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Users’ visual attention is highly fragmented during mobile interactions but the erratic nature of these attention shifts currently
limits attentive user interfaces to adapt after the fact, i.e. after shifts have already happened, thereby severely limiting the
adaptation capabilities and user experience. To address these limitations, we study attention forecasting – the challenging task
of predicting whether users’ overt visual attention (gaze) will shift between a mobile device and environment in the near
future or how long users’ attention will stay in a given location. To facilitate the development and evaluation of methods for
attention forecasting, we present a novel long-term dataset of everyday mobile phone interactions, continuously recorded
from 20 participants engaged in common activities on a university campus over 4.5 hours each (more than 90 hours in total).
As a �rst step towards a fully-�edged attention forecasting interface, we further propose a proof-of-concept method that uses
device-integrated sensors and body-worn cameras to encode rich information on device usage and users’ visual scene. We
demonstrate the feasibility of forecasting bidirectional attention shifts between the device and the environment as well as for
predicting the �rst and total attention span on the device and environment using our method. We further study the impact
of di�erent sensors and feature sets on performance and discuss the signi�cant potential but also remaining challenges of
forecasting user attention during mobile interactions.

CCS Concepts: • Human-centered computing → Interactive systems and tools; Ubiquitous and mobile computing;

Additional Key Words and Phrases: Egocentric Vision; Mobile Phone; Attention Shifts; Attention Span; Mobile Eye Tracking;
Attentive User Interfaces

1 INTRODUCTION
Sustained visual attention – the ability to focus on a speci�c piece of information for a continuous amount
of time without getting distracted – has constantly diminished over the years [48]. Such fragmentation can
severely reduce user performance given that sustained attention is key to a variety of cognitive and perceptual
processes, including memory [13], vigilance [47] and learning [12]. This trend is particularly prevalent for mobile
interactions during which user attention was shown to be highly fragmented and to span only a few seconds in
certain situations [39]. With sustained attention becoming an increasingly scarce and thus valuable resource [32],
actively managing user attention has emerged as a key research challenge in human-computer interaction [6, 16].
However, the capabilities of current mobile attentive user interfaces to sense and adapt to user attention are
still severely limited. Prior work mainly focused on estimating the point of gaze on the device screen using
the integrated front-facing camera [23, 58, 62] or on using inertial sensors or application usage logs [10, 11, 15]
∗Work conducted while at the Max Planck Institute for Informatics

Authors’ addresses: J. Steil, P. Müller and A. Bulling, Max Planck Institute for Informatics, Saarland Informatics Campus, Campus E1 4, 66123
Saarbrücken, Germany. email: {jsteil,pmueller,bulling}@mpi-inf.mpg.de; Y. Sugano, Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita-shi, 565-0871 Osaka, Japan. email: sugano@ist.osaka-u.ac.jp.
2017. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive Version of Record
was published in .

ar
X

iv
:1

80
1.

06
01

1v
1 

 [
cs

.H
C

] 
 1

8 
Ja

n 
20

18



Attention

Forecasting

Attention Span

Bidirectional Attention Shifts

Visual Scene

Phone Usage

Timet+1t

Fig. 1. We propose a method to forecast temporal allocation of overt visual a�ention (gaze) during everyday interactions
with a mobile phone. Our method uses information on users’ visual scene as well as phone usage to predict a�ention shi�s
between mobile phone and environment and a�ention span on the mobile phone and on the environment.

to predict user engagement [34, 57] or boredom [43]. In contrast, attention shifts between the device and the
environment have rarely been studied and only using simulated sensors [18, 35]. Even more importantly, all
previous works only considered user attention after the fact, i.e. after an attention shift has taken place [21, 28, 33].

We envision a new generation of attentive user interfaces with the ability to pro-actively adapt to imminent
shifts of user attention, i.e. before these shifts actually occur. Pro-active adaptation to user attention will open
up a range of exciting new applications. For example, future attentive user interfaces could, if the current
situation permits, engage users more should an imminent attention shift to the environment be predicted that
would harm their productivity. Similar to automotive settings [54], users could also be alerted if a (potentially)
dangerous situation is detected from a body-worn camera but a user might miss that situation due to a predicted,
continuing attention to the mobile phone. Further, a predicted re-shift to the mobile phone could be used to
reduce interaction delays by already re-starting the mobile phone and loading the previous screen content. Finally,
pro-active adaptations could also have signi�cant impact in interruptibility research. If attention is predicted to
stay on the device for longer, a future interface could show important information that users should not miss or,
inversely, alert them if attention to the environment is predicted to last too long to �nish a mobile task, such as
submitting a form or replying to a chat message, in time.

The core requirement to realise such pro-active applications is for user interfaces to be able to predict users’
future allocation of overt visual attention during everyday interactions with a mobile phone. We call this
challenging new task attention forecasting.

To facilitate algorithm development and evaluation for attention forecasting, we collected a dataset of 20
participants freely roaming a local university campus over several hours while interacting with a mobile phone.
Head-worn egocentric cameras recorded a high-resolution video and depth map of the visual scene in front of them.
A head-mounted inertial measurement unit (IMU) measured users’ head movement while the phone-integrated
IMU measured phone motion. To ease later ground truth annotation, we further logged application usage and
users’ gaze behaviour using a state-of-the-art mobile eye tracker. Three annotators annotated the full dataset
post-hoc with participants’ current environment, indoor or outdoor location, their mode of locomotion, and
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whenever their attention shifted from the phone to the environment or back. The dataset including annotations
will be made publicly available upon acceptance. We then developed a computational method for forecasting overt
visual attention during everyday mobile interactions. Our method uses the phone-integrated and head-worn IMU
as well as computer vision algorithms for object class detection, face detection, semantic scene segmentation, and
depth reconstruction. We evaluate our method on the new dataset and demonstrate its e�ectiveness in predicting
attention shifts between the phone and the environment as well as the �rst and total attention span on the phone.

The speci�c contributions of this work are three-fold. First, we propose attention forecasting as the challenging
new task of predicting temporal allocation of users’ overt visual attention during everyday mobile interactions.
We propose a set of concrete prediction tasks that, if successful, facilitate pro-active adaptations to users’ erratic
attentive behaviour in future user interfaces. To facilitate algorithm development and evaluation, we further
present a novel 20-participant dataset of mobile phone interactions embedded in everyday routine. Second, as a
�rst step towards this vision, we present the �rst computational method to predict core characteristics of mobile
attentive behaviour from device-integrated and wearable sensors. Third, we evaluate our method on the new
dataset and demonstrate the feasibility of predicting attention shifts between device and environment, the �rst
and total attention span on the device, as well as the primary attentional focus. We study the impact of di�erent
sensors and feature sets on performance, discuss the signi�cant potential but also challenges of forecasting user
attention during mobile interactions, and outline future applications for attention forecasting.

2 RELATED WORK
Our work is related to prior work on (1) user behaviour modelling on handheld devices, (2) gaze analysis in
mobile settings, and (3) computational modelling of egocentric attention.

2.1 User Behaviour Modelling on Handheld Devices
With the widespread availability of sensor-rich handheld devices, sensing and modelling user behaviour, including
gaze and attention, has gained signi�cant popularity. Several recent works investigated the use of device-integrated
sensors to predict users’ interruptibility [2, 11, 15, 18, 56]. In particular, Obuchi et al. detected breaks in a user’s
physical activities using inertial sensors on the phone to push mobile noti�cations during these breaks [37].
Other works used phone-integrated sensors to predict other related concepts, such as user engagement [34, 57],
boredom [43] or alertness [1]. Oulasvirta et al. investigated how di�erent environments a�ect attention span
while users waited for a web page to load on a mobile phone [39]. The work that comes closest to ours is a
follow-up by the same authors in which they used a Wizard-of-Oz paradigm with simulated sensors to assess
the feasibility of predicting time-sharing of attention between the phone and the environment [35]. Speci�cally,
they studied prediction of the number of glances, the duration of the longest glance, and the total and average
durations of the glances to the mobile phone.

Our method is the �rst to predict attentive behaviour during everyday mobile interactions from real phone-
integrated and body-worn sensors. Another distinction from prior work is that our data collection constrained
participants as little as possible, and speci�cally did not impose a scripted sequence of activities or environments.
To strike a balance between diversity and comparability, we only asked participants to not stay in any place on
the university campus for longer than 30 minutes and to visit three given places at least once.

