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Abstract. We review recent progress in the field of optomechanics, where one studies the
effects of radiation on mechanical motion. The paradigmatic example is an optical cavity with
a movable mirror, where the radiation pressure can induce cooling, amplification and nonlinear
dynamics of the mirror.
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1. Introduction

Optomechanics is an emerging research topic that is concerned with me-
chanical effects caused by light, particularly in connection with micro- and
nanomechanical structures that are deflected by radiation pressure. Thoughts
about the mechanical effects of light can be traced back as far as Johannes
Kepler. Observing the tails of comets always pointing away from the sun,
he speculated that this might be due to the force exerted by the solar radi-
ation. Ever since the first measurements of such radiation forces more than
100 years ago, optomechanical effects have been observed in various areas
of physics and engineering: Spacecraft with solar sails are indeed being de-
veloped, radiation forces are setting fundamental limits for the precision of
laser interferometers used in detecting gravitational waves, and these forces
are also used to manipulate cold atoms. A recent addition is the use of op-
tomechanical forces to drive, cool and read out micro- and nanomechanical
devices (see a recent review in Kippenberg and Vahala 2008, and other recent
developments in Marquardt 2008). To reach the ground state of a mechanical
oscillator with a frequency of 100 MHz, it would have to be cooled down
to about 1 mK. Achieving such ground state cooling would “put back me-
chanics into quantum mechanics” (Schwab and Roukes 2005), and quantum
effects would become observable in a massive object consisting of roughly
1015 atoms.
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This brief review is organized as follows. In Sect. 2 we introduce the
basic setup, an optical cavity, driven by a laser with one mirror placed on
an oscillating cantilever. We explain the classical effects of retarded radia-
tion forces. Similar physics was investigated in a variety of other system,
like driven LC-circuits coupled to cantilevers (Brown et al. 2007) or single-
electron transistors and microwave cavities coupled to nanobeams (Naik et al.
2006; Rodrigues and Armour 2007; Regal et al. 2008). Light-induced forces
can not only cool the cantilever, but can also enhance the mechanical motion
leading to an instability. In Sect. 3 we show how one can derive an intricate
attractor diagram for the resulting self-induced oscillations (Marquardt et al.
2006), which have also been seen in experiment. Section 4 is devoted to a
quantum description of the coupled cavity-cantilever system (Ludwig et al.
2008). A new optomechanical setup (Jayich et al. 2008; Thompson et al.
2008), which aims at Fock state detection, is discussed in Sect. 5.

2. The Basic Optomechanical Setup

The standard setup of optomechanics is shown in Fig. 1. It consists of an
optical cavity driven by a laser impinging on the cavity through a fixed mirror.
The other mirror of the cavity is movable. For example, it may be attached
to a micro-cantilever as used in atomic force spectroscopy. In such a setup
the mechanical effects of light are enhanced, as the light field is resonantly
increased in the cavity and each photon will transfer momentum to the mirror
in each of the numerous reflections it undergoes, until finally leaving the
cavity.

The coupled cavity-cantilever system is described by a Hamiltonian of
the form

Ĥcav+cant = �

(

ωcav − g
x̂M

xZPF

)

â†â + �ωMĉ†ĉ . (1)

Additional terms in the Hamiltonian describe the driving of the cavity by the
laser beam, decay of photons out of the cavity and the mechanical damping
of the cantilever. Here, ωM denotes the oscillation frequency of a mechanical
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Figure 1. (a) The standard setup of optomechanics. (b) The dependence of the radiation
pressure force (circulating intensity) on the cantilever position
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oscillator, whose displacement can be expressed as x̂M = (ĉ† + ĉ)xZPF in
terms of ladder operators and the oscillator’s zero point fluctuations xZPF =

(�/2mωM)−1/2. The optical cavity, described by operators â† and â, has a
resonance frequency ωcav if the cantilever is fixed at position xM = 0.

