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Aharonov-Bohm ring with fluctuating flux
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We consider a noninteracting system of electrons on a clean one-channel Aharonov-Bohm ring that is
threaded by a fluctuating magnetic flux. The flux derives from a Caldeira-Leggett bath of harmonic oscillators.
We address the influence of the bath on the following properties: one- and two-particle Green’s functions,
dephasing, persistent current, and visibility of the Aharonov-Bohm effect in cotunneling transport through the
ring. For the bath spectra considered here~including Nyquist noise of an external coil!, we find no dephasing
in the linear transport regime atzero temperature.
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I. INTRODUCTION

In the present work, we consider a simple, theoreti
model system of noninteracting spinless electrons that
restricted to move in one dimension around the circum
ence of a clean, one-channel Aharonov-Bohm ring. The r
is threaded by a magnetic flux that fluctuates around so
average value~see Fig. 1!. This may lead to dephasing of th
electron motion on the ring, apart from other effects such
renormalization of the electron masses and introduction o
effective coupling between the electrons. We treat the
dynamics of the fluctuating flux coupled to the electron s
tem in a self-consistent manner, rather than prescribing
external stochastic time-dependent classical field. In orde
achieve this, the flux is taken to be the sum of the norm
coordinates of a Caldeira-Leggett-type bath of harmo
oscillators.1,2 The fluctuations couple to the electrons via t
vector-potential term in the kinetic energy. As an importa
special case for the bath spectrum we treat the Nyquist n
that may be due to the equilibrium current fluctuations in
external coil producing the flux.

Equilibrium and transport properties of this model syst
are analyzed for the cases of zero and finite temperatu
taking into account the coupling to the bath and the Pa
principle with respect to the electron system. In particu
we discuss the single-particle and two-particle Green’s fu
tions, level widths, energy shifts, and dephasing times,
the reduction of the persistent current due to the fluctuatio
In each case, the dependence on the coupling strength
tween system and bath and on the low-frequency spe
properties of the bath is examined. Aharonov-Bohm inter
ence observed in cotunneling through the ring is discusse
order to analyze the coherence properties of the electron
the ring under the influence of the fluctuating flux in a tran
port situation. As a result of our calculation, we find that t
fluctuations donot lead to dephasing in thelinear transport
regime atzero temperature.

The single-particle version of this model has been con
ered before in Ref. 3 in order to determine whether persis
currents in a normal metal ring may be destroyed by c
pling to an Ohmic bath. Whereas the authors of Ref. 3 u
the Feynman-Vernon influence functional,4 we will apply a
different and more direct approach. We emphasize that
analysis is restricted to baths weaker than the Ohmic b
0163-1829/2002/65~12!/125315~17!/$20.00 65 1253
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@see the discussion after Eq.~58!#. The possibility ofsponta-
neouspersistent currents was investigated~and ruled out! in
Ref. 5, using a Luttinger liquid picture for the electrons a
taking into account their electromagnetic self-interactio
Dephasing of a single electron going around the two arm
an Aharonov-Bohm ring has been considered both in Ref
using the influence functional, and in Ref. 7, using a se
classical picture. In the latter paper, the connection betw
phase fluctuations and the trace left by the system in
environment was emphasized. More recently, the questio
dephasing in mesoscopic systems has received renewe
tention due to a set of weak-localization measurements
have shown a saturation of the dephasing time at
temperatures.8,9 Motivated in part by these puzzling findings
the authors of Refs. 10–12 considered a ring containin
single quantum dot with fluctuating gate voltage and o
tained the properties of the quantum-mechanical ground s
~in particular the persistent current!. A strong influence of
externalnonequilibriumnoise on the persistent current in
disordered quasione-dimensional ring has been found r
cently in Ref. 13. The effects of a phase-breaking scattere
the many-particle situation, where the Pauli principle b
comes important, have been discussed in Ref. 14. Very
cently, dephasing in a mesoscopic Mach-Zehnder-type in
ference setup has been analyzed in Ref. 15.

In the following section, we will define the model an
discuss some simple consequences as well as some fea
that cannot be included in this system easily. Then we giv
short qualitative discussion of dephasing for the simplifi
case of a classical fluctuating flux~represented by a random
process!. Similar considerations are applied to the calcu

FIG. 1. The model situation. A fluctuating flux leads, via a tim
dependent vector potential, to a fluctuating force for the electr
on the Aharonov-Bohm ring.
©2002 The American Physical Society15-1



g
in
t

tic
n’s
lu

te
a
w

co

i

s-

-

to

e

th

s
ic
nd
um
o

x-

o
e

y
d

s-
y
ba

em
he

ith
on
tu-
is
il.

ec-

d
s.
it,
re
et

set

e
t
the

ut
me
rate
l.
h a
he
en-
uge
the

fer-
by
us
an-
f-
tor

s,
ef-
dif-
on-

on

FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B65 125315
tion of the Green’s function for a single electron on the rin
both with classical and quantum fluctuations. The result
energy shifts and level shapes are analyzed in some de
since these results can be taken over to the many-par
calculation of the single-particle and two-particle Gree
functions that is presented in Sec. IV together with the eva
ation of the grand canonical partition sum and the persis
current. After discussing the physical meaning of the deph
ing produced by the Nyquist noise at low temperatures,
turn to an analysis of Aharonov-Bohm interference in a
tunneling transport measurement.

II. THE MODEL

The Hamiltonian of the system of electrons on the ring
given by

Ĥ[(
p

Ĉp
†~p2gf̂ !2

2m
Ĉp1Ĥbath , ~1!

whereĤbath is the Hamiltonian of the set of uncoupled o
cillators representing the bath

Ĥbath[ (
j 51

Nosc H P̂j
2

2M
1

Mv j
2

2
Q̂j

2J . ~2!

The possible values of the electron momentump are
quantized due to the finite circumferenceL of the ring, p
52pn/L with an integern. ~Note that here and in the fol
lowing, we will put \[kB[1) The termgf̂ in the kinetic
energy of the electrons is due to the coupling to the vec
potential that is proportional to the fluctuating flux.f̂ repre-
sents this flux~up to a constant factor! and is assumed to b
given by the sum over the oscillator normal coordinates,

f̂[
1

ANosc
(

j
Q̂ j . ~3!

The prefactor in this definition has been chosen such
the autocorrelation function̂f̂(t)f̂(0)& of f̂ has a well-
defined limit if the numberNosc of oscillators tends to infin-
ity while the spacing of frequencies tends to zero as 1/Nosc.
This is the ‘‘thermodynamic limit’’ of an infinite bath that i
necessary to describe truly irreversible, dissipative dynam
The quantityg is the coupling strength between bath a
electrons. It incorporates the electron charge and the circ
ference of the ring, since the line integral of the vector p
tential around the ring gives the flux. Any externalstatic
magnetic fluxF has to be added in the kinetic-energy e
pression.

We assume the interaction between system and bath t
sufficiently weak, such that the bath may be treated as lin
in a good approximation~as it is usually done in the theor
of quantum dissipative systems, see Ref. 1 for a more
tailed discussion!. Apart from this assumption, the expre
sion Eq.~3! used for the fluctuating flux is still completel
general. We are free to choose the frequencies of the
oscillators to obtain any desired correlation function off̂,
12531
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which is the only quantity that affects the dissipative-syst
dynamics in this model. Note as well that the coupling of t
velocity to a vector potential assumed in Eq.~1! has been
shown16 to be equivalent to a Caldeira-Leggett model w
the usual coordinate-type coupling for a particle moving
an infinite line. Physically, the coupling used here is the na
ral choice for a situation in which the vector potential
linearly related to the fluctuating current in an external co
The fluctuations~and linear response! of the current then
determine the bath correlator discussed in the following s
tion.

The correlator off̂ will determine the dephasing rate an
other important quantities via its low-frequency propertie
For the discrete set of oscillators and for the continuum lim
respectively, it is given by the following expressions, whe
the averagê•& is taken with respect to the unperturbed s
of oscillators,

^f̂~ t !f̂~0!&5
1

Nosc
(

j

1

2Mv j
FcothS v j

2TD cos~v j t !

2 isin~v j t !G
5E

0

`

dvC~v!FcothS v

2TD cos~vt !2 isin~vt !G .
~4!

This defines the spectral functionC(v) that we will use
to characterize the bath spectrum. In terms of the discrete
of frequencies, it is given byC(v)[Nosc

21( jd(v2v j )
3(2Mv j )

21. Note that the coth is equal to 2n(v)11,
wheren(v) is the Bose-Einstein distribution function. Th
special case of Nyquist noiseis obtained by the requiremen
that for high temperatures, the spectrum of fluctuations of
magnetic flux ~i.e., of f̂) is white. Since coth(v/2T)
52T/v for T@v, this meansC(v)}v ~for small v).

Before we proceed to the calculations, we will point o
some simplifying features of this situation as well as so
important aspects of the dephasing problem in degene
Fermion systems that are beyond the scope of this mode

The magnetic flux is assumed to thread the ring in suc
way that the situation is axially symmetric with respect to t
axis that goes through the center of the ring and is perp
dicular to its plane. In this case, we can choose the ga
such that the vector potential is everywhere tangential to
ring and of constant magnitude around the whole circum
ence. The same holds for the electric field, which is given
the time derivative of the vector potential. This is analogo
to the Caldeira-Leggett treatment of one-dimensional qu
tum Brownian motion of a free particle, with the formal di
ference that in our case the force is derived from a vec
potential instead of a scalar potential.3,16 It is the choice ap-
propriate for a system with periodic boundary condition
where the quantization of momenta, the Aharonov-Bohm
fect and persistent currents play a role. Note that under
ferent circumstances the assumption of a force that is c
stant in space is only valid within the dipole approximati
5-2
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AHARONOV-BOHM RING WITH FLUCTUATING FLUX PHYSICAL REVIEW B 65 125315
for a particle that is restricted to move in a well-localiz
region of space, because otherwise the finite wavelengt
the bath modes~phonons etc.! becomes important.

