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Abstract
Weconsider twoweakly interacting quasi-1D condensates of cold bosonic atoms. It turns out that a
time-dependent variation of the tunnel-coupling between those condensates is equivalent to the
spatial expansion of a one-dimensional toy-Universe, with regard to the dynamics of the relative phase
field. The dynamics of thisfield is governed by the quantum sine-Gordon equation. Thus, this analogy
could be used to ‘quantum simulate’ the dynamics of a scalar, interacting quantum field on an
expanding background.Wediscuss how to observe the ‘freezing’ of quantum fluctuations during an
accelerating expansion in a possible experiment.We also analyze an experimental protocol to study
the formation of sine-Gordon breathers in the relative phase field, seeded by quantum fluctuations.

1. Introduction

The recent progress in coherently controlling systems of cold atoms (e.g., [1–5]), stimulated a lot of research
concernedwith employing these experimental systems to ‘quantum simulate’ prototypical quantummany-
bodymodels and quantumfield theories (e.g., [6, 7]). This includes dynamics that is relevant for the early
Universe, e.g. the initial acoustic density oscillations (Sakharov oscillations) that determine the structure
observed in the cosmicmicrowave background radiation andwhich have recently been simulated using a
quench in a cloud of cold atoms [8]. Particularly fascinating are ideas concernedwith simulating quantum
many-body physics on curved space–times (‘analog gravity’) (see [9–20], as well as references therein) connecting
concepts and techniques from cosmology and condensedmatter.

During the past few years, a very versatile platform for analog quantum simulationswith cold atoms has been
established in the Schmiedmayer group at Vienna: an atom chip holding one or two quasi-1Dbosonic
condensates [3, 21–23]. In this setup, it is possible to tune the trapping potential in a time-dependent fashion,
which includes the possibility tomodify the tunnel-coupling between two nearby condensates. That has been
used experimentally to probe quench physics [24–28] and to control non-equilibriumdynamics [29]. After
releasing the trap, the expanding clouds give rise tomatter-wave interference that reveals the relative phase
between the two condensates. The spatially resolved phase field can bemeasured for each run of the experiment,
and the full statistics [22, 30] aswell as higher-order correlators [28] have been extracted from the data ofmany
runs. A recent comprehensive overview of this set of experiments can be found in [31]. The opportunities offered
by this platformhave resulted in a number of theoretical proposals for future experiments, e.g. [32–34].

In the present work, we argue that a pair of tunnel-coupled, quasi-1D, bosonic condensates can be employed
for simulating an interacting, scalar quantum field on top of an expanding 1+1 dimensional space–time
(figures 1(a) and (c)). This scalar field is represented by the relative phase field between the condensates. As
argued in [35], at low energies, its dynamics is described by the quantum sine-Gordonmodel. It turns out that in
this setup, one can simulate the expansion of the 1D toy-Universe simply by varying the tunnel-amplitude
according to a suitable protocol (figure 1(b)). In the experiments, the tunnel-amplitude itself can be tuned
significantly and the field dynamics can be directly visualized bymeans ofmatter-wave interferometry. The
‘quantumness’ of the relative phase-field dynamics depends on the interaction strengthwithin each condensate
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(which is tunable, e.g., by adapting the 1D condensate density). Here, we consider theweakly interacting
‘semiclassical’ limit (e.g., [32, 36–39]) and employ the truncatedWigner approximation (TWA) (e.g., [36]). In
contrast, the proposed quantum simulator would also allow to explore the deep quantum regime—in fact, this is
itsmain purpose.

In the following, we start with deriving an effectiveHamiltonian description of an interacting quantum field
on an expanding 1+1 dimensional space time. In a second step, we introduce the experimental ‘quantum
simulator’—the tunnel-coupled condensates—and eventually discuss two of the possible effects, which could be
explored.

Thefirst effect is thewell known ‘freezing’ of quantumfluctuations and the related ‘cosmological particle
production’ ofmassive phonons during an accelerating expansion. This purely linear, thoughmost fundamental
effect ismade responsible for the structure formation in the very earlyUniverse [40]. Thismode freezing also
manifests itself in the spatial fluctuation spectrumof the field, which can be directly extracted experimentally.
Although, strictly speaking, there is no need for a quantum simulation of the exactly solvable linear dynamics,
observing the freezing of quantumfluctuations in the experiment would nevertheless be exciting (see, e.g.,
[10, 12]) andwould constitute an important check on the setup. As shown in [17], the dynamics of phonons in
an expanding 1+1 dimensional space–time can be alternatively investigated by considering the phase-field of a
single, physically expanding condensate.

