(86)
28Si 14 3.1224(24)
40Ca 20 3.4776(19)
208Pb 82 5.5012(13)

Table 6.1: Hydrogenic ions used in this thesis with the mass number and element acronym
AX, the charge number Z and the root-mean-square radius of the nucleus,
Rrms. The latter are taken from [15].

The computation of the hadronic VP energy shift for point-like nuclei demonstrates
a problem of the finite definition of the polarization function parameterization. The
oscillation of the hadronic Uehling potential, visible in figure (5.2), began only at very
small radii (10−3 fm). However, our numerical routine does not converge for the given
integration limit of 105 GeV, and even for artificial higher integration limits, the addi-
tional contributions are not negligible. When the effect of a finite nucleus is included
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these problems do not appear and the integration routine converges. Depending on the
charge number, five to six of the seven parametrized energy sections are necessary for
the integral to converge for our desired level of accuracy. Additionally, for lead (Z = 82)
the energy shift was computed numerically with bound Dirac-Coulomb wave functions
corresponding to a finite nucleus. This was necessary since there are no analytical so-
lutions for a spherical homogeneous charged nucleus, but the effect of the finite nucleus
for lead and other heavy elements is non-negligible at our accuracy. The numerical wave
functions were computed using a computer code developed by Robin Weis for his Bach-
elor thesis [16]. The numerical method is described in detail in [17]. The approach of
this method is to find solutions for very small and for very large radii where the coupled
radial differential equations simplify. The two solutions are then evaluated at a matching
point and their differences are minimized iteratively.

Non-perturbative, i.e. all-order numerical results for the exact wave functions induced
by the hadronic Uehling potential were provided by Halil Cakir [18]. He wrote a computer
code that approximates the real wave function using a spline representation. To this end,
the values of the Uehling potential at 1980 respectively 3960 specified points were used
to compute the energy shift by adding the Uehling potential to the nuclear Coulomb
potential in the radial Dirac equation. The results are shown in table (6.2).

Z ∆Ehad. VP
non-rel. [eV] ∆Ehad. VP, CD

rel., 1st-order [eV] ∆Ehad. VP, NS
rel., exact [eV]

1 −1.39538× 10−11 −1.4055(18)× 10−11 −1.3909(39)× 10−11

14 −5.36048× 10−7 −5.78119(1)× 10−7 −5.75605(72)× 10−7

20 −2.23260× 10−6 −2.582522(2)× 10−6 −2.55961(31)× 10−6

82 −6.30881× 10−4 −4.55029(47)× 10−3 −3.6929(37)× 10−3

Table 6.2: Energy shift results in the non-relativistic approach ∆Ehad. VP
non-rel. , 1st-order per-

turbation theory with Dirac-Coulomb wave functions ∆Ehad. VP, CD
rel., 1st-order and ex-

act wave function of the hadronic Uehling potential for a finite-size nucleus
∆Ehad. VP, NS

rel., exact , respectively, for the considered hydrogenic systems.

Additionally, the result for lead computed as a 1st-order perturbation with Dirac-
Coulomb wave functions of a finite-size nucleus is
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∆Ehad. VP, FN
rel., 1st-order = −3.69799(41)× 10−3 eV . (6.2)

The errors given in table (6.2) and Eq. (6.2) are only based on the convergence of the
results and the uncertainty of the nuclear root-mean-square radii. The uncertainty com-
ing from the parametrization of the polarization function is difficult to estimate but it
probably dominates over the other errors for all elements. Checking the consistency of
the different approaches, it is estimated that the first two digits are stable and the second
decimal place is fluctuating, i.e. the relative numerical accuracy is expected to be on the
level of 1%.
Comparing the non-relativistic results with the other results, one finds that the results
for Z = 1 agree with each other within our estimated error. For increasing values of Z,
the difference increases up to an order of magnitude for Z = 82, implying that all consid-
ered ions except hydrogen demand a relativistic description. The differences between the
results for the 1st-order perturbation of Dirac-Coulomb wave functions and the results
for the exact wave function of the hadronic Uehling potential for a finite nucleus coincide
within the estimated uncertainty. The exact result for lead however deviates strongly
from the 1st-order pertubation of Dirac-Coulomb wave functions. The energy shift for
lead can only be described satisfyingly with a wave function of an extended nucleus.
Our perturbative result of 1st-order from Eq. (6.2) matches the exact result within the
expected uncertainty. Such a good applicability of perturbation theory is not surprising,
given the smallness of the perturbation (≈ 4 meV) compared to the binding energy of
the electron (≈ 90 keV).
Although the hadronic VP in lead leads to the highest energy shift for the considered
ions, even the two-loop QED corrections computed to be around −0.7 eV [19], can not be
resolved experimentally yet in the corresponding 2p → 1s x-ray transition [20]. There-
fore, we consider another system that could feature measurable shifts, namely, muonic
hydrogen.