2.2 Gaze Analysis in Mobile Se�ings
Analysing gaze in mobile settings has only recently started to receive increasing interest, driven by technical
advances in gaze estimation and mobile eye tracking. In an early work, Holland and Komogortsev proposed a
learning-based method for gaze estimation on an unmodi�ed tablet computer using the integrated front-facing
camera [23]. More recently, Huang et al. presented a large-scale dataset and method for gaze estimation on tablets
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and conducted extensive evaluations on the impact of various factors on gaze estimation performance, such
as ethnic background, glasses, or posture while holding the device [24]. Wood and Bulling used a model-based
approach for gaze estimation on an o�-the-shelf tablet that achieved an average gaze estimation accuracy of
6.88° at 12 frames per second [62]. Jiang et al. proposed a method to estimate visual attention on objects of interest
in the user’s environment by jointly exploiting the phone’s front and rear facing camera [26] while Paletta et al.
investigated accurate gaze estimation on mobile phones using a computer vision method to detect the phone in
an eye tracker’s scene video [40]. Foulsham et al. were among the �rst to demonstrate signi�cant di�erences
in gaze behaviour between laboratory and natural environments using mobile eye tracking [19]. More recent
works focused primarily on mapping and visualising gaze in the surrounding environment. Takemura et al. used
a simultaneous localisation and mapping method applied to the eye tracker’s scene camera to visualise 3D gaze
of single and multiple users in the environment [53]. Pei�er et al. investigated the visualisation of 3D gaze using
volume-based rendering [42] while Paletta et al. proposed methods to map �xations into a 3D environment model
using local image descriptors [41]. In contrast, we aim to predict temporal allocation of overt visual attention
without an eye tracker.

2.3 Computational Modelling of Egocentric A�ention
An important type of computational model of visual attention are saliency models, which aim to predict which
image regions most attract viewers’ attention [25]. While bottom-up saliency modelling, i.e. solely using image
features, has been extensively studied in controlled laboratory settings [4], egocentric settings are characterised
by a mix of bottom-up and top-down in�uences and are therefore less well explored. Yamada et al. were among
the �rst to predict egocentric saliency using bottom-up image and egomotion information [64]. Zhong et al.
used a novel optical �ow model based on dynamic consistency of motion to build a uniform spatio-temporal
saliency model for egocentric videos [67]. However, none of these works aimed to predict attention during mobile
interactions. In addition, while we also use features extracted from egocentric video, we do not predict spatial
attention distributions for the current video frame but use a short sequence of past frames (a few seconds) to
predict shifts of visual attention in the near future.

3 FORECASTING USER ATTENTION DURING MOBILE INTERACTIONS
To be able to pro-actively adapt before users shift their attention and thus, in turn, to avoid any noticeable
adaptation delay, attentive interfaces need to be able to predict users’ future attentive behaviour. We call this
new prediction task attention forecasting. Attention forecasting is similar in spirit to the tasks of user intention
prediction as investigated, for example, in web search and human-robot interaction [9, 45] as well as player goal
or plan recognition studied in digital games [36]. In contrast to these lines of work, however, it speci�cally focuses
on predicting �ne-grained attentive behaviour and predictions at a moment-to-moment time scale. Attention
forecasting is already highly challenging in stationary desktop interaction settings given the signi�cant variability
and strong task dependence of users’ attentive behaviour. Forecasting users’ attention is even more challenging
during mobile interactions given the additional as well as the large number of potential visual attractors in the
real-world environment. In this section we �rst propose a set of concrete prediction tasks within the attention
forecasting paradigm and outline their potential use in future mobile attentive user interfaces. A more extensive
consideration of how attention forecasting could be used in the future can be found in the discussion section.
Afterwards, we propose a �rst proof-of-concept method that demonstrates the feasibility of predicting temporal
attention allocation during everyday mobile interactions from real device-integrated and body-worn sensors.
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Fig. 2. Overview of the di�erent prediction tasks explored in this work: Prediction of a�ention shi�s to the environment
and (back) to the device, the duration of the first and total (first and all following) a�ention spans, as well as the primary
a�entional focus, i.e. whether a�ention is primarily on or o� the device.

3.1 Prediction Tasks
To guide the development and evaluation of computational methods for attention forecasting during mobile
interactions, we propose the following prediction tasks: Prediction of Attention Shifts and Attention Span as well
as Primary Attentional Focus, which is a special case of Attention Span prediction. Figure 2 illustrates these three
prediction tasks for a sample attention allocation of a user at the top. During the segments marked in black
the user’s attention is on the mobile phone, while the gaps are time periods during which attention is in the
environment. In the following, we detail each of these prediction tasks.

Prediction of Attention Shifts. The �rst prediction task deals with attention shifts from the mobile phone to the
environment, and from the environment back to the phone (see Figure 2A). Attention shifts are a key characteristic
of attentive behaviour and thus an important source of information for attentive user interfaces. The task involves
taking a certain time window for feature extraction, training a prediction model with this data, and use that model
to predict whether an attention shift will happen during a subsequent target time window. This task assumes
the user interface to already have knowledge about whether a user’s attention is currently on the phone or not.
Such knowledge can be obtained, for example, by using a method for mobile gaze estimation [63]. Prediction of
attention shifts could be used in di�erent ways by an attentive user interface. Similar to a number of recent works
that used eye tracking or dedicated visualisation techniques [21, 28, 33], attention shift prediction could be used
to pro-actively support users to reorient themselves on a mobile device to smoothly get back to their previous
task. Similar to Obuchi et al. who used phone data, predicted attention shifts could also be used as breakpoints
for push noti�cations [37]. These could, for example, be shown closely before or after an attention shift will take
place. Finally, the prediction of these shifts could be leveraged to save energy by automatically turning o� the
screen when a shift to the environment is predicted to occur, and to automatically turn it on again when a shift
to the device is predicted.

Prediction of Attention Span. Besides attention shifts, we propose to predict the attention span towards the
mobile phone and the environment (see Figure 2B). A special subset of attention spans is the so-called �rst
attention span – the duration of concentrated time spent on the mobile phone before getting distracted. The
knowledge about how long a user will keep attention on an interface can be used for a variety of applications. It
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Fig. 3. Overview of our method for a�ention forecasting during mobile interactions. Taking information on users’ visual scene,
phone and head inertial data, as well as on mobile app usage as input (A), our method extracts rich semantic information
about the user’s visual scene using state-of-the-art computer vision methods for object and face detection, semantic scene
segmentation, and depth reconstruction (B). The method then extracts and temporally aggregates phone and visual features
and takes eye tracking data into account to predict a�ention shi�s and a�ention span (C).

can be used to highlight messages after the user has reached a point where he is not focusing on the current task
but still keeping attention on the interface, or to manage user attention in such a way that the interface needs to
change content or style of presentation to keep users’ attention beyond the predicted attention span. Especially
the �rst attention span is valuable because important messages can be displayed with the knowledge that the
user attention will be active within this time window. This task also involves extracting features and training a
model but always from data at the beginning of an attention span. Predictions are then made for the remainder
of that attention span. We propose two di�erent prediction tasks related to attention span, namely prediction
of the duration of the �rst and total (�rst and all following) attention spans to both the mobile phone and the
environment. We frame these as regression tasks (see Figure 2).

Prediction of the Primary Attentional Focus. [38] showed that users’ visual attentive behaviour is highly
fragmented during mobile interactions and dominated by short attention spans caused by distractions from
users’ environment. Aggregating all of these many short attention spans, as a relaxed version of attention span
prediction, we �nally propose a binary classi�cation task to predict whether users’ attention will be primarily on
the mobile phone or o� the phone for a particular time window in the future (see Figure 2C).

3.2 Proposed Method
To explore the feasibility of these prediction tasks, and establish a baseline performance on each of them, we
developed a �rst method for attention forecasting. Previous work has shown that information available on a mobile
device itself, such as inertial data, GPS location, or application usage, can be used for detecting engagement
or predicting interruptibility during mobile interactions [1, 34, 37, 43]. It is therefore conceivable that such
information may also be useful to predict attention shifts to the mobile phone. However, other characteristics,
such as shifts to the environment, are likely to require information on the user’s current environment. This
suggests to combine the mobile phone with wearable sensors, in particular egocentric cameras worn on the user’s
head. Egocentric cameras represent a rich source of visual information on the user’s environment as demonstrated
by the rapidly growing literature on egocentric vision [3]. Combined with the fact that an ever-increasing number
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Sensor Features
RGB camera number of detected faces and pixel counts of object classes like person, car, and monitor

from the semantic segmentation, and binary occurrence indicator, numbers of detected
instances of each object class from object detection, 1-hot encoded scene classes, mean,
min, max, standard deviation and entropy of saliency and objectness of the scene images

Depth camera mean, min, max, standard deviation and entropy of the depth map from the stereo camera

Head IMU mean, min, max, standard deviation, norm and slope of accelerometer and gyroscope

Phone mean, min, max, standard deviation, norm and slope of accelerometer, gyroscope and
orientation sensor values
1/0 features indicating touch events, screen on/o�, and activity of each of the installed
applications

Eye tracker �xation positions (x, y); objectness, saliency and depth values at gaze position
Table 1. Overview of the di�erent sensors and corresponding features explored in this work.

of egocentric cameras are used in daily life (e.g. sports cameras, cameras readily integrated in HMDs, life-logging
cameras, etc.), this makes them not only a promising but also practical sensing modality for attention forecasting.

