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Influence of Dephasing on Shot Noise in an Electronic Mach-Zehnder Interferometer
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We analyze shot noise under the influence of dephasing in an electronic Mach-Zehnder interferome-
ter, of the type that was realized recently [Yang Ji et al., Nature (London) 422, 415 (2003)]. Using a
model of dephasing by a fluctuating classical field, we show how the usual partition noise expression
T �1�T � is modified. We study the dependence on the power spectrum of the field, which is
impossible in simpler approaches such as the dephasing terminal, against which we compare. We
remark on shot noise as a tool to distinguish thermal smearing from genuine dephasing.
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FIG. 1. The Mach-Zehnder interferometer setup analyzed in
the text. In the case shown here, the fluctuations of the environ-
ment are fast compared with the temporal extent of the wave
in the second case. In particular, we are interested in the
influence of the power spectrum of the environmental
fluctuations on the shot-noise result, a question that goes

packet (determined by temperature or voltage, see text). The
probability density of the incoming wave packet and its two
outgoing parts is shown.
Quantum interference effects form an important part
of mesoscopic physics. Therefore, it is important to under-
stand how interference is suppressed by the action of a
fluctuating environment (such as phonons or other elec-
trons), a phenomenon known as dephasing (or decoher-
ence). This has been the subject of many recent
experimental studies [1–7].

However, often the ‘‘visibility’’ of the interference
pattern can also be diminished by phase averaging,
when electrons with a spread of wavelengths contribute
to the current, or when some parameter fluctuates slowly.
Recently, a remarkable interference experiment has been
performed using a Mach-Zehnder setup fabricated from
the edge channels of a two-dimensional electron gas in
the integer quantum Hall effect regime [8]. Besides mea-
suring the current as a function of the phase difference
between the paths, the authors also measured the shot
noise to distinguish between phase averaging and ‘‘real’’
dephasing. While both effects suppress the interference
term in the current, they may affect differently the par-
tition noise which is nonlinear in the transmission proba-
bility [9]. The idea of using shot noise to learn more about
dephasing is promising, connecting two fundamental is-
sues in mesoscopic physics.

Most theoretical works on dephasing in mesoscopic
physics are concerned with its influence on the average
current only (see Refs. [10–15] and references therein),
although there have been a few studies of shot noise in this
context [16]. In this Letter, we present the first analysis of
shot noise for an electronic one-channel Mach-Zehnder
interferometer under the influence of dephasing (Fig. 1).
We consider dephasing produced by a fluctuating classical
potential, which describes either true nonequilibrium
radiation impinging on the system or the thermal part
of the environmental noise. This approach has been em-
ployed quite often in the past [12,17], is exact in the first
case, and should be a reliable approximation for T � eV
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beyond the phenomenological dephasing terminal model
[16,18–21].

Model and general results.—We consider noninteract-
ing, spin-polarized electrons. By solving the Heisenberg
equation of motion for the electron field �̂� moving at
constant velocity vF (linearized dispersion relation),
under the action of a fluctuating potential V�x; t� (without
backscattering), we obtain

�̂��x; 	� �
Z dk�������

2�
p e�i�k	

X3
��1

t��k; 	�âa��k�e
s�ikFx (1)

for the electron operator at the output terminal 3. We have
t3 � 1, s1;2 � 1, s3 � �1, the reservoir operators obey
hâay

��k�âa��k0�i � �����k� k0�f��k�, with f� the distribu-
tion function in reservoir �, and the integration is over
k > 0 only. The amplitudes t1; t2 for an electron to go
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from terminal 1 or 2 to the output terminal 3 are time
dependent:

t1�k; 	� � tAtBei’R�	� � rArBei’L�	�ei���k�x� (2)

t2�k; 	� � tArBei’L�	�ei���k�x� � rAtBei’R�	� (3)

Here tA=B and rA=B are energy-independent transmis-
sion and reflection amplitudes at the two beam split-
ters (t�jrj � �tjr�j ), �x is a possible path-length
difference, and � is the Aharonov-Bohm phase due to
the enclosed magnetic flux. The electron accumu-
lates random phases while moving along the left or right
arm: ’L;R�	� � �

R
0
�	L;R

dt0 V�xL;R�t
0�; 	 � t0�, where

	 is the time when the electron leaves the second beam
splitter after traveling for a time 	L;R along the path
described by xL;R�t�. Note that in our model the total
traversal times 	L;R enter only at this point, and we
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assumed the interaction to be confined to the interferome-
ter region.

