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We consider the visibility of the Aharonov-Bohm effect for cotunneling trans-
port through a clean one-channel ring coupled to a fluctuating magnetic fluz.
We concentrate on the modification of the destructive interference at $g/2
by the fluctuating fluz, since changes in the magnitude of the current away
Jrom this point can also be caused by renormalization effects and do not nec-
essarily indicate dephasing. For fluctuations arising from the Nyquist noise
in an external coil at T = 0, the suppression of the destructive interference
shows up only in a contribution proportional to V2, and therefore does not
affect the linear conductance. In this sense, the Nyquist bath does not lead
to dephasing in the linear transport regime at zero temperature in our model.

PACS numbers: 73.25.-b, 73.23.Hk, 73.23.Ra, 03.65.Yz

Recently, the question of dephasing in diffusive interacting electronic
systems at low temperatures has attracted a lot of attention and controversy
(see e.g. Ref. 1). In this paper, we will discuss a simpler model problem:
the influence of an external bath on the Aharonov-Bohm (AB) effect, i.e. on
the magnetic flux dependence of the current through a ring. Various cases
of this problem have been treated in the past?!?. In the present work, the
bath will be provided by a fluctuating magnetic flux (which may be due to
Nyquist noise in an external coil), and we will focus on the suppression of
destructive interference at ® = ®/2. As a result of our calculation, we find
that the fluctuations do not lead to dephasing in the linear transport regime
at zero temperature.

The aim of the presentation is to make contact with the Feynman-
Vernon influence functional formalism which is often used to discuss de-

*Dedicated to Peter Wolfle on the occasion of his 60th birthday.
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phasing in a single-particle picture. Its direct applicability is ruled out in a
low-temperature situation where the restrictions owing to the Pauli princi-
ple become important. Some authors have tried to account for this fact by
dropping certain zero-point contributions “by hand”, thereby extending re-
sults of a semiclassical dephasing calculation to lower temperatures!'. The
model system presented here allows to observe directly the modifications
brought about by both energy conservation and the Pauli principle at low
temperatures (and low bias voltages), in a particularly simple situation. Al-
though the model is not directly related to the above-mentioned puzzling
questions concerning the suppression of weak localization effects due to cou-
pling between the electrons and a bath, we hope that it helps to clarify these
points.

In our model, the ring is coupled to two electrodes by tunnel contacts
and threaded by a fluctuating magnetic flux, see Fig. 1. We consider a
Coulomb blockade situation, in which any electron tunneling into (or out
of) the ring will enhance the total energy by the charging energy of the ring
and the latter is much larger than the bias voltage V' and the temperature
T. Therefore, transport through the ring is possible only via cotunneling,
i.e. a two-step process involving a virtual intermediate state belonging to
a different number of electrons on the ring'?2. A strong dependence of the
tunneling current on the external magnetic flux, with a complete suppression
at ®¢/2 due to destructive AB interference, will be visible only in the elastic
cotunneling contribution, in which the electronic state of the ring is left
unaltered in the tunneling process. It leads to a current linear in the applied
bias voltage and will dominate the contribution stemming from inelastic
electronic processes at low temperatures and for small bias voltages.

The fluctuations couple to the electrons via the vector-potential term in
the kinetic energy, i.e., the Hamiltonian of the electrons on the ring is given

by
R (7 L
H=Y by + Hyan, (1)
A m
where ﬁhath describes a set of uncoupled harmonic oscillators:
o N (P2 M2,
Hyposh = L4 12} . 2
bath ; {2 AR Qj (2)

For simplicity, we consider spinless electrons. The flux & is taken to be the
sum of the normal coordinates of the harmonic oscillators'14:4:

éz‘/mzéj (3)
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Fig. 1. The tunneling setup discussed in the text.

Any nonvanishing external static flux & has to be added. g is a coupling
constant depending on the circumference L of the ring. The effects of the
bath can be characterized fully by giving the correlator of qﬁ, which defines
the spectral function C(w):

(B(1)B(0)) = [ duC (@) coth () cos(wt) — isin(wt)]

The description of the cotunneling setup is completed by adding the charging
energy of electrons on the ring, the kinetic energies of electrons in the two
electrodes and a tunnel coupling Hy.

