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ABSTRACT: The reactivity continuum (RC) model is a
powerful statistical approach for describing the apparent
kinetics of bulk organic matter (OM) decomposition. Here,
we used ultrahigh resolution mass spectrometry data to
evaluate the main premise of the RC model, namely that there
is a continuous spectrum of reactivity within bulk OM, where
each individual reactive type undergoes exponential decay. We
performed a 120 day OM decomposition experiment on lake
water, with an untreated control and a treatment preexposed
to UV light, and described the loss of bulk dissolved organic
carbon with RC modeling. The behavior of individual
molecular formulas was described by fitting the single
exponential model to the change in peak intensities over
time. The range of the empirically derived apparent exponential decay coefficients (kexp) was indeed continuous. The character of
the corresponding distribution, however, differed from the conceptual expectations, due to the effects of intrinsic averaging,
overlaps in formula-specific loss and formation rates, and the limitation of the RC model to include apparently accumulating
compounds in the analysis. Despite these limitations, both the RC model-simulated and empirical (mass spectrometry-derived)
distributions of kexp captured the effects of preexposure to UV light. Overall, we present experimental evidence that the reactivity
continuum within bulk OM emerges from a range of reactivity of numerous individual components. This constitutes direct
empirical support for the major assumption behind the RC model of the natural OM decomposition.

1. INTRODUCTION

Organic matter (OM) is a major component of the carbon
cycle. The complex nature of OM was suggested in multiple
studies demonstrating that different fractions of OM decom-
pose at differing rates.1−4 With the increasing understanding of
OM complexity, OM was conceptualized as a continuous
spectrum of constituents with differing reactivity,5−7 long
before it was possible to identify the broad range of OM
components. Recent advances in analytical chemistry, and
particularly high-resolution mass spectrometry, have demon-
strated that natural OM may consist of 104−106 compounds,
belonging to different chemical classes and groups,8−11 yet the
emerging detailed insights into OM composition have not been
explicitly connected to the concept of the reactivity continuum.
The reactivity continuum (RC) model approach is gaining

popularity as a tool for realistic description of decomposition in
a variety of environments, including marine sediments,6,7,12

soil,13,14 aquatic dissolved OM,15−17 and litter.18,19 The RC
model was often shown to perform better than single- and
multiexponential models, based on mathematical indicators
assessing accuracy and parsimony,14,16,18,20 as well as the

predictive power of the model.15 A study analyzing the Long-
term Intersite Decomposition Experiment (LIDET data) with
RC modeling showed that the obtained RC model parameters
were suitable to predict independent literature-derived
decomposition time series for the majority of litter-biome
combinations.18 Because the RC model can successfully track
the effects of external regulators of decomposition,18,20 it has
been proposed to improve the mechanistic understanding of
decomposition at large spatial and temporal scales.18 Accord-
ingly, Aumont et al. (2017) used the RC model in a global
ocean biogeochemical model to account for variable reactivity
of particulate organic carbon, and got a close match to
empirical observations.12

The RC model assumes that decomposition of bulk OM can
be described as an integral of single-pool exponential decay
functions weighted by an initial probability distribution of
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reactivity. When the chosen functional shape for the initial
probability distribution of reactivity allows a simple analytical
solution (e.g., gamma distribution) the RC model becomes a
parameter-parsimonious and computationally simple approach
to analyze decomposition data. The main gamma RC model
assumptions6 are as follows:

(1) Each individual reactive type decays over time following a
single-pool exponential model;

(2) The individual reactive types form a continuous
spectrum of initial reactivity toward decomposition,
that can be described by a probability distribution; and

(3) The gamma distribution is a flexible and suitable function
to describe the initial probability distribution of
reactivity.

Since the high-resolution analytical techniques that could
provide detailed information on the behavior of OM
constituents became available only recently, these RC model
assumptions so far remain empirically untested. With the recent
development of ultrahigh-resolution electrospray ionization
Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR-MS), which is currently one of the most powerful
analytical techniques for molecular characterization of natural
OM,21−23 thousands of molecular formulas can now be
identified in environmental samples. Further, the signal
intensity of each molecular mass is essentially linearly
proportional to the concentration of the corresponding
isomeric mixture of compounds, provided that the sample
matrix is similar.24 This allows interpreting the changes in signal
intensity over time in a quantitative way. Therefore, using FT-
ICR-MS, we were able to experimentally investigate one of the
main assumptions of the RC model that individual reactive
types form a continuum of decay rates within bulk OM.
Taking decomposition of lake water dissolved organic matter

(DOM) as a case, we performed a 120 days long
decomposition experiment. We incubated untreated lake
water as well as lake water subjected to UV exposure to
stimulate DOM decomposition. Decomposition of bulk DOM
was analyzed with the gamma RC model, obtaining the
respective probability distribution of initial decay coefficients
k.20 In this study, we fitted the single-pool exponential model to
each time series of intensities related to individual molecular
formulas, and extracted the corresponding apparent exponential
decay coefficients kexp. We compare the range of RC model-
simulated and empirically derived initial decay coefficients, and
discuss our results with respect to the assumptions of the RC
model. Our results support the existence of a reactivity
continuum within DOM and provide an argument in favor of
continuous models of OM decay. In the context of potential
application of our approach, further discussion reveals the
advantages and limitations of using ultrahigh resolution mass
spectrometry for evaluating the kinetics of OM decay.

