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ABSTRACT
As first-person cameras in head-mounted displays become in-
creasingly prevalent, so does the problem of infringing user
and bystander privacy. To address this challenge, we present
PrivacEye, a proof-of-concept system that detects privacy-
sensitive everyday situations and automatically enables and
disables the first-person camera using a mechanical shutter. To
close the shutter, PrivacEye detects sensitive situations from
first-person camera videos using an end-to-end deep-learning
model. To open the shutter without visual input, PrivacEye
uses a separate, smaller eye camera to detect changes in users’
eye movements to gauge changes in the “privacy level” of
the current situation. We evaluate PrivacEye on a dataset of
first-person videos recorded in the daily life of 17 participants
that they annotated with privacy sensitivity levels. We dis-
cuss the strengths and weaknesses of our proof-of-concept
system based on a quantitative technical evaluation as well as
qualitative insights from semi-structured interviews.
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INTRODUCTION
Head-mounted devices with built-in first-person cameras, such
as action cameras or “smart glasses”, are pushing to the market.
These devices do not only allow users to create high-quality,
first-person visual imagery but might also enable promising
functionalities, such as visual tracking for indoor naviga-
tion [30], memory augmentation [17], or character recognition
for in-situ translation [32]. However, there are many every-
day situations in which first-person cameras pose a privacy
risk given that the recorded imagery may contain highly sensi-
tive personal information, such as login credentials, banking
information or personal text messages. In addition, images
potentially allow to identify depicted persons and may thus
also infringe the privacy of bystanders. Particularly in certain
locations or during privacy-sensitive tasks, such as personal
conversations [23], first-person cameras are therefore often
perceived as unpleasant or even undesired [20].
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Figure 1: PrivacEye opens and closes a mechanical camera
shutter (top) to increase the privacy of the user and potential
bystanders. Privacy-sensitive situations are detected from the
first-person video to close the shutter (middle). Any subse-
quent significant change in eye movement behaviour triggers
opening of the shutter again (bottom).

However, despite the significant privacy risks that first-person
cameras pose, solutions addressing these challenges are sur-
prisingly limited. Users can employ self-censorship [22] but
they are prone to misinterpret situations, be unaware of so-
cial norms and legal regulations, or forget to de-activate or
re-activate the camera. This might reduce their user experience
and comfort, or increase their mental end emotional load – and
potentially capture and leak sensitive personal information.
Prior work therefore investigated alternative solutions, such as
to communicate bystander’s privacy preferences using short-
range wireless radio [1], visual markers [41] or techniques to
compromise recordings [16, 47]. However, all of these meth-
ods require bystanders to take action themselves to protect
their privacy. We are not aware of a single work that addressed
the problem at the source, i.e. the sensor of the camera itself,
as well as the privacy of both the wearer and, by his choice of
privacy sensitivity, also of bystanders.

We propose PrivacEye, a proof-of-concept first-person vi-
sion system that combines a deep-learning computer vision
method to detect privacy-sensitive situations with eye move-
ment analysis to detect changes in the “privacy level” of the
current situation. If a privacy-sensitive situation is detected,
the scene camera is occluded by a shutter. In contrast to the
state of the art, we de-activate the camera completely, thereby
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also signalling this to bystanders. This approach is fully se-
cure but the lack of visual input requires another approach
to open the shutter and restart the recording. We propose to
use a second camera mounted close to the user’s eye to detect
changes in eye movement behaviour. Prior work demonstrated
that eye movement analysis can be used to infer visual and
physical activities [6, 44], or to detect social interactions and
users’ current environment [7]. It is therefore conceivable that
eye movements are also related to privacy-relevant situations
and activities. Unlike other sensing techniques, such as mi-
crophones or infra-red cameras, this approach also does not
infringe on the privacy of potential bystanders.

The contributions of this work are three-fold: First, we present
PrivacEye, a proof-of-concept system that combines computer
vision with eye movement analysis to enable context-specific,
privacy-preserving de-activation and re-activation of a first-
person camera. Second, we evaluate our system on a dataset of
real-world mobile interactions as well as eye movement data
annotated with the location, activities, and privacy sensitivity
levels of 17 participants. Third, we provide qualitative insights
on perceived social acceptability, perceived trustworthiness,
and desirability from semi-structured interviews.

RELATED WORK
Our work is related to previous works studying (1) privacy
concerns with first-person cameras and (2) methods to enhance
the privacy of such cameras.

Privacy concerns with first-person cameras
First-person (egocentric) cameras see ever more widespread
adoption in action cameras or as part of head-mounted dis-
plays and smart glasses. First-person cameras are better suited
for continuous and unobtrusive video recordings than phone-
integrated cameras and, in contrast to CCTVs, mobile and con-
trolled by individuals. This makes them to be perceived more
unsettling by bystanders [11]. Both users’ and bystanders’
privacy concerns and attitudes towards head-mounted devices
with integrated cameras were found to be affected by context,
situation, usage intentions [23], as well as user group [39].
Hoyle et al. showed that the presence and number of peo-
ple in a picture, of specific objects (e.g., computer displays,
ATM cards, physical documents), as well as location and
activity affected whether lifeloggers deemed an image “share-
able” [20]. They also highlighted the need for automatic
privacy-preserving mechanisms detecting those elements, as
individual sharing decisions are likely to be context-dependent
and subjective. Their results were partly confirmed by Price et
al. who, however, found no significant differences in sharing
when a screen was present [38]. Chowdhury et al. [10] found
that whether lifelogging imagery is suitable for sharing is (in
addition to content, scenario, and location) mainly determined
by its sensitivity. Ferdous et al. proposed a set of guidelines
that, amongst others, include semi-automatic procedures to
determine the sensitivity of captured images according to user-
provided preferences [14]. All of these works underline the
highly privacy-sensitive nature of head-mounted displays, and
first-person cameras in particular, as well as the importance of
active measures to protect the privacy of users and bystanders.