Since the coupling between system and bath is via
momentum, which commutes with the electron Hamilton
and therefore is a constant of the motion for the origi
uncoupled electron system~‘‘diagonal coupling’’!, some fea-
tures of this model are very simple. In spite of the interact
with the bath, the momentum of a particle will stay consta
only its velocity and kinetic energy can fluctuate. This si
plifies the many-electron problem as well. Although the flu
tuating force influences the center-of-mass motion of
electrons and introduces some kind of ‘‘effective interactio
between them, the occupation of differentp states cannot be
changed by the bath. Note that this simplification would
spoiled if one takes into account impurities and/or a coupl
that depends on the position. For example, the latter wo
arise if one considered an arbitrary fluctuating electrom
netic field or the electric field between the plates of a cap
tor, which is a constant vector field in space but is not c
stant with respect to its projection onto the direction
motion of the electrons on the ring. Other situations wh
the coupling depends on position include interaction w
phonons or a localized spin on the ring.

In its single-particle version, the Hamiltonian given abo
also arises in the discussion of dephasing for a charged
land, if the coupling to the bath~e.g., a fluctuating gate volt
age! is purely diagonal in the system’s eigenbasis and
only lead to fluctuations in the energy levels. Note, howev
that questions of interest here such as tunneling into the
or features of the many-particle system have no natural co
terpart in that rather simple situation.

Although in our model all electrons are coupled to t
same flux, which introduces a kind of effective interacti
between them, the decay rates of Green’s functions will
show any dependence on the distance to the Fermi surfac
contrast to the usual behavior of interacting Fermi syste
This is due to the diagonal coupling between system
bath, which means that there are no energy-relaxation
cesses that change the occupation numbers of the elec
and that would feel the restriction by the Pauli principle.
related question arises in the study of dephasing in dege
ate Fermion systems. If the coupling is not diagonal in
electrons’~single-particle! eigenstates, the system variab
that couples to the bath~in our case the momentum! carries
out fluctuations itself. In a semiclassical single-particle c
culation, these fluctuations pick out the high-frequency co
ponents of the bath spectrum.9 Therefore, according to such
calculation, there is dephasing even in the case of a b
spectrum that vanishes at low frequencies and this imp
that at low temperatures, the high-frequency zero-point fl
tuations of the bath contribute heavily to dephasingin this
picture. However, if the electron system is nearly degenera
many of its transitions will be blocked by the Pauli princip
so that such an effect will be strongly suppressed. Althou
we cannot investigate this point in our model, related c
siderations will occur in our discussion of the cotunneli
setup in Sec. V.
12531
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III. SINGLE-PARTICLE PROBLEM

In this section, we will discuss the problem of a sing
particle on the ring, both semiclassically and quantum m
chanically. The results can support the understanding of
following section, which is devoted to the many-particle sit
ation.

A. Semiclassical analysis

Consider two wave packets traversing the left and ri
arm of the Aharonov-Bohm ring with constant velocityv and
meeting again after some timet5L/(2v) at the opposite
end. The resulting interference pattern depends on the
phase difference between the two paths. In a semiclass
calculation, the phase difference is produced by thevA term
in the Lagrangian of the particle, and it is given by

w52
e

cE0

t

v A~ t8!dt8. ~5!

The factor 2 arises because the phases are equal up
change in sign.A(t8) gives the time dependence of the flu
tuating vector potential that is assumed to be a class
Gaussian random process with zero mean in the h
temperature limit considered here. The visibility of the inte
ference pattern will be suppressed due to the fluctuation
the phasew. Since w is a Gaussian random variable, w
obtain for the suppression factor

^eiw&5e2^w2&/2. ~6!

In our modeleA/c is equal togf, where we will treatf
as a classical fluctuating field by taking into account only
real ~symmetric! part of the correlator~4! in the high-
temperature limit. Then the variance^w2& of the phase be-
comes

^w2&54g2v2E
0

t

dt1E
0

t

dt2^f~ t1!f~ t2!&. ~7!

If the traversal timet is much larger than the correlatio
time of the fluctuations inf, we may apply the following
standard approximation:

^w2&'t4g2v2E
2`

1`

dt8^f~ t8!f~0!&

5t4g2v24pTS C~v!

v D
v→0

. ~8!

This means that in the case of Nyquist noise (C}v) we
obtain a finite ‘‘dephasing rate’’ that grows linearly with tem
perature. Note, however, that the timet introduced here can
not grow without bounds but is fixed by the circumferenceL
and the velocityv. This calculation already shows that th
dephasing rate will vanish forv→0 or T→0. For a bath that
is weaker at low frequencies (C}va with a.1) we do not
obtain a suppression factor that decays exponentially w
time, hence the dephasing rate is always zero. We def
5-3
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FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B65 125315
more detailed discussion of the various cases to the
quantum-mechanical treatment below.

The physical interpretation of this result is clear. The flu
tuating electric field proportional toȦ leads to a fluctuating
velocity proportional toA, so that the random shift in th
interference pattern isDx}*A(t8)dt8. The interference pat
tern will be completely washed out once the spread inDx
becomes comparable to the wavelengthl}1/v. This coin-
cides with the criterion̂w2&'1.

Very similar considerations arise in the calculation of t
Green’s function of a single electron on the ring. The
tarded Green’s function may be approximated semicla
cally by averaging the amplitude for propagation of the el
tron under the influence of the fluctuating flux

iGp
R~ t !5u~ t !^$Ĉp~ t !,Ĉp

†~0!%&

'K expF2 i E
0

t~p2gf~ t8!!2

2m
dt8G L . ~9!

The exponential contains a quadratic term (gf)2 that
does not represent a Gaussian random variable, so tha
mula ~6! cannot be applied to perform the averaging. He
and in the following quantum-mechanical calculation, w
will neglect this term, which does not couple to the mome
tum ~cf. discussion in Sec. IV E!. With this approximation,
the Green’s function is given by an expression that ag
involves the correlation function off

iGp
R~ t !'expF2 i

p2

2m
t G

3expF2
1

2 S gp

m D 2E
0

t

dt1E
0

t

dt2^f~ t1!f~ t2!&G .
~10!

At this point, the discussion given above applies. In p
ticular, for Nyquist noise and finite temperatures, the Gree
function decays exponentially with a rate proportional
g2p2T.

B. Single-particle Green’s function: Quantum case

In the following, we will calculate and discuss th
quantum-mechanical Green’s function of asingleelectron on
the ring. The extension to the many-particle case will
given in the following section. The single-particle density
states~DOS!, which is given by the imaginary part of th
Fourier transform ofGR, is a measurable quantity, as it ca
be revealed by tunneling into the ring.

We imagine a situation where the ring is empty and
single electron is inserted, so that the retarded Green’s fu
tion is

iGp
R~ t !5u~ t !^ĈptĈp0

† &5u~ t !^eiĤ tĈpe2 iĤ tĈp
†&. ~11!

The average is a thermal expectation value with respec
the unperturbed bath of oscillators, corresponding to the s
ation without any particle on the ring. Obviously the ba
cannot change the occupation of the different momen
12531
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states. Therefore, we only have to take into account that
time evolution between creation and destruction of the e
tron is governed by the Hamiltonian that contains the kine
energy term that couples to the bath via the fluxf̂. Through
this coupling, the introduction of the particle into the rin
perturbs the bath oscillators. In anticipation of the man
electron case, we will denote byĤ@$pj%# the Hamiltonian for
a fixed number of occupied momentum states, given by
set$pj%. This operator only acts on the bath. Then the ma
element of the time-evolution operator with respect to
electron system is given by the following expression, fo
Slater determinant belonging to the configuration$pj%,

^$pj%ue2 iĤ tu$pj%&5exp~2 iĤ @$pj%#t !. ~12!

In particular, without any electrons we haveĤ@0#[Ĥbath .
For the Green’s function considered here, this leads to

^ĈptĈp0
† &5^eiĤ [0] texp~2 iĤ @$p%#t !&

5K T̂expF2 i
p2

2m
t1 i

gp

m E
0

t

dt8f̂~ t8!G L .

~13!

This expectation value can be interpreted as the~thermally
averaged! overlap between the initial bath state evolved on
with and once without presence of a particle on the ring.
the second line, we have introduced the interaction pict
with respect toĤbath and dropped the term quadratic ingf̂
from the kinetic energy~compare the discussion above!.
Since f̂ is a bosonic variable~i.e., linear in the oscillator
normal coordinates!, Wick’s theorem can be applied to th
evaluation of this time-ordered thermal average, using
linked-cluster expansion. It leads to an expression co
pletely analogous to the one used above for the class
Gaussian random process, see Eqs.~6! and ~10!. The differ-
ence consists in the replacement of the classical correlato
the thermal time-ordered expectation value:

K T̂expF ikE
0

t

dt8f̂~ t8!G L
5expF2

k2

2 E
0

t

dt1E
0

t

dt2^T̂f̂~ t1!f̂~ t2!&G .
~14!

At present,k5gp/m, but the same formula will be use
below with other values fork. In contrast to the classica
correlator, ^T̂f̂(t1)f̂(t2)& is complex and will lead to an
energy shift in addition to a decay of the Green’s functio
Using

^T̂f̂~ t !f̂~0!&5E
0

`

dvC~v!@$2n~v!11%cos~vt !