The output current following from (1) has to be
averaged over the fluctuating phases; i.e., it depends on
phase-averaged transmission probabilities T1 � jt1j2 and
T2 � 1� T1:

hT1i’ � TATB � RARB � 2z�rArB�
�tAtB cos�� � k�x�;

(4)

The interference term is suppressed by z � hei�’i’,
where �’ � ’L � ’R[assuming V�x; t� and thus �’
symmetrically distributed around 0]. We have z �
exp��h�’2i=2� for Gaussian �’. This factor decreases
the visibility of the interference pattern I���. However,
such a suppression can also be brought about by the k
integration, if �x � 0 (thermal smearing).

Our main goal is to calculate the shot-noise power S at
zero frequency. It can be split into two parts:
S �
Z

d	hhÎI�	�ÎI�0�ii’ � hhÎI�0�ii2’ �
Z

d	hhÎI�	�ihÎI�0�ii’ � hhÎI�0�ii2’ �
Z

d	hhÎI�	�ÎI�0�i � hÎI�	�ihÎI�0�ii’: (5)

The first integral on the right-hand side describes shot noise of a classical current I�	� � hÎI�	�i, due to the fluctuating
conductance. We denote its noise power as Scl. It rises quadratically with hÎIi, as is known from 1=f noise in mesoscopic
conductors [22].

The second integral is evaluated by inserting (1) and applying Wick’s theorem (similar formulas appear in Ref. [23]):

hhÎI�	�ÎI�0�i � hÎI�	�ihÎI�0�ii’ �

�
evF

2�

�
2Z

dk dk0
X

�;��1;2;3

f��k��1� f��k
0��K���	�e

i��k0��k�	: (6)
Here K�� is a correlator of four amplitudes: We have
K33 � 1, K3� � K�3 � 0, and

K���	� � ht���k; 	�t��k0; 	�t��k; 0�t���k
0; 0�i’; (7)

for �;� � 1; 2.
We note that the 	 range of the oscillating exponential

under the integral in (6) is determined by the Fermi
functions, i.e., by voltage and temperature. This has to
be compared with the correlation time 	c of the environ-
ment [the typical decay time of the phase correlator
h�’�	��’�0�i]. For eV	c � 1 and T	c � 1 (‘‘fast envi-
ronment’’), the major contribution of the integration
comes from j	j � 	c, where K�� factorizes into

K���	� � K���1� � jht���k; 0�t��k0; 0�i’j2: (8)

This yields the noise power

Sfast

e2vF=2�
�

Z
dk

X
�;��1;2

f��1� f��jht
�
�t�i’j

2

� f3�1� f3�; (9)

where we have set f�;� � f�;��k� and t�;� � t�;��k; 0�.
We conclude that the shot noise for a ‘‘fast’’ environment
is not given by an expression of the form hT i’�1� hT i’�,
which would be obtained from a simple classical model
(see discussion below). Indeed, we have

jht�1t2i’j
2 � hT1i’�1� hT1i’� � �z2 � 1�RBTB: (10)
The remainder of the noise power from Eq. (6) [with
K���	� � K���1� inserted in Eq. (6)] will be denoted
Sfluct. It yields a contribution to the Nyquist noise SV�0,
but apart from that it becomes important only at larger
V; T. With this definition, the full noise power can always
be written as

S � Sfast � Sfluct � Scl: (11)