The coupling term ∝ x̂Mâ†â with a strength depending on the coupling
constant g can be understood by two equivalent ways of reasoning: The ra-
diation pressure force should give rise to a term of the form −F̂rad x̂M =

− c
L â†â �kcav x̂M, which leads to (1) with g = ωcavxZPF/L. Alternatively, we

can understand the same term as stemming from the dependence of the cav-
ity’s resonance frequency on the cavity length, L+ xM, given by dωres/dxM =

−ωcavxM/L.
Two crucial new ingredients are added to the physics of radiation pressure

by considering a cavity setup. First, the radiation pressure becomes strongly
position dependent due to its proportionality to the total light intensity in the
cavity ∝ â†â. The light intensity shows resonances when the cavity length
L + xM is varied. Their full width at half maximum (FWHM) depends on the
decay time κ−1 of the cavity, xFWHM = κL/ωcav .The resulting dependence of
the radiation pressure force on the cantilever position in the stationary state is
sketched in Fig. 1. Secondly, the decay time κ−1 introduces a delay between
the mirror motion and the response of the light intensity.

To understand the effects of such a retarded response of the radiation
pressure force, let us consider a cantilever at a position xM > 0 to the right
of the resonance (see Fig. 1) moving towards the resonance position, ẋM < 0.
We consider small delay times and small excursions of the cantilever only.
Moving leftwards the cantilever acts against the radiation pressure, which
grows as the cantilever moves closer to resonance and the light intensity in
the cavity increases. This increase, however, lags behind the movement of the
cantilever, so that at any instance the force acting on the cantilever is smaller
than its stationary value at the same position would be (see Fig. 1). Mov-
ing into the opposite, positive direction the delayed decrease of the intensity
leads to an accelerating force on the cantilever, larger than the stationary one.
Overall, there is a net input of work into the mechanical motion during one
oscillation, given by the enclosed area in the force-position diagram in Fig. 1.
Thus, for xM > 0 (where the laser light is blue detuned with respect to the
cavity resonance) the cantilever motion gets enhanced, while for xM < 0
the same physics causes an additional damping. In the next section, we will
extend these qualitative statements to a detailed description of the classical
dynamics of the coupled cavity-cantilever system.

Retarded radiation forces were first investigated in pioneering studies by
Braginsky, both experimentally and theoretically (Braginsky and Manukin
1967; Braginsky et al. 1970).
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3. Nonlinear Classical Dynamics

Operating on the red detuned side of the resonance, any small thermal oscil-
lation amplitude will be damped away more quickly than in the absence of
radiation. On the opposite, blue detuned side, damping is effectively reduced.
If this effect overcomes intrinsic friction, an arbitrary thermal fluctuation
will be amplified into an oscillation with increasing amplitude, driving the
coupled system into a nonlinear regime (Aguirregabiria and Bel 1987; Fabre
et al. 1994; Braginsky et al. 2001; Marquardt et al. 2006). Finally, the sys-
tem will settle into a stable, self-sustained oscillation, where radiation power
input and dissipation are in balance. This will be the subject of the present
section. These effects have already been observed in experiments (Höhberger
and Karrai 2004; Carmon et al. 2005; Kippenberg et al. 2005; Metzger et al.
2008).

To derive classical equations of motion, we replace the operator â by the
complex light amplitude α and the position operator x̂M by the cantilever’s
classical displacement xM. From the Hamiltonian equation (1) we then derive

α̇ =

[

i

(

Δ + g
xM

xZPF

)

− κ
2

]

α − iαL

ẍM = −ω2
M xM + |α|2 �g/(mxZPF) − ΓM ẋM ,

where αL is the amplitude of the driving laser field, ΓM describes the mechan-
ical damping of the cantilever, and Δ = ωL − ωcav is the detuning of the laser
light with respect to the cavity resonance.

Beside a static solution xM(t) = const., the system can exhibit self-
induced oscillations. The cantilever will then conduct approximately sinu-
soidal oscillations, xM(t) ≈ x̄+ A cos(ωMt), at its unperturbed frequency ωM.
Since radiation pressure effects are small, the amplitude A of the oscillations
will change slowly over many oscillation periods only.