2. METHODS
2.1. Experimental Setup. Waters from Lakes Ramsjön

(59°50′N, 17°13′E) and Övre Lan̊gsjön (59°52′N, 18°01′E),
located in east-central Sweden, were sampled in October 2013.
Water samples were taken from the surface (0−0.5 m depth),
0.2 μm filtered (Supor 200, Pall Corporation), and kept in the
dark at 4 °C for 3 weeks prior to the start of decomposition
experiments. These 3 weeks were required to expose portions
of the filtered water to artificial UV light (144 h under a UV
lamp providing an irradiance of 35 W m−2 between 300 and

400 nm), which resulted in photodegradation of about 30% of
dissolved organic carbon (DOC).20 Prior to the incubations the
filtered water was inoculated with a 64 μm plankton net filtered
aliquot from the respective lake (5% of the volume) and
amended with inorganic nutrients (480 μg N L−1 as KNO3 and
100 μg P L−1 as Na2HPO4). The water was incubated at 20 °C
in sealed 40 mL glass vials capped with PTFE-lined silicone
septa. The vials were filled headspace free and submersed in
water to minimize gas exchange. The incubations were
conducted in the dark and lasted for 120 days. Each of the
two treatments (nonmanipulated and UV-manipulated) was
duplicated within each lake, which yielded 8 time series of
DOC loss. In the course of decomposition experiment
individual vials in each time series were sacrificed to measure
DOC concentration and take subsamples for mass spectrom-
etry analysis (Supporting Information (SI) Figure S1). The
DOC concentrations were measured on a Sievers 900 TOC
Analyzer (General Electric Analytical Instruments, Manchester,
U.K.) at 20 and 18 time points in the nonmanipulated and UV-
manipulated treatment, respectively.20 Samples for mass
spectrometry analysis were taken at 12 time points: water
was transferred into 2 mL glass vials with PTFE-lined silicone
septa and stored at 4 °C prior to analysis. Before use, 40 mL
glass vials were acid-washed (10% HCl), rinsed with Milli-Q
water, and precombusted for 4 h at 550 °C. The 2 mL glass
vials were precombusted for 4 h at 450 °C. All plastic caps and
silicone septa were presoaked in methanol for 24 h and
repeatedly rinsed with Milli-Q water.

2.2. Mass Spectrometry Analysis. Lake water aliquot
volumes were adjusted by diluting the sample with ultrapure
water to a concentration of 10 mg C L−1. Further, the aliquots
were mixed with methanol (HPLC-grade, Sigma-Aldrich) in a
proportion of 2:1 (final concentration 6.7 mg C L−1), refiltered
(0.2 μm PTFE), and introduced into a 15-T ultrahigh-
resolution electrospray ionization Fourier transform ion
cyclotron resonance mass spectrometer (FT-ICR-MS; Bruker
Daltonics) at 360 μL h−1. Electrospray ionization (ESI) was
performed in negative mode. Mass spectra were collected over
400 scans, with an ion accumulation time of 0.5 s, and within a
range of 150−2000 m/z. Each sample was individually
calibrated with an internal reference mass list generated from
North Equatorial Pacific Intermediate Water (NEqPIW)25

using the Bruker Daltonics Data Analysis software package.
Only peaks with a signal-to-noise ratio greater than four were
considered. Where possible, peaks were assigned a formula
containing C, H, O, N, S, and P based on the following
conditions: C ≥ O; O > (2P + S); N ≤ 4; S ≤ 4 and P ≤ 1.
CHO compounds had corresponding peaks at +1.0034 mass
units due to 1% abundance of 13C, with intensities confirming
the formula assignment and confirming the single charge of the
ion. Formulas containing S, P, and N > 1 were not associated
with any systematic patterns in apparent exponential
coefficients kexp, i.e., their presence did not affect the shape of
empirical distribution of kexp (see section 2.3). Therefore, to
minimize false positives, i.e., possible incorrect assignments, we
used a more conservative approach which does not consider S-,
P-, and N > 1-containing formulas. Unassigned masses were not
considered, as most of them represent either isotopologues
(e.g., 13C) or noise (SI Figures S2 and S3, and SI Table S1). We
did not observe any significant shift or systematic pattern in the
amount and total intensity of unassigned peaks in the beginning
versus the end of the incubations. Also, unassigned peaks were
not associated with any specific patterns in kexp. Peaks detected
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in procedural blanks, as well as the peaks commonly identified
as contaminants, and peaks with unusually and nonreproducibly
high intensity in samples were removed from the data set. In
addition, the peaks with mass defect in the range of 0.3−0.8
were disregarded. The peaks present in only one of the two
replicates of each of the four lake-treatment combinations (i.e.,
each lake with and without UV pretreatment) were disregarded
as well. Examples of original mass spectra from different time
points and graphical representations of formula assignment are
presented in SI Figures S2 and S3, respectively. The SI Table
S1 gives details on data reduction procedures (total intensity of
assigned versus unassigned peaks, etc.).
Here, before proceeding to further analysis we checked