Enhancing the privacy of first-person cameras
Works in the area of enhancing the privacy of first-person cam-
eras can be clustered according to whether they focused on
potential bystanders or the user himself. To increase privacy
for bystanders, researchers suggested communicating their
privacy preferences to nearby capture devices using wireless
connections as well as mobile or wearable interfaces [26].
Others suggested to prevent non-compliant capturing devices
from unauthorised recording by compromising the recorded
imagery, e.g., using infra-red light signals [15, 50] or by dis-
turbing face recognition [16]. In contrast to our approach,
these techniques all require the bystander to take action, which
might be impractical due to costs and efforts [11].

Work on increasing the privacy of the user has mainly fo-
cused on techniques that require active involvement of the
user. For example, Templeman et al. introduced PlaceAvoider,
a technique that allowed users to “blacklist” sensitive spaces,
e.g., bathrooms or bedrooms, performing image analysis with
object-level and scene-level image features to classify where a
photo was taken [46]. A similar approach was followed by Er-
ickson et al. who introduced a method to identify security risks,
such as ATM, keyboards, and credit cards, in images captured
by first-person wearable devices [13]. However, instead of
assessing the whole scene in terms of privacy sensitivity, their
system only detected individual sensitive objects. Raval et
al. presented MarkIt, a computer vision based privacy marker
framework that allowed users to use self-defined bounding
boxes and hand-gestures to restrict visibility of content on
two dimensional surfaces (e.g., white boards) or sensitive real-
world objects [40]. Similarly, ScreenAvoider allowed users to
control the disclosure of images with computer screens and
their sensitive content detected using a Convolutional Neu-
ronal Network (CNN) [24, 25].

While all of these methods improved privacy, they either only
did so post-hoc, i.e. after images had already been captured,
or they required active user input. In contrast, our approach
aims to prevent potentially sensitive imagery to be recorded at
all and automatically in the background, i.e. without engaging
the user. Unlike current computer vision based approaches
that work in image space, e.g. by masking objects or faces [40,
43, 50], restricting access [24] or deleting recorded images
post-hoc [46], we (1) de-activate the camera completely using
a mechanical shutter and also signal this to bystanders. Our
approach further employs, for the first time, eye movement
analysis for camera re-activation which unlike other sensing
techniques (e.g., microphones, infra-red cameras), does not
compromise the privacy of potential bystanders.

DESIGN RATIONALE AND INTERACTION DESIGN
We first discuss the rationale behind PrivacEye and motivate
our design decisions based on user and bystander goals.

Goals and Expectations of Users & Bystanders
To illustrate the goals and expectations of users and bystanders
of smart glasses and the requirements that result there from,
we use a fictive scenario with two main characters, Ada (a
user of smart glasses), and Ben (an acquaintance of hers) who
assumes the bystander role. Ada uses a smart glasses with
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(a)

Recording Content Examples

intended non-sensitive lifestyle shots, (live-) video (e.g., for lifelogging, social media), continu-
ous camera stream (e.g., for tracking, localisation)

unintended non-sensitive uninteresting (e.g., flooring), blurry, or over-/underexposed imagery

intended sensitive secret photography (e.g., upskirts), or documentation purposes (e.g.,
accidents)

unintended sensitive incidental (e.g., bystanders) or inadvertent (e.g., login screens) captures
of sensitive content

(b)

Figure 2: Systematisation (a), and examples (b) of types of imagery that is potentially captured by an “always-on” camera.
PrivacEye reacts to unintended, sensitive imagery (Figure 2a, top right) with a closed shutter and to intended, non sensitive imagery
(Figure 2a, bottom left) with an open shutter.

PrivacEye. The subsequent narratives (in boxes) highlight
where PrivacEye supports Ada in achieving her goals, namely
avoiding the misclosure (i.e., accidental disclosure [8]) of
sensitive data, and in being polite and avoid social friction and
conflicts. In addition, we discuss what might have happened
without PrivacEye’s support in these situations.

Goal: Avoid Misclosure of Sensitive Data

While travelling, Ada uses smart glasses to receive navi-
gation hints, that utilize GPS and visual tracking based on
images from the device’s built-in first-person camera. In
addition, the camera is “always-on” to capture important
moments of her travel experiences and assist her with
in-situ translation. Sensitive information, however, should
not be captured. When Ada handles e.g., her wallet or
passport, the system automatically de-activates the cam-
era and covers its lens with a shutter, before she takes out
her credit card, or her passport number becomes visible.