2 isin~vutu!# ~15!

to evaluate the double time integral, we obtain for the ex
nent of Eq.~14!,
5-4
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FIG. 2. The density of states
for different bath spectra and tem
peratures. The quantityN(v)
[Im K(v)/p, which corresponds
to the single-particle DOS ob
tained from the retarded Green
function, is plotted vs frequency
v/vc , for different exponentsa
of the bath spectrum at low fre
quencies@C(v)}vaexp(2v/vc)#
and for different temperatures. A
T50, the DOS goes asva22 at
low v and vanishes forv,0. In
all cases displayed here, there is
d peak atv50, except fora52
at T.0. In the limit T→` the
level shape becomes symmetric
all cases and the strength of thed
peak vanishes.
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0

`

dv
C~v!

v
1k2E

2`

1`

dv
C~ uvu!

v2
@n~ uvu!1u~v!#

3~e2 ivt21!. ~16!

The step functionu(v) corresponds to the zero-poin
fluctuations. In the remainder of this section, we will discu
the behavior of the Green’s function derived from Eq.~16! at
short and long times, for different bath spectra.

At short times, the integral in the second line compensa
the first integral, so that the exponent begins to grow at2

instead oft. Physically, this means that at short times t
particle has not yet influenced the bath and its energy is
given by the bare energyp2/2m. At later times, the bath
oscillators have been shifted by the presence of the part
so the overlap between initial and final bath state is dim
ished and the Green’s function decays. The first integral p
duces a negative energy shift, corresponding to the forma
of an interacting state of particle and bath. Since this shif
proportional top2, it is equivalent to an enhanced effectiv
massm* .

Combining the energy shift with the initial kinetic energ
p2/2m, we obtain the following expression form* ,

1

m*
5

1

m S 122
g2

mE
0

`

dv
C~v!

v D[
1

m
~12j!. ~17!

Alternatively, the effective mass can be calculated fro
the initial Hamiltonian~for a single particle! by using the
termgpf̂/m from the particle’s kinetic energy to introduce
12531
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momentum-dependent shift into the oscillator potential en
gies of Eq.~2!, Q̂j°Q̂j2gp(mMv j

2ANosc)
21. The result-

ing term quadratic inp must be compensated for, whic
yields the change in mass,

1

m*
5

1

m S 12
g2

mM

1

Nosc
(

1

v j
2D . ~18!

Since we have neglected the term (gf̂)2 in the preceding
derivation, the effective mass displayed here is only corr
in lowest order with respect tog2. A full calculation yields
m* 5m(11j).

The real part of the second integral in Eq.~16! gives a
negative contribution, corresponding to a suppression
magnitude of the Green’s function. If the bath is relative
weak at low frequencies (C}va with a>3), the long-time
behavior is simple. The decay saturates att→`.

In this case, the Fourier transform of the Green’s functi

Gp
R~v!5E

0

`

dteivtGp
R~ t !, ~19!

still has a ‘‘quasiparticle’’d peak in the density of state
ImGp

R(v)/p, but of a reduced magnitude. It is superimpos
on an ‘‘incoherent background’’~see Fig. 2!.

For later use, we define the Fourier transform of t
Green’s function~without the constant energy shift!
5-5
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iK ~v;k![E
0

`

dteivtexpFk2E
2`

1`

dṽ
C~ uṽu!

ṽ2

3@n~ uṽu!1u~ṽ!#~e2 i ṽt21!G . ~20!

For a bath with a spectrum that is stronger at low frequ
cies (a<2), the Green’s function may decay to zero fort
→`, which means that there is nod peak any more in the
density of states.

The resulting single-particle density of states is presen
in Fig. 2 for different values of the exponenta characterizing
the strength of the bath spectrum at low frequencies, both
zero and finite temperatures.

Here, we will analyze in more detail the case of Nyqu
noise, with a linear spectrumC(v)5C0v at small frequen-
cies.

If the temperature is finite, we may setn(v)'T/v for
sufficiently low frequencies. The real part of the expone
~16! then becomes, in the long-time limit,

22pC0k2Tt. ~21!

The prefactor in this expression defines the decay rate
the Green’s function, which determines the width of t
Lorentzian that arises in the density of states.

At zero temperature the thermal excitation of the b
oscillators vanishes, so only the zero-point contribution
mains. In that case, we have to specify the behavior of
bath spectrum at high frequencies, because it becomes
portant even att→`. Choosing either a sharp cutoffC(v)
5C0vu(vc2v) or an exponential decayC(v)5C0v
3exp(2v/vc) results in the same long-time behavior of t
relevant integral

E
0

`

dv
C~v!

v2
@cos~vt !21#52C0ln~vct !1h~ t !. ~22!

Hereh(t) is a function that saturates to a constant va
for t→`. The logarithm in the exponent leads to a pow
law decay of the Green’s function

Gp
R~ t !}~vct !

2g, ~23!

with an exponentg proportional to the strength of the bat
the coupling and the momentum squared,

g5k2C05S gp

m D 2

C0 . ~24!

The detailed behavior of the line shape~not only the line-
width! then depends ong, see Fig. 3.

We will encounter such a power-law decay again in
discussion of dephasing for the Nyquist bath. It is similar
the power-law behavior found in the model of quantu
Brownian motion.1,17,18However, there are important differ
ences between the Nyquist bath considered here and
~stronger! Ohmic bath. These will be discussed in Sec. IV
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IV. MANY-PARTICLE PROBLEM

Now we consider the situation of many electrons on
ring, in the grand canonical ensemble at a given value of
chemical potentialm and at an arbitrary temperatureT
5b21.

A. Grand canonical partition sum and persistent current

As a preparation for the evaluation of various averag
carried out below, we need the grand canonical partition s

Zgc~b,m!5 (
N50

`

ebmNtr~e2bĤN!

5(
N

ebmN(
$pj %

trB~exp~2bĤ@$pj%#!!. ~25!

Here we have used the notation$pj% ~that has been intro-
duced above! for a given configuration ofN particles. trB in
the second line denotes the trace with respect to the
oscillators. If we introduce an additional static magnetic fl
F, this corresponds to a shift of the momentapj°pj
2eF/Lc in all the formulas given below, such that the pa
tition sum becomes dependent onF as well. Note that we
assume the effects of the charging energy of the ring to
negligible here, unlike the treatment of cotunneling in Sec

The HamiltonianĤ@$pj%# can be split into a part contain
ing only the momentapj and another one that represents ba
oscillators that are shifted~depending onpj ) but still have
the original frequencies~if we neglect theg2f̂2 term such as
above!,

(
j 51

N pj
222gpf̂

2m
1Ĥbath5T@$pj%#1Ĥbath@$pj%#, ~26!

FIG. 3. The density of states for Nyquist noise (a51) at T
50, for different values of the power-law exponentg. At finite
temperatureT, this goes over into a Lorentz peak of width propo
tional to T, see text.
5-6
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whereĤbath@$pj%# is derived from the original bath Hamil
tonian ~2! by a shift in oscillator coordinates

Q̂l°Q̂l2
g

mMv l
2ANosc

(
j

pj , ~27!

and T@$pj%# is the residual ‘‘kinetic-energy’’ term that only
depends on the set of occupied momenta$pj%,

T@$pj%#[
1

2m F(
j

pj
22jS (

j
pj D 2G . ~28!

Here we have used the constant factorj defined in the
discussion of the effective mass, see Eq.~17!. T@$pj%# differs
from the single-particle case by the appearance of the t
momentumP5(pj , which makes it impossible to write thi
as a sum over the kinetic energies of individual electro
with renormalized masses. Physically, all the electrons
coupled to one and the same bath and this influences
center-of-mass motion. The dependence ofT@$pj%# on the
total momentum introduces a kind of simple ‘‘effective inte
action’’ between the electrons, which affects thermodynam
averages. For example, the average occupation number
given momentum does not follow the Fermi-Dirac distrib
tion. Note that formally the kinetic energyT@$pj%# can be-
come negative for large total momentaP if j.1/N. How-
ever, this only means that higher orders inj would have to
be taken into account~neglectingg2f̂2 becomes invalid!, as
discussed already in connection with the effective mass f
single particle@see Eq.~17!#.

Using this definition, we can rewriteZgc , taking into ac-
count that the partition sum of the bath of shifted harmo
oscillators is equal to that of the unperturbed bathZHO and
therefore does not depend on$pj%,

Zgc5ZHO(
N

ebmN(
$pj %

e2bT[ $pj %] . ~29!

The partition sum without the contribution due to the h
monic oscillators will be denoted byZ̃gc from now on,

Z̃gc[
Zgc

ZHO
. ~30!

We can simplify Eq.~29! further by rewriting Z̃gc in the
following way, using both the average^•&0 and the partition
sum Z̃gc

0 with respect to the system offree electrons

Z̃gc5 (
N,$pj %

expF2b(
j

~pj
2/2m2m!GebjP2/2m

5Z̃gc
0 ^ebj P̂2/2m&0'Z̃gc

0 S 11b
j

2m
^P̂2&0D . ~31!

Here, we have kept only the lowest nonvanishing orde
j, since everything else would be inconsistent within t
framework of our approximation.
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Now we can apply these results to the calculation of
persistent current of our system of electrons coupled to
fluctuating flux.