whether the time series of total intensity followed the trends in
bulk DOC concentration (SI Figure S4). One of the replicate
incubations did not meet this criterion and was therefore
removed from further analysis. Thereafter, to account for
possible variable contamination between individual time series,
data from each lake-treatment-replicate combination (seven in
total) was processed separately. A detection limit was applied
based on dynamic range. The dynamic range of assigned peaks
was determined in each sample as a ratio between maximum
and minimum assigned peak intensity. Detection limit was
calculated by dividing maximum intensity in each sample by the
dynamic range of the worst sample. All intensities below the
detection limit were disregarded. The intensities were further
normalized to the sum of signal intensities in each sample and
multiplied to account for dilution, i.e., to estimate the
equivalent intensity in the undiluted sample. This was done
to correctly estimate the relative change in concentration over
the course of the decomposition experiment.24,26 For the
purpose of model fitting, only the peaks that were detected on
at least 8 days of the 12-points time series were considered.
Our analysis strongly relies on the assumption of a linear

relationship between intensity and concentration, which was
documented previously24 in a series of dilution experiments
where Amazon DOM was incrementally mixed with Atlantic
DOM. Around 70% of molecular formulas in the terrestrial and
marine endmembers showed a significant (p ≤ 0.05) linear
response of signal intensity according to the experimental
mixing.24 For most of the remaining 30% of formulas the linear
response could not be tested because their initial intensity did
not differ between the Amazon and Atlantic endmembers
(Thorsten Dittmar, personal communication). In our samples
the major peaks were inorganic and did not decay over time (SI
Figure S2). This likely provided a stable matrix, and ensured a
reliable comparison of OM peaks in each time series of our
samples.
To evaluate the instrument-specific noise variations we used

the 26 time point measurements of an in-house DOM reference
material (NEqPIW)25 (final concentration 15 mg C L−1). The
standard was measured in the beginning and end of every day,
on 13 days in total.
2.3. Model Fitting and Statistical Analysis. The gamma

RC model was fitted to the time series of relative DOC loss, as
described in detail earlier.20 Briefly, the two model parameters,
a and v, were estimated based on the following relationship:

=
+

⎜ ⎟⎛
⎝

⎞
⎠

a
a t

DOC
DOC

t
v

0 (1)

where a is a rate parameter indicating the average lifetime of the
more reactive compounds (days), and v (unitless) is a shape

parameter characterizing the shape of the distribution near k =
0.6 The apparent decay coefficient kt (day

−1) at a given time
point is calculated as follows:27

=
+

k
v

a tt (2)

The initial apparent first-order decay coefficient k0 (expected
value of the initial probability distribution of reactivity) is
therefore defined as v/a.
To approach the assumption of the RC model from the

empirical end we used mass spectrometry-derived information
on signal intensities of molecular formulas and its change over
time. For each formula, the relative change in signal intensity
was described with a single pool exponential model:28

= −I I et
k t

0
exp (3)

where kexp is an apparent exponential decay coefficient (day−1)
and It simulates the change in intensity over time. Model fitting
was conducted using generalized least-squares modeling to
allow the errors to be correlated (R-function gnls). The
goodness of model fit was evaluated using the normalized root-
mean-square error (NRMSE). We used the NRMSE to filter
the data sets from the time series containing a lot of noise. To
establish an acceptable NRMSE we calculated the 95% quantile
of the NRMSE distribution acquired from a 26-point series of
measurements of DOM standard (NEqPIW) of stable
concentration (15 mg C L−1). On the basis of these
calculations, the threshold for NRMSE was established at
35.8%, and between 89.7% and 93.6% of formulas in the actual
data sets passed this criterion.
To verify that our data sets are based on nonrandom time