Figure 3 provides an overview of our method for attention forecasting. Inputs to our method are egocentric,
phone, and eye tracking data. Our method �rst extracts information from the egocentric scene and depth videos
using computer vision algorithms for object and face detection, semantic scene segmentation labels, scene
category, and reconstructed depth data as well as head motion. In addition, our method extracts features from
the mobile phone, including the history of application usage and accelerometer, gyroscope, and magnetometer
measurements as well as gaze data. Our method �nally uses these features in a machine learning framework for
attention forecasting, speci�cally attention shifts between the mobile phone and the environment as well as the
�rst and replacedtotalfollowing attention spans on the phone.

3.3 Feature Extraction
We extract features from the head-mounted egocentric RGB and depth cameras, head IMU, mobile device (phone),
and eye tracker (see Table 1 for a complete list of features used in this work). These features include, numerical
features such as pixel counts of semantic segmentations, gaze positions, entropy of objectness maps, mean depth
map values, as well as binary encodings like occurence of a touch event or whether an application on the phone
is active. To aggregate features over a feature window, we compute the mean, maximum, minimum, standard
deviation and slope for numerical features, and the mean and the slope for binary features.

For evaluation purposes, and with potential future applications in mind, we group these features into four
feature groups (c.f. Figure 3): Egocentric (including RGB, depth, and head inertial features), Phone-Only (including
only phone features), Proposed (all features from Egocentric and Phone-Only), as well as Proposed + Gaze (including
�xation characteristics).

Egocentric. This feature group covers the egocentric RGB and depth camera, as well as a head inertial sensor.
The depth and inertial sensors we used just for the sake of reliable feature extraction, although they can also be
estimated from the egocentric camera itself [14, 31]. As described above, we extract the most information from
the egocentric scene video because scene information can include triggers which lead to changes of attentive
behaviour. We obtain a coarse description of the scene by applying the scene recognition method of Wang et
al. [60] to the video frames. This method utilizes a convolutional neural network to extract scene descriptions
like "o�ce" or "library". As objects are potential targets for capturing attention, we obtain a more �ne-grained
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description of the scene by applying the semantic scene segmentation approach of Zheng et al. [66]. Semantic
scene segmentation labels each pixel in a scene image as belonging to a certain object class or to background. To
this end, their method combines a deep neural network with a probabilistic graphical model, trained to obtain
pixel-wise segmentations of 20 di�erent object classes including persons, monitors and cars. By encoding the
occurence of objects and also counting the number of pixels belonging to each object class, we obtain information
about which objects take up the largest portion of the cameras �eld of view. Another important aspect of objects
in a scene is the count of their instantiations. For example gazing upon a dining hall can lead to a large number of
"person" pixels as does standing directly in front of another person. By simply counting the number of "person"
pixels these two cases cannot be distinguished. Thus, we employ the object class detection method by Ren et
al. [50] to obtain an estimate of the count of instances for each object class. In addition to people detections, we
hypothesized that faces can help in predicting attention shifts, as they are well known to strongly draw attention
of an observer [49] and their presence is also indicative of social situations [22], constituting a highly distracting
factor in the scene. To this end, we apply a face detection approach [29] and count the number of detected faces in
the scene image. Moreover, we extracted depth information to obtain physical structure of the scene and mapped
the depth map to the scene video via camera calibration. With the calculation of saliency and objectness maps
we collect ancillary knowledge about the scene complexity. As head poses can serve as a useful prior for gaze
estimation [59], we additionally extract inertial features from the head-mounted camera.

Phone-Only. This feature group covers inertial data, which consists of accelerometer, gyroscope and orientation
information, as well as phone usage data, which consists of single app usage information, whether touch events
took place or the screen is on or o�. For that purpose we installed additional applications on the phone which
were running in the background to log the movement of the phone and users’ phone usage.

Gaze. Besides the usage of gaze point extraction for ground truth annotation, we additionally take eye tracking
features into account. Prior works on eye-based activity recognition have demonstrated that gaze behaviour is
characteristic for di�erent activities [7, 8, 51]. It is therefore conceivable that gaze features may help to improve
the performance of our method for attention forecasting. Speci�cally, we calculate mean, min, max, standard
deviation, norm and slope of the �xation positions (x, y) as well as objectness, saliency and depth values at users’
gaze position.

4 DATA COLLECTION
Given the lack of a suitable dataset for algorithm development and evaluation, we conducted our own data
collection. Our goal was to record natural attentive behaviour during everyday interactions with a mobile phone.
The authors of [39] leveraged the, at the time, long page loading times during mobile web search to analyse shifts
of attention. We followed a similar approach but adapted the recording procedure in several important ways to
increase the naturalness of participants’ interactive behaviour and the realism of the prediction task. First, as
page loading times have signi�cantly decreased over the last 10 years, we instead opted to engage participants in
chat sessions during which they had to perform web search tasks as in [39] and then had to wait for the next
chat message to arrive.

To counter side e�ects due to learning and anticipation, we varied the waiting time between chat messages
and search tasks. Second, we did not perform a fully scripted recording, i.e. participants were not asked to follow
a �xed route or perform particular activities in certain locations in the city, they were not accompanied by an
experimenter, and the recording was not limited to about one hour. Instead, we observed participants passively
over several hours while they interacted with the phone during their normal activities on a university campus.
For our study we recruited twenty participants (six females) aged between 22 and 31 years using university
mailing lists and study board postings. Participants were students with di�erent backgrounds and subjects. All
had normal or corrected-to-normal vision.
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Fig. 4. (a) Recording system consisting of a PUPIL head-mounted eye tracker, an egocentric depth camera, a mobile phone,
and a recording laptop carried in a backpack. To robustly detect the phone in the egocentric video, four visual markers were
a�ached to its four corners. (b) Participants were engaged in 12 chat blocks (CB) that were randomly distributed over their
recording, which lasted in total about 4.5 hours. In each block, participants had to answer six questions, some of which
required a short online search (Q1–Q6, working time), followed by waiting for the next question (waiting time).

4.1 Apparatus
The recording system consisted of a PUPIL head-mounted eye tracker [27] with an additional stereo camera, a
mobile phone, and a recording laptop carried in a backpack (see Figure 4a). The eye tracker featured one eye
camera with a resolution of 640 × 480 pixels recording a video of the right eye from close proximity with 30
frames per second, and a scene camera with a resolution of 1280 × 720 pixels recording at 24 frames per second.
The original lens of the scene camera was replaced with a �sheye lens with a 175◦ �eld of view. The eye tracker
was connected to the laptop via USB. In addition, we mounted a DUO3D MLX stereo camera to the eye tracker
headset. The stereo camera recorded a depth video with a resolution of 752 × 480 pixels at 30 frames per second
as well as head movements using its integrated accelerometer and gyroscope. Intrinsic parameters of the scene
camera were calibrated beforehand using the �sheye distortion model from OpenCV. The extrinsic parameters
between the scene camera and the stereo camera were also calibrated. The laptop ran the recording software
and stored the timestamped egocentric, stereo, and eye videos. We stress that an eye tracker is not required
for our proposed method – gaze data was only used to obtain ground truth gaze information. However, we
also investigate the possibility to additionally use gaze information to forecast future attentive behaviour in the
Proposed + Gaze sensor modality.

Given the necessity to root the phone to record touch events and application usage, similar to [39] we opted
to provide a mobile phone on which all necessary data collection software was pre-installed and validated to
run robustly. For participants to "feel at home" on the phone, they were encouraged to install any additional
software they desired and to fully customise the phone to their needs prior to the recording. As in [10, 30], we
collected information on application usage. An overview of the applications used by participants is shown in
Figure 5. Although additional social apps (e.g. Facebook) were not used often, visual inspection of the recorded
egocentric videos showed that the e�ective usage time was signi�cantly higher, as they were used inside the
browser. Another observation we gathered from the egocentric videos was that participants often entered personal
passwords while being �lmed. Thus, we can assume that participants adopted the study phone for their private
purposes and felt "at home" on it, and thus also did not care too much about privacy. To robustly detect the phone
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Fig. 5. Aggregated data from all participants of mobile phone application usage.

in the egocentric video and thus help with the ground-truth annotation, we attached visual markers to all four
corners of the phone (see Figure 4a). We used WhatsApp to converse with the participants and to log accurate
timestamps for these conversations. We used the Log Everything logging software to log phone inertial data and
touch events [61], as well as the Trust Event-Logger to log the current active application as well as whether the
mobile phone screen was turned on or o�.