The average current that flows for a given external m
netic fluxF is the derivative of the thermodynamic potenti
V52T lnZgc with respect to the flux itself,

^ Î &5cT
]

]F
ln Zgc

5cT
]

]F H ln Z̃gc
0 1b

j

2m
^~ P̂2N̂eF/cL!2&0J

5
e

L
^V̂~12jN̂!&0 . ~32!

HereV̂5@ P̂2N̂eF/(cL)#/m is the total velocity operator
for the electrons. We have replacedP̂ in Eq. ~31! by the
expression valid in the presence of the external static fl
Obviously, the persistent current is reduced by a factor
about (12jN). The result does not depend on the details
the bath spectrum, only onj, which is well behaved also fo
the case of the Nyquist bath. Recall that for valuesj.1/N
the approximation used here is invalid, as explained abo

The magnitude of the reduction of the persistent curr
may be understood physically in the following way. If on
imagines suddenly switching on the external magnetic fl
an electric-field pulse will be produced, which, at first, free
accelerates the electrons on the ring, leading to a current
is proportional to the numberN of electrons. This again pro
duces a change in the magnetic flux that prompts a reac
of the bath~e.g., the external coil producing the Nyqui
noise!. The back action onto the electrons deccelerates th
decreasing the velocity of each electron by an amount p
portional toN and depending on the coupling strength b
tween the ring and the external coil, which is contained inj.
This leads to the reduction factor 12jN obtained above.

Thus, in our model, the reduction of the persistent curr
is similar in its origin to the appearance of an effective ma
This can be seen most clearly by considering the special
of a ‘‘fast’’ bath, whose spectrum has a lower frequency c
off or, at least, vanishes quickly with decreasing frequency
follows the motion of the electrons adiabatically and is n
able to lead to dephasing on long time scales~see the discus-
sion of the two-particle Green’s function below, as well
the cotunneling setup discussed in the last section!. However,
it still leads to a reduction of the persistent current, since
quantityj represents an integral overall frequencies.

B. Single-particle Green’s function

The single-particle Green’s function is defined by

iGp~ t !5^ĈptĈp0
† &u~ t !2^Ĉp0

† Ĉpt&u~2t !. ~33!

Evaluation of both expectation values proceeds in
same way, so we will only treat the first one here
5-7
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^ĈptĈp0
† &5Zgc

21(
N

ebmNtr~e2bĤNeiĤ NtĈpe2 iĤ NtĈp
†!.

~34!

The trace is evaluated by summing over all configuratio
$pj% of N particles and using the fact that the bath does
change a given configuration. Therefore it is equal to

(
$pj %

~12np@$pj%#!trB„exp~2bĤ@$pj%#!exp~ iĤ @$pj%#t !

3exp~2 iĤ @$pj%8#t !…. ~35!

Here$pj%8 is the configuration with one particle added
statep, and the prefactor is zero whenever that state is
ready occupied. Now we introduce the interaction pictu
with respect toĤ@$pj%#. Furthermore, we will use the part
tion sum for a given configuration,

Z$pj %
5trB„exp~2bĤ@$pj%#!…5ZHOexp~2bT@$pj%#!,

~36!

in order to define the average over the bath oscillators
are shifted depending on$pj%,

^•••&$pj %
[Z$pj %

21 trB~exp~2bĤ@$pj%#! . . . !

5ZHO
21trB~exp~2bĤbath@$pj%#! . . . !. ~37!

~See the discussion ofZgc in Sec. IV A for a definition of
the quantitiesZHO and Ĥbath@$pj%#.!

With these definitions, expression~35! becomes

(
$pj %

Z$pj %
~12np@$pj%#!

3K T̂expF2 i
p2

2m
t1 i

gp

m E
0

t

dt8f̂~ t8!G L
$pj %

.

~38!

In evaluating the average of the exponential, we need
expectation value off̂ that does not vanish in this case, sin
the oscillators are shifted by an amount proportional to
total momentum of the given configuration,

gf̄5g^f̂&$pj %
5jS (

j
pj D . ~39!

Apart from this, we can proceed exactly as before in
strictly single-particle case, see Eq.~14!, in order to arrive at
an exponent involving the thermal time-ordered correlato
f̂ for the unperturbed harmonic oscillators. Using this a
Eq. ~39! to evaluate Eq.~38!, we have arrived at the desire
result for one half of the Green’s function, Eq.~34!. Proceed-
ing analogously for the other half and using the definiti
~20! for K(v;k), the Fourier transform of the Green’s fun
tion is given by
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Gp~v!5Z̃gc
21(

$pj %
expF2bH(

j
S pj

2

2m
2m D 2

j

2m
P2J G

3H ~12np@$pj%#!KS v2
p2

2m*
1

j

m
pP;

gp

m D
2np@$pj%#KF2v1

p2

2m
~11j!2

j

m
pP;

gp

m G J .

~40!

The sum runs over all configurations~of any particle
numberN) andP5(pj is the total momentum.

From this result one can see that the line shape of
DOS in the many-particle case is derived from the sing
particle resultK(v;k). However, at finite temperatures, it i
the average over many such curves, each shifted by
amount proportional topP that depends on the total mome
tum of the configuration. Still, the linewidth~or line shape!
does not depend in any essential way on the distance to
Fermi surface.

We will now discuss the temperature dependence of
linewidth that results from expression~40!. The d peak that
remains inK(v) at v50 for a ‘‘weak bath’’ ~in this case,
a.2) is smeared over a certain range due to the aver
over configurations with different total momentaP. In lowest
order with respect toj, we may neglect the dependence
the probability distribution on the coupling to the bath. The
the linewidth is obviously given by

dv5
j

m
pdP, ~41!

wheredP5A^P2&0 is the spread in total momentum, calc
lated for theoriginal free-electron system. We have^P2&0
5NmT and therefore a linewidth which increases with t
square root ofT,

dv}jAT. ~42!

Note that the corresponding spreaddp5dv/v in momen-
tum space is given byjANmT and can very well exceed th
distance 2p/L of the quantized momenta, in spite of th
restrictionjN!1 ~and also in spite of the restrictionAmT
!pF for the degenerate regime!. Therefore, it is reasonabl
to speak of a linewidth, provided one does not resolve
quantized level structure on the ring.

C. Dephasing: Two-particle Green’s function

While the decay of the single-particle Green’s function
time is connected with every interaction process that chan
the state of the electron or brings about random change
its phase, it is not sufficient to know about this decay if o
asks about dephasing. After all, there are situations wher
electron interacts with a bath, such that its Green’s funct
decays quickly but it is still able to show an interferen
pattern. This will happen whenever the trace left by the p
ticle in the bath is not enough to decide which path it h
5-8
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gone, so that the different possibilities still interfere.7 There-
fore, one must ask about the time evolution of the den
matrix ~and, in particular, the decay of its off-diagonal el
ments! in order to study dephasing. Given a small initi
perturbation that creates a nonequilibrium situation, this ti
evolution is determined by the two-particle Green’s functi
in a linear response calculation.

The following calculation basically proceeds along t
same lines as that given in the preceding section, so we
keep it brief. For our purposes, we do not need the tw
particle Green’s function for arbitrary values of the four tim
arguments, but only for a perturbation acting at time zero
a density matrix evaluated at timet. Furthermore, since the
bath does not change the occupation of momentum sta
the only nontrivial contribution arises from the followin
product of four-electron operators, in which only two m
mentap andp8 appear.p refers to the hole that is created b
the perturbation whilep8 belongs to the electron.

^Ĉpt
† Ĉp8tĈp80

† Ĉp0&

5Zgc
21(

N
ebmNtr~e2bĤNeiĤ NtĈp

†Ĉp8e
2 iĤ NtĈp8

† Ĉp!.

~43!

Inserting an appropriate basis of system statesu$pj%&, us-
ing the interaction picture with respect toĤ@$pj%# and car-
rying out the average of the exponential in the usual way,
arrive at the following result for the~half-sided! Fourier
transform of Eq.~43!,

Z̃gc
21(

$pj %
expS 2bH(

j
S pj

2

2m
2m D 2

j

2m
P2J D np@$pj%#

3~12np8@$pj%#!iK S v2
p822p2

2m
1

j

2m
~p82p!2

1
j

m
~p82p!P;

g~p82p!

m D . ~44!

The notation is the same as for Eq.~40!. The most impor-
tant difference consists in replacingp by p82p in the factor
k5gp/m that determines the strength of the decay.

For the Nyquist case, we thus obtain a finite dephas
rate

1

tw~p,p8!
52pTC0S g

mD 2

~p82p!2, ~45!

which is proportional to the difference in momenta squar
the bath, coupling strengths, and the temperature.
change in phase brought about by the fluctuating flux is p
portional top, so the phase difference, whose variance
pears in the exponent, goes asp82p. To avoid confusion, we
emphasize that there is no universally applicable definit
of a ‘‘dephasing rate.’’ In our case, we use this term to re
to the exponential decay of the two-particle Green’s funct
as introduced above. Note that the dephasing rate ca
small even if the decay rates associated with the~single-
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particle! Green’s functions of the individual states are larg
This is an example of the general behavior mentioned abo
It is reasonable that dephasing is strongest whenever the
menta of the two states, whose superposition is examin
differ widely. Then, the bath, which couples to the mome
tum, can easily distinguish between these states even af
short time.

The dephasing ratetw
21 vanishes atT50. However, even

at T50 the off-diagonal element of a density matrix th
initially describes a coherent superposition between mom
tum statesp and p8 decays to zero completely in the lim
t→`. This decay proceeds with a power law, as we ha
already observed for the single-particle Green’s function,
Eq. ~23!. In the situation considered here, the exponentg is
equal to

g5S g

mD 2

~p82p!2C0 . ~46!

