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Surprisingly, this field theory, built out of dimension-six operators such as (DµF
µν)2, has

previously appeared in the double-copy construction of conformal supergravity. We elaborate

on the α′ → ∞ limit in this picture and derive new amplitude relations for various gauge–

gravity theories from those of the heterotic string.
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1 Introduction

Over the recent years, a surprising network of double-copy connections between seemingly-

unrelated field and string theories has emerged. The most accurately studied example involves

the description of gravitational scattering amplitudes as “squares” of suitably-arranged gauge-

theory building blocks. At tree level, such relations between gravity- and gauge-theory am-

plitudes have been first derived from string theory by Kawai, Lewellen and Tye (KLT) in

1986 [1]. More than 20 years later, Bern, Carrasco, and one of the present authors (BCJ)

obtained a more flexible formulation [2] of the tree-level KLT formula that admits loop-level

understanding of the gravitational double copy [3] and links it to a duality between color

and kinematics in gauge theory. The BCJ double copy has since become the state-of-the-art

method for computing multiloop amplitudes in supergravity [4–11].

A variety of further field theories have been recently fit into double-copy patterns, in-

cluding Einstein–Yang–Mills (EYM) theories [12–14], Born–Infeld, non-linear sigma models

of Goldstone bosons and special theories of Galileons [15], large/infinite families of supergrav-

ities with reduced supersymmetry [16–18], and some simple examples of gauged supergravities

[19]. Particularly relevant to this work, the double copy has been extended to conformal su-

pergravities [20] with a construction involving a specific higher-derivative (DF )2 gauge theory.

The latter is built out of dimension-six operators and uniquely determined by the requirement

that its amplitudes obey the color-kinematics duality.

The Cachazo–He–Yuan (CHY) formulation [21–23] of field-theory amplitudes, together

with its ambitwistor-string underpinnings [24, 25], has been a driving force to manifest or

generalize double copies. This is exemplified by ref. [26] for EYM and ref. [27] for couplings

between non-linear sigma models and bi-adjoint scalars. The CHY formalism has been used

to derive amplitude relations between EYM and gauge theories [28–31], new representations

of loop amplitudes in super–Yang–Mills (SYM) and supergravity [32–34] as well as a one-loop

incarnation of the KLT formula [35, 36].

String theories with a finite tension α′−1 are a particularly well-established framework

to obtain a double-copy perspective on field-theory amplitudes. Apart from the original tree-

level KLT formula [1], the BCJ relations [2] between color-ordered gauge-theory trees were

elegantly proven through the field-theory limit α′ → 0 of the monodromy relations [37, 38]

between open-string amplitudes (see [39–41] for recent extensions to loop level). Also, EYM

amplitude relations naturally descend from type-I superstrings [42] and heterotic strings [43].

Furthermore, string-theory methods allowed for the first systematic construction of gauge-

theory amplitude representations where the color-kinematics duality is manifest: So far, this

has been achieved at tree level [44], one loop [45, 46] and two loops [47] with maximal

supersymmetry. Also, see refs. [48, 49] for one-loop advances at reduced supersymmetry and

[36] for cross-fertilization with the CHY formalism.

A remarkable result is that even the open superstring can be identified as a double copy

once the polarization dependence of its tree-level amplitudes is expressed via gauge-theory

trees [50]. In a suitable organization of the accompanying α′-dependent worldsheet integrals,
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this decomposition of open-string amplitudes follows the pattern of the field-theory KLT

formula [51]. This unexpected double-copy structure of the open superstring suggests an

interpretation of the moduli-space integrals over disk worldsheets as scattering amplitudes in

a putative effective theory of scalars. The latter has been dubbed Z-theory and investigated

in view of its low-energy limit [52, 53] where couplings between non-linear sigma models and

bi-adjoint scalars are recovered as well as the α′-expansion of its non-linear field equations

[54]. The Z-theory approach [52, 53] underpins the color-kinematics duality of non-linear

sigma models [15, 55] from a string-theory perspective and gives rise to the same amplitude

representations as the cubic action of Cheung and Shen [56]. According to the evidence

presented in ref. [57], the double-copy structure of the open superstring is expected to extend

to loop level.