series of intensities we compared the distribution of kexp in our
data sets to the distribution of kexp derived from an analogous
but artificial data set based on random numbers. The
distribution of kexp in the actual data sets was more narrow
and skewed toward positive values (SI Figure S5), as was also
indicated by the nonparametric Mann−Whitney U test (P <
0.001 for all seven lake-treatment-replicate combinations),
signifying that the actual data sets were indeed nonrandom.
For the bulk DOC, the probability distribution of initial

reactivities was simulated using a gamma cumulative distribu-
tion function, specified by the RC model parameters a and v.
According to Boudreau and Ruddick,6 “the basic premise of the
continuum theory is the existence of the spectrum of reactive
types characterized by a distribution function g(k,t) which
determines the concentration of organic matter having
reactivities between k and k+dk (where dk is an infinite small
increment of k)”. From the perspective of mass spectrometry-
derived data, the concentration share of each formula within
DOM remains unknown since signal intensity is not
concentration-calibrated, and therefore cannot be used to
compare the concentrations of different formulas at a certain
time point. It was therefore not possible to build the empirical
probability distribution of initial reactivities (i.e., kexp) in the
same way as the RC model simulation implies. However, it was
possible to fit the gamma distribution into the empirically
derived range of kexp, bearing in mind that such an approach
links kexp with the number of detected molecular formulas, and
not with the concentration. It should also be remembered that
the apparent empirical decay rates might be the net result
between simultaneous loss and formation of the molecular
formulas. Further, we could only use positive kexp since the
gamma distribution only allows for k to be positive. The
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distributional assumptions were checked using diagnostic plots
(SI Figure S6). To better visualize parts of the cumulative
gamma distribution we arbitrarily assigned the limits for

recalcitrant and labile ends of the distribution at k = 0.001
and k = 0.005, respectively. On the basis of these thresholds, we
also calculated the proportions of total DOC concentration and

Figure 1. Relative change in intensities of individual molecular formulas over time described with single exponential model fits. Presented are data
for lake Ramsjön nonmanipulated (a) and UV-manipulated (b) treatments, and lake Övre Lan̊gsjön nonmanipulated (c) and UV-manipulated (d)
treatments. Only one of the duplicate treatments is shown in each case. The black line shows the gamma RC model fitted to the relative loss in bulk
DOC (black dots) over time.20

Figure 2. Probability distribution of initial decay coefficients. RC model-simulated and empirically derived (based on FT-ICR-MS data) distributions
are depicted in red and blue, respectively. In the case of the empirical data, the blue dots correspond to apparent decay coefficients kexp (initial decay
coefficient k), and the blue line shows the fitted distribution. The cumulative distribution function y = F(k), evaluated at k = x, is the probability that
k takes a value of x or lower. The probability of k to take a value of x or higher is 1 − y. The probability can be converted to percentages of the total
(e.g., 0.2 = 20%). In case of the RC model simulation, the “total” refers to the total concentration of DOC, while for the empirical distribution it is
the total number of detected molecular formulas with declining intensity. Presented are data for lake Ramsjön nonmanipulated (a) and UV-
manipulated (b) treatments, and lake Övre Lan̊gsjön nonmanipulated (c) and UV-manipulated (d) treatments. One of the duplicate treatments is
shown in each case. Dashed line marks k = 0.001 and k = 0.005; accordingly, k ≤ 0.001 defines the recalcitrant end of the distribution, 0.001 < k <
0.005 refers to intermediate reactivity, and k ≥ 0.005 defines the labile end of the distribution. For example, graph (a) shows that the RC model
(red) predicts that 84% of DOC concentration is associated with the k below 0.001 (recalcitrant end), and 11% is associated with the k above 0.005
(labile end). The empirical distribution (a, blue) suggests that 27% of molecular formulas are associated with the k below 0.001 (recalcitrant end),
and 2% is associated with the k above 0.005 (labile end).
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total number of formulas associated with higher, intermediate,
and lower reactivity sections of the distribution.16 Model fitting,
calculations, and statistical analyses were performed in R
(version 3.3.0, R development Core team, 2016).

3. RESULTS

Between 1654 and 2001 formulas per water sample were
identified with FT-ICR-MS in the different experimental
treatments. Between 3.7% and 10.3% of the formulas produced
exponential trends that were regarded as noise (NRMSE <
35.8, see the Methods section), and the remaining 89.7−96.3%
of the apparent exponential coefficients kexp were used in the
subsequent analysis.
The kexp acquired from the time series of formula-specific

intensities formed a mostly continuous spectrum (Figure 1, and
SI Figure S7). On the basis of kexp, 85.7 ± 1.8% of the rates
were classified as net declining, and 13.9 ± 1.8% as net
increasing.
The range of the empirically derived kexp was more narrow

than the range of initial decay coefficients simulated using RC
modeling of bulk DOC decomposition. Specifically, the highest
k values predicted by the RC model (concentration-based)
were not retrieved from the empirical data (Figure 2 and SI
Figure S8).
The cumulative gamma distribution describing the range of