In the other limit, when the 	 integration is dominated
by j	j � 	c (‘‘slow environment’’), we can use K���	� �
K���0�, which yields the phase average of the usual shot-
noise result:

Sslow

e2vF=2�
�

Z
dkh�f1T1 � f2T2��1� �f1T1 � f2T2��i’

� f3�1� f3�: (12)

Discussion.—The phase averages can be evaluated ex-
actly if the potential V�x; t� (and therefore �’) is assumed
to be a Gaussian random field of zero mean. In the
following, we present explicit results for the case T � 0,
�xeV=vF � 1, where the visibility is decreased purely by
dephasing. We need the following Fourier transforms
(% � �):

ĝg %�!� �
Z

d	 ei!	�e%h�’�	��’�0�i � 1�; (13)

I%�V� �
Z eV

0
d!

�
1�

!
eV

�
ĝg%�!�: (14)
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The shot noise becomes ( ~�� � � � kF�x):
S � SV�0

e3V=2�
�

eV
�

z2RARBTATB�cos�2 ~���ĝg��0� � ĝg��0�� � jht�1t2i’j
2

�
1

�
z2RBTBf�2 cos�2 ~���RATAI��V� � �R2

A � T2
A�I��V�g: (15)
The first line corresponds to Scl, the second to Sfast, and
the rest to Sfluct � SV�0. At V ! 0, the integrals I��V�
vanish and Sfast dominates. At large eV	c � 1, we can
use the sum rule I%�V� ! ��z�2% � 1� and find the last
three lines to combine to hT1�1� T1�i’, i.e., Sslow. The
Nyquist noise is � independent:

SV�0 �
e2

2�2 z
2RBTB

Z 1

0
d!!ĝg��!�: (16)

The results are illustrated in Figs. 2 and 3, where S�V�
shows the crossover between the fast and ‘‘slow’’ limits.
Although Sfast can vanish, the total current noise S re-
mains finite, due to the Nyquist part. For the plots we
assumed TA � 1=2 and a Gaussian phase correlator,
h�’�	��’�0�i � h�’2i exp���	=	c�

2�. An application of
the general theory presented here to specific situations
includes calculating h�’�	��’�0�i, starting from the cor-
relator hVViq! of the potential fluctuations V�x; t� (cf. [12]
for an example). The contribution of potential modes to
h�’2i is suppressed for jqj < 1=R (R: typical distance
between the paths) and becomes maximal for small
jvFq �!j.

For the other limit of a large path-length difference
�x � vF=eV, or �x � vF=T, the interference term is
0 1 2 3 4 5
eVτc

0

0.5

1

S
/(

e2 /(
2π

τ c)) S-Scl

SV=0+Sfast

SV=0

SV=0+Sslow

Full current noise S

FIG. 2. Typical behavior of the full current noise S as a func-
tion of eV	c. At higher voltages, the dependence on V is quad-
ratic, due to Scl. When Scl is subtracted, the slope at large eV	c
is determined by Sslow (i.e., hT1�1�T1�i’), while that at low
voltages is always determined by Sfast (i.e., jht�1t2i’j

2). Parame-
ters: T � 0, �x � 0, � � 0, TA � 1=2, z � 1=e, TB � 0:4.
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already suppressed completely due to wavelength averag-
ing. Then Scl vanishes, since hÎI�	�i is independent of the
fluctuating phase. In addition, we find (at T � 0)

S � SV�0

e3V=2�
� TARA�TB � RB�

2

� z2TBRB�T2
A � R2

A�

�
1�

I��V�
�

�
: (17)

For a fast environment, we have I��V� ! 0, such that, for
TA � 1=2, Eq. (17) becomes ��TB � RB�

2 � 2z2RBTB�=4,
which turns into �TB � RB�

2=4 for z ! 0. This could
be distinguished from the k-averaging result, but it de-
scribes the case of large energy transfers, as opposed
to ‘‘pure dephasing.’’ On the other hand, in the limit of
large voltages (‘‘slow environment,’’ eV	c � 1), we have
I��V� ! ��z�2 � 1� and, for TA � 1=2, Eq. (17) turns
into �T2