The second feature is the generation of localized structures during the expansion out of quantum
fluctuations. This pattern formation involves the full nonlinearity of the underlying sine-Gordon field theory
andwas also observed in the static case [32]. In contrast to [32], for an exponential expansion this happens only
for small enough expansion rates. At large expansion times, these patterns seem to turn into standing sine-
Gordon breathers simply drifting apart from each other.We discuss how to detect signatures of this ‘Hubble’
drift experimentally. In cosmology, excitations like these, e.g., in the scalar inflatonfield, are sometimes denoted
as ‘oscillons’ (e.g., [41–46]). A full experimental quantum simulationwould allow for investigating the
formation and persistence of these excitations on an expanding background, even in regimeswhere quantum
effects become very important for the dynamics.

2.Quantumfield on curved space–time

The space–time action of a classical, scalarfield theory in 1+1 dimensions is given by [40] (c=1, ÿ=1)

( ) ( ) ( ) ( )⎡⎣ ⎤⎦ ò c c c= - ¶ ¶ -mn m
mn

nx g g V
1

2
d det 2 , 12

where gμν denotes themetric, c c¶ = ¶ ¶m
mx andV(χ) is an arbitrary potential.We are interested in an

homogeneous, spatially expanding space–time described by the Friedmann–Robertson–Walker (FRW)metric

( ) ( )t t= -s a xd d d . 22 2 2 2

Here, x denotes comoving coordinates which are related to physical coordinates xph via the scale factor a(τ) as
xph=ax. Here, we treat a(τ) as a given function of time to be specified below.

At present, the nature of thefield that drives cosmological inflation is still unknown, which has led to
sustained activity in exploring variousmodels [47, 48]. A nonlinear scalar fieldχ, such as the onewhose

Figure 1.Quantum simulator. (a) Sketch of the quantum simulator consisting of a pair of tunnel-coupled 1Dbosonic condensates.
The tunnel amplitude t⊥ ismodulated time-dependently. It can be related to the scale factor a (b) describing the (exponential)
expansion of a 1+1 dimensional ‘Universe’. The laboratory time (condensate coordinate x) is identifiedwith the conformal time η
(comoving coordinate). The relative phasefield between the condensates f̂ represents the scalar quantum field to be simulated. (c)
Semiclassical evaluation of the physical energy density of the simulated quantum field (here displayed in physical coordinates
xph=ax). One can observe the structure formation out of zero-point quantum fluctuations during the expansion.
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dynamics will be analyzed here, would represent one of themany possibilities that are studied as candidates for
inflation.

In 1+1 dimensions, the Lagrangian corresponding to equation (1) takes an intriguingly simple formusing
the so-called conformal time ηwith dη=dτ/a:

( ) ( ) ( ) ( ) ( )⎡⎣ ⎤⎦ò c c h c= ¶ - ¶ -hL x a V
1

2
d 2 . 3x

2 2 2

The quantization of the field theory follows the standard prescription [40]. First, we identify the canonical
momentumfield ( )h cP º = ¶c

d
d c h¶h

x, .L In a second step, we promote thefields to operators demanding that

[ ˆ ( ) ˆ ( )] ( )c h h dP ¢ = - ¢cx x x x, , , i .Eventually, we can switch to theHamiltonian formulation introducing the
time-dependentHamiltonian

( ) ( )ˆ ( ) ˆ ˆ ( ) ˆ ( )⎡⎣ ⎤⎦òh c h c= P + ¶ +cH x a V
1

2
d 2 . 4x

2 2 2

Note that all effects of the expanding space–time are now encoded in the time-dependence of ˆ ( )hH (see
[11, 49, 50]).

3. Tunnel-coupled condensates as quantum simulator

Here, we propose a quantum simulation of the field ˆ ( )c hx, for the special case of a sine-Gordon potential
( ˆ )b bc= - -V m cos .0

2 2 This potential has several interesting properties: the corresponding field theory is
interacting and integrable. Second, the sine-Gordon potential appears in the so-called ‘natural inflation’
scenario [47]. Third, the sine-Gordon potential supports the formation of ‘quasibreathers’ [32] (in the
cosmology literature denoted as ‘oscillons’ e.g., [43, 44, 46, 51]).