Tree-level amplitudes of the open bosonic string are conjectured to admit the same double-

copy organization as observed for the superstring [58]. In a universal basis of disk integrals or

Z-theory amplitudes, the only difference between bosonic and supersymmetric strings resides

in the rational kinematic factors; these are α′-independent gauge-theory trees in the case

of the superstring [50], and more complicated rational functions of α′ in the case of the

bosonic string [58]. As a main result of this work, these α′-dependent kinematic factors of the

bosonic string will be reproduced from a specific field-theory Lagrangian, thus pinpointing

the missing double-copy component of the open bosonic string. Surprisingly, this field theory,

dubbed (DF )2 +YM, turns out to be a massive deformation of the (DF )2 theory entering the

double-copy construction for conformal supergravity [20]. More precisely, the (DF )2 +YM

theory, depending on α′ through its mass parameter, interpolates between pure Yang–Mills

(YM) theory (α′ → 0) and the undeformed (DF )2 theory (α′ → ∞).

string ⊗QFT SYM (DF )2 +YM (DF )2 +YM+φ3

Z-theory open superstring open bosonic string
compactified open
bosonic string

sv(open superstring) closed superstring heterotic (gravity) heterotic (gauge/gravity)

sv(open bosonic string) heterotic (gravity) closed bosonic string
compactified closed

bosonic string

Table 1. Various known double-copy constructions of string amplitudes. The last two columns of the
table are completed in this work. The single-valued projection sv(•) converts disk to sphere integrals.

In addition to the double-copy representations for open-string amplitudes (first row of

table 1), we will identify similar field-theory constituents for gravitational amplitudes of the

closed bosonic and the heterotic string (second and third row, table 1). This will generalize

a simplified representation of massless tree amplitudes of the closed superstring where the

cancellations of various multiple zeta values in the α′-expansion are taken into account: The
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selection rules applied to the multiple zeta values in passing from the open to the closed

superstring [59] are mathematically formalized by the so-called single-valued “sv” projection

[60, 61]. The closed superstring emerges from the double copy between SYM and the sv-

projected open superstring [62]. As pointed out in ref. [58], gravitational amplitudes of

superstrings, heterotic strings and bosonic strings only differ in their field-theory kinematic

factors. Hence, different double copies involving one of SYM or (DF )2 +YM as well as a

single-valued open-string theory gives rise to the closed bosonic string or the gravity sector

of the heterotic string, see table 1.

As a second major novel result, we extend the collection of field-theory double copies

to tree-level amplitudes involving any number of gauge- and gravity multiplets in the het-

erotic string. For this purpose, bi-adjoint scalars are incorporated into the α′-dependent

(DF )2 +YM theory, resulting in the so-called (DF )2+YM+φ3 theory whose Lagrangian will

be given below. Upon double copying with the single-valued open superstring, this completes

the massless sector of the heterotic string, see the last column of table 1. The remaining

double-copy options involving (DF )2+YM+φ3 theory and one of Z-theory or the single-valued

open bosonic string yield compactified versions of bosonic string theories1.

In the low-energy limit α′ → 0, the YM+φ3 theory, known from the double copy of

EYM [12, 13], can be obtained from the (DF )2+YM+φ3 theory. Hence, our double-copy

construction of the heterotic string encodes all EYM amplitude relations that reduce multi-

trace couplings of gluons and gravitons to pure gauge-theory amplitudes and should reproduce

the results of ref. [31]. The opposite limit α′ → ∞ of the (DF )2+YM+φ3 theory, on the other

hand, gives access to conformal supergravity coupled to gauge bosons upon double copy with

SYM. Indeed, in this regime, the double-copy amplitudes built from the (DF )2+YM+φ3

theory and SYM agree with those coming from the heterotic ambitwistor string, which were

studied in detail in ref. [65].