4.2 Procedure
After arriving in the lab, participants were �rst informed about the purpose of the study and asked to sign a
consent form. We did not reveal which parts of the recording would be analysed later to not in�uence their
behaviour. Participants could then familiarise themselves with the recording system and customise the mobile
phone, e.g. install their favourite apps, log in to social media platforms, etc. Afterwards, we calibrated the eye
tracker using the calibration procedure implemented in the PUPIL software. The calibration involved participants
standing still and following a physical marker moved in front of them to cover their whole �eld of view.

To obtain some data from similar places on the university campus, we asked participants to visit three places
at least once (a canteen, a library, and a cafe) and to not stay in any self-chosen place for more than 30 minutes.
Participants were further asked to stop the recording after about one and a half hours so we could change the
laptop’s battery pack and recalibrate the eye tracker. Otherwise, participants were free to roam the campus, meet
people, eat, or work as they normally would during a day at the university. We encouraged them to log in to
Facebook, check emails, play games, and use all pre-installed applications on the phone or install new ones.
Participants were also encouraged to use their own laptop, desktop computer, or music player if desired.

As illustrated in Figure 4b, 12 chat blocks (CB) were distributed randomly over the whole recording. Each
block consisted of a conversation via WhatsApp during which the experimental assistant asked the participant
six random questions (Q1–Q6) out of a pool of 72 questions. Some questions could be answered with a quick
online search, such as “How many states are members of the European Union?” or “How long is the Golden Gate
Bridge?” Similar to Oulasvirta et al. [39] we also asked simple demographic questions like “What is the colour of
your eyes?” or “What is your profession?” that could be answered without an online search. After each answer
(A1–A6), participants had to wait for the next question. This waiting time was varied randomly between 10, 15,
20, 30, and 45 seconds by the experimental assistant. This was to avoid learning e�ects and to create a similar
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Cafe Library Canteen Office

P4

P11

P18

Fig. 6. Sample a�ention allocation pa�erns in di�erent environments. The grey boxes represent waiting time segments,
within which the black bars indicate a�ention to the mobile phone. The gaps in between indicate a�ention to the environment.
The red bars indicate the first a�ention span and all bars together are the total a�ention span on the phone.

situation as in [39]. This question-answering procedure was repeated until the sixth answer had been received,
thus splitting each chat block into six working time segments (yellow) and �ve waiting time segments (red) (c.f.
Figure 4b). At the end of the recording, participants returned to the lab and completed a questionnaire about
demographics and their mobile phone usage behaviour. In total, we recorded 1440 working and 1200 waiting
segments over all participants. Statistics about our dataset are listed in Table 2.

4.3 Data Preprocessing
Fixations were detected from the raw gaze data using a dispersion-based algorithm with a duration threshold
of 150ms and an angular threshold of 1° [27]. These data we use later in a sensor modality we investigate. The
3D position of the mobile phone in the scene camera was estimated using the attached markers (see Figure 4a).
Marker positions were detected by the PUPIL capture software [20], and the position of the mobile phone surface
was logged if at least two markers were visible in the scene camera. However, we only used the mobile phone
detection as an aid for the ground truth annotation.

4.4 Data Annotation
To train our classi�er we need precise annotations of when an attention shifts takes place and how long an
attention span lasts. Findlay and Gilchrist showed that in real-world settings, covert attention rarely deviates
from the gaze location [17]. Thus, we leveraged gaze as a reliable indicator of user’s current attentional focus.
Concretely, annotations were performed using videos extracted from the monocular egocentric video for the
working/waiting time segments overlaid with gaze data provided by the eye tracker. Three annotators were asked
to annotate each chat block with information on participants’ current environment (o�ce, corridor, library, street,
canteen, cafe), whether they were indoors or outdoors, their mode of locomotion (sitting, standing or walking),
as well as when their attention shifted from the mobile phone to the environment or back. Figure 6 shows sample
gaze deployment patterns of three participants in di�erent environments during the waiting time segments.
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mean std total

Working segments per question (sec)
Working time 40.29 11.27 –:–
Time on phone 29.96 7.31 –:–
Waiting segments per question (sec)
Waiting time 25.28 7.45 –:–
Time on phone 11.02 4.26 –:–
Attention shifts (quantity)
Shifts to environment 248.85 107.22 4,957
Shifts to phone 259.90 106.88 5,178
Fixation time on/o� screen (hh:mm)
On 00:46 00:12 15:24
O� 00:13 00:05 04:36
environments (hh:mm)
Cafe 00:11 00:06 03:55
Corridor 00:12 00:12 04:08
Library 00:11 00:07 03:51
Canteen 00:08 00:06 02:50
O�ce 00:23 00:12 07:37
Street 00:04 00:06 01:20
Indoor/Outdoor (hh:mm)
Indoor 01:06 00:17 22:08
Outdoor 00:06 00:08 01:56
Modes of locomotion (hh:mm)
Sit 01:02 00:14 20:49
Stand 00:05 00:05 01:44
Walk 00:04 00:04 01:31

Table 2. Statistics of the ground truth annotated chat block sequences with mean, standard deviation (std) and total time.

5 EXPERIMENTS
We conducted a series of experiments to evaluate the performance of our method for the di�erent prediction
tasks described before: Attention shifts between the mobile phone and the environment, attention span on the
mobile phone and environment, as well as primary attentional focus. We evaluated our method for di�erent
time segments, i.e. while working to answer a question and while waiting for the next question, as well as for
four di�erent sensor combinations: Proposed, Egocentric, Phone-Only, and Proposed + Gaze. We further studied
di�erent feature subsets to facilitate more detailed analyses. Therefore, we split the Egocentric features in its eight
feature subsets: Head IMU, Face, Saliency, (Semantic) Scene Segmentation, Object Detection, and Depth. Our
Proposed feature set consists of the combination of the Phone-Only feature subsets (Phone IMU and App Usage)
and the Egocentric features. The eye tracking features are summarised in the Gaze subset.

We trained a random forest algorithm [5] using these features. We used a leave-one-person-out evaluation
scheme, i.e., the data of n-1 participants was used for training and the data of the remaining participant was
used for testing. This procedure was repeated for all participants and the �nal performance averaged over all
iterations. All hyperparameters (number of features, maximum depth and minimum samples at leaf nodes) were
optimized via cross-validation on the training set. For all experiments we extracted features from a one-second
window (feature window) and aimed to predict for a subsequent target window. The choice of the one-second
feature window was informed by preliminary experiments in which it showed superior performance compared
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to longer time windows. As target window sizes, we focus on one and �ve seconds. This is because di�erent
applications might bene�t from di�erent time horizons for the prediction of attention shifts.

We used a leave-one-person-out evaluation scheme in which the data from n-1 participants was used for
training and the data of the n-th participant for testing. We used a random subset of the samples to achieve a 50/50
distribution of positive and negative samples and thus avoid class imbalance. Performance was calculated using
the weighted F1 score for the potentially imbalanced test data. This procedure was repeated for all participants
and the resulting F1 scores averaged over all iterations. The F1 = 2 ∗ precision∗r ecall

precision+r ecall , which is the harmonic mean
of precision T P

T P+F P and recall T P
T P+FN , where TP, FP, and FN represent frame-based true positive, false positive,

and false negative counts, respectively. The F1 score of 0.5 de�nes the chance-level for the following experiments.
For a more in-depth analysis we also calculated full confusion matrices.

5.1 Prediction of A�ention Shi�s
We �rst compared the performance of di�erent feature sets for both attention shift prediction tasks. We suspect
this is because reactions to distractions in the environment typically happen quickly, weakening the dependence
of attention shifts on prior states of the environment.