The tunneling process starts from a situation in which the ring is occu-
pied by the equilibrium number of electrons (which depends on the value of
an applied gate voltage) and the Fermi seas in the left and right electrode
are filled up to Fermi energies that differ by the bias voltage, elV. Through-
out the following discussion, we will assume the Fermi energy in the left
electrode to be the larger one of the two (and eV > 0). In the final state,
an electron has appeared above the right Fermi sea, leaving behind a hole
in the left electrode. Although we want to consider the situation where the
electronic state of the ring has not changed in the end, the final state of the
bath may be different. The intermediate state is characterized by an extra
electron (or extra hole) present on the ring and some arbitrary state of the
bath. The tunneling rate can be obtained using Fermi’s Golden rule:

‘““2?!‘2

Here Hy =TT + T® is the sum of the tunneling Hamiltonians belonging to
the left and the right junctions, while the energies and eigenstates refer to
the unperturbed Hamiltonian that includes everything besides tunneling (in
particular, it includes the coupling between electrons and the bath). We set
h, k‘g =1.

HTqu’Im

T (B~ B). (4)

v
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Before performing the calculation in the presence of the bath, we will
briefly describe how the destructive interference at ®¢/2 appears in this
formula in the situation without fluctuating flux. In such a case, the in-
termediate state v refers solely to the electronic state k£ on the ring, which
is occupied by the additional electron in the course of tunneling. The final
state f is determined both by the state A, which is unoccupied in the left
electrode after the tunneling process, and the state A, where the electron
ends up in the right electrode.

The sum over intermediate states k then contains the following contri-
bution which describes an electron going onto the ring from the left electrode
and leaving through the right electrode:

Ui(zr)Vi(zL)
e+ Fc—ey

ttRUa(yL) ¥ (vr) Y (5)
k

The sum over £ is to be taken only over unoccupied single-electron states
on the ring. For simplicity, we have assumed tunneling to take place only
between two points, for example from a point yr at the tip of the left elec-
trode to an adjacent point zz, on the ring: Ty, =t ¥ (z1)¥(yr) + h.c., and
likewise for the right electrode. t;, is a complex-valued tunneling amplitude.
Such a description will be appropriate as long as the extent of the relevant
region in which tunneling can take place is less than a wavelength. U refers
to single-electron wave functions on the ring and on the electrodes. Perfect
destructive AB interference at an external static magnetic flux of ® = &;/2
arises only for an even number of electrons on the ring. In this case, the
energies ¢, = (k —27®/(®oL))%/(2m) of the unoccupied states are pairwise
degenerate, for ki = n2r/L and k_ = (1 — n)2nx/L. Therefore, the energy
denominators for k. and k_ are the same, while the wave functions in the
numerators produce a phase shift of exp(i(ky — k_)L/2) = —1 between the
two possibilities, leading to complete cancellation of all terms in the sum.

Suppression of this perfect destructive interference is due to the electron
leaving a trace in the bath that permits, at least in principle, to decide
through which of the two degenerate states k; and k_ the electron has
traveled. This involves a transfer of energy between electron and bath. The
bath spectrum determines the amount of bath oscillators able to absorb the
small energy < eV which can be emitted by the electron. Therefore, one
expects that dephasing at zero temperature is suppressed for V — 0 due to
the energy conservation constraint. This will be confirmed by the calculation
described below.

After taking the modulus squared of the sum of amplitudes given above
in Eq. (5), which we briefly denote by A(k), one obtains “classical” proba-
bilities like | A(k)|? but also cross-terms of the form A*(k;)A(k-). A bath
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coupling to the electronic motion will affect these terms differently, if it is
able to “distinguish” between the momenta k, and k_. Usually, this will
result in a suppression of the cross-terms. Therefore, the different contribu-
tions cannot cancel any more. Away from perfect destructive interference,
we have to expect an influence of the bath on the magnitude of the tunneling
current under any circumstances, since mere renormalization effects like a
change in the effective mass of the electrons will be important. This is why
we concentrate on the special case ® = ®y/2.

To evaluate Eq. (4) in the presence of the bath, we rewrite the sum over
intermediate states as a time-integral:

Hyyp, Hyyi
" EU - E‘i

o0 T P
= é_/{) dtzTiﬁ}cTé,A(fB|e-:(H[k]-Eo)ztos}e-a(ao-c,\)t_
3

g f dt(f| Eope=0T=Bt frp|a) (6)
0

In the second line, which replaces Eq. (5) in the presence of the bath, we
have split off the contribution due to the electronic states. This has been
possible because only the tunneling operators can change the electronic state,
while the bath couples diagonally to the electronic momentum eigenstates.
Furthermore, we have confined ourselves to the process with an extra electron
in the intermediate state, a completely analogous contribution for an extra
hole has to be added. HI[k] is the Hamiltonian for a given configuration
consisting of an extra occupied state k over the original Fermi sea on the
ring. It only acts on the bath Hilbert space, where 07 refers to the ground
state of the bath prior to the tunneling event and f? is an arbitrary final
state which the bath goes into after the cotunneling process is finished. In
our notation, the sum of electronic kinetic energies is included in HI[k] as
well, whereas the charging energy E¢ has been taken into account separately.
The matrix elements of the tunneling Hamiltonians T, p are taken between
the electronic states A, k and A (compare Eq. (5)). Ejp is the ground-state
energy of ring and bath together.

