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We analyze a model system of fermions in a harmonic oscillator potential under the influence of a
fluctuating force generated by a bath of harmonic oscillators. This represents an extension of the well-
known Caldeira-Leggett model to the case of many fermions. Using the method of bosonization, we
calculate Green’s functions and discuss relaxation and dephasing of a single extra particle added above
the Fermi sea. We also extend our analysis to a more generic coupling between system and bath that

results in complete thermalization of the system.
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The interaction between a system and its environment
is an important fundamental issue in quantum mechan-
ics. It is at the basis of relaxation phenomena (like spon-
taneous emission), is essential for the measurement
process, and leads to the destruction of interference ef-
fects (““decoherence” or ‘“‘dephasing”). In the theory of
quantum dissipative systems [1], there are only few ex-
actly solvable models, most notably the Caldeira-Leggett
model [2] of a single particle coupled to a bath of har-
monic oscillators.

However, in many solid state applications, we actually
consider dephasing of an electron inside a Fermi sea. It is
difficult to apply the insights gained from single-particle
calculations in such cases, since the Pauli principle may
play an important role in relaxation processes. There have
been comparatively few detailed studies of quantum-
dissipative many-particle systems. Among them we men-
tion a general discussion of dephasing in a Luttinger
liquid [3], a study of fermions coupled to independent
baths [4], and a formally exact extension of the Feynman-
Vernon influence functional to fermions [5]. In other
cases, the Pauli principle has been introduced by
hand,” by keeping only the thermal part of the bath
spectrum [6].

In this Letter, we study a natural extension of the
Caldeira-Leggett model to a many-fermion case. The
model consists of a sea of fermions populating the lower
energy levels of a harmonic oscillator. We are interested in
the effects that arise when a bath is coupled to this system
via a fluctuating spatially homogeneous force. In contrast
to an analogous system of free fermions [7], the bath leads
to transitions between levels, with strong effects of the
Pauli principle. This model might also prove relevant to
the discussion of cold fermionic atoms in a 1d harmonic
trap [8,9] under the influence of fluctuations of the trap-
ping potential.

We rewrite and solve the Hamiltonian using the
method of bosonization for the case of large particle
numbers. This enables us to evaluate Green’s functions
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and to describe relaxation and dephasing of an extra
particle added above the Fermi sea. Finally, we will
extend our model to a more generic type of coupling.

The model—We consider a system of N identical fer-
mions (noninteracting and spinless) confined in a one-
dimensional harmonic oscillator potential (see Fig. 1). A
fluctuating force F leads to a coupling of the form F D%
yielding, in second quantization:

. > . P
A=w,Y nele, + Ay+——=> Vn+1(el, ¢
w()n:()ncncn B 2mw0n=0 n (Cn+lcn
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The operators ¢, annihilate fermions in the oscillator
levels n. The bath Hamiltonian Hp describes an infinite
number of harmonic oscillators, and the force F is a sum
over the bath normal coordinates Q ;. It is characterized
fully by its power spectrum {F' F),,. The special case of an
Ohmic bath, used for Quantum Brownian motion [2], has
(FEF), = (nw/m0(w, — w)0(w) at T =0, where n =
my is the friction coefficient, y the damping rate, and o,
the cutoff. As the form of the coupling (1) is not transla-
tionally invariant, the frequency w, contains a stabilizing
counterterm[1,2,10].

: >
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FIG. 1. (Left) Fermions in an oscillator, coupled to a dissi-
pative bath via a fluctuating force F. (Right) Approximately
equivalent model of chiral fermions on a ring, subject to a
transverse force.
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The straightforward exact solution gets very cumber-
some, so we employ an approximation for large fermion
numbers N, which also allows an extension to a more
generic coupling between system and bath.

Bosonization.—For sufficiently large N the lowest levels
are always occupied. Then we may employ the method of
bosonization, rewriting the energy of fermions as a sum
over boson modes [9,11], since the energies of the oscil-
lator levels increase linearly with quantum number.