The quantum simulator (figure 1(a)) consists of two tunnel-coupled quasi-1D condensates of cold, bosonic
atoms [3, 21–23]with a time-dependent tunnel amplitude t⊥. The laboratory time is identifiedwith the
conformal time η. At low energies, the dynamics of the relative phase field ˆ ( ) ( ˆ ˆ )bf f f= -x t, 2 21 2 can
be described by the quantum sine-Gordonmodel [35] (the sound velocity vs=1)

( )ˆ ˆ ˆ ( ) ˆ ( )
⎡
⎣⎢

⎤
⎦⎥ò f

h
b

bf= P + ¶ -H x
m1

2
d

2
cos . 5

L

xSG
0

2 2 2

2

The relative phasefield and the relative density variations ˆ ˆ ˆb P º p p- -2 1
2

1 2 form a canonical pair. The tunnel

amplitude t⊥(η) enters themass termm2(η)=2β2ρ0t⊥(η), where ρ0 is themean density per condensate. The
Luttinger liquid description should be reliable as long as the typical length scale of equation (5), set by v m,s is
much larger than the healing length of the condensates ξh [32, 35]. This can always be achieved by choosing a
sufficiently small tunnel-amplitude. The parameterβ is related to the Luttinger parameterK as b p= K2
(for weak interactions b  1). It can be shown thatβ plays the role of Planck’s constant [36] and b  1
corresponds to the considered semiclassical limit of the quantum sine-Gordonmodel (e.g., [52]). However, in
the experiment one can go deep into the quantum regime corresponding to largerβ (a rather broad range of
values up toK∼50 is realizable, e.g., [53]).

The following identifications connect the quantum simulator and the quantum field theory on an expanding
background. Identifying the fields ˆ ˆc f« and ( ) ( )h h=m m a2

0
2 2 (and thus ( ) ( ) ( ) )h h« ^ ^a t t 0 , the

dynamics of the relative phase field simulates ĉ in conformal time and comoving coordinates. In the remainder,

wewill always argue in terms of the field f̂, i.e., we analyze equation (5).
We note that the originalmodel for two tunnel-coupled bosonic condensates also includes features not

present in the low-energy approximation (5) adopted here. Specifically, these are amplitude fluctuations and the
possible cross-coupling between the relative phasefield (considered here) and the ‘symmetricmode’ (i.e. the
sumof the phases). Formore details on these issues, we refer the reader to [32, 54, 55].

4. Scale factor and initial state

Weconsider an exponential expansion a(τ)=eHτwith the ‘Hubble constant’ ˙ ( ) ( )t t=H a a . Choosing
a(0)=1 and after a shift by 1/H, we obtain η=H−1[1−e−Hτ]. Correspondingly we find a(η)=[1−Hη]−1

(see figure 1(b))with η Î [0, ηf] and ηf<1/H. At ηf, the expansion ends and a(η>ηf)=af. The dimensionless
parameterH/m0 compares the expansion rate and the typical internal timescale (at short times) of the system
and plays a crucial role.

At η=0, we start in the ground state ofmassive phononswith a smallmassm0. In particular,m0 is chosen
much smaller than theUV cutoff 1∼1/ξh. All TWA simulations are performed on a lattice with lattice constant
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set to one, while keepingm0a(η)  1 throughout thewhole simulation. Before, the expansion starts, the

center-of-mass (COM)mode ˆ ( ) ˆ ( )òh f hF º x xd ,
L

L
1

0
is tuned to some valueΦ(0)=Φ0 withβΦ0ä[0,π]

(Φ′(0)=0). As argued in [32], such an initial state can be fairly well achieved by slowly splitting a single
condensate followed by applying a potential gradient between the condensates to tuneΦ0 (see also [56]).

5. Freezing of quantumfluctuations

One of the fascinating results ofmodern cosmology is that the structure formation in the very earlyUniverse
seems to have been seeded by quantumfluctuations [40]. This result is truly amazing, as on cosmological scales
zero-point fluctuations are tiny.However, it seems that an exponential expansion of the very early Universe
(inflationary stage) led to a freezing of quantumfluctuations and stretched them to cosmological scales. One can
reformulate this basicmechanism in a condensedmatter language (e.g., [11]). In this terminology, the
inflationary expansion corresponds to a rapid, non-adiabatic ‘quench’(see, e.g., [57]) producing a large number
of excitations (‘cosmological particle creation’ see for instance [12, 18]).