After taking the modulus squared of the sum given above, we arrive at
the following contribution to the tunneling rate I at zero temperature:

2r z (T{};> Ti:; A)(T;{i-c TkL‘(A]*
AAE> k<

o0 00
X / dr> e~ i(Ec—ex—Eo)r> f dr<etilEc—ex—Eo)T<
0 0

x D (XSENPYo(Bys — By — (ex — )P (), (7)
f.B
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where £~(<) denote unoccupied states on the ring. There are three analogous
contributions besides the one shown here, in which the tunneling takes place
in a different order (e.g. the process may start by an electron tunneling
out of the ring, leaving a hole behind, etc.). Note that a similar expression
arises in the derivation of the “P(FE)”-theory of a tunnel junction coupled
to a dissipative bath!®16,

The last line of Eq. (7) defines a kind of generalized influence func-
tional F[17,7<,w = €\ — ¢;). It is equal to the overlap between bath states
x> (<) which have been time-evolved out of 07 under the action of H[k>(<)]
for some time 7>(<). In contrast to the usual Feynman-Vernon influence
functional’™'3  the time of evolution may be different for the two states
and the overlap is taken only with respect to bath states at excitation energy
w (which must equal the energy emitted by the electron). This difference
is due to the fact that in our situation, the energy conservation constraint
must be taken care of, since the electron cannot transfer an arbitrary amount
of energy to the bath. It clearly shows why a single-particle semiclassical
calculation using the usual influence functional must fail when the amount
of energy available is limited due to low temperatures or low bias voltages.
This problem has also been discussed in Ref. 11. The ordinary influence
functional is recovered by integrating over all possible energy transfers and
setting 77 = 7<.

In the absence of a bath (or if its spectrum has a sufficiently large lower
cutoff), energy conservation leads to w = 0, i.e., the initial and final bath
states coincide: f# = 0%. Then, F is a product of a factor depending only
on &k~ and another one, depending only on k<. In this case, the sums over
k>(<) may be carried out separately, like before, and the terms will cancel
again (for ®y/2), provided the bath couples equally to k; and k_ (which
is the case in our model). Although there is definitely no dephasing in this
case, the magnitude of the tunneling current may be changed for ® # ®4/2,
due to the afore-mentioned renormalization effects.

The Fourier transform (in w) of the generalized influence functional may
be written as follows:
iEoT

2

Flr>, 7%, 7) = 5= )le e (7)) ®)

where H[)] refers to the situation without any extra electron on the ring. It

can be represented'® as a Keldysh time-ordered expectation value'?2?, apart
from a prefactor exp(—iEy(t> — 75)):
(P expl~i fx Vi (s)ds))os - )

Here, Vi(s) = gkd(s)/m + k?/(2m), with k = k — 2n®/®yL, where ® is
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the additional static flux. It couples the additional electron in state %k to
the bath (and contains its kinetic energy). We have k = k> if s is on the
forward time-branch and 0 < s < 77, while k = k<, if s is on the backward
time-branch and 7+ 7> — 7< < s < 7+ 7>. For all other times, V; vanishes.
Note that V; is taken in the interaction picture with respect to the bath
coupled to the original Fermi sea on the ring. We have neglected the term
¢2®? which turns out to be unimportant for the bath spectra considered
below (and would only complicate matters technically).

The evaluation of (9) leads to a result which is analogous to the well-
known identity for the statistical average of a phase factor containing a
Gaussian random variable ¢ of zero mean, (exp(ip)) = exp(— (¢?) /2). In
our case, this amounts to performing a linked-cluster expansion (by applica-
tion of Wick’s theorem) and taking into account the Keldysh time-ordering.
Thus, we can represent Eq. (9) as an exponential containing double time-
integrals involving the Keldysh time-ordered correlation function of the bath
operator g?):

exp [—-z’ jth ds <I}}(s)>]

X exp {—% 5{{ dsy j{f( dso <Tgéﬁ(sl)5f’;(32)>] . (10)

In this expression, we have set §V; = V; — (ﬂ’;) = gi}rf;/m.