We introduce (approximate) boson operators l;q =

ﬁ S ele . ¢ (@ = 1), which destroy particle-hole ex-

citations. Then, the Hamiltonian given above becomes
approximately

X X pa N
H=wy> qblb,+

Fhy+b))+H,+Eq, (2
e (by +b7) st Eg (2)

which will form the basis of our analysis. Here Ey =
woN(N — 1)/2 is the total energy of the N-fermion non-
interacting ground state. Equation (2) reveals that £ only
couples to the lowest boson mode (¢ = 1), corresponding
to the c.m. motion. The damped motion of the c.m.
oscillator can be solved exactly, along the lines of
Ref. [2] or [12], providing us with correlators such as
OO

Derivation of Green’s functions.—In order to find the
Green’s functions, we have to go back from the boson
operators 13q to the fermion operators ¢,, by employing
well-known finite-size bosonization identities. In our
case, we first have to introduce auxiliary fermion opera-
tors tﬁ(x):

A

lx) = én “mag(x)dx (3)

1 inxn 1 2m
\/2_77_;6’ Cus N ﬁ) e
The coordinate x does not refer to the motion in the
oscillator. Rather, we have effectively mapped our prob-
lem to a chiral Luttinger liquid on a ring with a coupling
« Fcos(x) (x € [0, 27]), see Fig. 1 (right). Thus, the fol-
lowing results also describe relaxation of momentum
states in that model. Although a generic discussion of
dissipative Luttinger liquids has been provided in [3],
the particular questions we are going to study have not
been analyzed before.

The operators /(x) may be expressed as[11]:

~

P(x) = K Ax)el®'@Wei¢t) = g § eidr, 4)
with

21 . .
p=0¢+ o0, o(x)=—i> —e%b, (5)
27"

The “Klein factor” K annihilates a particle, with
K, b(qﬂ] =0 and K(1) = Kexp[—iwy(N — 1)r]. We have
A(x) = exp[i(N — 1)x]/~27 and r = exp(—[&T, $1/2).
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(The exponent in r diverges, so a formal cutoff at high
g should be introduced, which will drop out in the end
result.)

Using Eq. (3), we find for the hole propagator:

(@08 = - ] el (e, ), 0))dxd
" 2 0
(6)

The -Green’s function is given directly in terms of the
¢-correlator, using Eq. (4):

2 . .
<$T(xl t)lz(x O)>=r_einF[(X*x’)+wot]<e*i¢(x/,t)ei¢(x,0)> (7)
b ’ 2#

(with np = N — 1). The expectation value on the right-
hand side may be evaluated exactly [11], since the system-
bath coupling is bilinear. This yields exp(E) with:

1

E = =Ko, 1) +({b(x, 0)] + ($(', )(x, 0) (8)
The correlator of ¢ is a polynomial in X = exp(ix) and
X' = exp(ix’) [see Eqg. (5)]. Now the double Fourier in-
tegral in Eq. (6) may be evaluated by expanding exp(E) as
a series in X and X’. We find that (6:,(06”) is the coeffi-

cient of X"/X™" in the expansion of

eﬁE(X,X’,t) Z eiw(,kl(x/xl)ky (9)

k=np

where the noninteracting exponent has been subtracted in
OE = E — E(;), which thus contains only the correlator of
the damped c.m. mode g = 1. Detailed plots of the
Green’s function will be published elsewhere [10]. Here
we provide the result in the weak-coupling approxima-
tion, where we neglect the bath-induced smearing of the
equilibrium Fermi level and use an exponential decay for
the c.m. motion. Both assumptions are summarized in
(b1(0by) = (bl (1)by) = 0 and (b, (1)} (0)) = et~ T1/2
(w{ is the renormalized c.m. frequency, and I' is the decay
rate, with I' = Ny for the Ohmic bath). Then, the exact
Eq. (9) yields
ngp—n I/(t)m

(@h@e,) =~ ey ——, (10)

m=0

where v(1) = exp[ —i(w) — wo)t — I't/2] — 1.