From this ansatz, an analytical solution for the coupled dynamics of xM(t)
and α(t) can be found (Marquardt et al. 2006; see also Ludwig et al. 2008).
The two parameters of the solution, the amplitude A and the average displace-
ment x̄, can be determined from two balance conditions: For any periodic
solution the total force should average to zero during one cycle,

〈ẍM〉 ≡ 0 ⇔ mω2
M x̄ = 〈Frad〉 = �g

mxZPF

〈

|α(t)|2
〉

. (2)

This yields an implicit equation for x̄, since 〈Frad〉 is a function of x̄ and
A. Furthermore, the work performed by the radiation pressure balances on
average the frictional losses,

〈Frad ẋ〉 = ΓM

〈

ẋ2
〉

. (3)
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Figure 2. The power fed into the cantilever motion by the radiation force, as a function of
oscillation amplitude and laser detuning. This can be used to construct the possible attractors
for the elf-induced oscillations (indicated by thick lines)

Eliminating x̄ by use of (2) we can plot the ratio between radiation power
input and frictional loss, the two sides of the last equation, as a function of
the oscillation amplitude A. Such a plot is shown in Fig. 2, where we chose the
detuning Δ as a second variable, while other parameters are fixed. The condi-
tion of (3) is fulfilled if the ratio Prad/Pfric = 1, as indicated by the horizontal
cut in Fig. 2. A solution will be stable only if an increase of the amplitude is
accompanied by a decrease of Prad/Pfric. By that reasoning the final attractor
diagram is constructed, as indicated by the thick black lines in Fig. 2.

Important general features of the dynamics of the coupled system can be
seen in Fig. 2. Self-induced oscillations appear for sufficiently strong driving
around integer multiples of the cantilever frequency, Δ ≈ nωM . Such oscil-
lations appear for a positive detuning Δ, while for red detuned laser light
(Δ < 0) the stationary solution, xM(t) = const., is stable. Note that stable
solutions with large amplitude do exist even for Δ < 0.

The most striking feature, however, is the coexistence of several stable
solutions with different finite oscillation amplitudes for a fixed set of sys-
tem parameters. This dynamical multi-stability, first discussed in this context
in Marquardt et al. (2006) and also seen in similar systems (Rodrigues and
Armour 2007), is visible in Fig. 2b, while for the parameters of Fig. 2a we find
coexistence of a stationary and a finite amplitude solution around Δ ≈ 2ωM .

These multi-stabilities could be utilized for ultra-sensitive “latching”
measurements, as argued in Marquardt et al. (2006).
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Self-induced oscillations in an optomechanical system have already been
observed in experiments with bolometric forces (Höhberger and Karrai 2004;
Metzger et al. 2008) and in microtoroidal structures where radiation pressure
dominates (Carmon et al. 2005). Recently, a more detailed comparison of
theory and experiment revealed interesting effects due to higher order me-
chanical modes that get involved in the nonlinear dynamics (Metzger et al.
2008).

4. Quantum Theory of Optomechanical Systems

The prospect of reaching the quantum mechanical ground state of a “macro-
scopic” mechanical object is currently one of the main goals in the field of
micro- and nanomechanics. Impressive progress has been made in a series
of experiments (Cohadon et al. 1999; Höhberger-Metzger and Karrai 2004;
Arcizet et al. 2006; Gigan et al. 2006; Schliesser et al. 2006; Kleckner and
Bouwmeester 2006; Corbitt et al. 2007; Thompson et al. 2008), though the
ground state has not yet been reached at the time of writing. In the classi-
cal picture derived above, we found that a properly detuned laser beam will
cool the cantilever by providing extra damping. According to the classical
theory, the cantilever can be cooled down to an effective temperature Teff =

T ΓM/(Γopt + ΓM), apparently arbitrarily close to absolute zero for sufficient
drive power and low mechanical damping. However, quantum mechanics sets
the ultimate limit for optomechanical cooling.

Starting from an intuitive quantum picture of the cooling process, we will
present in the next subsection a quantum noise approach to cooling. Quantum
effects on the self-induced oscillations can be described numerically within a
quantum master equation discussed in the following subsection, which allows
studying the classical-to-quantum crossover.

4.1. QUANTUM NOISE APPROACH TO COOLING

In the quantum description, a photon impinging on the cavity will emit or
absorb a phonon of the mechanical cantilever motion and change its fre-
quency accordingly, in a Raman-like process. A photon that is red detuned
from the resonance will absorb a phonon of energy �ωM from the cantilever,
so that it is scattered into the cavity resonance, leading to cooling. Detuning
to a “sideband” of the cavity at a frequency ωcav − ωM will be particularly
effective.