A very similar effect should be observable in the considered 1+1 dimensional toy-Universe. For this
purpose, we consider the caseΦ0=0. For small enoughβ andfinite system size, one can safely expand the

cosine-potential to lowest order ( ) ( ˆ ) ˆ( )h b bf f- » h-m 1 cos m2 2
2

22

yielding a theory ofmassive phonons (see
[16, 17, 38, 39, 57, 58]) on an expanding 1+1 FRWspace–time. According to equation (5), the dynamics of the
modes f̂k [ ˆ ( ) ˆ ˆ ( )åf h f hº F + ¹x, e

L k
kx

k
1

0
i ] is determined by

ˆ ( ) ( ) ˆ ( ) ( )⎡⎣ ⎤⎦f h h f h + + »k m a 0. 6k k
2

0
2 2

The general solution of equation (6) is given in the supplement (see appendix for details). Note that there exist
two different regimes. Apparently,modeswith ∣ ∣ ( )hk m a0 oscillate freely. In contrast, the expansion
strongly impactsmodes with ∣ ∣ ( )hk m a0 . Thesemodes stop oscillating and undergo an overdamped
evolution algebraically in time, i.e., they are ‘frozen’ (see figure 2(b)). In contrast to the 3+1 dimensional case,
in 1+1 dimensions this happens only for finitemasses with 1/m0 playing the role of a ‘horizon’.Most
importantly, this freezing alsomanifests in the spectrum ˆ ( ) ˆ ( )f h f há ñ-k k (see [10, 11, 40]), which deviates from
the instantaneous ground state spectrum indicating the expansion induced production of excitations. This
allows to observe the effect with a singlemeasurement of the relative phase field ˆ ( )f hx, per run. For the
considered protocol (restricting to η<ηf), we obtain for allmodes with ∣ ∣ k m0 in the limit
∣ ∣ [ ( )]h k m a 00 (see figure 2(a))

ˆ ( ) ˆ ( )
∣ ∣

( )f h f h µ
n

n

n- -

-

a

H

k

1
, 7k k 1 2

2 1

2

where n = - m H1 4 .1

2 0
2 2 Adetailed derivation of this (and related) results for the linear dynamics is

presented in the appendix.
Modes with ∣ ∣ ( )h k a m0 remain close to the initial ground state ofmassive phononswithmassm0

yielding ˆ ( ) ˆ ( ) ∣ ∣f h f há ñ-  k1 2 .k k Here, we consider a fast expansionwithH/m0>2. In the limit
n ¥H m ,0 approaches 1/2 corresponding to a ‘sudden quench’which leaves the spectrumunchanged. In a

possible experiment, one could detect the different power-laws by probing the longitudinal phase coherence
[59] of the condensates on different length-scales (similar to [22]). It can be easily checked (see footnote 1) that
thefinite a′(0) does not influence the ‘particle production’which happens during the evolution.

Figure 2.Mode ‘freezing’. (a)Plot of the spectrum at a=19.6, 166.8, 1000 (blue lines, top to bottom). Here,H/m0=2.6 and
m0=0.05.One observes the spectral tilt (dashed, blue line) resulting from the freezing ofmodes. Dashed lines show the
corresponding ground state spectra for a=1 and a=af. (b) ‘Freezing’ ofmodes (here k/afm0=0.1).While the suppression of the
1Dfieldfluctuations at later times is non-universal (e.g., it depends on the spatial dimension), themechanism of the expansion-
inducedmode freezing is the same as in higher dimensions.
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6. Formation of breathers out of quantumfluctuations

While the freezing out of quantumfluctuations is a purely linear effect, we nowdiscuss a feature, which heavily
relies on interactions. Fromnowon, we consider a slow expansion H m 10 andfinite 0<Φ0∼π/β (see
figure 3(a)). At short times η>0, the global relative phaseΦ(η) performs Josephson oscillations. However, it is
well known that these are parametrically unstable against small, spatial fluctuations (e.g., [32, 60, 61]).
Linearizing aroundΦ, onefinds ˆ [ ( ) ] ˆf h b f + + F k m a cos 0.k k

2
0
2 2 In the static case, this parametric drive

leads to ˆ ( ) ( )f h ~ hG Fek
k, 0 with ( )∣ ∣ bG F - k msin 2k

2
2

0
2 2 [32, 61] (displayed forβΦ01). In turn the

fluctuations ˆdfá ñ2
grow and at some point the linearization breaks down. In the semiclassical limit b  1, it was

demonstrated that the nonlinearity of the sine-Gordon equations leads to the formation of localized patterns in
thefield ˆ ( )f hx, [32]. These patternswere identifiedwith ‘quasibreather’-solutions of the classical sine-Gordon
equation [32], which in contrast to usual breathers have afinite lifetime and could also explain the formation of
these excitations out of phononic quantumfluctuations.