We find that the hole (particle) propagator does not
decay to zero in the limit t — oo, forany n <ny — 1 (n >
np + 2), since v(t) — —1. This is in contrast to the naive
single-particle picture of complete decay for any level
n # np, np + 1 not directly at the Fermi level: The reason
is that adding a hole (particle) creates an excited many-
particle state involving undamped contributions where
the c.m. mode is not excited.

Time-evolution of density matrix.—We now turn to the
two-particle Green’s function in order to learn about
relaxation of level populations and dephasing. Consider
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placing an electron in a superposition of levels above
the Fermi sea, creating the many-particle state
ZnO\I’n()éMFS) at time 0. We assume the levels ng to be
unoccupied. This will hold for ny > ny in the weak-
coupling limit, for which the following results have
been evaluated. The reduced single-particle density ma-
trix evolves according to:

P () = Z\If,,oxlf;6<an6aj,(t)an(t)e,‘go>. (11)

no,ng

We may rewrite the Green’s function in Eq. (11) in terms
of ¢(x) [Eq. (3)], leading to a four-fold Fourier integral,
analogous to Eq. (6). Using Eq. (4), this may be evaluated
by a series expansion in four exponentials exp(ix"),
exp(iy"), similar to Eq. (9). We omit the lengthy general
formula , but discuss a limiting case below.

In Fig. 2, we have plotted the resulting time evolution
of the density matrix for the case of an equal superposi-
tion of two levels, ¥, =W, = 1/4/2, at T=0. The
population of the highest occupied states in the Fermi
sea (lower left of panels) decreases, because these fermi-
ons become partly excited at the expense of the extra
particle, due to the effective interaction mediated by the
bath. Moreover, the particle does not decay all the way
down to the lowest unoccupied state np + 1. Rather, in
the long-time limit, the excitation is distributed over a
range of levels above the Fermi level, up to the initial
levels n,. Again, this is because only the c.m. mode
couples to the bath, such that a fraction of the initial
excitation energy remains in the system. The same is
true of the coherences, i.e., the off-diagonal elements in
the density matrix.

High initial excitation.—These generic features can be
analyzed in more detail for the case of a high initial
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FIG. 2. Time evolution of the single-particle density matrix
P () [Eq. (11)], after placing an extra particle in a superpo-
sition of two states. The radius of each circle gives |p,,(f)l.
Levels n,n' = np — 1,..., np + 6 are indicated by grid lines.
For this example wy — wf = 2I'.
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excitation energy (ng — ny >> 1). Then, the expression
for p can be given explicitly in a relatively simple form:

p’m,(t) = Z \Pno\P:(/)eiwo(n(’)_nO)tSnnfn,né*ﬂ/ X [pdecay(n()
1o, 1)
—m, )+ prea(n—np—1,0" —np—1,1)]

(12)
The decay of the excitation is described by

(=p"

m [v(t) + v*(O)]me”DF7 0, (13)

pdecay [m, I] =

where m = ny — n = n{, — n’ may be interpreted as the
net number of quanta transferred to the bath (Fig. 3, left).
At short times, I't < 1, the nonvanishing entries are
Paecay(1, 1) = I't and pyecay(0, 1) = 1 — I't;, i.e., Golden
Rule behavior is recovered (both for relaxation, ny =
nj, and dephasing, ny # n(). In the long-time limit we
get a stationary distribution, pyecay(m, 1) = (2 /m!)e 2.