Finally, we will deduce from the CHY formulae, given in that reference, that amplitude

relations of conformal supergravity coupled to SYM are recovered in the α′ → ∞ limit of the

corresponding amplitude relations of the (conventional) heterotic string [43]. An alternative

way of arriving at conformal-gravity amplitudes via an α′ → ∞ limit involves the twisted-

string construction of Huang, Siegel and Yuan [66]. We show that taking this limit for the

twisted heterotic-string amplitudes one obtains precisely a KLT formula with the undeformed

(DF )2 theory and SYM amplitudes.

This paper is organized as follows: A review in section 2 sets the stage for introducing the

(DF )2 +YM theory and for explaining its significance for the open and closed bosonic string

in section 3. The generalization of these results to the heterotic string is discussed in section

4 which allows to explore various corollaries for different types of gauge-gravity theories in

the α′ → ∞ limit in section 5.

1The compactification geometries can be taken to be two independent copies of the same sixteen-dimensional
internal manifolds as used for the non-supersymmetric chiral half of the heterotic string [63, 64], giving the
Lie group SO(32) or E8×E8. More generally, the color degrees of freedom can be generalized to arbitrary Lie
groups since the tree-level amplitudes under discussion are not yet constrained by modular invariance.
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2 Review

In this section, we review the known double-copy structure of tree-level amplitudes in various

string theories and conformal supergravity. This will set the stage for sections 3 and 4 where

we identify the field theory that governs the polarization dependent kinematic factors of the

bosonic and heterotic string amplitudes. For simplicity, throughout this paper the field-

and string-theory amplitudes will be given without overall coupling-dependent prefactors.

Appropriate powers of the gauge coupling g and the gravitational coupling κ can be restored

following appendix A.

2.1 Open superstrings

The manifestly supersymmetric pure-spinor formalism [67] has been used to determine all

tree amplitudes of massless open-superstring states [50] in terms of simpler building blocks,

As(1, π(2, 3, . . . , n−2), n−1, n) =
∑

ρ∈Sn−3

Fπ
ρASYM(1, ρ(2, 3, . . . , n−2), n−1, n) . (2.1)

The sum runs over (n−3)! permutations ρ, and the factor of ASYM refers to color-ordered

tree amplitudes of ten-dimensional SYM [68] which carry all of the polarization dependence

and supersymmetry. The α′-dependence, by contrast, is entirely carried by the integrals [50]

Fπ
ρ = (2α′)n−3

∫

0≤z2π≤z3π≤...≤z(n−2)π≤1

dz2 dz3 . . . dzn−2

n−1∏

i<j

|zij |
2α′sijρ

{ n−2∏

k=2

k−1∑

m=1

smk

zkm

}

(2.2)

over moduli spaces of punctured disks which are taken to be in the SL(2,R) gauge with

(z1, zn−1, zn) = (0, 1,∞). As is well known, the ASYM obeys BCJ relations [2] and As obeys

monodromy relations [37, 38]. The permutations ρ, π ∈ Sn−3 are chosen such that the disk

integrals in (2.2) form independent (n−3)!-element bases under the BCJ and monodromy

relations, respectively. Thus, the Fπ
ρ form an (n−3)! × (n−3)! matrix with entries indexed

by integration domains π and permutations ρ of integrand labels. The permutations ρ are

understood to act on the insertion labels as2

ρ
{
sij

}
≡ kρ(i) · kρ(j) , ρ

{
zij

}
≡ zρ(i) − zρ(j) , (2.3)

where ρ acts trivially on the labels 1, n−1, n of the fixed punctures.

Alternatively, one can organize the disk integrals in terms of the so-called Z-theory am-

2Note that we use the usual string-theory convention where sij are defined to be half of the value used for
field-theory Mandelstam variables.
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plitudes3,

Z(π(1, 2, . . . , n) | ρ(1, 2, . . . , n)) = (2α′)n−3

∫

π {−∞≤z1≤z2≤...≤zn≤∞}

dz1 dz2 . . . dzn
vol(SL(2,R))

∏n
i<j |zij |

2α′sij

ρ {z12z23 · · · zn−1,nzn,1}
.