Figure 7 shows the prediction performance of our method depending on used feature sets for both working
and waiting time segments. As can be seen from the �gure, performance for predicting shifts to the environment
is above the chance level (F1 score 0.5) for all feature sets for the one-second (see Figure 7a) and �ve-second (see
Figure 7b) target window (TW). This shows the e�ectiveness of our method for this challenging task. However,
we can see di�erences in the prediction performance between the working and waiting time segments and feature
sets. As expected, the Egocentric sensor modality (one-second TW: F1 0.80, �ve-second TW: F1 0.72) performs
competitively against the Proposed feature combination (one-second TW: F1 0.77, �ve-second TW: F1 0.70) during
working but also during waiting time segments. During working segments performance is generally higher than
during waiting segment besides for the phone-only feature combination. A possible explanation for this is that
during working time, the task de�nes a certain phone interaction pattern (e.g. app usage, phone movement) with
minor variability, whereas during waiting time the phone interaction can be chosen more freely (e.g. sur�ng the
internet, using Facebook, playing games, chatting,...) and can induce di�erent tendencies to switch one’s attention
to the environment. As can be seen from Figure 7c, the proposed feature combination head IMU, semantic scene,
and depth features achieve an F1 score notable above chance level. Especially during working time detected
faces from the scene camera are a helpful feature for the prediction of attention shifts to the environment. The
egocentric features, which are part of our proposed feature set, are the dominating ones for this task because
shifts to the environment are mainly driven by attractors in our �eld of view. However, having access to the
smartphone state can also help the classi�er. The confusion matrices for predicting shifts to the environment
show that the classi�er achieves a good performance mainly on the negative training examples (i.e. no shift
happening).

The results are di�erent from those for predicting shifts to the mobile phone (see Figure 8). Using mobile
phone features alone we already achieve a similar performance as with our proposed feature set with F1 scores
of 0.53 for the one-second and 0.58 for the �ve-second target window during waiting, and F1 scores of 0.47
and 0.7 for the two target window sizes during working time segments. The competitive performance of phone
features for the attention shift forecasting is caused by participants’ natural phone usage behaviour, which is
characterised by picking up and moving the phone or turning on its screen. Participants often held their phones
in their hands out of the view of the camera, so there was a movement of the phone followed by the shift to
the phone and a touch sequence to unlock the phone. Figure 8c con�rms that both actions are registered by the
phone sensors and logging apps with F1 scores higher than 0.6 (phone IMU and application usage). Features from
the egocentric camera only result in chance-level performance, which indicates that the visual environment of
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Fig. 7. Performance for predicting shi�s to the environment during working and waiting time segments for the di�erent
feature sets for a a) one-second and b) five-second target window with the corresponding confusion matrices for our proposed
feature set, and c) a more detailed feature analysis of b).

the participant does not play a role in determining whether the attention will go back to the screen. This is in
line with our reasoning given above, indicating that poorly observable top-down factors in�uence shifts to the
phone as compared to better observable properties of the visual environment that might capture attention in a
way more in�uenced by bottom-up processes. In contrast to the prediction of shifts to the environment, most
errors occur for the negative examples, as indicated by the confusion matrices.
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Fig. 8. Performance for predicting shi�s to the mobile phone during working and waiting time segments for the di�erent
feature sets for a a) one-second and b) five-second target window with the corresponding confusion matrices for our proposed
feature set, and c) a more detailed feature analysis of b).

To further elucidate how the performance of our proposed feature set varies across the current environment of
the user, we evaluate our feature set in six environments each (see Figure 9) during working and waiting time
segments for the one-second target window. For the environments corridor and library our proposed feature set
even exceeds an F1 score of 0.75, whereas for the street environment it is below 0.6 (see Figure 9a) and during
waiting time even below 0.4 (see Figure 9b). In contrast, for shifts to the mobile phone in Figure 9c our proposed
feature set performs the best in the street environment with an F1 score higher than 0.7 during working time
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Fig. 9. Performance for predicting shi�s to the environment(a,b) and shi�s to the mobile phone (a,b) for di�erent real-world
environments of our proposed feature set during (a,c) working and (b,d) waiting time segments.

segments. A reason for this good performance during working is already provided in Figure 8c, where especially
phone IMU features, like accelerometer and gyroscope data, which are quite informative during walking on the
street, push the F1 score.

5.2 Prediction of A�ention Span
We then evaluated the performance for predicting the duration of the �rst attention span (FAS) as well as the
length of all (total) attention spans (AS) to the mobile phone and to the environment. For this experiment we also
used one-second feature windows, during which attention was on the phone or to the environment, respectively.
For FAS prediction we only used feature windows from the very beginning of every waiting or working segment
as well as for the following attention spans of the AS prediction. The performance was measured as the time
di�erence between our predictions and the ground truth in seconds. Thus, a perfect result would be close to zero.
As a baseline we used the mean of complete attention span lengths on the training set.

In Figures 10a and 10b we can see that, at least for �rst attention span prediction, our results are around
our self-de�ned baseline during working and waiting time segments and even higher for the case of predicting
general attention spans. These results already show the di�culty of this prediction task. The absolute values for
attention span prediction during working time segments are even higher than during waiting time segments for
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Fig. 10. Performance for predicting the first and total a�ention spans on the phone (a,b) and on the environment (c,d) during
(a, c) working and (b, d) waiting time segments for the di�erent feature sets. The mean a�ention span length on the training
set for the first and total a�ention spans are indicated by the red and blue dashed lines, respectively.

both, attention to the mobile phone and attention to the environment. A reason for this di�erence are very long
attention spans during working time, where participants kept engaged with the mobile phone, which are very
di�cult to predict.

The results in Figure 10 indicate that predicting the (�rst) attention span as a regression problem is a very
challenging task, with our method performing at baseline level. The results for attention span prediction to
the environment shown in Figure 10c suggest that during working time segments performance is diminished
in comparison to the attention span towards the mobile phone in Figure 10a. The most likely reason for this
performance di�erence is participants’ behaviour. Although participants received a question to answer, they got
distracted from their environment and stopped working. Therefore, the attention span to the environment can be
long (>5 minutes) especially for the �rst attention span, which makes the prediction more di�cult than for shifts
to the environment.

During waiting time segments (see Figure 10d) the lower absolute error is additionally supported by the
controlled waiting time of attention span samples. However, there are less samples for training and testing
than during the attention span prediction on the mobile phone because most participants are able to keep their
attention to the phone. The prediction of attention spans towards the mobile phone or towards the environments
are challenging but open the door for very helpful applications.
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Fig. 11. Performance for primary a�entional focus on mobile phone during working and waiting time segments for the
di�erent feature sets for a a) one-second and b) five-second target window with the corresponding confusion matrices for
our proposed feature set, and c) a more detailed feature analysis of b).

5.3 Prediction of the Primary A�entional Focus
Finally, we explored the problem of predicting whether the primary focus of the users’ attention will be on the
phone or on the environment. Knowledge that users’ primary attention will stay on the mobile phone for a given
amount of time could be used to show messages or news or even to select users’ next task that is feasible to be
completed in the considered temporal horizon. More precisely, we aim at predicting whether the time spent in
�xations on the phone is larger than the time spent in �xations o� the phone in the next one and �ve seconds. It
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provides a good indication of where the user’s main focus of attention will be in the near future. This is a slightly
easier task than the ones studied before given that it is not that sensitive to a large number of short attention
shifts to the environment or the phone. We again investigate the di�erence of predictions during working and
waiting time, as well as the in�uence of di�erent feature sets towards the prediction performance.

As can be seen from Figure 11, for this prediction task, our method reaches an F1 score of more than 0.7
for both target window sizes as well as working and waiting time segments, which indicates that the problem
is simpler than the ones investigated above. It can also be seen that combining features is helpful in all cases.
Figure 11c shows that especially head IMU, depth, and face features from the egocentric feature subsets as well
as the phone IMU and app usage features contribute to the good performance of our method. During waiting
time segments, phone-only features show competitive performance to our proposed features. As it can be seen
from Figure 11c, especially users’ app usage patterns on the mobile phone contribute to the performance. The
proposed feature combination can even be improved when taking gaze information into account reaching an
F1 performance larger than 0.8 during working and 0.75 during waiting time segments. Thus, for this kind
of prediction task a full eye tracking system is a meaningful setup. The increasing availability of mobile eye
tracking including on smartglasses as well as eye tracking using the cameras readily integrated in laptop, tablets,
and public displays [52, 62, 65] makes gaze another interesting source of information on users’ future attentive
behaviour. The corresponding confusion matrices show, that our approach performs clearly above chance on all
ground truth classes.

6 DISCUSSION
The experiments demonstrated that our method can predict several key aspects of attentive behaviour during
everyday mobile interactions, using a combination of egocentric and phone-integrated sensors stably over all
prediction tasks and in comparison with the investigated sensor combinations. Speci�cally, we showed that we
can predict shifts between the phone and environment as well as primary attentional focus above chance level.
Although the results do not reach an F1 score of 1.0, these results are promising for future mobile attentive user
interfaces, particularly given the large variability in natural user behaviour and the large number of possible
visual attractors in users’ environment and thus the di�culty of these prediction tasks.