If the bath is sufficiently weak at low frequencie
@C(v)5C0va with a.2#, the decay of the off-diagona
elements in time saturates at a finite value, in contrast to
Nyquist case discussed above. Then the dephasing rate
fined as the prefactor oft in the exponential decay law, i
strictly zero, even at finite temperatures. This behavior
related to the diagonal coupling between system and bat
a nondiagonal coupling were introduced, there would
transitions from excited electronic states towards lower on
accompanied by the spontaneous emission of a bath pho
In that case, the decay rate in the single-particle Gree
function and the dephasing rate would be nonzero also aT
50 but strongly dependent on the distance to the Fermi
face, due to the suppression of the density of final states
such transitions brought about by the Pauli principle. The
fore, in a simple Golden-rule calculation, these decay ra
would vanish atT50 when one approaches the Fermi su
face.

For a52, we find power-law dephasing only at finit
temperatures, with an exponent proportional toT.

D. Discussion of dephasing for the ‘‘Nyquist bath’’

The Nyquist bath is characterized by a fluctuation sp
trum of flux and vector potential that is linear inv ~at zero
temperature!, therefore leading to a spectrum for the elect
field that behaves asv3. This is exactly the spectrum of th
zero-point fluctuations of the electric field in the vacuu
The main distinction between those fluctuations and the
quist noise considered here is that the latter leads to a f
that is homogeneous around the ring and therefore is c
patible with the translational invariance of our on
dimensional system of electrons. Furthermore, its magnit
depends on the geometry and resistance of the externa
cuit producing the equilibrium current noise. Apart fro
these differences, we can use our understanding of the e
tromagnetic vacuum fluctuations to discuss the effects of
Nyquist bath in a qualitative manner.

In particular, free ballistic motion is not affected, since t
radiation reaction force only acts on an accelerated cha
5-9
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Therefore, the populations of the electronic moment
eigenstates do not decay, as we have already observed.
is in contrast to the effect of a type of bath that leads
velocity-proportional friction, for example. The system is n
ergodic, since the memory of the initial conditions is not lo
completely. In a basis other than the momentum basis,
off-diagonal elements of the density matrix show only par
decay. That thereis some decay of the coherences is co
nected to the smearing of the position of the particle in
course of time. Usually, this effect is neglected in the disc
sion of dissipative quantum motion of a free particle und
the influence of a bath corresponding to electromagn
vacuum fluctuations, since the ballistic expansion of an
tially localized ensemble of particles dominates.18 In our
case, it is important, since, for example, a superposition
two counterpropagating plane waves on the ring will fi
form a standing wave pattern, whose visibility then gradua
decreases. The fact that, atT50, the decay of the visibility
proceeds as a power law can be understood most easily
the results of an old semiclassical analysis of the Lamb s
due to Welton.19,20 The vacuum fluctuations of the electr
field lead to a jitter of the electron position, such that t
variance^dx2& of its coordinate is given by the logarithm
containing the ratio of an upper cutoff frequency~there taken
to be the Compton frequency! and a lower cutoff~the char-
acteristic frequency of electron motion around the nucleu!.
In our case, the lower cutoff frequency actually is given
the inverse of the observation time, such that^dx2&
} ln(vct). For a superposition of plane waves of momen
6k on the ring, the density matrix in position space conta
cross terms such as exp(i2kx), which, if averaged overdx,
give rise to a suppression factor exp(22k2^dx2&)}t2g. This
leads to complete decay of the interference pattern eve
T50. Note, however, that here we have been considerin
superposition of excited states of the system and the deca
its coherences. In other problems of dephasing, such as t
encountered in weak localization, one usually discusses
limit of zero-frequency response of the system to a sm
perturbation. A situation that comes closer to this kind
question will be discussed in the following section.

The goal of the present work has been to analyze th
oughly a model situation that shows some of the featu
important for dephasing at low temperatures, not to prop
some experimental measurement setup. Still, we will n
briefly discuss the expected magnitude of the effect due
Nyquist noise in an external current coil. If the equilibriu
current fluctuations are produced by an external coil wh
circumference is similar to that of the Aharonov-Bohm ri
~L! and that is placed about a distanceL away, the dephasing
rate is estimated to be

\

tw
;S e2

\cD 2S vF

c D 2 kBT

R/RK
. ~47!

HerevF is the Fermi velocity on the ring,R is the resis-
tance of the external coil, andRK5h/e2 is the quantum of
resistance. Both the square of the fine-structure constan
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front of the expression and the ratio of the Fermi velocity
the speed of light render the effect very small under reas
able experimental conditions.

Note that the fluctuations of the vacuummagneticfield
have a weaker power spectrum, which leads to^AA&v}v3 at
T50, instead of̂ AA&v}v. The vacuum fluctuations of the
electric field, however, do lead to a linear spectrum in t
vector-potential fluctuations~see discussion above!. On the
other hand, the electric field~at large wavelengths! is homo-
geneous only in free space, not with respect to its projec
onto the ring, where it has a position dependence cos(2px/L).
Thus, the coupling is not diagonal in the momentum ba
and is not included in our model. If one estimates the or
of magnitude of the corresponding dephasing rate~inelastic
transition rate!, one arrives at tw(em)

21 ;(e2/\c)
3(vF /c)2(vF /L). Similarly, one may estimate the streng
of fluctuations due to shot noise of the external current. I
situation where the external coil producing a static magn
flux on the order of;F0 is identical with that where the
Nyquist noise originates, this leads to an effective dephas
rate of tw(shot)

21 ;(e2/\c)(vF /c)vF /L, which may be much
larger than that due to the Nyquist noise. Note that shot no
cannot be described by our model, since it is a nonequi
rium phenomenon and cannot be represented by the u
bath of harmonic oscillators at low temperatures. Howev
the effects of shot noise would be reduced in a differ
geometry where a larger current~with correspondingly
smaller relative magnitude of the shot noise! produces the
same static magnetic flux through the Aharonov-Bohm ri

E. Relevance of the term quadratic in the flux

In all of the preceding calculations, we have neglected
term g2f̂2 that appears in the kinetic energy of the partic
but does not couple to the momentum. This approximat
has been necessary to use the well-known form
^exp(iX)&5exp(2^X2&/2) for a Gaussian random variableX
in the classical case or the analogous expression der
from Wick’s theorem in the quantum case.f̂2 is quadratic in
the coordinates of the bath oscillators, whereasf̂ is a linear
bosonic variable~Gaussian random variable in the classic
case!. If the term g2f̂2/2m is kept in the Hamiltonian, the
eigenfrequencies and normal coordinates of the bath of
monic oscillators are changed by an amount that depend
g but not on the particle momentump. This becomes impor-
tant at larger values ofg, where the effective mass turns o
to be m* 5m(11j) instead of the valuem* 5m(12j)21

derived without thef̂2 term, see Eq.~17!. Note that this
difference persists also in the thermodynamic limitNosc
→`. However, the qualitative behavior of the bath spectr
at low frequencies is not changed for the spectraC(v)
}va with a>1 that have been considered here. Therefo
this term is unimportant for the qualitative conclusions ab
dephasing, although it can change quantitative results
largerg and does change the single-particle Green’s functi
The latter involves a change in particle number, so that
additionalf̂2 is introduced into the Hamiltonian.
5-10
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V. AHARONOV-BOHM INTERFERENCE IN
COTUNNELING THROUGH THE RING

In the following, we will discuss the influence of the ba
on the Aharonov-Bohm~AB! effect, i.e., on the flux depen
dence of the transport current through the ring. We cons
tunneling into and out of the ring, taking place at two ele
trodes to the left and right of the ring~see Fig. 4!. A tunnel-
ing situation is the appropriate one for our model, since
taching current leads would severely alter the system. N
that independent~sequential! tunneling only probes the den
sity of states at the two contacts. Therefore, in order to
serve the AB interference effect, we have to consider a C
lomb blockade situation, in which any electron tunneling in
~or out of! the ring will enhance the total energy by th
charging energy of the ring that is much larger than the b
voltageV and the temperatureT. In such a case, transpo
through the ring is possible only via cotunneling,21 i.e., a
two-step process involving a virtual intermediate state
longing to a different number of electrons on the ring.
strong dependence of the tunneling current on the exte
magnetic flux, with a complete suppression atF0/2 due to
destructive interference, is visible only in the ‘‘elastic cotu
neling’’ contribution, where the electronic state of the ring
left unaltered in the process. It is linear in the bias volta
and will dominate the inelastic contribution at low tempe
tures and for small bias voltages~see the discussion at th
end of this section and Ref. 21!.

Now consider cotunneling atT50 under the influence o
the bath. The semiclassical analysis of Aharonov-Bohm
terference given in a preceding section is not applicable
V→0, since it assumes the electron can emit or absorb
arbitrary amount of energy. In the quantum-mechanical c
culation, suppression of interference is due to the elec
leaving a trace in the bath that permits, at least in princip
to decide which of the two arms of the ring the electron h
traveled. This involves a transfer of energy between elec
and bath. The bath spectrum determines the amount of
oscillators able to absorb the small energy less thaneV that
can be emitted by the electron. Therefore, it is to be expe
that dephasing at zero temperature is suppressed forV→0
due to the energy conservation constraint. This will be c
firmed by the calculation described in the following, a
though there are renormalization effects that change
strength of the tunneling current away from the point of p
fect destructive interference,F5F0/2.