Here, for a slow, exponential expansion (in proper time τ), one observes the formation of similar excitations
only form0/H exceeding a rather sharp threshold (figure 3(c), see also [46]), which depends onβ andΦ0. This
can be understood realizing that as long as the linearization applies, the expansion causes a suppression~ a1
of long-wavelengthmodeswith kup to the order ( ) m ,0 including theCOMmode. Furthermore, in the course
of time, resonantmodes can get shifted out of resonance as a consequence of the expansion. Replacing k k a

and F  F a0 0 (see [46, 61]), onefinds that ( )ˆ ( ) ˆ ( )
⎡
⎣⎢

⎤
⎦⎥òf h f h há ñ µ ¢ G

h

-
- Fa aexp 2 d Re , .k k

k

a a
1

0

0 The

nonlinearity and thus the formation of localized patterns kicks in only if the fluctuations

ˆ ( )b df há ñ2 ( ) [ ]
( )

[ ( )]

ò
ò

s h s» = b
h p p

h¢ G

+

h F

, where ,
a L

k
k

a

k m2

d

2

exp 2 d Re ,
1 2

c
k

a a2
0

0

2
0
2

exceed a certain value for some η

(see figure 3(c)). Numerically, wefind that this value is of the order ( ) -10 .1

Close to the creation threshold, once created, these breather-like excitations persist at the position, where
theywere ‘born’ out of quantum fluctuations. This is in contrast to the ‘quasibreathers’ observed in the static
case [32] (see also [51]). In the long-time limit, the homogenous part of the fieldΦ is damped awayµ a1 .We
find good numerical evidence that the localized excitations, however, are robust against the expansion and can
bewell described as standing (classical) sine-Gordon breathersfB (seefigure 3(b)). Their typical distance is set by
themaximally amplifiedwavelength before the nonlinearity sets in, ending the parametric amplification. It
seems that at late times ( a 1), the only effect of the adiabatic expansion on breathers is a trivial shrinking of
the breather period andwidth (both∝1/m0a(η)) in comoving coordinates, while their amplitude stays
approximately constant. This can be understood realizing that the amplitude of a classical sine-Gordon breather
βfB is solely determined by the breather parameterjä[0,π/2](maxβfB=(2π−4j), see e.g., [62]). In the
quantum sine-Gordonmodel, this parameter gets quantized [63], i.e., it is promoted to a quantumnumber.

Figure 3.Emergence of breathers. (a)Plot of a single TWA run in comoving coordinates and conformal time (β=0.1,βΦ0/π=0.65,
H/m0=0.02). One observes the damped Josephson oscillations of theCOMmode and the emergence of breather-like excitations
out of parametrically amplified phonons. As theCOMmode is damped away due to the expansion, standing sine-Gordon breathers
are released. These can be tracked numerically (green dots). (b)Time-evolution of these breathers tracked at δη=0 denoting the time
of tracking ( h hf ) as a function ofΩBδη (ΩB is the numerically obtained breather frequency). The spatial center of the breathers is
shown. Color code: distribution function; Blue, solid line shows the temporal evolution of a standing breather (corresponding to the
mean breather frequency). (c)Density of created breathers ( is the number of tracked breathers) obtained by tracking breathers at
af=10.Here, L=1000,m0=0.075 andβ=0.1. Thewhite, dashed line indicates wheremaxησ=0.2 (seemain text).
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However, it is well known that for a slow change of systemparameters (by slow, here, we understand
hW ¶W ¶-  1,B

2
B where ( )h jW = m a sinB 0 is the instantaneous breather frequency), quantumnumbers (and

thus the breather amplitude) are approximatively preserved (see [64]).While for large a 1 the number and
amplitude of breathers remain constant (per experimental run), they simplymove apart from each other in
physical coordinates. This ‘Hubble expansion’ e.g., can be observed in the (experimentally accessible) equal time
correlation ( ) ˆ ( ) ˆ ( ) ˆ ( )h f h f h f h= á ñ - á ñffC x x, , 0, 0, 2 (figure 4). Under the assumption that at late times,

thefield f̂ can be described as a set of independent (standing) sine-Gordon breathers with fixed amplitudes, one
obtains that

( ) ( )h hµ -ffC H0, 1 . 8

The linear suppression ofCff is a direct consequence of the decreasing breather density in physical coordinates.
From a condensedmatter point of view the observation that a suitable protocol for the tunnel-amplitude
prepares a state consisting of independent, standing sine-Gordon breathers is interesting by itself.While the
analysis here is based on semiclassical considerations (numerically on the TWA) reliable for b  1, the
proposed quantum simulator could for instance test the stability of classical sine-Gordon breathers against
quantumfluctuations for largerβ∼1 (see [65]). Furthermore, a quantum simulation could give insight in the
excitation of ‘oscillonic’ patterns in a scalar quantumfield (such as the inflatonfield)during spatial expansion.
Such oscillonic patterns have been discussed extensively in the cosmology community, e.g., [44–46, 51], and also
recently for coupled BECs [34]. Other variations seempossible aswell, such as extending the proposals [66, 67]
on cold-atom simulations of ‘false vacuum’ decay to situations with spatial expansion.