Complexity. Prior work which focuses on laboratory conditions does not take the complexity of daily life
situations into account. Our method is the �rst to predict attentive behaviour during everyday mobile interactions
from real phone-integrated and body-worn sensors. Another distinction from prior work is that our data collection
constrained participants as little as possible, and speci�cally did not impose a scripted sequence of activities or
environments [39]. Based on the presented prediction tasks in Section 3, there are numerous applications for
attentive user interfaces. Similar to Obuchi et al. [37], predicted attention shifts could be exploited for detecting
breakpoints in users’ attentive behaviour to show noti�cations shortly before an attention shift takes place.
Without the possibility to predict future attention shifts, a noti�cation could only be displayed once the user’s
attention is in the environment (assuming the user’s attention was on the phone before). This would lead to a
larger e�ort, as the user has to switch his attention back to the device to process the noti�cation. The prediction
of attention shifts could even be leveraged to save energy of the current device while automatically turning
o� the screen when a shift to the environment is predicted before users’ attention leave the device screen, and
automatically turning on when a shift to the device is predicted. The knowledge of how long users will keep their
attention on an interface is very valuable information. It can be used to highlight messages or show news after
the user reached a point where he is not focused on the current task but still keeping attention on the interface,
or to mange user attention in such a way that the interface needs to change content or style of presentation to
keep the user’s attention beyond the predicted attention span. For a large number of applications it is also not
important that users keep their attention continuously on the phone, just that they do so for long enough. This
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information we are able to extract with the primary attentional focus prediction. We will discuss and recap the
�ndings of our experiment section and point out limitations and promising future work approaches.

Attention Shift Prediction. For predicting shifts to the environment, egocentric features contribute most to the
performance, indicated by F1 scores of above 0.6 (see Figure 7c). From the detailed feature analysis it can be seen
that especially face features, but also head IMU, semantic scene and depth features contribute positively to the
prediction of shifts to environment. In contrast, phone-only features show the best performance for predicting
attention shifts back to the mobile phone as shown in Figure 8c. The chance-level performance for the egocentric
features in Figure 8 suggest that shifts to the mobile phone were less in�uenced by the environment. This is as
expected given that such shifts are typically triggered by events on the mobile phone, such as an incoming chat
message or noti�cation. The analysis of predicting attention shifts for di�erent environments shows a robust
performance with our proposed feature set in each environment as well as task dependent performance peaks in
the corridor environment for shifts to the environment and on the street for shift back to the mobile phone (see
Figures 9a and 9c).

Attention Span Prediction. We further investigated the task of predicting the duration of the �rst and total
attention span on the phone. As can be seen from Figure 10, this task is also highly challenging. We achieved an
absolute error of about seven seconds for the �rst attention span, and about nine seconds for the total attention
span on the mobile phone during waiting, but 20 seconds during working segments. Attention span prediction
on the environment is even more di�cult during working time segments and similar in terms of performance
during waiting time segments.

Prediction of Primary Attentional Focus. Performance for predicting the primary attentional focus was even
higher with an F1 score of over 0.8 (see Figure 11). Our method again achieved the best performance but was
closely followed by the phone-integrated sensors. This result suggests that information readily available on
the phone is most informative for predicting on-phone attention, and performance can be improved further by
contextualising attentive behaviour using information about the visual scene.

20



Potential Applications. Automatic forecasting of user attention opens up a range of exciting new applications
that could have paradigm-changing impact on our everyday interactions with mobile devices. Starting with
attention span prediction, there is a variety of supportive functions which are highly desirable and have the
potential to ease our lives. Predicted attention shifts to a mobile device (see Figure 12a) could, for example, be
used to reduce the interaction delay. The device could start automatically and load the previous screen content
for a smooth transition and help to reorient. Attention forecasting also has applications for the detection of
imminently hazardous situations. Especially during car driving scenarios or walking on the street we want to
avoid attention shifts to the mobile device. With an attention forecasting application we would be able to detect
dangerous situations in the camera view and give an alert to the user to avoid such attention shifts.

For attention shifts to the environment (see Figure 12b) attention forecasting could be used to pro-actively
support the users and automatically pause a video already before the attention drifts away so that the user is
not missing a second. However, attentive user interfaces are also faced with situation where predicted attention
shifts to the environment should be prevented. Especially within face-to-face conversations in the real world or
during a Skype meeting attentive user interfaces could help us to keep our focus giving an alert avoiding unkind
behaviour. Alternatively, if a user really wants to �nish a task, the attentive user interface could support him
to keep the attention on the device by changing content or style of content presentation. Besides applications
of attention shift forecasting, attention span prediction further extends application opportunities. If a longer
attention span to a mobile device is predicted and the user’s current activity on the mobile device is not focused
this could be used to show missed messages or noti�cations (see Figure 12c). Moreover, the user interface could
suggest the next task to be performed by the user in the predicted attention span. Similar to avoiding attention
shifts in dangerous situations, attentive user interfaces could break longer predicted attention spans to a mobile
device or interface when potential threads are detected via a scene camera. These kinds of lifesaving applications
are only possible with attention forecasting as proposed in this paper.

Even longer forecast attention spans on the environment could be further used to ease our lives (see Figure 12d).
Slowing updates or calculations during mobile device interaction can be avoided and shifted to time spans where
we spend our attention on the environment. However, when the predicted attention span on the environment is
too long, attentive user interfaces could warn the user so that the current task can be �nished in time. Although
it is still a long a way towards a perfect attention forecasting, attention shift and attention span predictions could
help to ease our lives, improve our working performance and even protect us from dangerous situations.

Limitations and Future Work. Automatic prediction of attention shifts and attention span has signi�cant
potential to become a key component in future mobile attentive user interfaces. Despite our encouraging results,
our method still has several limitations. First, in this work we only considered visual triggers, but attention shifts
to the environment can also be triggered by auditory stimuli. We opted for a visual-only approach, assuming that
participants behave di�erently if they are aware of their voice and discussions being recorded continuously. While
participants forget that they are wearing head-mounted devices, such as eye trackers [46], it will be important to
see whether this is also true for body-worn microphones. If yes, this could lead to interesting follow-up research
to analyse both visual and auditory information for predicting mobile attentive behaviour. Second, we only
considered prediction of temporal characteristics of attention, namely timing of attention shifts and attention
span. In addition, future mobile attentive user interfaces could also predict “where” user attention will shift to.
Third, while all our predictions were clearly above chance level, performance has to further increase to make
attention forecasting using wearable sensors practically useful. In order to improve the performance, additional
sensors like heart rate, galvanic skin response (GSR) or brain activity could be used. Also the method itself could
be improved. Instead of per pixel object segmentations, we could also use spatio-temporal CNN features extracted
from each frame that showed superior performance for other egocentric vision tasks [44, 55].
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7 CONCLUSION
In this work we explored attention forecasting – the task of predicting future allocation of users’ overt visual
attention during interactions with a mobile phone. We proposed three prediction tasks with direct relevance
for future mobile attentive user interfaces as well as a �rst computational method to predict key characteristics
of attentive behaviour from phone-integrated and wearable sensors. We evaluated our method on a novel 20-
participant dataset and demonstrated its e�ectiveness in predicting attention shifts between the mobile phone and
the environment as well as attention spans on the mobile phone and on the environment. Our results demonstrate
both the feasibility but also signi�cant challenge of attention forecasting and point towards a new class of user
interfaces that pro-actively support, guide or even optimise for users’ ever-changing attentive behaviour.

ACKNOWLEDGEMENTS
We would like to thank all participants for their help with the data collection as well as Preeti Dolakasharia,
Nahid Akhtar and Muhammad Muaz Usmani for their help with the annotation. This work was funded, in part,
by the Cluster of Excellence on Multimodal Computing and Interaction (MMCI) at Saarland University, as well as
a JST CREST research grant (grant number JPMJCR14E1).