We will briefly discuss the evaluation of the exponent in this expres-
sion (for more details, see Ref. 18): Taking into account all four possible
combinations of the two Keldysh time-contours running forward and back-
ward in time, we obtain contributions involving the products k&~ k>, k<k<
and k”k<. The last product leads to a coupling of the momenta on the
forward and backward time branch. Formally, this means that expression
(10) does not factorize into contributions involving k> and k< alone. There-
fore, the sum in (7) cannot be split into such parts either and does not lead
to an expression similar to the case without a bath (merely with renormal-
ized tunneling strength). Rather, the cross-terms that mark the interference
between tunneling via k> and k< are suppressed, as has been explained be-
fore Eq. (6). Physically, this reflects the fact that the bath can distinguish
between these two momenta and therefore leads to dephasing.

;From now on, we consider baths which are characterized by a power-
law spectrum at low frequencies, C(w) o< w® with an exponent o > 1. The
case a = 1 represents fluctuations of the magnetic flux produced by Nyquist
noise of an external current loop. For these bath spectra, it is sufficient to
carry out an expansion of Eq. (10) to leading order in the coupling strength
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Fig. 2. Schematic behavior of the cotunneling rate as a function of static
magnetic flux and bias voltage. In the ideal situation, the rate vanishes
at ®y/2 (dotted line), while it rises as a power of the bias voltage due to
the incoherent contribution resulting from the fluctuations of the flux (thick
line).

g. The result which has thus been obtained for the “generalized influence
functional” (8) is inserted into the expression for the contribution to the
cotunneling rate ', Eq. (7). After carrying out the integrals over 77, 7<
and 7 and the requisite sums over all electronic states on the electrodes and
the ring, we arrive at the result for I". As has been discussed above, the part
which couples k> and k< is seen to lead to an “incoherent” contribution
that washes out the destructive interference but is suppressed for low bias
voltages, as expected.

In order to quantify the dephasing brought about by the fluctuating flux
in this transport situation, we consider the ratio of the incoherent current
contribution at ® = ®;/2 to the normal elastic cotunneling current which
flows at @ = 0. At zero temperature, this ratio can be related directly to
the fluctuations of the energy of a particle on the ring brought about by the
fluctuating flux. However, what matters for dephasing in this situation is
only the strength of fluctuations up to a cutoff prescribed by the frequency
corresponding to the bias voltage V. Thus, defining the variance of the
relevant energy fluctuations as
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eV w

SE? zg%f;.f (1 - “)C(w)dw, (11)
0 eV

the ratio of incoherent current to normal elastic cotunneling current is given

by

up to an additional numerical prefactor of order one?!. Note that de refers
to the single-particle level-spacing on the ring. We have already pointed out
before that the frequency cutoff at eV, which appears in the expression (11)
for the fluctuations, is a simple consequence of energy conservation which
must be fulfilled after the whole process of tunneling through the ring has
been completed. Inserting a power-law bath spectrum C(w) o w®, the inte-
gral (11) yields a voltage dependence ox V@*!, so the incoherent tunneling
current goes like V2 (since the normal current is linear in V). The quali-
tative behavior of the cotunneling rate as a function of both external static
flux and bias voltage is shown in Fig. 2.

Thus, we see that suppression of destructive interference does not show
up in the linear conductance. In this sense, the fluctuations do not lead to
dephasing in the linear transport regime at zero temperature in our model.
Note that, for the Nyquist case o = 1, the exponent of V' is the same as that
for inelastic electronic cotunneling processes in a system with a continuum
of intermediate electronic states'?. Bath spectra with @ > 1 obviously lead
to an even weaker decrease in the visibility of the interference minimum
at low bias voltages. On the other hand, inserting @ = —1 in ' oc V2*?2
would formally lead to an incoherent contribution to the linear conductance
even at T' = 0. However, this case is not of interest here, since physically
it cannot be produced by a fluctuating magnetic flux and it is not covered
by the approximations made in our calculation (in particular dropping the
@*-term). Tt would correspond to the strong force fluctuations of an Ohmic
Caldeira-Leggett bath used in the description of quantum Brownian motion.
Furthermore, we have to emphasize that the present model has been chosen
for its conceptual simplicity and that the incoherent contribution to the
cotunneling current derived here (arising due to Nyquist fluctuations in an
external coil) would actually be too small to be measurable in a reasonable
experimental setup.