(2.4)

The massless open-string amplitudes (2.1) can then be written in a more suggestive form [69]

As(π(1, 2, 3, . . . , n)) =
∑

τ,ρ

Z(π(1, 2, . . . , n) | 1, τ(2, 3, . . . , n−2), n, n−1)

× S[τ |ρ]1ASYM(1, ρ(2, 3, . . . , n−2), n−1, n) , (2.5)

where the summation range τ, ρ ∈ Sn−3 is suppressed here and in later equations for ease

of notation. This form is isomorphic to the field-theory KLT formula, and the symmetric

(n− 3)!-by-(n− 3)! matrix S[τ |ρ]1 = S[τ(2, . . . , n−2)|ρ(2, . . . , n−2)]1 is the field-theory KLT

kernel. For a fixed choice of basis, the KLT kernel was first written down to all multiplicity

in ref. [70] and later extended to more general basis choices in refs. [71–73]. Here we give a

compact recursive definition4 [52],

S[A, j|B, j, C]1 = (k1 + kB) · kj S[A|B,C]1 , S[2|2]1 = s12 , (2.6)

where multiparticle labels such as B = (b1, b2, . . . , bp) encompass multiple external legs and

kB = kb1 + kb2 + . . .+ kbp denotes their region momentum.

Since the open-string amplitudes in eqs. (2.1) and (2.5) are expressed in a basis of SYM

amplitudes, the corresponding coefficients are unique and thus equal to each other [69],

Fπ
ρ =

∑

τ

Z(1, π(2, 3, . . . , n−2), n−1, n | 1, τ(2, 3, . . . , n−2), n, n−1)S[ρ|τ ]1 . (2.7)

For theories where all-multiplicity tree-level amplitudes can be expressed using the KLT

formula, we say that the theory (or a sector of a theory) is constructible as a double copy out

of a left and right theory. It is convenient to use a word formula, such as

(massless open superstring) = (Z-theory)⊗ (SYM) , (2.8)

that concisely expresses this statement. This context-free formula is useful since the dou-

ble copy can be expressed in many different ways (for example, using the BCJ or CHY

frameworks), the KLT formula being just one instance of this. The slightly abusive specifier

“massless open superstring” means that we only allow for massless external modes, although

massive open-string vibration modes still contribute to (2.2) and (2.4) via internal propaga-

3The inverse factor of vol(SL(2,R)) refers to the standard procedure of fixing three punctures zi, zj , zk →
(0, 1,∞) while trading the integration measure dzi dzj dzk for a Jacobian |zijzikzjk|. Accordingly, the three-
point instances of the disk integrals (2.4) trivialize to Z(1, 2, 3|1, 2, 3) = 1 and Z(1, 2, 3|1, 3, 2) = −1.

4Note that the KLT kernel used here is −i(−2)3−n times the one defined in ref. [70].
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tion. Both (2.8) and later double-copy statements on string amplitudes are understood to only

apply to massless external states, and we will suppress the specifier “massless” henceforth.

Whether the Z-theory amplitudes (2.8) define a sensible theory or not is an interesting

open question. Evidence supporting an interpretation as a theory stems from the observation

that, at leading order in α′, the disk integrals (2.4) reproduce the doubly-partial amplitudes

of non-linear sigma models coupled to bi-adjoint scalars upon (partial) symmetrization in π

[52, 53]. Hence, the Z(π|ρ) integrals are interpreted as the doubly-partial amplitudes in a

collection of effective scalar theories dubbed Z-theory which captures all the α′-dependence of

open-string amplitudes. The low-energy expansion of the Z-theory equations of motion can

be found in ref. [54].