The reason why Ada is wearing the smart glasses device is
that she wants to make use of a particular functionality, in her
case: visual navigation. However, due to their “always-on”
characteristic, her glasses do not only capture what is intended
to be captured. Regarding the sensitivity of their content, and
recording intention, the captured imagery can be classified in
a 2× 2 matrix as depicted in Figure 2a. The navigation aid
is based on capturing of the landmarks required for tracking
and localisation (intended, non-sensitive imagery). In addition
also unintended imagery is captured. These images can be
either just uninteresting or useless (unintended, non-sensitive)
or contain sensitive data (unintended, sensitive) (c.f., [19, 24]).
For illustration, we list examples in Table 2b. To prevent
misclosures [8], sensitive data should not be captured. How-
ever, requiring the user to constantly monitor her actions and
environment for potential sensitive information (and then de-
activate the camera manually) might increase workload and
cause stress. While her mind is occupied elsewhere during her
travels, she might be forgetful, overlook sensitive items or mis-
interpret certain situations. Thus, we assume that automatic
support from the system would be desirable for her.

Goal: Avoid Social Friction

The system also reacts to interpersonal conversations.
So, when Ben approaches Ada in a café and they start to
chat, it grants them privacy by de-activating the camera,
which Ben can also infer from the closed shutter. While the
first-person camera is de-activated, the system observes
Ada’s eye movements. When Ben leaves, or Ada puts her
documents away and resumes another activity, e.g., sight-
seeing, the system detects a change in eye behaviour, and
re-activates the first-person camera, without her having
to think of it.

The smart glasses recording capabilities would cause social
friction between Ada and Ben, if there was no clear indication
whether the camera is on or off. If the recording status is
unclear, bystanders might even perceive device usage as a
privacy threat if the camera is turned off [23]. In consequence
they feel uncomfortable around those devices [4, 11, 12, 23].
In addition, automatic re-activation ensures that Ada does
not forget to enable the camera manually, when leaving the
café. While for visual navigation, her forgetfulness might only
impact localisation performance, for a lifelogging use case it
might lead to “lost memories” and disappointment.

Design Requirements
The interaction design of PrivacEye addresses three design
requirements, following the previously discussed scenarios,
and resulting from an analysis of prior research:

Requirement 1: The user can make use of the camera-based
functionality without the risk of misclosures or leakage of
sensitive information.
Requirement 2: The system pro-actively reacts to presence
or absence potentially privacy-sensitive situations and objects.
Requirement 3: The camera device communicates the record-
ing status clearly to both user and bystander.

PrivacEye PROTOTYPE
With PrivacEye we present a proof-of-concept prototype that
aims to address all of these requirements. The hardware proto-
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Figure 3: PrivacEye prototype, with labelled components (A),
and worn by a user with an USB-connected laptop in a back-
pack (B). Detection of privacy-sensitive situations using com-
puter vision closes the camera shutter (C), which is re-opened
based on detected changes in users’ eye movement (D).

type, shown in Figure 3, is based on the PUPIL head-mounted
eye tracker [21] and features one 640×480 pixels camera (“eye
camera”) recording the right eye from close proximity (30 fps),
and a second camera (1280×720 pixels, 24 fps) recording the
user’s environment (“scene camera”). The first-person camera
is equipped with a fish eye lens with a 175◦ field of view and
can be closed with a custom-made mechanical shutter. The
cameras and shutter were connected to a laptop via USB. Pri-
vacEye further consists of two main software components: 1)
detection of privacy-sensitive situations to close the mechani-
cal camera shutter and 2) detection of changes in users’ eye
movements that are likely to indicate suitable points in time
for re-opening the camera shutter.

Detection of Privacy-Sensitive Situations
To detect privacy-sensitive situations, inspired by prior work
on predicting privacy-sensitive pictures posted in social net-
works [33], we used a pre-trained GoogleNet, a 22-layer deep
convolutional neural network [45]. We adapted the original
GoogleNet model for our specific prediction task by adding
two additional fully connected (FC) layers. The first layer was
used to reduce the feature dimensionality from 1024 to 68 and
the second one, a Softmax layer, to calculate the prediction
scores. Output of our model was a score for each first-person
image indicating whether the situation visible in that image is
privacy-sensitive or not. The cross-entropy loss was used to
train the model. The model is shown in Figure 4.

Ground Truth
Scores

Images
I

GoogleNet

Features: 1024

Feature 
Extraction

Features: 68

...

...

Fully Connected
Layer (FC)

Cross-Entropy
 Loss

Softmax
Predictions

Features: 2

...
Figure 4: Our method for detecting privacy-sensitive situ-
ations is based on a pre-trained GoogleNet model that we
adapted with a fully connected (FC) and a Softmax layer.
Cross-entropy loss is used for training the model.

Fixation (8) rate, mean, max, var of durations, mean/var of
mean/var pupil position within one fixation

Saccades (12) rate/ratio of (small/large/right/left) saccades,
mean, max, variance of amplitudes

Combined (1) ratio saccades to fixations

Wordbooks (24) number of non-zero entries, maximum and min-
imum entries as well as their difference for n-
grams with n <= 4

Blinks (3) rate, mean/var blink duration

Pupil Diameter (4) mean/variance of mean/variance during fixations

Table 1: We extracted a total of 52 eye movement features to
describe user’s visual behaviour. The number of features per
category is given in parentheses.