REFERENCES
[1] Saeed Abdullah, Elizabeth L Murnane, Mark Matthews, Matthew Kay, Julie A Kientz, Geri Gay, and Tanzeem Choudhury. 2016. Cognitive

rhythms: unobtrusive and continuous sensing of alertness using a mobile phone. In Proc. UbiComp. 178–189.
[2] Christoph Anderson, Clara Heißler, Sandra Ohly, and Klaus David. 2016. Assessment of social roles for interruption management: a

new concept in the �eld of interruptibility. In Adj. Proc. UbiComp. 1530–1535. DOI:http://dx.doi.org/10.1145/2968219.2968544
[3] Alejandro Betancourt, Pietro Morerio, Carlo S Regazzoni, and Matthias Rauterberg. 2015. The evolution of �rst person vision methods:

A survey. IEEE Transactions on Circuits and Systems for Video Technology 25, 5 (2015), 744–760.
[4] Ali Borji and Laurent Itti. 2013. State-of-the-art in visual attention modeling. IEEE transactions on pattern analysis and machine

intelligence 35, 1 (2013), 185–207.
[5] Leo Breiman. 2001. Random forests. Machine Learning 45, 1 (2001), 5–32. DOI:http://dx.doi.org/10.1023/A:1010933404324
[6] Andreas Bulling. 2016. Pervasive Attentive User Interfaces. IEEE Computer 49, 1 (2016), 94–98. DOI:http://dx.doi.org/10.1109/MC.2016.32
[7] Andreas Bulling, Jamie A. Ward, Hans Gellersen, and Gerhard Tröster. 2011. Eye Movement Analysis for Activity Recognition Using

Electrooculography. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 4 (April 2011), 741–753.
[8] Andreas Bulling, Christian Weichel, and Hans Gellersen. 2013. EyeContext: Recognition of High-level Contextual Cues from Human

Visual Behaviour. In Proc. ACM SIGCHI. 305–308. DOI:http://dx.doi.org/10.1145/2470654.2470697
[9] Zhicong Cheng, Bin Gao, and Tie-Yan Liu. 2010. Actively predicting diverse search intent from user browsing behaviors. In Proc. WWW.

221–230.
[10] Driss Choujaa and Naranker Dulay. 2010. Predicting human behaviour from selected mobile phone data points. In Proc. UbiComp.

105–108. DOI:http://dx.doi.org/10.1145/1864349.1864368
[11] Minsoo Choy, Daehoon Kim, Jae-Gil Lee, Heeyoung Kim, and Hiroshi Motoda. 2016. Looking back on the current day: interruptibility

prediction using daily behavioral features. In Proc. UbiComp. 1004–1015.
[12] Nelson Cowan. 1998. Attention and memory: An integrated framework. Oxford University Press.
[13] Edward Cutrell, Mary Czerwinski, and Eric Horvitz. 2001. Noti�cation, disruption, and memory: E�ects of messaging interruptions on

memory and performance. (2001).
[14] David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth map prediction from a single image using a multi-scale deep network. In

Advances in neural information processing systems. 2366–2374.
[15] Anja Exler, Marcel Braith, Andrea Schankin, and Michael Beigl. 2016. Preliminary investigations about interruptibility of smartphone

users at speci�c place types. In Adj. Proc. UbiComp. 1590–1595. DOI:http://dx.doi.org/10.1145/2968219.2968554
[16] Alois Ferscha. 2014. Attention, Please! IEEE Pervasive Computing 13, 1 (2014), 48–54. DOI:http://dx.doi.org/10.1109/MPRV.2014.3
[17] John M Findlay and Iain D Gilchrist. 2003. Active vision: The psychology of looking and seeing. Number 37. Oxford University Press.
[18] James Fogarty, Scott E Hudson, Christopher G Atkeson, Daniel Avrahami, Jodi Forlizzi, Sara Kiesler, Johnny C Lee, and Jie Yang. 2005.

Predicting human interruptibility with sensors. ACM Transactions on Computer-Human Interaction 12, 1 (2005), 119–146.
[19] Tom Foulsham, Esther Walker, and Alan Kingstone. 2011. The where, what and when of gaze allocation in the lab and the natural

environment. Vision research 51, 17 (2011), 1920–1931.

22

http://dx.doi.org/10.1145/2968219.2968544
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/MC.2016.32
http://dx.doi.org/10.1145/2470654.2470697
http://dx.doi.org/10.1145/1864349.1864368
http://dx.doi.org/10.1145/2968219.2968554
http://dx.doi.org/10.1109/MPRV.2014.3


[20] S. Garrido-Jurado, R. Munoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marin-Jimenez. 2014. Automatic generation and detection of highly
reliable �ducial markers under occlusion. Pattern Recognition 47, 6 (2014), 2280 – 2292. DOI:http://dx.doi.org/10.1016/j.patcog.2014.01.005

[21] Carl Gutwin, Scott Bateman, Gaurav Arora, and Ashley Coveney. 2017. Looking Away and Catching Up: Dealing with Brief Attentional
Disconnection in Synchronous Groupware. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and
Social Computing. ACM, 2221–2235.

[22] James V Haxby, Elizabeth A Ho�man, and M Ida Gobbini. 2002. Human neural systems for face recognition and social communication.
Biological Psychiatry 51, 1 (2002), 59–67. DOI:http://dx.doi.org/10.1016/S0006-3223(01)01330-0

[23] Corey Holland and Oleg Komogortsev. 2012. Eye tracking on unmodi�ed common tablets: challenges and solutions. In Proc. ETRA.
277–280. DOI:http://dx.doi.org/10.1145/2168556.2168615

[24] Qiong Huang, Ashok Veeraraghavan, and Ashutosh Sabharwal. 2015. TabletGaze: unconstrained appearance-based gaze estimation in
mobile tablets. arXiv preprint arXiv:1508.01244 (2015).

[25] Laurent Itti and Christof Koch. 2000. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision research
40, 10 (2000), 1489–1506.

[26] Zhiping Jiang, Jinsong Han, Chen Qian, Wei Xi, Kun Zhao, Han Ding, Shaojie Tang, Jizhong Zhao, and Panlong Yang. 2016. VADS:
Visual attention detection with a smartphone. In Proc. INFOCOM. 1–9. DOI:http://dx.doi.org/10.1109/INFOCOM.2016.7524398

[27] Moritz Kassner, William Patera, and Andreas Bulling. 2014. Pupil: an open source platform for pervasive eye tracking and mobile
gaze-based interaction. In Adj. Proc. UbiComp. 1151–1160. http://dx.doi.org/10.1145/2638728.2641695

[28] Dagmar Kern, Paul Marshall, and Albrecht Schmidt. 2010. Gazemarks: gaze-based visual placeholders to ease attention switching. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2093–2102.

[29] Davis E. King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning Research 10 (2009), 1755–1758.
[30] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T Campbell. 2010. A survey of mobile

phone sensing. IEEE Communications Magazine 48, 9 (2010), 140–150. DOI:http://dx.doi.org/10.1109/MCOM.2010.5560598
[31] Fayao Liu, Chunhua Shen, and Guosheng Lin. 2015. Deep convolutional neural �elds for depth estimation from a single image. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5162–5170.
[32] Paul P. Maglio, Rob Barrett, Christopher S. Campbell, and Ted Selker. 2000. SUITOR: An attentive information system. In Proc. IUI.

169–176. DOI:http://dx.doi.org/10.1145/325737.325821
[33] Alexander Mariakakis, Mayank Goel, Md Tanvir Islam Aumi, Shwetak N Patel, and Jacob O Wobbrock. 2015. SwitchBack: Using Focus

and Saccade Tracking to Guide Users’ Attention for Mobile Task Resumption. In Proc. ACM SIGCHI. 2953–2962.
[34] Akhil Mathur, Nicholas D Lane, and Fahim Kawsar. 2016. Engagement-aware computing: modelling user engagement from mobile

contexts. In Proc. UbiComp. 622–633. DOI:http://dx.doi.org/10.1145/2971648.2971760
[35] Miikka Miettinen and Antti Oulasvirta. 2007. Predicting time-sharing in mobile interaction. User Modeling and User-Adapted Interaction

17, 5 (2007), 475–510.
[36] Wookhee Min, Bradford W Mott, Jonathan P Rowe, Barry Liu, and James C Lester. 2016. Player Goal Recognition in Open-World Digital

Games with Long Short-Term Memory Networks.. In Proc. IJCAI. 2590–2596.
[37] Mikio Obuchi, Wataru Sasaki, Tadashi Okoshi, Jin Nakazawa, and Hideyuki Tokuda. 2016. Investigating interruptibility at activity

breakpoints using smartphone activity recognition API. In Adj. Proc. UbiComp. 1602–1607.
[38] Antti Oulasvirta. 2005. The fragmentation of attention in mobile interaction, and what to do with it. interactions 12, 6 (2005), 16–18.
[39] Antti Oulasvirta, Sakari Tamminen, Virpi Roto, and Jaana Kuorelahti. 2005. Interaction in 4-second bursts: the fragmented nature of

attentional resources in mobile HCI. In Proc. CHI. 919–928. DOI:http://dx.doi.org/10.1145/1054972.1055101
[40] Lucas Paletta, Helmut Neuschmied, Michael Schwarz, Gerald Lodron, Martin Pszeida, Stefan Ladstätter, and Patrick Luley. 2014.