The tunneling process starts from a situation in which
ring is occupied by the equilibrium number of electrons~de-
pending on the value of a gate voltage! and the Fermi seas in
the left and right electrode are filled up to Fermi energies t
differ by the bias voltageeV, see Fig. 5. Throughout th
following discussion, we will assume the Fermi energy in t

FIG. 4. The tunneling setup discussed in the text.
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left electrode to be the larger one of the two~andeV.0). In
the final state, an electron has appeared above the right F
sea, leaving behind a hole in the left electrode. Although
want to consider the situation where the electronic state
the ring has not changed in the end, the final state of the b
may be different. The intermediate state is characterized
an extra electron~or extra hole! present on the ring and som
arbitrary state of the bath. Using standard second-order
mi’s Golden rule, the tunneling rate is obtained by summ
over all intermediate states~dividing by the proper energy
denominator! and all final states whose energy equals
initial energy,

G52p(
f
U(

n

H f n
T Hn i

T

En2Ei
U2

d~Ef2Ei !. ~48!

Here ĤT5T̂L1T̂R is the sum of the tunneling Hamilto
nians belonging to the left and the right junction, while t
energies and eigenstates refer to the unperturbed Ha
tonian that includes everything besides tunneling. In parti
lar, it includes the coupling between electrons and the b
as well as the kinetic energies of electrons in the electrod

At this point we would like to emphasize that using Fe
mi’s Golden rule for the calculation of the cotunneling cu
rent does not in itself mean taking into account the inter
tion between bath and system only in a perturbative way. T
intermediate states being summed over in Eq.~48! are the
exact eigenstates of the full system of electrons on the
coupled to the fluctuating flux. In this sense, the cohere
properties of the ring as a whole~including the bath! are
tested by the cotunneling process. Applying the Golden r
in this context is roughly comparable to using the Kubo fo
mula in a linear-response calculation of, e.g., the we
localization magnetoconductance, which does not autom
cally imply a perturbative description of the dephasi
processes either. Still, there is an important difference. In
context, we essentially deal with a scattering situation, s
that energy conservation holds at least for the initial and fi
states of the complete process. This will be seen to be
portant for our conclusions about the strength~or absence of!
dephasing. What is neglected in our calculation are any e

FIG. 5. Energy diagram for cotunneling through the AB ring
F5F0/2. The initial, final, and two possible intermediate states
indicated~see main text!. The charging energy has to be added
the single-particle energy of the intermediate state shown here
5-11
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FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B65 125315
librium correlations between the state of the electrons in
leads and the state of the ring as a whole~including the
fluctuating flux!.

Before performing the calculation in the presence of
bath, we will briefly describe how the destructive interfe
ence atF0/2 appears in this formula, in the situation witho
fluctuating flux. In such a case, the intermediate staten refers
solely to the electronic statek on the ring, which is occupied
by the additional electron in the course of tunneling. T
final statef is determined both by the statel, which is un-
occupied in the left electrode after the tunneling process,
the statel̄, where the electron ends up in the right electro
~see Fig. 5!.

For simplicity, we will assume tunneling to take plac
only between two points, for example from a pointyL at the
tip of the left electrode to an adjacent pointxL on the ring,

T̂L5tLĈ†~xL!Ĉ~yL!1h.c., ~49!

and likewise for the right electrode.tL is a complex-valued
tunneling amplitude. Such a description will be appropri
as long as the extent of the relevant region in which tunn
ing can take place is less than a wavelength.

The sum over intermediate electronic statesk on the ring
then contains the following contribution that describes
electron going onto the ring from the left electrode and le
ing through the right electrode,

tLtR* Cl~yL!Cl̄
* ~yR!(

k

Ck~xR!Ck* ~xL!

ek1EC2el
. ~50!

Here the sum overk is to be taken only over unoccupie
single-electron states on the ring.C refers to single-electron
wave functions on the ring and on the electrodes. Apart fr
the contribution listed here, there is another, complet
analogous, contribution that belongs to the situation with
extra hole on the ring in the intermediate state.21 Note that
for the purposes of our discussion we will not distingui
between the charging energies belonging to the electron
hole processes~assuming them to be of about the same m
nitude!.

Perfect destructive AB interference at an external st
magnetic flux ofF5F0/2 arises only for an even number o
electrons on the ring. In this case, the energies

ek5
1

2m S k2
2p

L

F

F0
D 2

~51!

of the unoccupied states are pairwise degenerate, fork1

[n2p/L and k2[(12n)2p/L, see Fig. 5. Therefore, th
energy denominators fork1 andk2 are the same, while the
wave functions in the numerators produce a phase shif
exp@i(k12k2)L/2#521 between the two possibilities, lead
ing to complete cancellation of all terms in the sum. T
same applies to the sum over occupied states~for the situa-
tion with an extra hole in the intermediate state!.

Dephasing will, in general, ‘‘wash out’’ this perfect de
structive interference. After taking the modulus squared
the sum of amplitudes given above in Eq.~50!, which we
12531
e

e

e

d
e

e
l-

n
-

y
n

nd
-

ic

of

f

briefly denote byA(k), one obtains ‘‘classical’’ probabilities
such as uA(k1)u2 but also cross terms of the form
A* (k1)A(k2). A bath coupling to the electronic motion wil
affect these terms differently, if it is able to ‘‘distinguish
between the momentak1 and k2 . Usually, the cross terms
are suppressed. Then, the different contributions cannot
cel any more. Note that, away from perfect destructive int
ference, we have to expect an influence of the bath on
magnitude of the tunneling current under any circumstanc
since mere renormalization effects such as a change in
effective mass of the electrons will be important. This is w
we concentrate on the special case ofF0/2. Even in that
situation, the interference minimum could vanish in a rath
trivial way due to renormalization effects, if one chose a b
coupling asymmetrically to the two arms of the ring~or
rather to left- and right-going momenta!, thereby leading to
different transmission probabilities. This is not the case
our model.

At this point, we can give a simple counting argument
arrive quickly at the voltage dependence of the ‘‘incohere
contribution to the cotunneling rateG, which is produced by
the fluctuating flux and leads to a nonvanishing current
F0/2. The sum over initial electronic states on the left ele
trode is carried out over a region of extenteV. The probabil-
ity of emission of a bath phonon is proportional to the ba
spectrumva, and we have to integrate this from 0 to th
maximum energy of the electron, which is again of ordereV.
This yields a voltage dependenceG}Va12 of the incoherent
contribution to the tunneling current~see Figs. 6 and 8!.
However, we want to analyze this in the following using
different, nonperturbative scheme, thereby making contac
the Feynman-Vernon influence functional formalism,4 which
is the ‘‘workhorse’’ of many dephasing calculations.

To evaluate Eq.~48! in the presence of the bath, we re
write the sum over intermediate states as a time integral

(
n

H f n
T Hn i

T

En2Ei
5 i E

0

`

dt^ f uĤTexp@2 i ~Ĥ2Ei !t#Ĥ
Tu i &

5 i E
0

`

dt(
k

Tl̄k
R

Tkl
L

3^ f Buexp@2 i ~Ĥ@k#2E0!t#u0B&

3exp@2 i ~EC2el!t#. ~52!

FIG. 6. Cotunneling in the presence of the fluctuating flu
Emission of a bath ‘‘phonon’’ of frequencyv leads to an incoheren
contribution to the tunneling current, where the destructive inter
ence between the two paths shown here is lost. The probabilit
emission depends on the bath spectrumC(v).
5-12
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In the second line, which replaces Eq.~50! in the presence
of the bath, we have split off the contribution due to t
electronic states. This has been possible because only
tunneling operators can change the electronic state, while
bath couplesdiagonally to the electronic-momentum eigen
states. Furthermore, we have confined ourselves to the
cess with an extraelectronin the intermediate state, a com
pletely analogous contribution for an extrahole has to be
added.Ĥ@k# is the Hamiltonian for a given configuratio
consisting of an extra occupied statek over the original
Fermi sea on the ring. It only acts on the bath Hilbert spa
where 0B refers to the ground state of the bath prior to t
tunneling event andf B is an arbitrary final state that the ba
goes into after the cotunneling process is finished. In
notation, the sum of electronic kinetic energies is included
Ĥ@k# as well, whereas the charging energyEC has been
taken into account separately. The matrix elements of
tunneling HamiltoniansTL,R are taken between the electron
statesl̄, k, and l @compare Eqs.~49! and ~50!#. E0 is the
ground-state energy of the ring, including the bath.

After taking the modulus squared of the sum given abo
we arrive at the following contribution to the tunneling ra
G at zero temperature,

2p (
l,l̄,k.,k,

~Tl̄k.
R

Tk.l
L

!~Tl̄k,
R

Tk,l
L

!* E
0

`

dt.exp@2 i ~EC

2el2E0!t.#E
0

`

dt,exp@1 i ~EC2el2E0!t,#

3(
f B

^x,~t,!u f B&d@Ef B2E02~el2el̄!#

3^ f Bux.~t.!&, ~53!

wherek.(,) denote unoccupied states on the ring. There
three analogous contributions besides the one shown her
which the tunneling takes place in a different order~e.g., the
process may start by an electron tunneling out of the ri
leaving a hole behind, etc.!. Note that a similar expressio
arises in the derivation of the ‘‘P(E)’’ theory of a tunnel
junction coupled to a dissipative bath.22,23

In the preceding formula, the last line can be viewed a
kind of ‘‘ generalized influence functional’’ F@t.,t,,v5el

2el̄#. It is equal to the overlap between bath statesx.(,)

that have been time evolved out of 0B under the action of
Ĥ@k.(,)# for some timet.(,). In contrast to the usual in
fluence functional, the time of evolution may be different f
the two states and the overlap is taken only with respec
bath states at an excitation energyv ~that must equal the
energy emitted by the electron!. This difference is due to the
fact, that in our problem the energy-conservation constr
must be taken care of, since the electron cannot transfe
arbitrary amount of energy to the bath. This clearly sho
why a single-particle calculation using the usual influen
functional must fail when the amount of energy available
limited due to low temperatures or low bias voltages. T
problem has also been discussed in Ref. 9, where the au
have used physical arguments to drop certain ‘‘zero-po
12531
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contributions to the dephasing rate obtained in a sing
particle calculation. The normal influence functional is r
covered by integrating over all possible energy transfers
settingt.5t,,

F@t#5^x,~t!ux.~t!&5E
2`

1`

dvF@t,t,v#. ~54!