Detection of Changes in Eye Movement
A naive, vision-only system could re-open the shutter at regular
intervals, e.g. every 30 seconds, to detect whether the current
situation is still privacy-sensitive. This approach, however,
might negatively affect perceived reliability, and thus increase
mistrust in the system, or cause unnecessary distraction, e.g.,
during conversations. The goal of this second component is
to instead detect changes in users’ eye movements that are
likely to be linked to changes in the privacy sensitivity of the
current situation, and thereby to reduce the number of shutter
re-openings as much as possible. To detect such changes we
perform two steps: 1) eye movement feature extraction and
selection, and 2) change point detection followed by extrema
detection using these features.

Feature Extraction and Selection
We extracted characteristic eye movement features using only
the eye camera video data. Table 1 summarises the features we
extracted from fixations, saccades, blinks, pupil diameter and
user’s scan paths, where each saccadic movement is encoded
as a character forming words of length n (wordbook). Similar
to [5, 18], we extracted these features on a sliding window of
30 seconds (step size of 5 seconds). We then selected the 10
most relevant eye movement features using minimum redun-
dancy maximum relevance (mRMR) feature selection [34].

Change Point Detection
In a second step, we used a state-of-the-art unsupervised
method to detect change points in the eye movement time
series data [28]. In a nutshell, this statistical method is based
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Figure 5: Change point detection example with ground-truth
privacy sensitivity level shown in black. The grey vertical
bars indicate the margin around the change points. The red
dots indicate all detected change points; the green dots only
correctly detected change points.

on the non-parametric divergence estimation between time-
series samples from two retrospective segments. It uses the
relative Pearson divergence as a measure, and is accurately
and efficiently estimated by a method of direct density-ratio
estimation. Instead of raw eye movement data we directly used
the time-series of multi-dimensional eye movement features as
input. We set the method’s main parameters α = 0.01, k = 1,
so that every features sample is treated as single input an no
additional normalisation is performed, and n = 20 to compare
the current probability density of the input data with a time
point sufficient back in time to detect changes.

Figure 5 shows a sample change detection for one of our par-
ticipants. The black line is the privacy sensitivity level as anno-
tated by the participant herself. The red dots indicate detected
change points. For the change point detection we regard the
extrema of the score stream as potential candidates to re-open
the camera shutter. Therefore, we use Persistence1D [48]
for extracting and filtering minima and maxima of our 1D
change score stream. We can steer the number of change
points dramatically with the extrema threshold parameter of
Persistence1D. When deciding whether a change point detec-
tion was correct (green dots) or not (red dots), we allowed for a
certain temporal deviation (margin) of the detections from the
ground truth changes, which we evaluated in detail. The grey
vertical blocks indicate this temporal deviation at the points in
time where the ground truth changes from “privacy-sensitive”
to “non-sensitive”. Therefore, we investigate the effect of the
extrema threshold parameter, as well as the margin parameter
to detect change point candidates located in close distance to
the ground truth event.

EXPERIMENTS
We evaluated both software components of PrivacEye sepa-
rately as well as their interplay.

# Question Example Annotation

1. What is the current environment
you are in?

office, library, street, canteen

2. Is this an indoor or outdoor envi-
ronment?

indoor, outdoor

3. What is your current activity in the
video segment?

talking, texting, walking

4. Are private objects present in the
scene?

schedule, notes, wallet

5. Are devices with potentially sensi-
tive content present in the scene?

laptop, mobile phone

6. Is a person present that you person-
ally know?

yes, no

7. Is the scene a public or a private
place?

private, public, mixed

8. How appropriate is it that a camera
is in the scene?

Likert scale (1: fully inappro-
priate – 7: fully appropriate)

Table 2: Annotation scheme used by the participants to anno-
tate their recordings.

For our evaluations we used a dataset that had been recorded
in the context of another project1 and that we fully annotated
with privacy sensitivity ratings (see below).

That dataset was deemed suitable also for the current work
given that it contains more than 70 hours of data, continu-
ously recorded from 20 participants over more than four hours
each. During the recordings, participants roamed a university
campus and performed their everyday activities like meeting
people, eating, or working as they normally would during a
day at the university. They were further engaged in regular
interactions with a mobile phone and were also encouraged
to use their own laptop, desktop computer, or music player
if desired. The dataset thus covers a rich set of representa-
tive real-world situations including sensitive environments and
tasks (see Figure 6). The data collection was performed with
the same equipment as shown in Figure 3 but without the
camera shutter.

Data Annotation
For data annotation we re-invited the original participants to
the lab and asked them to annotate their own videos with con-
tinuous annotations of location, activity, scene content, and
subjective privacy sensitivity level. They again gave informed
consent and completed a questionnaire on demographics, so-
cial media experience and sharing behavior (based on Hoyle et
al. [20]), general privacy attitudes, as well as other-contingent
privacy [3] and respect for bystander privacy [38]. General
privacy attitudes were assessed using the Privacy Attitudes
Questionnaire (PAQ), a modified Westin Scale [49] as used
previously by [8, 38].

Annotations were performed using Advene [2]. Participants
were asked to annotate continuous video segments showing the
same situation, environment, or activity. They could also in-
troduce new segments in case a privacy-relevant feature of the
scene changed, e.g., when a participant switched to a sensitive

1URL removed for blind review
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Figure 6: Sample images showing daily situations ranging from “privacy-sensitive”, such as password entry or social interactions,
to “non-sensitive”, such as walking down a road or sitting in a café.