The dependence on the bias voltage can be understood in simple terms
using the following argument: the sum over initial electronic states on the
left electrode is carried out over a region of extent eV/. The probability of
emission of a bath phonon is proportional to the bath spectrum oc w®, and
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we have to integrate this from 0 to the maximum energy of the electron,
which is again of order eV. This yields a voltage dependence I' oc V&*2 of
the incoherent contribution to the tunneling current, see Fig. 2.

In the following, we briefly discuss the behavior at higher voltages and
temperatures, where other incoherent processes can come into play.

For bias voltages eV smaller than the single-particle energy spacing de
on the ring, dephasing is merely due to the coupling to the external bath.
At higher voltages, the inelastic cotunneling processes become important.
In these, one electron tunnels into the ring, while another electron goes out
at the opposite electrode, thus leaving behind a particle-hole excitation on
the ring'?. Since all the corresponding final states are different, their con-
tributions to the cotunneling current sum up incoherently. Therefore, like
dephasing produced by the bath, they also lead to a nonvanishing contribu-
tion to the tunneling current at ®4/2, where, ideally, one should have perfect
destructive interference. The number of possibilities to create a particle-hole
excitation with an energy of at most eV is o (eV/d¢)?, if we assume eV >> de.
In that regime, the ratio of the incoherent current contribution (due to the
fluctuating flux) to the electronic inelastic contribution is given (approxi-

mately) by
dE\? .
(o) (13)

The electronic inelastic contribution will be the dominant one.

Finally, let us discuss finite temperatures'®. Without the bath and as
long as T' < d¢, only the Fermi distributions in the electrodes get smeared.
The tunneling current is not affected, if one takes into account that now the
tunneling processes do not only lead to an electron transport from left to
right but in the other direction as well. The presence of the bath will intro-
duce some temperature dependence for the incoherent current contribution
in this regime, since at finite temperatures the tunneling electron can not
only emit an energy quantum into the bath but also absorb a thermal bath
excitation. Therefore, the energy w transferred to the bath now can be nega-
tive as well. There is no restriction on the amount of energy an electron can
absorb, so there is no cutoff eV for negative w. At positive energy transfers,
the probability of spontaneous emission into the bath (o< C(w) in Eq. (11))
now has to be multiplied by n(w) + 1, where n(w) is the Bose distribution
function (induced emission). At negative w, this is replaced by n(|w]|), since
only absorption of thermal excitations (not of vacuum fluctuations) is possi-
ble. Therefore, the incoherent tunneling current is found'® to be enhanced
by a temperature-dependent contribution o« 7%V,

At T > de, one would have to take into account the thermal averag-
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ing over different electron configurations on the ring (still at a fixed parti-
cle number determined by charging energy and gate voltage). The perfect
destructive interference at ®y/2 depends on the presence of an electronic
configuration which is symmetric in the occupancy of equal-energy states
having £ > 0 and k& < 0 (see discussion above). The thermal average in-
cludes other configurations as well and therefore leads to a suppression of
the destructive interference in the elastic tunneling current, even without
the bath. Furthermore, the electronic inelastic contribution is also enhanced
at finite temperatures and becomes linear in the voltage'?.

Before concluding, we would like to comment on the relation of our re-
sults to those obtained in Refs. 7-9. In these works, the authors considered
the ground state of a ring containing a quantum dot coupled to the fluctua-
tions of a gate charge (representing an Ohmic bath). They showed that the
magnitude of the persistent current flowing in the ring is reduced, and that
its fluctuations are increased by the coupling. This has been taken as a sign
of dephasing at zero temperature (see, in particular, Ref. 9). In our model,
we have also calculated the reduction of the persistent current'®. However,
we have hesitated to interpret this effect in terms of dephasing, since it does
not seem to depend in an essential way on the bath spectrum. The reduction
is also present if the spectrum has a gap at low frequencies, in which case
the bath will not dephase a superposition of excited electronic states (in the
sense of a complete decay of off-diagonal elements of the density matrix in
the limit of time going to infinity). In this context it is worthwhile to re-
mark that there is no universally applicable definition of a “dephasing rate”,
due to the wide variety of physical situations in which quantum-mechanical
interference phenomena are weakened by coupling to a bath. We would
also like to point out two qualitative differences between our model and the
model studied in Refs. 7-9: in ours, the coupling between system and bath
is diagonal (with respect to the system variable), whereas it is non-diagonal
in the setup discussed in Refs. 7-9, which may lead to a stronger tendency
towards dephasing at low temperatures. Furthermore, the transport situa-
tion that we consider has no counterpart in Refs. 7-9. It is rather similar to
the interference setup considered in Ref. 10, which, however, has only been
analyzed at finite temperatures so far.