The results for muonic hydrogen, that are listed in table (6.3), show only a small devia-
tion for the non-relativistic approach for a point-like nucleus compared to the relativistic
approaches. The relativistic effects are small due to Zα� 1.
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Z ∆Enon-rel. [eV] ∆ECou.-Dirac
rel., 1-order [eV] ∆Efinite nucl.

rel., exact [eV]

1 −1.23351× 10−4 −1.224159(93)× 10−4 −1.2212(10)× 10−4

Table 6.3: Results for non-relativistic approach, 1st-order perturbation theory with Dirac-
Coulomb wavefunctions and exact wavefunction of the hadronic Uehling po-
tential for a finite nucleus for muonic hydrogen.
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7 Summary and outlook

The rising precision of both experimental spectroscopic measurements and theoretical
predictions calls for more detailed description of known effects. The muonic VP is al-
ready an established part of theory [21]. The hadronic VP has already been considered
in precision calculations, i.e. [21], but these evaluations use the non-relativistic approxi-
mation from Friar et al. [14]. In order to assure that the hadronic VP does not limit the
precision of theory, a generalized approach is desirable. In this approach we take into
account relativistic effects, which are relevant in highly charged ions like in [1], and the
finite nuclear size effects, which are important in heavy ions such as lead. Therefore this
thesis is a contribution to understand and diminish the uncertainty induced by hadronic
vacuum polarization in atomic precision measurements.

In this thesis we examined the properties of the hadronic VP function, and described a
different approach on how to obtain a VP function from experimental cross section data,
in contrast to the leptonic VP being completely described by the lepton mass and the
fine-structure constant. An effective potential was determined by using a parameterized
hadronic VP function. Finally, energy shifts induced by the hadronic Uehling poten-
tial were computed by using different methods, including a non-relativistic approach,
1st-order perturbation theory with Dirac-Coulomb wave functions, and 1st-order pertur-
bation theory with wave functions for finite nucleus sizes and compared these with the
energy shifts computed with exact wave functions of the hadronic Uehling potential for
a finite nucleus. The energy shifts were determined for four different H-like systems: H,
Si, Ca, and Pb. The results for the energy shift induced by hadronic VP exhibit that for
our desired level of accuracy, it is sufficient to describe H non-relativistically, Si and Ca
with analytical Dirac-Coulomb wave functions and Pb with relativistic wave functions for
finite nuclear sizes. The results calculated with different methods coincided within their
estimated area of applicability, the main uncertainty being due to uncertainties in the pa-
rameterization of the empirical hadronic VP function. This could be improved in future
by using perturbative QCD (pQCD) in the high-energy regime, reducing the problems
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discussed due to this parameterization. In [10], the pQCD approach was applied and the
scope of application for pQCD in this paper was denoted with > 2.5 GeV. However, the
low-energy regime provides the main contribution and can not be dealt with pQCD. An
advanced parameterization of the polarization function and more accurate hadronic cross
section measurements can improve this area. Not only the description of atomic systems
benefits from a better hadronic polarization function, but also the description of scatter-
ing processes and free-particle properties such as the free-muon and free-electron g-factor.
Another possible enhancement for the approach in this thesis is a more realistic nuclear
model than the homogeneously charged sphere, e.g. applying a Fermi-Dirac-distribution
for the nuclear charge. This is especially important for muonic atoms, because a large
fraction of the wave functions is located inside the nucleus. Fast converging numerical
methods for effective potentials that consider the Fermi-Dirac-distribution already exist
for leptonic VP [22] and could be adjusted for hadronic VP.

In this thesis we evaluated the impact of hadronic VP effects on the energy levels of an
atom. Another possible application is the effect on the bound lepton g-factor induced by
hadronic VP. This can be evaluated by taking into account the change of the large and
small components of the wave function due to an external magnetic field, and considering
the hadronic VP correction of the photon propagator. Nowadays, the g-factor of highly
charged ions can be measured to high precision, on the 10−11 level [1]. Closely related is
the hyperfine splitting of energy levels that is caused by the nuclear magnetic moment.
Measurements on the hyperfine splitting probe the atomic wave function on the distance
scale of the nucleus, therefore, VP effects are much more pronounced than in case of
fine-structure transitions or the level energies considered in the current thesis. These
effects could be evaluated in a similar way. A recent laser spectroscopic measurement of
the hyperfine splitting in H- and Li-like Bi ions at the GSI revealed discrepancy of theory
and experiment [23], indicating that either a thorough re-evaluation or extension of QED
calculations are needed, or the nuclear parameters entering the theoretical model need
to be re-examined.
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