Media Interaction

Password Entry

Eating/Drinking

Social Interaction

Other Activities

Walking

Reading
337

1831

17

277

409

854

270

Figure 7: Distribution of the activities as labelled by the par-
ticipants in total number of minutes.

app on the mobile phone. Participants were asked to annotate
each of these segments according to the annotation scheme
shown in Table 2, specifically scene content (Q1-7) and pri-
vacy sensitivity ratings (Q8). Privacy sensitivity was rated on
a 7-point Likert scale ranging from 1 (fully inappropriate) to 7
(fully appropriate). As we expected our participants to have
difficulties to understand the concept of “privacy sensitivity”,
we rephrased it for the annotation to “How appropriate is it
that a camera is in the scene?”. Figure 7 shows the resulting
distribution of labelled activities over all participants while
Figure 8 visualises the labelled privacy sensitivity levels for
each participant. Based on the latter distribution, we pooled
ratings of 1 and 2 in the class “privacy-sensitive”, and all oth-
ers in the class “non-sensitive”. We will use these two classes
for all evaluations and discussions that follow.

Detection of Privacy-Sensitive Situations
We first evaluated the computer vision component of Privac-
Eye for detecting privacy-sensitive situations. To this end we
split the data from each participant into segments. Every time
the environment, activity, or the annotated privacy sensitivity
level changed a new segment started. We opted for this ap-
proach to avoid overfitting and to prevent train and test data
from being too similar to each other, which would have simpli-
fied the classification task unrealistically. From each segment
we extracted one random image that was either used for train-
ing or testing our model. To achieve an unbiased training set,
we further always selected the number of segments in such a
way that during training an equal number of privacy-sensitive
and non-sensitive segments was chosen.

We first trained and tested our method using a leave-one-
person-out cross validation. That is, we trained on the data of
16 participants and tested on the remaining one – iteratively
over all participants and averaging the performance results in

P19 3 23 66 9114

P01 66 65 180 38 23 662

P02 3 150 4765

P03 24 56 2 86 18 889

P05 9 105 12 14 8733 2

P07 5 13 60 46 1562

P08 1 61 60 50 7514

P09 35 61 8 3388

P10 5 84 32 8 11 485

P11 82 45 25 5 20 1138

P12 31 80 31 9 368

P13 5 181 21 239

P14 7 111 6 7 75 2216

P16 164 27 1456

P17 79 41 12 23 41 1016

P18 3 5 6 32 17 1232

3fully inappropriate
(privacy-sensitive) Neutral

fully appropriate
(non-sensitive)

41 2 6 75

P20 3 145 22 1 57

0% 20% 40% 60% 80% 100%

Figure 8: Privacy sensitivity levels rated on a 7-pt Likert scale
from 1: fully inappropriate (i.e., privacy-sensitive imagery)
to 7: fully appropriate (i.e., non-sensitive). Distributions in
labelled minutes per level per participant, sorted according to
the “cut-off” between closed shutter (levels 1-2) and open shut-
ter (levels 3-7), resulting in rather “privacy pragmatist” [top]
to rather “privacy fundamentalist” [bottom], c.f., Westin [49].

the end. Afterwards we trained and tested in a person-specific
fashion. In this case we first randomised the order of segments
for each participant and then randomly split the data into 70%
of the segments for training and 30% for testing. We evaluated
the performance using receiver operating characteristic (ROC)
and calculated the area under the curve (AUC) – as commonly
done for binary classification tasks.

Person-Independent Evaluation
Figure 9 shows the ROC curve for person-independent eval-
uation. The blue line indicates the ROC curve averaged over
all participants and the grey band visualises the band corre-
sponding to one standard deviation of the individual results.
As we can see, our method performs clearly above chance
level (the red dotted line). Using only one image per segment
for training we achieve an AUC of 75%.
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Figure 9: Received operating characteristic (ROC) curve as a
result of leave-one-person-out cross validation for detecting
privacy-sensitive situations using the first-person camera.

P1 P2 P3 P5 P7 P8 P9 P10 P11
0.71 0.82 0.75 0.76 0.64 0.84 0.46 0.83 0.85
P12 P13 P14 P16 P17 P18 P19 P20 Avg
0.80 0.83 0.74 0.83 0.95 0.41 0.64 0.78 0.74

Table 3: Area under the curve (AUC) values for each partic-
ipant as a result of person-specific evaluation for detecting
privacy-sensitive situations using the first-person camera.

Person-Specific Evaluation
Table 3 summarises the results for the person-specific eval-
uation. As can be seen from the table, the performance in-
creases to more than above 90% AUC for some participants.
Upon closer inspection, we noticed that the poorly perform-
ing P7, P9, P18, and P19 had only judged few segments as
privacy-sensitive and the majority as non-sensitive (cf. Fig-
ure 8). Therefore, there was most likely not enough training
data available in the person-specific case and, thus, the corre-
sponding AUC scores were close to chance level.