empirically derived kexp suggested that most molecular formulas
were associated with intermediate reactivity, while the
recalcitrant and labile ends of the distribution were represented
by a smaller number of molecular formulas (Figure 2, SI Figure
S8, and Table 1). The RC model simulation indicated that
recalcitrant compounds constitute the largest share of bulk
DOC by concentration, while compounds having intermediate
and high reactivity constitute a smaller share (Figure 2, SI
Figure S8, and Table 1). Accordingly, the bulk of the DOC did
not represent the bulk of individual molecular formulas.
The anticipated effect of pretreatment with UV light on the

distribution of reactivities was captured by both the RC model-
simulated and empirically derived cumulative distributions of
initial reactivity. Specifically, the proportion of compounds
corresponding to the labile end of the distribution increased in
both cases (Figure 2, SI Figure S8, and Table 1).
The diversity of empirically derived kexp declined with

increasing intensity of molecular formulas (Figure 3).

4. DISCUSSION
4.1. Continuous Spectrum of DOM Reactivity. Our

results support the existence of a reactivity continuum within
DOM, consistent with a range of single exponentially decaying
components. The picture was compatible for all seven
experimental treatments (Figure 1 and SI Figure S7). Thus,
we demonstrate a direct link between the kinetics of individual
molecular components and the emerging reactivity of complex
bulk OM, and present empirical support for the RC model.
Our finding that the DOM constituents align in a reactivity

spectrum, rather than aggregate in a few distinct groups of
similar decay rates, conceptually speaks against another
widespread model approach, i.e., discrete multiexponential
decay models.
There were, however, discrepancies in the exact shape of the

reactivity distribution between the RC model simulation and
empirically derived data. While these discrepancies do not
invalidate the existence of the reactivity continuum that we
were able to demonstrate, they highlight the drawbacks of both
the FT-ICR-MS and RC model approaches, which we discuss
below.

4.2. RC Model Simulated versus Empirical Distribu-
tion of Initial Decay Coefficients. We observed a distinct
discrepancy between the RC model-simulated and empirically
derived probability distributions of initial decay rates. It should

Table 1. Proportions of the Initial DOC Concentration and Initial Number of Molecular Formulas Associated with a Specific
Range of Apparent Decay Coefficientsa

lower reactivity class (%)
intermediate reactivity class

(%) higher reactivity class (%)

lake treatment replicate DOC formulas DOC formulas DOC formulas

Ramsjön unmanipulated 1 84.2 26.6 4.4 71.3 11.4 2.1
Ramsjön UV-manipulated 1 70.1 14.1 10.9 75.3 19.0 10.5
Ramsjön unmanipulated 2 84.3 48.2 8.3 51.1 7.4 0.7
Ramsjön UV-manipulated 2 68.5 10.8 11.4 77.8 20.1 11.3
Övre Lan̊gsjön unmanipulated 1 70.4 33.0 15.4 65.1 14.1 1.9
Övre Lan̊gsjön UV-manipulated 1 66.8 16.4 13.9 77.4 19.3 6.2
Övre Lan̊gsjön unmanipulate 2
Övre Lan̊gsjön UV-manipulated 2 69.9 9.9 10.2 80.6 19.9 9.5

aReactivity classes are assigned arbitrarily: k ≤ 0.001 day−1 (lower reactivity class), 0.001 day−1 < k < 0.005 day−1 (intermediate reactivity class), and
k ≥ 0.005 day−1 (higher reactivity class). Proportions of DOC concentration and proportions of total number of formulas are calculated from the RC
model-simulated and empirically derived (based on FT-ICR-MS data) probability distributions of initial decay coefficients, respectively.

Figure 3. Relationship between the signal intensity (detected at time
0) and apparent exponential coefficients of corresponding molecular
formulas. Example from lake Ramsjön nonmanipulated treatment
(replicate 1). Each dot represents a molecular formula. Positive kexp
(apparent exponential coefficient) correspond to net decay and
negative kexp correspond to net formation/accumulation.
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be taken into account, however, that the RC model simulates
what share of DOM compounds by concentration is likely to
decompose at a certain rate or faster, while the empirically
derived distribution shows what share of the total number of
detected formulas is associated with a certain decay rate or
higher.
Considering that the probability distribution based on the