7. Conclusions

Wehave shown that by tuning the tunnel-amplitude between a pair of tunnel-coupled 1D condensates, one can
simulate an interacting quantumfield on an expanding 1+1 space–time. The proposed ‘quantum simulator’
should be realizable with present cold atom setups.We have discussed two examples of quantum-many body
physics on an expanding background: the freezing of phononmodes and the creation of sine-Gordon breathers
out of quantumfluctuations during an exponential FRW-expansion.While the discussion here is restricted to
the semiclassical limit of the underlying quantum sine-Gordonmodel, any experimental realization of this
‘quantum simulator’ is ultimatelymeant to explore the deep quantum regimewhere additional surprising
featuresmight be encountered.
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Appendix

Herewe provide a detailed derivation of the expansion-induced ‘particle production’ in a 1+1 dimensional
toy-Universe, which could be observed in the proposed experiment asmentioned in themain text. In contrast to
higher dimensions, in one spatial dimension this happens only forfinitemasses. Nevertheless, it is shown here

Figure 4.Plot of the correlation functionCff(0, η). Clearly, one observes the exponentially growing fluctuations (parametric
resonance). At some point the nonlinearity of the sine-Gordonmodel leads to the formation of breather-like structures (around the
main peak, see figure 3(a)).While the COMmode is damped by the expansion, these structures turn into standing sine-Gordon
breathers with a constant amplitude (seefigure 3(b)), which, in physical coordinates simple drift away from each other. This ‘Hubble
expansion’ ismirrored by the linear decay of the correlation function as∝(1−ηH) at late times. Once the expansion stops at ηf, the
correlation function becomes almost constant. Here:β=0.1,H/m0=0.02,m0=0.05, L=800 andβΦ0=0.7π.
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that the production offield excitations in the considered 1+1 dimensional Universe can be analogously
understood as ‘freezing’ ofmodeswith physical wavelengths exceeding a characteristic length scale.

In themain text, as afirst example, we discuss a simple though fundamental feature of quantum field
theories in an expanding space–time, namely the expansion induced production offield excitations (see
section 5). In the case of 3+1 dimensions this effect is known as ‘cosmological particle creation’. The
experimental observation of this linear effect would prove that the ‘quantum simulator’ is operating as expected.
For this purpose, the global relative phase is tuned to zero before ramping up the tunnel-amplitude, i.e., before
simulating the spatial expansion. In this case, for the considered and experimentally relevant parameters (see
main text), the relative phase field can be described in terms ofmassive phonons. Starting in themassive ground
state before the expansion, it turns out that in close analogy to the 3+1 dimensional case, a fast, accelerating
expansion leads to the excitation ofmassive phonons. In contrast to higher dimensions, in one spatial dimension
this happens only forfinitemasses. In the following, we provide a detailed derivation of the time dependent
fluctuation spectrum in one spatial dimension and compare the results qualitatively to the 3+1 dimensional
case. For this purpose, we closely follow [48] and perform all calculations directly for the ‘cosmological’field ĉ
to be simulated experimentally.

Limit ofmassive ‘phonons’—linear dynamics
Asmentioned above, here it is assumed that the k=0mode is tuned to zero, such that the effective, classical
Hamiltonian in conformal time and comoving coordinates is given by (with the canonicalmomentum

cP = ¶c h )

( )( ) ( ) ( )⎡⎣ ⎤⎦òh c h c= P + ¶ +cH x m a
1

2
d . 9

L

xeff
0

2 2
0
2 2 2

Demanding that [ ˆ ( ) ˆ (c h P ¢cx x, , , η)]=iδ(x−x′), thefield theory gets quantized. In order to evaluate the time
evolution it is suitable to introduce themode expansion:

( )ˆ ( ) ˆ ( ) ˆ ( ) ( )†*åc h h h= + -x
L

a v a v,
1

2
e e , 10

k
k k

kx
k k

kxi i

ˆ ( ) ( )å c hº
L

1
e , 11

k

kx
k

i

with vk fulfilling

( ) ( )⎡⎣ ⎤⎦h + + =v k m a v 0. 12k k
2

0
2 2

For convenience, we choose time such that a(η)=−1/ηH and ] [h Î - ¥, 0 (this corresponds to a shift by
1/H compared to themain text). Furthermore, the canonical commutation relation puts an extra restriction on
themode functions: Imvk