B � R2
B�=4, which is equal to the result obtained for

pure k averaging alone.
We have pointed out already that even Sfast does not

lead to the simple result hT1i’�1� hT1i’�. However, the
latter form does indeed apply if we consider injecting
only a ‘‘narrow beam’’ of electrons into terminal 1 [i.e.,
0 0.1 0.2 0.3 0.4 0.5
TB

0 0.1 0.2 0.3 0.4 0.5
TB

0

0.1
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0.3

0.4
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V
=0
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(e

3 V
/(

2π
))

"fast" environment

"slow" environment
(Scl subtracted)

eVτc=0

eVτc=20

FIG. 3. Normalized shot noise �S � SV�0�=�e
3V=2�� as a

function of the transmission TB of the second beam splitter
for small visibility (z � 1=e). The different curves show the
succession from a ‘‘fast’’ environment to a ‘‘slow’’ one (bottom
to top: eV	c � 0; 2; 4; . . . ; 20). In the right panel, the contribu-
tion from Scl [first line of (15)] has been dropped, to demon-
strate the convergence against the result for a slow bath,
hT1�1� T1�i’ (topmost curve). Other parameters are as in
Fig. 2.
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f��k� � 0 except for f1�k� � 1 within �kF;kF�eV=vF� ],
which is not equivalent to the previous situation regarding
shot noise (cf. [24] in this respect). We get the following
for eV	c � 1:

S � Scl �
e3V
2�

hT1i’�1� hT1i’�; (18)

while the case eV	c � 1 is described by Sslow.
Comparison with other models.—We compare our re-

sults in the fully incoherent limit (z � 0) with two other
models; namely, the dephasing terminal [16,20,21] and
a simple model of a stream of regularly injected elec-
trons [25] reaching the output port according to classical
probabilities. We focus on zero temperature and the case
TA � 1=2. At small path-length difference eV�x=vF � 1
(no k averaging), we obtain hT1i’�1� hT1i’� � 1=4 both
for the classical model and the narrow beam of electrons,
�TB � RB�

2=4 for our shot-noise expression in the fast
case, and �T2

B � R2
B�=4 both for the slow case and from

the dephasing terminal [26]. In the opposite limit of large
�x only the result for the classical model changes, co-
inciding with the slow case �T2

B � R2
B�=4 that also holds

without dephasing. Thus, in this case a shot-noise mea-
surement most likely will not be able to reveal the addi-
tional presence of dephasing. Concerning the experiment
of Ref. [8], this could invalidate the conclusion drawn
from the noise measurements (carried out at high volt-
ages) if �x (whose precise value is unknown) were not
small enough. Repeating the measurements at intermedi-
ate values of the visibility will yield more insights into
these questions.

In conclusion, we analyzed the effects of dephasing on
shot noise for an electronic Mach-Zehnder interferometer.
We generalized the scattering theory of shot noise to
include dephasing induced by fluctuations of a classical
potential. This has enabled us to analyze the dependence
of shot noise on the power spectrum of the fluctuations,
going beyond simpler phenomenological approaches, to
which we have compared our results. We have identified a
crossover between two regimes, those of a fast and a slow
environment. We have pointed out that a shot-noise mea-
surement cannot reveal the presence of dephasing on top
of thermal averaging, for environmental fluctuations
slower than the inverse voltage or temperature. Our
theory may be applied to other single-channel interfer-
ometer geometries as well, even in the presence of back-
scattering at the junctions.
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[12] G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313

(2001).
[13] F. Marquardt and C. Bruder, Phys. Rev. B 65, 125315

(2002).
[14] F. Marquardt and C. Bruder, Phys. Rev. B 68, 195305

(2003).
[15] G. Seelig, S. Pilgram, A. N. Jordan, and M. Büttiker,
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