Detection of Changes in Eye Movement Behaviour
Afterwards, we evaluated the performance for detecting
changes in eye movement behaviour. These changes are cor-
related with changes in user’s current activity and therefore
represents potential candidates to re-open the camera shutter.
For the correct detection of change points we allow a margin of
up to 60 seconds to count a change point candidate as proposed
in [28]. The threshold parameter for the extrema detection is
an important parameter to reduce the number of change point
candidates. Therefore, we plot in Figure 10 the true positive
rate (TPR) and false positive rate (FPR) over all participants
for different extrema threshold values (ET = 10 and ET = 40)
against an increasing margin parameter. We define the true
positive rate and false positive rate in the following way:

0 10 20 30 40 50 60
Margin in seconds

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

 a
nd

 F
PR

 ra
te

s

TPR ET 10
TPR ET 40

FPR ET 10
FPR ET 40

FPR corrected ET 10
FPR corrected ET 40

Figure 10: True positive rate (TPR) and false positive rate
(FPR) over all participants for different offsets and extrema
threshold (ET) values for the extrema detection. The corrected
FPS rate describes the performance in combination with the
vision based deep-learning method when checking the first
frame after re-opening the camera shutter.

• True positive rate (T PR): ncr/ncp,

• False positive rate (FPR): (nal - ncr)/nal ,

where ncr denotes the number of times change points are
correctly detected, ncp denotes the number of all change points,
and nal , is the number of all detected change points. We only
consider the change point candidates which are detected during
privacy-sensitive situations and outside the detection margin.
More specifically, a detected change point at step t is regarded
as correct if there exists a true change at step t∗ such that t ∈
[t∗ - margin, t∗ + margin]. To avoid duplication, we remove
the kth change point at step tk if tk - tk−1 < 2 × margin.

Figure 10 shows that the smaller the threshold parameter, the
more change point candidates are detected and the higher the
true positive rate. Increasing the margin parameter also leads
to an increase of the true positive rate and a slowly decrease
of the false positive rate. However, the false positive rate is
still high. For the reduction of wrong change point candi-
dates we further investigated the interplay of eye movement
based change point detection and of the vision-based privacy
situation detecting network. For that purpose we tested each
first frame after a false positive change point and assumed the
camera shutter to re-open and detect whether that frame is
privacy-sensitive or not. As you can see from the red curves
in Figure 10 this approach is able to reduce the FPR to less
than 30%, which means that in the correct detected cases the
camera shutter directly closes again.

We finally investigated the feature importance for change de-
tection in eye movements. As described before, we selected
the 10 most relevant features for every recording and used
these features as input to our change point detection method.
Table 4 shows the overall best features as selected by mRMR.
We can see that especially the wordbook (WB) features rank
highly, as do the saccade and fixation rate features as well as a
pupil diameter feature.
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Top-Overall Features
mean WB2 saccade rate
mean WB1 mean mean diameter fix

var WB1 non zero entries WB3
non zero entries WB2 positive saccade rate

diff max-min WB1 fixation rate

Table 4: Overall top10 features for change detection in eye
movement as selected by mRMR.

USER FEEDBACK
Collecting initial subjective feedback during early stages of
system development allows us to put research concepts in
a broader context and helps to shape hypotheses for future,
quantitative user studies. In this section we report on a set of
semi-structured one-to-one interviews on smart glasses use in
general, and our interaction design and prototype in particular.
We recruited 12 (6 females) participants, aged between 21 and
31 years (M=24, SD=3), from the local student population.
They were enrolled in overall seven different majors that were
highly diverse, ranging from computer science and biology to
special needs education. We decided to recruit students given
that we believe they and their peers could be potential users
of a future implementation of our prototype. However, we ac-
knowledge that our sample, consisting of rather well educated
young adults (with six of them having obtained a Bachelor’s
degree) is not representative for the general population. Inter-
views lasted approximately half an hour and participants were
reimbursed with a 5 Euro Amazon voucher.

Interview Protocol
During the interview, participants were encouraged to wear
and interact with state-of-the-art smart glasses (Vuzix M300
and Sony SmartEyeglass), as well as our prototype. The semi-
structured interview was based around the following questions:

Q1 Would you be willing to wear something that would block someone
from being able to record you?

Q2 If technically feasible, would you expect the smart glasses themselves,
instead of their user, to take care that your privacy is protected auto-
matically?

Q3 Would you feel different about being around someone who is wear-
ing those kinds of intelligent glasses than about those commercially
available today? Why?

Q4 If you were using smart glasses, would you be concerned about acci-
dentally recording any sensitive information belonging to you?

Q5 How would you feel about (such) a system automatically taking care
that you do not capture any sensitive information?

Q6 How do you think the eye tracking works? What can the system infer
from your eye data?

Q7 How would you feel about having your eye movements tracked by your
smart glasses?

The questions were designed following a “funnel principle”,
with increasing specificity towards the end of the interview.
We started with four more general questions (not reported
above), such as “Do you think recording with those glasses
is similar or different to recording with a cell phone? Why?”

based on [11]. This provided the participant with some time
to familiarize with the topic, before being presented with the
proof-of-concept prototype (use case “bystander privacy”) af-
ter Q1 and the use cases “sensitive objects” (e.g., credit card,
passport) and “sensitive data” (e.g., login data) after Q4. Eye
tracking functionality was demonstrated after Q5. While acqui-
escence and other forms of interviewer effects cannot be ruled
out completely, this step-by-step presentation of the prototype
and its scenarios ensured that the participants voiced their own
ideas first, before being directed towards discussing concepts
included in the actual PrivacEye prototype. Each participant
was asked for his/her perspectives on PrivacEye’s concept (Q2-
Q5) and eye tracking (Q6 and Q7). The interviews were audio
recorded and transcribed for later analysis. Subsequently, qual-
itative analysis was performed following inductive category
development [29]. Key motives and reoccurring themes were
extracted and are presented in the following.