*v′k=1 for all k and η ([ ˆ ˆ ]† d=¢ ¢a a,k k kk ). In themain publication, we consider the
situation, where initially thefield is prepared the instantaneous ground state of equation (9) for allmodeswith
¹k 0.Note that in the cosmological context, the situation is slightlymore subtle. Only formodeswith physical

wavelengthsmuch smaller than 1/H, the influence of the expansion before inflation sets in can be neglected.
Fortunately, it seems that precisely thesemodes are crucial for the large-scale structure of the observable
Universe [40, 48]. In the cosmological context, thesemodes are assumed to start in the instantaneous ground
state. This partial vacuum initial state is better known as the Bunch–Davies vacuum [48].

In our case, starting in the instantaneous ground state ∣ ( ˆ ∣ )ñ ñ =a0 0 0k at time ηi, the initial conditions for
vk=v−k can be foundbyminimizing the expectation value of theHamiltonian under the constraint Imvk

*vk′=1

yielding ( )
( )

h =
w h

vk i
1

k i

and ( ) ( )h w h¢ =v ik i k i with themassive dispersion ( ) ( )w h h= +k m a .k
2

0
2 2

Fluctuation spectrum—formal solution

Weare interested in the fluctuation spectrum, i.e., ˆ ˆ† ∣ ( ) ∣c cá ñ = h .k k
v

2
k

2

In order to construct the explicit solutions

of vk, we pick two real and linearly independent solutions of equation (12), i.e., with a non-vanishingWronskian
[ ] = ¢ - ¢ ¹W f f f f f f, 0:k k k k k k1, 2, 1, 2, 1, 2,

∣ ∣ ( )⎜ ⎟⎛
⎝

⎞
⎠= nf

a
J

k

aH

1
, 13k1,2;

where n = -1
m

H

1

2

4 0
2

2 andwe restrict to a fast expansionwithH>2m0. The general solution is given by

å= =v C f .k j j k j k1,2 , , Note that ( ) > Îf a 0 .k, One obtains

( ) ( )

( ) ( )
( )

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

h h

h h
=C

W v f

W f f

,

,
, 14k

k i k i

k i k i

1,
2,

1, 2,
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( ) ( )

( ) ( )
( )

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

h h

h h
=C

W f v

W f f

,

,
. 15k

k i k i

k i k i

2,
1,

1, 2,

Indeed, these solutions are linearly independent as

( ) ( ) ( )⎡⎣ ⎤⎦h h
p

pn= -W f f
H

,
2

sin 16k i k i1, 2,

is non zero for all  n > 0.1

2
Thus, we obtain for thefluctuation spectrum introducing the abbreviations

∣
( )∣ ∣⎡

⎣⎢
⎤
⎦⎥=n h h

n
g

J

a

d

d

k

aH

i
and ∣

( )∣ ∣

=n h
n

G :
J

a

k

aH

i

∣ ˆ ( ) ˆ ( )∣ ∣ ∣ ∣ ∣ ( )† ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠c h c há ñ = +n n-

a

C
J

k

aH

C
J

k

aH
0 0

1

2 2
, 17k k

k k1, 2,
2

( )
( )

( )
w h

pn
=

- +
w h n n

p

- -

C
g Gi

sin
, 18k

k i

H1,

1

2

k i

( )
( )

( )
w h

pn
=

-
w h n n

p

C
g Gi

sin
. 19k

k i

H2,

1

2

k i

Explicitly, the spectrum reads

( ) ( ) ( ) ( )
∣ ˆ ( ) ˆ ( )∣

( )

( )

†

( )
∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

c h c h
h

pn

á ñ =

´
- + -

w h n n n n
w h

n n n n

p

- - - -

a

g J g J G J G J

0 0
1

sin
. 20

k k

k

aH

k

aH

k

aH

k

aH

H

1

2

2

2

2

2 2

k i

k i

Discussion of formal solution
The crucial feature of the differential equation (12) is the fact that there obviously exist two different regimes. A
first estimate (neglecting the specific evolution of a(η)) indicates thatmodeswith ( )hk m a0 oscillate freely,
whilemodes with k m a0 undergo an overdamped evolution, i.e., they are ‘frozen’. Thus the inversemass 1/

m0 sets the critical length scale for this crossover to happen. Defining ∣ ∣
h =

m

H k

1
,k

0 onefinds

( )
∣ ∣ ∣ ∣

( )
∣ ∣ ∣ ∣⎪

⎪

⎧
⎨
⎩

h
h h

h h h h
=

+

+

h h

n n

+ - -

+ + - -




v

A A

B B

e e ,

, .
21k

k
k

k
k

k

k k k

i i

1
2

1
2

This behavior can also be extracted from the exact solution equation (20) bymaking use of the limits