RC model of bulk DOC and the empirically derived
distribution represent different aspects, they should be
compared with caution, yet they may also shed light on how
DOM concentration is allocated into molecular formulas of
different reactivity. The recalcitrant and labile ends of the
empirical distribution were represented by a rather small
number of molecular formulas, compared to the intermediate
section of the distribution, which encompassed the largest
portion of the distribution (Figure 2, SI Figure S8, and Table
1). The RC model, in turn, predicted a high concentration of
compounds at the recalcitrant end of the spectrum, and a
smaller, but still substantial concentration of compounds at the
labile end. Hence, despite the fact that the recalcitrant and
labile DOM pools are predicted to constitute together up to
90% of bulk DOM concentration (Figure 2, SI Figure S8, and
Table 1), they seem to correspond to a low diversity of
molecular formulas. A possible explanation here is that
recalcitrant and labile ends of the empirical distribution are
underrepresented for various reasons.
4.2.1. Intrinsic Averaging. Multiple previous studies showed

that the FT-ICR-MS-detected molecular formula could be
clearly related to DOM behavior, e.g., its persistence in lake29

and oceanic30 water, bio-31−33 and photoreactivity,34 as well as
the sensitivity to thermal alterations.26 This suggests that the
formula has significant predictive power to describe OM
susceptibility to transformation processes. This notion is
supported by our own experiment, in which the distribution
of apparent decay rates associated with molecular formulas
shifted predictably in response to UV pretreatment (Figure 2,
SI Figure S8, and Table 1). Yet, the character of empirical
distributions suggests a serious limitation of our approach: the
range of apparent kexp retrieved from the mass spectrometry
data was narrower than the range of initial k-s predicted by the
RC model, and the recalcitrant and labile ends of the empirical
distribution shrank in favor of the intermediate section of the
distribution (Figure 2, SI Figure S8, and Table 1). We believe
that the observed effects are primarily caused by the intrinsic
averaging of multiple structural isomers behind each formula.
Indeed, each molecular formula identified with FT-ICR-MS

encompasses dozens to hundreds of potential isomers.10,35 This
means that the intensity trends related to each formula actually
reflect the integrated behavior of a large group of isomers.
Therefore, the apparent exponential decay coefficients that we
calculated likely represent the “weighted average” of the
reactivity of isomers linked to each molecular formula. It
appears that such intrinsic averaging was strong enough to
cause the lack of extreme values in the range of apparent kexp we
detect.
Figure 3 indicated low diversity of empirically derived kexp at

higher signal intensities. Possibly, FT-ICR-MS signal intensities
may be related to the number of structural isomers. If this is the
case, then isomeric averaging may be the reason why peaks with
high intensities were associated with low diversity of kexp,
similar to the observations of Zark et al. (2017).10 Alternatively,
intrinsically stable compounds (kexp close to zero) would

accumulate to relatively high concentrations over time and be
possibly represented by large peaks in the mass spectra.
Strictly speaking, we cannot validate the RC model

simulation with the empirical mass spectrometry data, or vice
versa, due to uncertainties associated with each approach.
However, conceptually, we expect the pool of humic lake DOM
to be dominated by slowly decaying compounds, as indicated
by a small absolute and relative DOC loss in the course of
decomposition experiments.16,20 Thus, low diversity of
molecular formulas on the recalcitrant end of empirical
distribution seems inadequate, even if we do not focus on
comparison with the RC model-simulated distribution. Having
an indication that FT-ICR-MS was unable to retrieve the full
spectrum of DOM reactivity, we argue that the discrepancy
between RC model-simulated and empirical data is mainly
caused by analytical constraints, rather than by flaws in the
reactivity continuum theory. Moreover, since there was a wide
range of decay (and formation) rates across the detected
molecular formulas, the variability in reactivity within molecular
formulas did not completely obscure the formula-specific
kinetics. Accordingly, we were able to retrieve a continuum
of reactivity and capture the effects of pretreatment with UV
light. This justifies our approach to view individual formula as a
reactive type.
Our results, demonstrating patterns of reactivity across

molecular formulas and the discrepancy of these patterns from
the conceptual expectations, shed light on the isomeric
complexity of individual molecular formulas in the DOM
mixture. This is an important outcome that warrants further
research.

4.2.2. Overlap of Loss and Formation Rates. By its nature,
the bulk DOM decomposition data reflects what fraction of
DOM was completely mineralized to CO2. However,
decomposition of specific compounds often includes several
steps and intermediate products, e.g., in cases where molecules
are degraded into monomers by extracellular enzymes.36 The
intermediate products decompose further, but also simulta-
neously build up from the preceding reaction, leading to an
overall nontrivial decay behavior. If, for a given formula,
formation and loss rates are similar in magnitude, then the
degradation will not be apparent in the FT-ICR-MS-derived
data. If decay exceeds formation, then the intensity will show an
apparent decline, and vice versa. Such overlap of loss and
formation rates can obscure the variable dynamics of molecules
and prevent us from getting a detailed picture of kinetic
processes underlying the OM behavior.
The RC model implicitly considers overlaps in the formation