“Heating” around the Fermi level is encoded in (see
Fig. 3)

2(ry +m
|V(t)| (1 +1) (_1)mz+rh2’

pheat(n’ l’l/, t) = V(t)n_n’ Z

my !mzlﬁ’ll 'ﬁ’lz'

(14)

where the triple sum runs over /72; = max(0, n’ + 1)... oo,
y, =0...00, m =max(0,/, +n+1)...n—n' +m +
7, and we have m, = i, + i, —m; + n — n’. In the
short-time limit, pp.,(n, n, t) approximates to 1 for n <
—1,to 1 — |v(?)]? for n = —1, to |»(¢)|> forn = 0, and 0
for n > 0 [to O(|v|?)], describing the unperturbed Fermi
sea and the onset of heating. Comparing to the full results
(Fig. 2), we find that the limiting case (12) is a very good
approximation even for small excitation energies.

Generic coupling.—Up to now, we have considered a
coupling where the particle coordinates enter linearly,
and consequently only the c.m. mode is damped.

We now extend our analysis to a more generic situation,
replacing the interaction in Eq. (2) by:

m=0 n=2
~ Z
& 2 | £ 0
3 ]
Q Q
d < -1
Q 3 Q
4 -2
1 2 3 4 0 i 2 3 r3
Tt It

FIG. 3 (color online). Generic time evolution of density ma-
trix in the limit of high initial excitation [Eqs. (12)—(14)]; plot
for w}), = wy).
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FIG. 4 (color online). Decay of populations for a bath induc-
ing transitions between levels that are arbitrarily far apart (see

text).
N pS B, + B (15)
gt 2 il + B

Now the bath induces transitions between levels n + ¢
and n, with an arbitrary (real-valued) amplitude <« f,
(which, however, must not depend on n). For f; =
1, f, = 0(g > 1) we recover the original model. For f, #
0 all the boson modes are damped and couple to each
other via the bath. Formally, the correlators (bAq/(t)IQD can
be written in terms of the resolvent of the classical prob-
lem of boson oscillators coupled to bath oscillators ([10],
compare [12]).

The correlator (¢ (x’, 1) (x, 0)) now contains contribu-
tions for all pairs g, ¢’. The evaluation of the Green’s
functions proceeds as before. Unfortunately, one has to
deal with far more terms. However, interesting behavior
is already found in the weak-coupling limit, which here
implies neglecting the effective coupling between boson
modes that has been induced by the bath, and describing
the correlator of each boson mode separately as a damped
oscillation.

For the case of constant f, = 1 (up to some cutoff) and
an Ohmic bath spectrum, the boson correlator decay rate
[ o g(F F}w:qwo, see Eq. (15)] equals ¢°T'/2. This fits the
expectation about Pauli blocking: The decay of a particle
from state np + on + 1 is due to transitions by 1 to on
levels, and adding up their rates (which grow linearly)
leads to a total rate « &n?, consistent with the decay rate
of the highest boson mode g = én that is excited by
adding this particle. The actual evolution of the Green’s
function is a superposition of decays, with rates up to this
value.

An example for the resulting time evolution is shown in
Fig. 4: Starting from a state where a single extra particle
has been added in level ny above the Fermi sea, one can
observe the evolution of the populations p,,(f) (Ohmic
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bath, T = 0). At intermediate times, heating around the
Fermi level takes place (barely visible, in contrast to
Fig. 2). In contrast to the previous case, the relaxation
towards the N + 1-particle ground state is complete and
the system is ergodic.

Conclusions.—We have analyzed a many-fermion gen-
eralization of the single particle in a damped harmonic
oscillator, illustrating relaxation and dephasing in a dis-
sipative many-particle system. Using the method of bo-
sonization (in the limit of large particle number), we have
derived exact expressions for the Green’s functions and
discussed them in limiting cases. We have analyzed the
decay of an excited state created by adding one particle
above the Fermi level, where one can observe the heating
around the Fermi level (due to the effective interaction
between particles), as well as the incomplete decay of the
excited particle. Finally, we have extended our analysis to
a more generic type of coupling between system and bath,
where the system becomes fully ergodic.
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