For a quantitative approach the radiation field of the cavity will be consid-
ered as a “bath” acting upon the “system,” the cantilever degree of freedom
x̂M, via the coupling term, −x̂MF̂, in the Hamiltonian. The influence of the
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Figure 3. (a) Power spectrum for the radiation pressure force. (b) Quantum-mechanical
cooling limit

bath is then characterized by the power spectrum of the force, Ŝ FF (ω) =
∫

dt exp(iωt)
〈

F̂(t)F̂(0)
〉

. In particular, Fermi’s golden rule links the net op-
tical damping rate of the cantilever to the possibility of the cavity to ab-
sorb/emit a quantum of energy �ωM from/to the bath, S FF(±ωM), as

Γopt = (xZPF/�)
2 [S FF(ωM) − S FF(−ωM)] . (4)

The power spectrum S FF is directly related (Marquardt et al. 2007) to the
spectrum of photon number fluctuations due to shot-noise (see Fig. 3). Cru-
cially, the asymmetry of the power spectrum (which is set by the laser detun-
ing) determines whether the cavity will more readily absorb or emit energy,
setting the sign of the net optical damping rate Γopt [cf. (4)].

One finds (Marquardt et al. 2007; Wilson-Rae et al. 2007) a simple limit
on the minimal occupation number, n̄O

M = [κ/(4ωM)]2, which can be reached
for optimal detuning Δ = −ωM in the resolved-sideband limit ωM � κ, for
Γopt � ΓM. In general, the reachable occupation number n̄M of the mechan-
ical mode will depend on the initial occupation n̄T

M (hence, starting from
cryogenically precooled samples is advantageous) and the mechanical and
optical damping rates, as n̄M = (Γoptn̄O

M +ΓMn̄T
M)/(Γopt +ΓM) , which reduces

to the simple classical expression for the effective temperature given above
for n̄T

M � 1. As shown in Fig. 3 ground state cooling is most advantageously
pursued in the resolved-sideband regime with high finesse cavities and high
frequency resonators. With various groups working on a variety of setups fur-
ther progress and final success in approaching the quantum limit is expected
in the very near future.

The strong coupling regime, where Γopt > κ, needs a more sophisticated
analysis and gives rise to new features (Marquardt et al. 2007, 2008).
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4.2. QUANTUM DESCRIPTION OF SELF-INDUCED OSCILLATIONS

For a full quantum description (Ludwig et al. 2008) of the self-induced os-
cillations, we have to consider the reduced density matrix ρ̂ of the system
consisting of cantilever and cavity mode. Mechanical damping and photon
decay out of the cavity are treated using a Lindblad master equation,

d
dt
ρ̂ = Lρ̂ = − i

�

[

Ĥcav+cant+drive , ρ̂
]

+ΓMD [ĉ]+ κD [â] (for T = 0), (5)

where D [â] = âρ̂â† − 1
2 â†âρ̂ − 1

2 ρ̂â†â is of the standard Lindblad form.
The stationary state of the system is found as the eigenvector of the

Liouvillian L for eigenvalue zero. This problem can be solved numerically
for a restricted, but sufficiently large number of cavity and cantilever states.
From the eigenvector, the density matrix ρ̂ f , all quantities of interest, for
instance, the average kinetic energy of the cantilever motion, can then be
calculated.

Before comparing the results of this quantum mechanical description to
the classical approach, it is instructive to quantify the degree of “quantum-
ness” of the system. Using the dimensionless parameters P = 8 |αL|2 g2/ω4

M ,
characterizing the driving strength, and ζ = g/κ, the Hamiltonian is written as

Ĥcav+cant+drive = �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

−Δ − κζ(ĉ + ĉ†)
]

â†â + ωMĉ†ĉ +
√

2Pω2
M

4κζ
(â + â†)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(6)

The master (5) then contains only dimensionless quantities, if time and the
remaining energy/frequency variables are written in terms of the mechanical
oscillation frequency ωM. Four of the dimensionless parameters in this equa-
tion, ΓM/ωM, κ/ωM , Δ/ωM and P do also appear in the classical equations
of motion, while

ζ =
g
κ
=

xZPF

xFWHM
∝ √� (7)

does not. The so-defined “quantum parameter” ζ constitutes a measure of the
quantum nature of the system and vanishes in the classical limit � → 0. It is
defined as the ratio of the quantum mechanical zero point fluctuations of the
cantilever to a classical length scale, namely the resonance width xFWHM of
the cavity.