2.2 Closed superstrings

For massless (gravitational) tree amplitudes of the closed type-IIA/B superstring, combining

two copies of the open-string worldsheet integrands in (2.1) leads to the structure [59],

MII =
∑

τ,ρ,σ

ÃSYM(1, τ, n, n−1)S[τ |ρ]1(svF )ρ
σASYM(1, σ, n−1, n) , (2.9)

where the field-theory KLT kernel is given by (2.6) and the type-IIA/B amplitudes are ob-

tained from each other by flipping the relative chirality of the ten-dimensional N = (1, 0)

SYM theories. The summation ranges for permutations τ, ρ, σ ∈ Sn−3 of 2, 3, . . . , n−2 are

again suppressed in (2.9) and later equations.

The notation svF in (2.9) refers to the single-valued projection [60, 61] of multiple zeta

values (MZVs)

ζn1,n2,...,nr ≡
∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr
r , nr ≥ 2 , (2.10)

which arise in the low-energy expansion of open- and closed-string tree amplitudes [59, 74–

77]. More precisely, the wth order in the α′-expansion of the functions Fπ
ρ in (2.2) exclusively

involves MZVs (2.10) of weight w = n1+n2+ . . .+nr, so the Fπ
ρ are said to exhibit uniform

transcendentality. The matrix (svF )ρ
σ in (2.9) is built from moduli-space integrals over

punctured spheres whose α′-expansion can be conjecturally obtained from the open-string

functions Fρ
σ in (2.2) through the formal map [59, 62]

sv(ζ2) = 0 , sv(ζ2k+1) = 2ζ2k+1 , sv(ζ3,5) = −10ζ3ζ5 , . . . (2.11)

acting on the MZVs in their low-energy expansion. The terminology for the single-valued

projection “sv” is motivated by the realization of sv(ζn1,n2,...,nr) via single-valued polyloga-

rithms at unit argument [60, 61, 78], see the references for a generalization of (2.11) to higher

weight and depth. The single-valued projection (2.11) preserves uniform transcendentality

and the product structure, sv(ζm1,m2,...ζn1,n2,...) = sv(ζm1,m2,...)sv(ζn1,n2,...). Further details

on the interplay of α′-expansions with the single-valued map are reviewed in appendix B.
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First evidence for a similar correspondence between one-loop amplitudes of open and closed

strings has been given in [79].

Given that the factors ASYM in the open-string amplitude (2.1) are unaffected by the sv

operation, the closed-string amplitude (2.9) can be cast into a double-copy form [62]

MII =
∑

τ,ρ

ÃSYM(1, τ, n, n−1)S[τ |ρ]1svAs(1, ρ, n−1, n) , (2.12)

where sv only acts on the open-string amplitudes. The double copy for the closed-string

amplitude is then summarized by the word equation

(closed superstring) = (SYM)⊗ sv
(
open superstring

)
, (2.13)

which is understood to apply to massless external states according to our earlier disclaimer.

Alternatively, the double copy can be written more symmetrically by substituting eq. (2.8)

into eq. (2.13), giving a “triple copy”

(closed superstring) = (SYM)⊗ sv(Z-theory)⊗ (SYM) . (2.14)

The corresponding KLT-like formula is

MII =
∑

τ,π,σ,ρ

ÃSYM(1, τ, n, n−1)S[τ |π]1svZ(1, π, n−1, n|1, σ, n, n−1)S[σ|ρ]1ASYM(1, ρ, n−1, n) .

(2.15)

However, note that this “triple copy” is not a new concept, it simply amounts to applying

the double copy twice. Note that svZ(π|σ) can be interpreted as closed-string versions of

Z-theory amplitudes [54], and they are given by integrals [80]

svZ(τ |σ) =

(
2α′

π

)n−3∫ d2z1 d
2z2 . . . d2zn

vol(SL(2,C))

∏n
i<j |zij |

4α′sij

τ {z̄12z̄23 · · · z̄n−1,nz̄n,1}σ {z12z23 · · · zn−1,nzn,1}
,

(2.16)

over the moduli space of punctured Riemann spheres5.