If no bath is present or its spectrum has a lower cutoff t
is larger than the energy available to the electron, ene
conservation leads tov[0, such that the final and initia
bath states coincide,f B[0B. Then,F is a product of a factor
depending only onk. and another one, depending only o
k,. In this case, the sums overk.(,) may be carried out
separately, like before, and the terms will cancel again~for
F0/2), provided the bath couples equally tok1 andk2 ~see
discussion above!. Although there is definitely no dephasin
in this case, the magnitude of the tunneling current may
changed forFÞF0/2, due to the afore-mentioned renorma
ization effects.

The Fourier transform~in v) of the generalized influence
functional may be written as follows:

F@t.,t,,t#5
e1 iE0t

2p
^x,~t,!ue2 iĤ [0] tux.~t.!&.

~55!
It can be represented as a Keldysh time-ordered expe

tion value,24,25 apart from a prefactor exp@2iE0(t
.2t,)#,

K T̂KexpF2 i R
K
dsV̂I~s!G L

0B

. ~56!

Here, V̂I(s)[gk̃f̂(s)/m1 k̃2/(2m), with k̃[k22pF/
(F0L), whereF is the additionalstatic flux. V̂I couples the
additional electron in statek to the bath~and also incorpo-
rates the kinetic energy!. We havek5k. if s is on the for-
ward time branch and 0<s<t., while k5k,, if s is on the
backward time branch andt1t.2t,<s<t1t.. For all
other times,V̂I vanishes. This is represented graphically
Fig. 7. Note thatV̂I is taken in the interaction picture with
respect to the bath coupled to the original Fermi sea on

FIG. 7. Schematic ‘‘space-time’’ diagram showing the Keldy
contour that runs from 0 tot and back again. The interaction op
erator that couples to the bath is nonvanishing only when there i
extra electron on the ring~thick lines!, either in statek. or k, ~see
main text!. Tunneling processes are indicated.
5-13
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FLORIAN MARQUARDT AND C. BRUDER PHYSICAL REVIEW B65 125315
ring. Once more, we have neglected the termg2F̂2 that turns
out to be unimportant for the bath spectra considered be

Using Keldysh time-ordering and a linked-cluster expa
sion ~Wick’s theorem!, we can represent Eq.~56! as an ex-
ponential containing double time integrals involving t
Keldysh time-ordered correlation function of the bath ope
tor f̂,

expF2 i R
K
dŝ V̂I~s!&G

3expF2
1

2 R
K
ds1 R

K
ds2^T̂KdV̂I~s1!dV̂I~s2!&G .

~57!

We have setdV̂I[V̂I2^V̂I&5gk̃f̂/m. The principal steps
involved in the evaluation of this expression are dem
strated in the Appendix, where we show how the us
Caldeira-Leggett influence functional for a bath of harmo
oscillators can be derived very efficiently using this meth
The resulting exponential couples the momentak. and k,

and may therefore lead to dephasing.
From now on, we again consider baths that are charac

ized by a power-law spectrum at low frequencies,C(v)
}va with an exponenta>1. Remember that the casea
51 represents fluctuations of the magnetic flux produced
Nyquist noise of an external current loop. For these b
spectra, it is sufficient to carry out an expansion of the
tunneling rate to leading order in the coupling strengthg.
The part of the resulting expression that couplesk. andk,

is seen to lead, after summation over all electronic statesk.,
k,, l, l̄, to an ‘‘incoherent’’ contribution that washes ou
destructive interference but that is suppressed for low-b
voltages, as expected.

At zero temperature, the ratio of this incoherent curren
F5F0/2 to the normal elastic cotunneling current that flo
at F50 is found to be given by the following approxima
expression~up to a constant of order 1),

Fg2vF
2E

0

eVS 12
v

eVDC~v!dvG 1

de2
. ~58!

The expression inside the brackets can be interpreted a
variance of the fluctuating energy of a single-particle le
on the ring. However, it is to be evaluated taking into a
count only the fluctuations up to the frequency correspo
ing to the bias voltage and using a weight factor 12v/eV
that favors low-energy transfersv. We have already pointed
out that the cutoff ateV is a simple consequence of ener
conservation. For a power-law bath spectrumC(v)}va, the
integral yields a voltage dependence proportional toVa11,
so the incoherent tunneling current goes asVa12. Note that
de5hvF /L refers to the single-particle level spacing on t
ring. The qualitative behavior of the cotunneling rate a
function of both external static flux and bias voltage
shown in Fig. 8.~We remark again that the incoherent cu
rent due to external Nyquist noise would be too small to
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actually measurable under reasonable experimental co
tions, compare the discussion at the end of Sec. IV D!.

Thus, we see that suppression of destructive interfere
does not show up in thelinear conductance. In this sense, th
fluctuations do not lead to dephasing in the linear-transp
regime at zero temperature. For the Nyquist casea51, the
exponent ofV is the same as that for inelastic electron
cotunneling processes in a system with acontinuumof inter-
mediate electronic states.21 Bath spectra witha.1 obvi-
ously lead to an even weaker decrease in the visibility of
interference minimum at low-bias voltages. Note that f
mally insertinga521 in G}Va12 would lead to an inco-
herent contribution to the linear conductance even atT50.
However, this case is not of interest here, since it canno
produced by a fluctuating magnetic flux and it is not cove
by the approximations made in our calculation~in particular
dropping thef̂2 term!. It would correspond to the stron
force fluctuations of an Ohmic Caldeira-Leggett bath used
the description of quantum Brownian motion.

For bias voltageseV smaller than the single-particle en
ergy spacingde on the ring, dephasing is merely due to th
coupling to the fluctuating flux. At higher voltages, the i
elastic cotunneling processes become important. In th
one electron tunnels into the ring, whileanother electron
goes out at the opposite electrode, thus leaving behin
particle-hole excitation on the ring.21 Since all the corre-
sponding final states are different, their contributions to
cotunneling current sum up incoherently. Therefore, sim
to dephasing produced by the bath, they also lead to a n
vanishing contribution to the tunneling current atF0/2,
where, ideally, one should have perfect destructive inter
ence. The number of possibilities to create a particle-h
excitation with an energy of at most eV is}(eV/de)2, if we
assumeeV@de. In that regime, the ratio of the incohere
current contribution due to the external bath to the electro
inelastic contribution is given by the bracket in Eq.~58!,
multiplied by @Se/(EceV)#2 The electronic inelastic contri
bution will be the dominant one.

Finally, let us discuss finite temperatures.Withoutthe bath
and as long asT!de, only the Fermi distributions in the
electrodes get smeared, which does not affect the tunne
current, if one takes into account that now the tunneling p
cesses do not only lead to an electron transport from lef
right but in the other direction as well. The presence of

FIG. 8. Schematic behavior of the cotunneling rate as a func
of static magnetic flux and bias voltage. In the ideal situation,
rate vanishes atF0/2 ~dotted line!, while it rises as a power of the
bias voltage due to the incoherent contribution resulting from
fluctuations of the flux~thick line!.
5-14
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AHARONOV-BOHM RING WITH FLUCTUATING FLUX PHYSICAL REVIEW B 65 125315
bath will introduce some temperature dependence for the
coherent current contribution in this regime, since at fin
temperatures the tunneling electron will not only emit
energy quantum into the bath but also absorb a thermal-
excitation. Therefore, the energyv transferred to the bath
now can be negative as well. There is no restriction on
amount of energy an electron can absorb, so there is no
off eV for negativev. At positive energy transfers, the prob
ability of spontaneous emission into the bath@}C(v) in Eq.
~58!# now has to be multiplied byn(v)11, wheren(v) is
the Bose distribution function~induced emission!. At nega-
tive v, this is replaced byn(uvu), since only absorption o
thermalexcitations~not of vacuum fluctuations! is possible.

Taking into account the thermal smearing of the electro
Fermi distributions, the balance of left and right-going tu
neling currents and the induced emission/absorption m
tioned just before, we have to perform the following replac
ments in Eq.~58!,

E
0

eV

dvS 12
v

eVDC~v!°E
2`

1`

dv W~b,v,eV!~n~ uvu!

1u~v!!C~ uvu!. ~59!

Note that the factor multiplyingW in the integral corre-
sponds directly to the functionP(E) that occurs in the theory
of tunneling in a dissipative environment.22,23 The function
W itself represents an integral over the average of energie
the left and right electrodes,e[(el1el̄)/2, at a fixed energy
transferv[el2el̄ ,

W~b,v,eV![~eV!21E de f L~12 f R!2 f R~12 f L!e2bv.

~60!

Here f L5 f b(el2eV/2) and f R5 f b(el̄1eV/2) are the
Fermi distributions in the two electrodes. The factor
exp(2bv) is due to the fact that for an electron going fro
right to left the energy transferred to the bath is2v, so the
ratio between the values ofn(uvu)1u(v) at positive and
negative frequencies appears, which is just this factor. N
that, in the low-temperature limit (b→`), the functionW
becomes 12v/eV for v,eV and vanishes forv.eV. This
reproduces the left-hand side of Eq.~59! as a special case.