(∣ ∣)

(∣ ∣)
∣ ∣
( )

( )

⎜ ⎟⎛
⎝

⎞
⎠p

pn p

n

=- - -

=
G +

n
n

n

n

n

- ¥



J x
x

x

J x
x

lim
2

sin
2 4

,

lim
2 1

. 22

x

x 0

2 1
4

Thefirst limit corresponds to ( ) ( ∣ ∣)l l p= a k2
m

H

m

1
ph ph

0 0
and the second to

( )


l
0.m

m

H

1

0

0

ph
Let usfirst

consider the limit h  -¥i for afinite andfixed k, such that thesemodes do not experience the expansion,
initially. One obtains

∣ ∣ ∣ ∣

∣ ∣
∣ ∣

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

p
pn

h
p

p
pn

h
p

=- + -

=- + -

h
n

h
n

-¥

-¥

g
k H

k

G
H

k
k

lim
2

cos
2 4

,

lim
2

sin
2 4

.

i

i

i

i

At late timeswith
( )


l

0,m

m

H

1

0

0

ph
thesemodes freeze as a result of the expansion crossing the scale essentially set by

1/m0. According to the limit equation (22), the−ν-contributions dominate the spectrum leading to the long-
time spectrum (see equation (7) in themain publication)
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ˆ ˆ
[ ( )] ( ) ( ) ∣ ∣

( )†c c
p
h pn n


G -n

n

n-

- +

Ha k

4

sin

1

1

1
. 23k k 1 2

1

2 2 2

Comparing this spectrum to the instantaneous ground state spectrum ˆ ˆ†c cá ñ =
+

,k k k a m

1

2 2 2
0
2
it turns out that

indeed, as a result of the expansion, the field strongly deviates from the ground state. In particular, the expansion
induced excitation of the field leads to a shift of the power-law exponent in the fluctuation spectrum from

∣ ∣ ∣ ∣ nk k1 1 .2 Note that by taking the limit h  -¥i for afixed andfinite k, we exclude the possibility that
thefinite derivative ( ) ( )h h¢ = a Ha 0i i

2 is responsible for the excitation ofmodes.

‘Freezing’ ofmodes
In the previous section, it was shown that the expansion transforms the ∣ ∣k1 zero-point spectrum into ∣ ∣ nk1 .2

In the following, we provide a simple estimate emphasizing that this spectral ‘tilt’ can be directly related to the
‘freezing’ of quantumfluctuations after crossing the physical lengthscale 1/m0.

As long as ( ) l ,
m

H

m

1
ph

0 0
thefluctuations in thesemodes are not affected by the expansion, i.e.,

ˆ ˆ†
∣ ∣

c cá ñ » .k k k

1

2
This changes, as soon as themodes enter the regime II of the differential equation (12) at times

( )h h= ,k i.e., when their physical wavelength crosses the scale 1/m0. For time h h ,k thesemodes undergo
an overdamped dynamics, i.e., they are ‘frozen’ and decaymonotonically according to the second line in
equation (21).

As h  0, the part of the solutionwith the exponent n-1

2
clearly dominates the long-time behavior, such

thatmodes are suppressed as∼(η/ηk)
1/2−ν. A rough estimate thus yields

ˆ ( ) ˆ ( )

∣ ∣
( )

†
⎡
⎣⎢

⎤
⎦⎥c h c h

h
h

µ

n

n n

-

-a k

1 1
24

k k k k
k

1 2

1 2 2

and thus the power-law shift obtained in equation (23).
In 3+1 dimensions,mode freezing and thus particle production during an exponential expansion happens

even inmassless theories. Furthermore, the crucial lengthscale for this to happen is given by the inverseHubble
constant, in contrast to 1+1 dimensions, where the relevant scale is essentially set by 1/m0. Despite these
differences, the expansion induced production of excitations is very similar to the 3+1 dimensional analogue,
as in both cases the particle production relies on the fact that the underlying differential equation qualitatively
changes at amode-specific time [48]. At early timesmodes evolve freely, but undergo an overdamped dynamics
at late times. In other words, differentmodes freeze at different times resulting effectively in a change of the
power-law exponent of the fluctuation spectrum, i.e., ∣ ∣ ∣ ∣ gk k1 1 .Here γ is an exponentwhich depends on
the specifics of the underlyingmodel.
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