and decay rates when parametrizing the bulk DOM mass loss
curve. This is reflected in early definitions, e.g., by Boudreau
and Ruddick (1991): “The apparent reactivity of a continuum
mixture of organic matter types is a function of the changing
composition of the mass with time”.6 The bulk DOM mass loss
curve, and hence the RC model parameter estimates, are
strongly influenced by the initial amount of highly reactive
material. These highly reactive DOM components which decay
fast are least influenced by simultaneous formation. Since these
components are strongly responsible for the shape of decay
curve and the RC model parameters, one can infer that the RC
model outcome should not be seriously confounded by
simultaneous loss and formation. We suggest that to a certain
extent these considerations would also hold for the FT-ICR-MS
data, i.e., in the FT-ICR-MS data, the formula-specific decay
and formation rates are also integrated into apparent decay
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coefficients. In the same way as described for the RC model, the
most reactive components should be least confounded by
simultaneous formation.
4.2.3. Accumulating Compounds. One of the consequences

of simultaneous loss and formation is the apparent presence of
accumulating compounds. Around 14% of molecular formulas
displayed negative kexp, indicating net increasing concentration.
The observed increase of some compounds highlights the fact
that the spectrum of DOM reactivity in reality integrates both
degrading and accumulating compounds. This is consistent
with previous observations that heterotrophic bacteria in
parallel with degradation of DOM also produce new
compounds,37 including humic-like and recalcitrant
DOM.38−40 Since mass loss dominates bulk DOM decom-
position, accumulation of compounds is implicitly accounted
for by the RC model; if present, accumulation would simply
lower an apparent decay rate. However, to describe the
empirical distribution (Figure 2 and SI Figure S8), we had to
eliminate formulas with net increasing signal, because the
gamma distribution only allows kexp to be positive. This should
have shifted our empirical distribution toward a higher
reactivity.
Since the mass spectrometry data cannot account for

absolute concentration of compounds we could not evaluate
how much the accumulating compounds contributed to the
bulk DOM pool. In other words, we cannot evaluate by how
much the RC model overestimated the pool of slowly decaying
DOM due to the presence of accumulating compounds.
However, in the context of bulk DOM, the concentration of
potentially accumulating decomposition products (assessed as
carbon concentration) cannot exceed the initial concentration
of the source DOM. Similarly, only a fraction of bulk organic
carbon becomes assimilated by heterotrophic microbes during
decomposition and can be further converted into accumulating
metabolites. For example, Guillemette et al.37 estimated the
production rate of roughly 0.1% fluorescent DOM per day by
lake bacterioplankton. These considerations justify that the RC
model does not specifically distinguish accumulating com-
pounds. In certain cases OM decomposition is characterized by
an initial lag phase and other models, e.g., the Weibull RC
model, may be considered as an alternative.18 While,
theoretically, an initial lag phase might be caused by relatively
high rates of simultaneous DOM production, it can also be
explained by nutrient limitation and other decomposition-
inhibiting processes.41 Regardless, we did not observe an initial
lag-phase in the bulk DOM decay trend in our experiment
(Figure 1).
4.2.4. Additional Considerations. On the basis of the

preceding discussion we propose that the intrinsic averaging is a
primary concern that limited interpretation of our data and
reconciliation of RC model and FT-ICR-MS approaches. Some
additional considerations, however, must be mentioned as well.
A previous study indicates that some fast-degrading

compounds, such as saccharides, are likely to be insufficiently
ionized in negative ESI mode and therefore remain outside of
the FT-ICR-MS analytical window.42 The difficulty to retrieve
high apparent decay coefficients from the mass spectrometry
data would be an expected outcome of such selectivity and
would contribute to the absence of high kexp in our data.
Moreover, since we could only obtain apparent decay
coefficients for formulas that were present through the whole
experiment, formulas that disappeared within hours and days
were not considered in our empirical data.

In the discussion of the shortcomings associated with our
analytical approach it should be stressed that FT-ICR-MS
resolves molecular information from complex mixtures like
DOM in far more detail than any other analytical method
available to date. Therefore, despite the limitations, FT-ICR-
MS offered the best available means to address the objectives of
our study.
The limitations of the RC model based on DOC data are

described in detail in Koehler and Tranvik (2015). Briefly, in
certain cases, the data suggest violation of the RC model
assumption. Yet, such cases often result from limitations in the
data (too few data points, the observation time is not sufficient)
rather than from conceptual flaws of the RC theory.18 Possible
experimental design solutions as well as aspects of how to
compare RC model performance with that of other models are
described elsewhere.16,18,20

4.3. Treatment Effects. Both the RC model and the
empirical data captured the anticipated effect of DOM
pretreatment with the UV light: in both cases the probability
distribution shifted toward an increase in the labile pool (Figure
2 and SI Figure S8). Hence, despite the fact that the decay of
labile peaks is underrepresented in the mass spectrometry data,
the technique still adequately reflects the shifts in DOM
behavior due to changes in composition. It has previously been
shown that a range of highly labile low molecular weight
compounds are produced upon solar exposure of DOM,
typically with molecular weights of about 200 or less.43,44 These
compounds would be expected to largely escape the analytical
window of FT-ICR-MS, and also be mineralized too rapidly to
be detected at the time scale and temporal sampling resolution
of our experiment.44 Hence, both the RC model and the
empirical distributions demonstrated here suggest that the UV-
stimulation of OM decay includes not only highly labile
compounds such as low molecular weight carboxylic acids, but
also larger and more slowly decomposing photoproduced
molecules.