In conclusion, we have analyzed a simple model of a fluctuating mag-
netic flux threading an Aharonov-Bohm ring and discussed its effects on
the cotunneling current through the ring. We have concentrated on the
modification of the destructive interference by the fluctuations of the flux,
since changes in the magnitude of the current can also be caused by renor-
malization effects and do not necessarily indicate dephasing. We find no
suppression of the destructive interference at T = 0 in the linear transport
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regime, because the possibility for the electron to leave a trace in the bath is
diminished due to the energy conservation constraint. The combined effects
of energy conservation and the Pauli principle constitute the most important
distinction between the usual (“optics”) type of single-particle interference
experiments (performed with single electrons, atoms or photons) and meso-
scopic interference setups. While the particle’s motion is easily affected by
coupling to the environment (even at 7' = 0) in the former kind of experi-
ments, the electron moving at a comparable speed inside the metal (at low
temperatures and in a linear-response situation) may be protected efficiently
from dephasing, as illustrated by our model calculation.
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Ingold, A. J. Leggett, D. Loss, Yu. V. Nazarov, A. Rosch, and E. Sukhorukov.
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REFERENCES

1. See P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. T8, 3366
(1997) for recent experiments, D. S. Golubev and A. D. Zaikin, Phys. Rev.
Lett. 81, 1074 (1998); Physica B 255, 164 (1998); Phys. Rev. B 59 9195 (1999);
Phys. Rev. B 62 14061 (2000) for the claim that there is dephasing even at
T =0, and 1. L. Aleiner, B. L. Altshuler, and M. E. Gershenson, Phys. Rev.
Lett. 82, 3190 (1999); Waves in Random Media 9, 201 (1999) for a criticism of
this claim.

A. Stern, Y. Aharonov and Y. Imry, Phys. Rev. A 41, 3436 (1990).

D. Loss and K. Mullen, Phys. Rev. B 43, 13252 (1991).

C. Park and Y. Fu, Physics Letters A 161, 381 (1992).

D. Loss and T. Martin, Phys. Rev. B 47, 4619 (1993).

Y. Levinson, Europhys. Lett. 39, 299 (1997); I. L. Aleiner, N. S. Wingreen and
Y. Meir, Phys. Rev. Lett. 79, 3740 (1997).

7. P. Cedraschi, V. V. Ponomarenko and M. Biittiker, Phys. Rev. Lett. 84, 346
(2000).

8. P. Cedraschi and M. Biittiker, Phys. Rev. B 63, 165312 (2001); Ann. Phys.
(N.Y.) 289, 1 (2001).

9. M. Biittiker, cond-mat /0106149 (2001). Submitted for Complexity from Micro-
scopic to Macroscopic Scales: Coherence and Large Deviations, NATO ASI,
Geilo, Norway, April 17-27 (2001), edited by A. T. Skjeltorp and T. Vicsek
(Kluwer, Dordrecht).

10. G. Seelig and M. Biittiker, cond-mat/0106100 (2001).

11. D. Cohen and Y. Imry, Phys. Rev. B 59, 11143 (1999).

12. D. V. Averin and Yu. V. Nazarov, in Single charge tunneling, edited by H.
Grabert and M. H. Devoret (Plenum Press, New York, 1992).

13. A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 140, 374 (1983); Physica
A 121, 587 (1983).

14. U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2000).

Al



15.
16.
17.
18.
19.
20.

21.

Visibility of the Aharonov-Bohm Effect ... 1337

G.-L. Ingold and Yu. V. Nazarov, in Single charge tunneling, edited by H.
Grabert and M. H. Devoret (Plenum Press, New York, 1992).

G. Schon, in T. Dittrich et al., Quantum transport and dissipation (Wiley-VCH,
Weinheim, 1998).

R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).

F. Marquardt and C. Bruder, cond-mat/0108098 (2001), subm. to Phys. Rev. B.
L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018
(1965)].

A. Zagoskin, Quantum Theory of Many-Body Systems (Springer, New York,
1998).

The numerical prefactor in this expression depends on the relation between the
charging energies of electrons and holes on the ring, which we have assumed
to be both of the order Ec. For the purposes of the present discussion these
details are not relevant.