Using this formula, the incoherent tunneling current
found to be enhanced by a temperature-dependent cont
tion proportional toTa11V.

At T>de, one would have to take into account the th
mal averaging over different electronic configurations on
ring ~still at a fixed particle number determined by chargi
energy and gate voltage!. The perfect destructive interferenc
at F0/2 depends on the presence of an electronic config
tion that is symmetric in the occupancy of equal-ene
states havingk.0 and k,0 ~see discussion above!. The
thermal average includes other configurations as well
therefore leads to a suppression of the destructive inte
ence in theelastic tunneling current, even without the bat
12531
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Furthermore, the electronicinelasticcontribution is also en-
hanced at finite temperatures and becomes linear in
voltage.21

VI. DISCUSSION

Since we do not find dephasing in our model at zero te
perature ~under the circumstances specified above!, the
reader may wonder how our result is related to some ap
ently contradicting conclusions in the literature. First of a
we would like to point out that a comparison between fin
ings in different physical situations is not straightforwar
since there is no general definition of a ‘‘dephasing rat
E.g., in recent work on an Aharonov-Bohm ring containing
quantum dot capacitively coupled to the Ohmic fluctuatio
in a gate,10 the authors found that the coupling suppresses
magnitude of the persistent current flowing in the ring a
induces fluctuations of this current. The effect persists e
at T50 and was interpreted as dephasing at zero temp
ture. Formally, the coupling assumed in the setup of Ref.
is nondiagonal in the system’s eigenbasis, whereas it is d
onal in our case. This may indeed lead to a weaker tende
towards dephasing in our model~see the discussion at th
end of Sec. II!. Still, we also find both a reduction of th
persistent current~Sec. IV A! and fluctuations~caused by the
vector-potential fluctuations, since the momentum is c
served!, regardless of the details of the bath spectrum. N
ertheless, this apparently does not imply dephasing in
interference setup~cotunneling transport situation!, which
has been our main concern here and that has no analog
the work of Ref. 10. The transport effect depends in an
sential way on the long-time dynamics of the system a
therefore, on the low-frequency behavior of the bath sp
trum ~similarly to the Caldeira-Leggett model or some a
pects of the spin-boson model!, while the reduction of the
persistent current does not. Therefore, we have not in
preted the reduction of the persistent current in terms of ze
temperature dephasing, although it certainly constitute
suppression of an interference-related phenomenon. We
lieve that the suppression of interference in a cotunne
setup considered here may be more directly related to m
scopic transport interference experiments.

Our model is certainly quite removed from the discu
sions about low-temperature dephasing in weak localizat
There, dephasing by electron-electron interaction in an
tended disordered system weakens the coherent backsc
ing effect, which is an interference phenomenon that is
bust against both thermal and impurity averaging, in contr
to the destructive interference considered in our model. Si
the electrons inside the metal interact all the time, it is n
obvious whether that situation is in any way analogous to
kind of ‘‘scattering’’ situation considered here for the cotu
neling transport.

VII. CONCLUSIONS

We have analyzed a simple model of a fluctuating m
netic flux threading an Aharonov-Bohm ring and discuss
its effects on equilibrium properties, such as persistent c
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rent and tunneling density of states, as well as transport p
erties such as the two-particle Green’s function and the
tunneling current through the ring. Particular emphasis
been put on the question of dephasing and low-tempera
behavior. There are important qualitative differences depe
ing on the low-frequency behavior of the bath power sp
trum. For the case of Nyquist noise and an arbitrary ini
superposition of momentum states, an exponential deca
off-diagonal elements of the density matrix in time atT.0
goes over into ‘‘power-law dephasing’’ at zero temperatu
However, if one probes the coherence properties of the e
tronic motion on the ring by checking for the possible su
pression of destructive AB interference in a cotunnel
setup, no such suppression is found in thelinear-transport
regime atT50. This is because the possibility for the ele
tron to leave a trace in the bath is diminished due to
energy-conservation constraint. Our calculation serves a
illustrative example of the difference between the ‘‘optic
type of interference experiments~employing single par-
ticles!, in which the semiclassical approximation and/or t
usual Feynman-Vernon influence functional may be app
to discuss dephasing, and the linear-transport interference
periments encountered in mesoscopic physics, in which
cial care has to be taken in the analysis of dephasing at
temperatures.
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APPENDIX: DERIVATION OF CALDEIRA-LEGGETT
INFLUENCE FUNCTIONAL USING KELDYSH
TIME-ORDERING AND WICK’S THEOREM

The influence functional for a system~variablex̂) coupled
linearly to a linear bath (f̂) is usually derived in the path
integral picture, by ‘‘integrating out’’ the bath variables.1,2,4

This can be done because the bath consists of a set o
coupled harmonic oscillators. However, the calculation
usually quite cumbersome, although the result is sim
enough and involves only the real and imaginary parts of
bath correlator̂ f̂(t1)f̂(t2)&. Here we present a derivatio
based on Keldysh time-ordering and Wick’s theorem. T
oscillators of the bath and their action for an external driv
force never have to be considered and therefore this is p
ably the shortest route to the well-known Caldeira-Legg
influence functional. Modifications of this approach are a
plicable in more complicated situations as well~compare the
main text!.

The Feynman-Vernon influence functional is the over
between the two bath states that result from the action of
different ~fixed! system trajectoriesx.(•) and x,(•) onto
the same initial bath statex0. A thermal average overx0 has
to be performed at finite temperatures,

J~x,,x.!5^U~ t,0ux,!x0uU~ t,0ux.!x0&x0
. ~A1!
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Here the time-evolution operators depend on the sys
trajectoryx(•) via the interaction termV̂(t)5x(t)f̂ in the
Hamiltonian. Using the interaction picture with respect to t
bath HamiltonianĤB , we can explicitly write downJ in the

following form, with ~anti-!time-ordering symbolsT̂ ( T̃̂),

J5ZB
21trFe2b ĤBT̃̂expF1 i E

0

t

x,~s!f̂~s!dsG
3T̂expF2 i E

0

t

x.~s!f̂~s!dsG G . ~A2!

Here ZB[tr exp(2bĤB). Now we can use Keldysh time
ordering to abbreviate this formally,

J5ZB
21trFe2bĤBT̂KexpF2 i R

K
xK~s!f̂~s!dsG G . ~A3!

Here xK(s) is equal tox.(s) @or x,(s)# if s lies on the
forward ~or backward! part of the Keldysh contour that run
from 0 to t and back again. The advantage of this form
rearrangement is that the application of Wick’s theore
~leading to a linked-cluster expansion! now becomes very
simple. We immediately obtain forJ,

expF2
1

2 R
K
dt1 R

K
dt2^T̂Kf̂~ t1!f̂~ t2!&xK~ t1!xK~ t2!G .

~A4!

The bracketŝ•& denote the thermal average with respe
to ĤB . Now we can translate back the exponent by tak
into account all four possible combinations of the two tim
on the forward or backward time paths:~To keep the notation
short, we use subscripts for the time arguments!

2
1

2E0

t

dt1E
0

t

dt2$^T̂f̂1f̂2&x1
.x2

.1^ T̃̂f̂1f̂2&x1
,x2

,

2^f̂1f̂2&x1
,x2

.2^f̂2f̂1&x1
.x2

,%. ~A5!

This can be simplified further by noting that the real p
of all the four different correlators appearing here is t
same, since it is symmetric in the time argumen
2Rê f̂1f̂2&5^$f̂1 ,f̂2%&. Therefore, the real part of the ex
ponent is given by:

2
1

2E0

t

dt1E
0

t

dt2 Rê f̂1f̂2&~x1
.2x1

,!~x2
.2x2

,!. ~A6!

It defines the imaginary part of the influence acti
Sin f l@x.,x,# and describes dephasing and heating due to
fluctuations of the bath variablef̂.

Treating the imaginary part is only slightly more difficul
We have
5-16



le
x-

de-

nt,

ere

ce
As
-
as

ac-

AHARONOV-BOHM RING WITH FLUCTUATING FLUX PHYSICAL REVIEW B 65 125315
Im^f̂1f̂2&52Im^f̂2f̂1&5
1

2i
^@f̂1 ,f̂2#&

~A7!
Im^T̂f̂1f̂2&5sgn~ t12t2!Im^f̂1f̂2&52Im^ T̃̂f̂1f̂2&.

In order to get rid of the sgn(t12t2), we split the double
time integral into one part wheret2,t1 and one witht2
.t1. In the latter part, we interchange integration variab
t1 and t2. Then we obtain for the imaginary part of the e
ponent:

2 i E
0

t

dt1E
0

t1
dt2Im^f̂1f̂2&~x1

.2x1
,!~x2

.1x2
,!. ~A8!
e
d

12531
s

This defines the real part of the influence action and
scribes friction and renormalization effects~e.g., effective
mass!. Note that we can bring the real part of the expone
~A6!, to a similar form by cutting off thet2-integral att1 and
dropping the factor 1/2 in front of the expression, since th
the integrand is symmetric int1 ,t2.

In this way we have arrived at the well-known influen
functional for a system coupled linearly to a linear bath.
usual, a coupling of the formf (x)f̂ just leads to a replace
mentx° f (x) in the final expression, and something such
( j f j (x)f̂ j leads to a sum of the corresponding influence
tions, if thef̂ j are uncorrelated.
-
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