Smartphone eye tracking toolbox: accurate gaze recovery on mobile displays. In Proc. ETRA. 367–68.
[41] Lucas Paletta, Katrin Santner, Gerald Fritz, Heinz Mayer, and Johann Schrammel. 2013. 3D attention: measurement of visual saliency

using eye tracking glasses. In Ext. Abstr. CHI. 199–204. DOI:http://dx.doi.org/10.1145/2468356.2468393
[42] Thies Pfei�er. 2012. Measuring and visualizing attention in space with 3d attention volumes. In Proc. ETRA. 29–36. DOI:http:

//dx.doi.org/10.1145/2168556.2168560
[43] Martin Pielot, Tilman Dingler, Jose San Pedro, and Nuria Oliver. 2015. When attention is not scarce-detecting boredom from mobile

phone usage. In Proc. UbiComp. 825–836. DOI:http://dx.doi.org/10.1145/2750858.2804252
[44] Yair Poleg, Ariel Ephrat, Shmuel Peleg, and Chetan Arora. 2016. Compact cnn for indexing egocentric videos. In Applications of Computer

Vision (WACV), 2016 IEEE Winter Conference on. IEEE, 1–9.
[45] Harish Chaandar Ravichandar and Ashwin P Dani. 2017. Human Intention Inference Using Expectation-Maximization Algorithm With

Online Model Learning. IEEE Trans. Autom. Sci. Eng. 14, 2 (2017), 855–868.
[46] Evan F Risko and Alan Kingstone. 2011. Eyes Wide Shut: Implied Social Presence, Eye Tracking and Attention. Attention, Perception, &

Psychophysics 73, 2 (2011), 291–296. DOI:http://dx.doi.org/10.3758/s13414-010-0042-1
[47] Monica Rosenberg, Sarah Noonan, Joseph DeGutis, and Michael Esterman. 2013. Sustaining visual attention in the face of distraction: A

novel gradual-onset continuous performance task. Attention, Perception, & Psychophysics 75, 3 (2013), 426–439. DOI:http://dx.doi.org/10.

23

http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1016/S0006-3223(01)01330-0
http://dx.doi.org/10.1145/2168556.2168615
http://dx.doi.org/10.1109/INFOCOM.2016.7524398
http://dx.doi.org/10.1145/2638728.2641695
http://dx.doi.org/10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1145/325737.325821
http://dx.doi.org/10.1145/2971648.2971760
http://dx.doi.org/10.1145/1054972.1055101
http://dx.doi.org/10.1145/2468356.2468393
http://dx.doi.org/10.1145/2168556.2168560
http://dx.doi.org/10.1145/2168556.2168560
http://dx.doi.org/10.1145/2750858.2804252
http://dx.doi.org/10.3758/s13414-010-0042-1
http://dx.doi.org/10.3758/s13414-012-0413-x
http://dx.doi.org/10.3758/s13414-012-0413-x


3758/s13414-012-0413-x
[48] Joshua S Rubinstein, David E Meyer, and Je�rey E Evans. 2001. Executive control of cognitive processes in task switching. Journal of

Experimental Psychology: Human Perception and Performance 27, 4 (2001), 763. DOI:http://dx.doi.org/10.1037/0096-1523.27.4.763
[49] Shiori Sato and Jun I Kawahara. 2015. Attentional capture by completely task-irrelevant faces. Psychological Research 79, 4 (2015),

523–533. DOI:http://dx.doi.org/10.1007/s00426-014-0599-8
[50] Ross Girshick Jian Sun Shaoqing Ren, Kaiming He. 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks. arXiv preprint arXiv:1506.01497 (2015).
[51] Julian Steil and Andreas Bulling. 2015. Discovery of Everyday Human Activities From Long-term Visual Behaviour Using Topic Models.

In Proc. ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp). 75–85.
[52] Yusuke Sugano, Xucong Zhang, and Andreas Bulling. 2016. Aggregaze: Collective estimation of audience attention on public displays.

In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. ACM, 821–831.
[53] Kentaro Takemura, Yuji Kohashi, Tsuyoshi Suenaga, Jun Takamatsu, and Tsukasa Ogasawara. 2010. Estimating 3D point-of-regard and

visualizing gaze trajectories under natural head movements. In Proc. ETRA. 157–160. DOI:http://dx.doi.org/10.1145/1743666.1743705
[54] Marcus Tonnis and Gudrun Klinker. 2006. E�ective control of a car driver’s attention for visual and acoustic guidance towards the

direction of imminent dangers. In Proceedings of the 5th IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE
Computer Society, 13–22.

[55] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015. Learning spatiotemporal features with 3d
convolutional networks. In Proceedings of the IEEE international conference on computer vision. 4489–4497.

[56] Liam D Turner, Stuart M Allen, and Roger M Whitaker. 2015. Interruptibility prediction for ubiquitous systems: conventions and new
directions from a growing �eld. In Proc. UbiComp. 801–812. DOI:http://dx.doi.org/10.1145/2750858.2807514

[57] Gašper Urh and Veljko Pejović. 2016. TaskyApp: inferring task engagement via smartphone sensing. In Adj. Proc. UbiComp. 1548–1553.
DOI:http://dx.doi.org/10.1145/2968219.2968547

[58] Vytautas Vaitukaitis and Andreas Bulling. 2012. Eye Gesture Recognition on Portable Devices. In Proc. International Workshop on
Pervasive Eye Tracking and Mobile Gaze-Based Interaction (PETMEI). 711–714. DOI:http://dx.doi.org/10.1145/2370216.2370370

[59] Roberto Valenti, Nicu Sebe, and Theo Gevers. 2012. Combining head pose and eye location information for gaze estimation. IEEE
Transactions on Image Processing 21, 2 (2012), 802–815.

[60] Limin Wang, Sheng Guo, Weilin Huang, and Yu Qiao. 2015. Places205-vggnet models for scene recognition. arXiv preprint arXiv:1508.01667
(2015).

[61] Dominik Weber and Sven Mayer. 2014. LogEverything. https://github.com/hcilab-org/LogEverything/. (2014).
[62] Erroll Wood and Andreas Bulling. 2014. Eyetab: Model-based gaze estimation on unmodi�ed tablet computers. In Proc. ETRA. 207–210.

DOI:http://dx.doi.org/10.1145/2578153.2578185
[63] Erroll Wood and Andreas Bulling. 2014. EyeTab: Model-based gaze estimation on unmodi�ed tablet computers. In Proc. International

Symposium on Eye Tracking Research and Applications (ETRA). 207–210.
[64] Kentaro Yamada, Yusuke Sugano, Takahiro Okabe, Yoichi Sato, Akihiro Sugimoto, and Kazuo Hiraki. 2011. Attention prediction in

egocentric video using motion and visual saliency. In Paci�c-Rim Symposium on Image and Video Technology. Springer, 277–288.
[65] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. 2015. Appearance-Based Gaze Estimation in the Wild. In Proc. of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015) (2015-03-02). 4511–4520. DOI:http://dx.doi.org/10.1109/CVPR.
2015.7299081

[66] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip HS
Torr. 2015. Conditional random �elds as recurrent neural networks. In Proc. ICCV. 1529–1537.

[67] Sheng-hua Zhong, Yan Liu, To-Yee Ng, and Yang Liu. 2016. Perception-oriented video saliency detection via spatio-temporal attention
analysis. Neurocomputing 207 (2016), 178–188.

24

http://dx.doi.org/10.3758/s13414-012-0413-x
http://dx.doi.org/10.3758/s13414-012-0413-x
http://dx.doi.org/10.1037/0096-1523.27.4.763
http://dx.doi.org/10.1007/s00426-014-0599-8
http://dx.doi.org/10.1145/1743666.1743705
http://dx.doi.org/10.1145/2750858.2807514
http://dx.doi.org/10.1145/2968219.2968547
http://dx.doi.org/10.1145/2370216.2370370
https://github.com/hcilab-org/LogEverything/
http://dx.doi.org/10.1145/2578153.2578185
http://dx.doi.org/10.1109/CVPR.2015.7299081
http://dx.doi.org/10.1109/CVPR.2015.7299081

	Abstract
	1 Introduction
	2 Related Work
	2.1 User Behaviour Modelling on Handheld Devices
	2.2 Gaze Analysis in Mobile Settings
	2.3 Computational Modelling of Egocentric Attention

	3 Forecasting User Attention During Mobile Interactions
	3.1 Prediction Tasks
	3.2 Proposed Method
	3.3 Feature Extraction

	4 Data Collection
	4.1 Apparatus
	4.2 Procedure
	4.3 Data Preprocessing
	4.4 Data Annotation

	5 Experiments
	5.1 Prediction of Attention Shifts
	5.2 Prediction of Attention Span
	5.3 Prediction of the Primary Attentional Focus

	6 Discussion
	7 Conclusion
	References