The quantum master equation allows studying the quantum-to-classical
crossover of the system dynamics by changing the numerical value of the
quantum parameter ζ. Classical results are recovered for small ζ, while for
ζ � 1 quantum fluctuations tend to smear out the sharp features of the
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Figure 4. Wigner densities for the cantilever under the influence of the radiation force, for
varying detuning, displaying the optomechanical instability (middle and right panels)

classical result and favour the occurrence of self-induced oscillations below
the classical onset, a feature which can also be deduced from the quantum
noise approach introduced above (see Ludwig et al. 2008 for details and
figures). Note that to some extent the effects of quantum fluctuations can be
mimicked by introducing quantum zero-point fluctuations into the classical
equations of motion (Ludwig et al. 2008).

The existence of classical bi- or multistable solutions can be seen by
considering the Wigner density of the cantilever. As illustrated in Fig. 4, the
Wigner density shows characteristic features corresponding to (a) a single
stationary classical solution (broad peak in phase space), (b) a single finite
amplitude classical solution (ring structure – the phase of the oscillatory so-
lution is undetermined), or (c) the coexistence of a classical stationary and
finite amplitude solution (peak with superimposed ring structure).

We find that most optomechanical experiments are well in the classical
regime, in the sense that the quantum parameter remains small (e.g. ζ ≈
10−3 � 1 in the Bouwmeester setup, Kleckner and Bouwmeester 2006). In
two recent setups, however, combining standard optomechanics with cold-
atom physics (Gupta et al. 2007; Murch et al. 2008; Brennecke et al. 2008),
ζ is of the order of one. In these experiments a cloud of cold atoms is placed
in an optical cavity, so that the collective motion of the cloud couples to an
optical mode of the cavity, replacing the cantilever motion.

5. Towards Fock-State Detection

Linked inextricably to the race towards ground state cooling is the question
how to confirm the quantum nature of the final state. Measurement of the
displacement quadratures is possible via optical readout (Clerk et al. 2008).
However, probably the most straightforward demonstration would be to ob-
serve the quantum jumps from the ground state to progressively higher energy
eigenstates (Fock states), as the system heats up again. Such quantum jumps
between different Fock states have been observed in the mechanical motion
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of an electron in a Penning trap (Peil and Gabrielse 1999). In optomechanics
such quantum jumps might eventually be observed for the mechanical motion
of a truly macroscopic object, consisting of billions of atoms.

Recently, the Yale group of Jack Harris introduced a novel optome-
chanical setup (Thompson et al. 2008; Jayich et al. 2008), where a thin
dielectric membrane is placed in the middle of a cavity with two fixed, high
finesse mirrors. Beside the technological advances offered by this setup, it
also leads to a different coupling of the mechanical displacement of the
oscillating membrane to the cavity, which is advantageous for the aim
of Fock state detection. To find the structure of the coupling term in the
Hamiltonian, consider first the limit of a perfectly reflecting membrane at
some position x in the middle of the cavity. Moving the membrane will
change the frequencies of resonances in the left and right halves of the
cavity in opposite directions, which would lead to a resonance crossing at
some displacement xcross. A finite transmission of the membrane, however,
produces an anti-crossing, with ω(x) − ω(xcross) ∝ x2 near the degeneracy
point. In rotating wave approximation the coupling is then of the form
∝ (ĉ†ĉ + 1

2 ) â†â, so that
[

Ĥcant+cav+drive , ĉ†ĉ
]

= 0, allowing non-destructive
measurement of the phonon number. Detecting the phase of the transmitted
beam driving the cavity at resonance frequency then constitutes a direct
quantum non-demolition (QND) measurement of the phonon number.

Shot noise in the transmitted beam can be overcome by time averaging,
which, however, is restricted by the life time of Fock states due to finite damp-
ing and temperature. Optimal averaging times and strategies, how best to
distinguish classical from quantum fluctuations, even when the QND readout
time is comparable to the state’s life time, have been explored in Jayich et al.
(2008).

6. Conclusions

Optomechanics is a new research topic that has been established in the
past four years, with strong progress being made through a tight interplay
of theory and experiment. Even the classical nonlinear dynamics of these
systems is far from being fully explored: For example, chaotic motion has
been observed at strong drive (Carmon et al. 2005), but not yet analyzed
systematically. In the quantum regime, ground-state cooling and creation
of nonclassical states (e.g. entanglement) are interesting challenges. New
setups expand the applicability of these concepts, e.g. in superconducting
microwave circuits or with cold atoms.
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