Results & Discussion of the User Feedback
In this section we link the interviews back to PrivacEye’s
interaction design and discuss implications for future work.

Responsibility
When we designed PrivacEye, we aimed to locate all required
sensing and hardware on the user’s side, relieving the by-
stander of the responsibility to protect his/her privacy. How-
ever, similar to the interviewees of Denning et al. [11], the
majority of our participants expressed interest in technologies
that would allow them to actively block others from record-
ing them (Blocking:yes, n=7). Participants’ comments on the
use cases further indicated that they found the “bystander pri-
vacy” use case much less convincing than the other two, user-
centered, use cases. We attribute this to PrivacEye providing a
lack of control from a bystander’s perspective. Nevertheless,
for future applications a combination of both technologies, a
blocking one on the bystander side, and one similar to Privac-
Eye, would be more inclusive (e.g., for those without token),
or could serve as a fall-back in the case of compatibility issues
between smart glasses and blocking devices.

Control
Participants were furthermore encouraged to elaborate on
whether the recording status should be user-controlled or
system-controlled. P10, who notes “I’d prefer if it was au-
tomatic, because if it is not automatic, then the wearer can
forget to do that [de-activating the camera]. Or maybe he will
say ‘Oh, I do not want to do that’ and then [...] that leads to a
conflict. So better is automatic, to avoid questions.”, as well as
four other participants preferred the camera to be solely con-
trolled by the system (control:automatic, n=4). They motivate
their preference with the user’s forgetfulness and automatisms
(n=5), potential non-compliance of users (in the bystander use
case, n=1), and increased practicality for the user (n=5): “That
would be like a safety net, like for the own forgetfulness. [...]
one pulls out of one’s bag so unconsciously and types in the
PIN one so often ... I think you usually do not know if you have
just entered a PIN or not.” (P5)

Only two participants stated to prefer solely (control:manual)
control, due to an expected lack of system reliability, and
technical feasibility. Two responses were uncodable. All
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other participants requested to implement manual confirmation
of camera de-activation/re-activation or manual operation as
alternative modes (control:mixed, n=4), i.e., they like to feel
in control. To meet these user expectations, future interaction
designs would have to find an adequate mix of user control
and automatic support through the system. E.g., by enabling
users to explicitly record sensitive information (e.g., in case
of emergency) or label particular, seemingly non-sensitive
situations “confidential”.

Transparency
Making it transparent (using the 3D-printed shutter) whether
the camera was turned on or off was valued by all participants.
Seven participants found the integrated shutter to increase per-
ceived safety in contrast to current smart glasses, only few
participants stated that they made no difference between the
shutter and other visual feedback mechanisms, e.g., LEDs
(n=2). Several participants noted that the physical coverage
increased trustworthiness, as it made the system more against
hackers (concerns:hacking, n=3) than LEDs. Concluding, the
usage of physical occlusion could increase perceived safety,
and thus could be considered as option for future designs. Par-
ticipants even noted that the usage of the shutter was similarly
reassuring than pasting up a laptop camera (laptop comparison,
n=4), which is common practice.

Trustworthiness
In contrast, participants also expressed technology scepticism,
particularly that the system might secretly record audio (con-
cerns:audio, n=5) or malfunction (concerns:malfunction, n=4).
While increasing power of deep neural networks will it make
possible to treat malfunctions, system failures or inaccuracies
in the future, it will be a challenge for interaction designers to
find a cure for this fear of “being invisibly audio-recorded”.
A lack of knowledge about eye tracking on both, the user’s
and the bystander’s side might even back this misconception.
Therefore, future systems using eye tracking for context recog-
nition will have to clearly communicate their modus operandi.

Perceived Privacy of Eye Tracking
The majority of participants stated to have no privacy concerns
about smart glasses with integrated eye tracking functionality.

“I do see no threat to my privacy or the like from tracking
my eye movements, this [the eye tracking] would rather be
something which could offer a certain comfort.” (P11) Only
two participants expressed concerns about their privacy – e.g.,
due to fearing eye-based emotion recognition (P3); One was
uncodeable. This underlines our assumption that eye tracking
promises privacy-preserving and socially acceptable sensing
in smart glasses, and thus should be further explored.

DISCUSSION
In the following we discuss the concept and implementation
of PrivacEye based on the technical evaluations and user feed-
back. We highlight how PrivacEye addresses the aforemen-
tioned design and user requirements and substantiate our key
findings and conclusions based on related work. In addition,
we outline chances for future research arising from the techni-
cal limitations of our current proof-of-concept prototype.

Privacy Preserving Device Behaviour
Requirements 1 and 2 demand privacy-preserving device be-
haviour. With PrivacEye we have presented a computer vision
routine that analyses all imagery obtained from the scene cam-
era with regard to privacy sensitivity and – in case the situation
deserves protection – reacts by de-activating the scene camera
and closing the system’s camera shutter. This approach pre-
vents both, accidental misclosure and malicious procurance
(e.g., hacking) of sensitive data, as it has also been positively
highlighted by our interview participants.