4.4. Implications. While the RC model was indirectly
tested before for its performance to describe decomposition in
different systems/data sets and using mathematical indica-
tors,15,16,18,20 we here present a direct empirical support for the
central idea behind the theory of reactivity continuum. Our
results clearly demonstrate the existence of the continuum of
reactivity within bulk OM, as evidenced by a spectrum of
molecular formula-specific apparent exponential decay coef-
ficients. This spectrum was detectable despite the effect of
isomeric averaging, which likely averaged-out extreme decay
rates and made each molecular mass appear to decay at a more
average, intermediate value. Methods for our in-depth approach
became available only recently, with the advent of ultrahigh-
resolution mass spectrometry. Our work contributes to
exploration of its potential to study the kinetics of OM decay.
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We thank Karo ́lıńa Einarsdo ́ttir and Jan Johansson for
assistance with the experiment; Katrin Klaproth and Helena
Osterholz for assistance with the processing of mass
spectrometry data; Moritz Buck and Yevgen Ryeznik for
suggestions regarding the R code. Exemplary R code for
analysis of decomposition data using the gamma reactivity
continuum model is available on ResearchGate (DOI:
10.13140/RG.2.1.4471.3684). Other data related to this study
is available upon request from A. Mostovaya (alina.mosto-
vaya@ebc.uu.se). The study was financed by the Swedish
Research Council (grant 2011-3475-88773-67), by the
Nordforsk (DOMQUA project; 60501), and by the Knut and
Alice Wallenberg Foundation (grant KAW 2013.0091). B.K.
acknowledges funding by the Ingmar Bergman Foundation
2016.

■ REFERENCES
(1) Benner, R.; Fogel, M. L.; Sprague, E. K.; Hodson, R. E. Depletion
of 13C in lignin and its implication for stable carbon isotope studies.
Nature 1987, 329 (6141), 708−710.
(2) Westrich, J. T.; Berner, R. A. The role of sedimentary organic
matter in bacterial sulfate reduction: The G model tested. Limnol.
Oceanogr. 1984, 29 (2), 236−249.
(3) Amon, R. M. W.; Benner, R. Bacterial utilization of different size
classes of dissolved organic matter. Limnol. Oceanogr. 1996, 41 (1),
41−51.
(4) Guillemette, F.; del Giorgio, P. A. Reconstructing the various
facets of dissolved organic carbon bioavailability in freshwater
ecosystems. Limnol. Oceanogr. 2011, 56 (2), 734−748.
(5) Carpenter, S. R. Decay of heterogenous detritus: a general model.
J. Theor. Biol. 1981, 89 (4), 539−547.
(6) Boudreau, B. P.; Ruddick, B. R. On a reactive continuum
representation of organic matter diagenesis. Am. J. Sci. 1991, 291 (5),
507−538.
(7) Bosatta, E.; Ågren, G. I. The power and reactive continuum
models as particular cases of the q-theory of organic matter dynamics.
Geochim. Cosmochim. Acta 1995, 59 (18), 3833−3835.
(8) Minor, E. C.; Steinbring, C. J.; Longnecker, K.; Kujawinski, E. B.
Characterization of dissolved organic matter in Lake Superior and its
watershed using ultrahigh resolution mass spectrometry. Org. Geochem.
2012, 43, 1−11.
(9) Kellerman, A. M.; Dittmar, T.; Kothawala, D. N.; Tranvik, L. J.
Chemodiversity of dissolved organic matter in lakes driven by climate
and hydrology. Nat. Commun. 2014, 5, 1−8.
(10) Zark, M.; Christoffers, J.; Dittmar, T. Molecular properties of
deep-sea dissolved organic matter are predictable by the central limit
theorem: Evidence from tandem FT-ICR-MS. Mar. Chem. 2017, 191,
9−15.
(11) Riedel, T.; Dittmar, T. A method detection limit for the analysis
of natural organic matter via Fourier transform ion cyclotron
resonance mass spectrometry. Anal. Chem. 2014, 86, 8376−8382.
(12) Aumont, O.; van Hulten, M.; Roy-Barman, M.; Dutay, J.-C.;
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