However, this comes at the cost of having the scene camera
unavailable for sensing after it has been de-activated. Privac-
Eye solves this problem by using a second eye camera that
allows us, in contrast to prior work, to locate all required sens-
ing hardware on the user’s side. With PrivacEye we provided
a proof-of-concept that context-dependent re-activation of a
first-person scene camera is feasible using only eye movement
data. Future work will be able to build upon these findings and
further explore eye tracking as a sensor for privacy-enhancing
technologies. In our current prototype, very short privacy-
sensitive situations are difficult to detect, and re-opening of
the camera shutter, particularly at the beginning of a recording,
requires at least 200 seconds of eye movement data. While it
is unlikely that users put on their glasses while being engaged
in a privacy-sensitive situation, improving on both of these
points is nevertheless desirable and thus an important direction
for future work.

Defining Privacy Sensitivity
An analysis of related work has shown that the presence of
a camera may be perceived appropriate or inappropriate de-
pending on social context, location, or activity [19, 20, 38].
However, related work does, to the best of our knowledge, not
provide any insights on eye tracking data in this context. For
this reason, we run a dedicated data collection and -annotation.
Designing a practicable data collection experiment requires to
reduce the overall time spent by a participant for data record-
ing and annotation to a reasonable amount. Hence, we made
use of an already collected data set, and re-invited the partici-
pants only for the annotation task. While the pre-existing data
set provided a rich diversity of privacy-sensitive locations and
objects, including smart phone interaction, and realistically
depicts everyday student life, it is most likely not applicable
to other contexts, e.g., industrial work, or medical scenarios.

For PrivacEye we rely on a 17 participants large, ground truth
annotated dataset with highly realistic training data. Thus,
the collected training data cannot be fully generalised, e.g., to
other regions or age groups. On the plus side however, this data
already demonstrates that in a future real-world application,
sensitivity ratings may vary largely between otherwise similar
participants. This might be also affected by their (supposedly)
highly individual definition of “privacy”. Consequently, a
future consumer system should be pre-trained and then adapted
on-line, based on personalised retraining after user feedback.
In addition, users should be enabled to select their individual
“cut-off”, i.e., the level from which on recording is blocked,
which was set to “2” for PrivacEye. Real-life users might
chose more rigorous or relaxed “cut-off” levels depending on
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their personal preference. Initial user feedback also indicated
that an interaction design that intertwines automatic, software-
controlled de- and re-activation, with conscious control of the
camera by the user could be beneficial.

Utilising Eye Tracking for Privacy-Enhancement
With regard to bystander privacy eye tracking is advantageous,
as it only senses the user respectively his/her eye movements.
In contrast to e.g., microphones or infra-red sensing, it does
sense bystander and/or environment only indirectly via the
user’s eye motion or reflections. Furthermore, eye tracking
allows for implicit interaction and is non-invasive, and we
expect it to become integrated into commercially available
smart glasses in the near future. On the other hand, as noted
by Liebling et al. [27] and Preibusch [37] eye tracking data is a
scare resource that can tell user attributes such as age, gender,
health, and their current task. For this reason, one could
hypothesise that the collection and use of the data captured
by eye tracking devices might be perceived as potential threat
to user privacy. However, our interviews showed that eye
tracking was not perceived as problematic by a large majority
of our participants. Nevertheless, eye tracking data must be
protected by appropriate privacy policies and data hygiene.

Communicating Privacy Protection
The interaction design of PrivacEye tackles Requirement 3
using a non-transparent shutter. Ens et al. [12] reported that
the majority of their participants expected to feel more com-
fortable around a wearable camera device if it clearly indicated
whether the camera was turned on or off. Hence, our proposed
interaction design aims to improve bystander’s awareness of
recording status by employing an eye metaphor. For our proto-
type we opted to implement the “eye lid” as retractable shutter
made from non-transparent material: open when the camera
is active, closed when the camera is de-active. Thus, the
metaphor mimics “being watched” by the camera. This way, it
can be ensured that bystanders can comprehend the recording
status without prior knowledge, as eye metaphors have been
widely employed for interaction design, e.g., to distinguish
visibility or information disclosure [31, 36, 42] or to signal
user attention [9]. Furthermore, in contrast to visual status
indicators, such as point lights (LEDs), physical occlusion is
non spoofable (c.f., [11, 35]). This concept has been highly
appreciated during our interviews, which is why we would
recommend adopting it for future hardware designs.

CONCLUSION
In this work we presented PrivacEye, a proof-of-concept sys-
tem that combines computer vision with eye movement analy-
sis to enable context-specific, privacy-preserving de-activation
and re-activation of a first-person camera. To the best of our
knowledge, our system is the first of its kind that prevents
potentially sensitive imagery to be recorded at all and without
the need for active user input. We evaluated PrivacEye both
quantitatively and qualitatively by collecting initial, subjective
user feedback of 12 potential future users. Our evaluations
and interviews demonstrated both the technical feasibility and
practical appeal of PrivacEye. We are confident that the rapidly
increasing capabilities of today’s deep neural networks will

soon allow to push our proof-of-concept prototype towards an
effective real-world application enabling privacy-preserving
day-to-day usage of “always-on” smart glasses in real-time.
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