5For the complex punctures zi of (2.16), the inverse factor of vol(SL(2,C)) amounts to fixing three punctures
zi, zj , zk → (0, 1,∞) while trading the integration measure d2zi d

2zj d
2zk for a Jacobian |zijzikzjk|

2. The exact

closed-string normalization of α′ can be attained by replacing α′ → α′

4
in (2.16) and later equations on type-II,

heterotic-string and closed-bosonic-string amplitudes. We do not track this rescaling of α′ between open- and
closed-string setups to avoid the ubiquity of denominators.
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2.3 Bosonic and heterotic strings

For the open bosonic string, n-point tree amplitudes were conjectured6 to have the same

expansion in terms of a basis of disk integrals (2.2) as for the open superstring [58],

Abos(1, π, n−1, n) =
∑

ρ

Fπ
ρ B(1, ρ, n−1, n) . (2.17)

The kinematic factors B, which will soon be identified with partial amplitudes of a spe-

cific gauge theory, capture the entire dependence on the external polarizations, and they

additionally depend on α′. We give the lowest-multiplicity expressions in terms of gluon po-

larizations eµi and linearized field strengths fµν
i = kµi e

ν
i − eµi k

ν
i with D-dimensional Lorentz

indices (D = 26 for the critical string) and i = 1, 2, . . . , n labelling the external legs. We use

shorthands fij ≡
1
2f

µν
i fµν

j = sij(ei·ej)− (ki·ej)(kj ·ei) and gi ≡ (ki−1·ei)si,i+1 − (ki+1·ei)si−1,i

in

B(1, 2, 3) = AYM(1, 2, 3) + 4α′(e1 · k2)(e2 · k3)(e3 · k1) (2.18)

B(1, 2, 3, 4) = AYM(1, 2, 3, 4) + 4α′s13

{[ f12f34
s212(1−2α′s12)

+cyc(2, 3, 4)
]

−
g1g2g3g4
s212s

2
13s

2
23

}

, (2.19)

and the YM tree-level amplitudes are normalized as exemplified by the three-point case,

AYM(1, 2, 3) = 2(e1 · e2)(k1 · e3) + cyc(1, 2, 3) . (2.20)

While B(1, 2, 3, 4, 5) at five points can be obtained from ref. [58], extracting the higher-

multiplicity generalizations7 from string theory is an open problem. Instead, we will later

on employ field-theory techniques to obtain an all-multiplicity description of the kinematic

factors B in the bosonic-string amplitude (2.17).

Given that the geometric-series expansion of the factor (1 − 2α′sij)
−1 in (2.19) leads

to purely rational coefficients for (α′sij)
w, the amplitudes (2.17) of the open bosonic string

violate uniform transcendentality. Instead, the combination of the purely rational B and the

uniformly transcendental integrals Fπ
ρ in (2.2) sets the upper bound that the order of α′w

involves MZV of weight ≤ w. In particular, given the leading low-energy behavior

B(1, 2, . . . , n) = AYM(1, 2, . . . , n) +O(α′) (2.21)

imposed by the field-theory limit of (2.17), the pieces of maximal transcendentality in bosonic

open-string amplitudes, i.e. the contributions of weight-w MZVs at the order of α′w, coincide

with those of the superstring (2.1) [58].

Of course, the worldsheet integrand of the open bosonic string underlying (2.17) can be

exported to the gravitational sector of the heterotic string. Hence, the n-point tree amplitude

6The expectation for (2.17) to hold at all multiplicities N is based on the explicit checks at N ≤ 7 [58].
7The subleading order of B(1, 2, . . . , n) in α′ is governed by a deformation of SYM through a Tr(F 3)-

operator whose D-dimensional n-point tree amplitudes have been considered in ref. [81].
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of supergravity states h in the heterotic theory [58] is given by the double copy

Mh
het =

∑

τ,ρ

B(1, τ, n, n−1)S[τ |ρ]1svAs(1, ρ, n−1, n) , (2.22)

which is related to the type-II result (2.12) by the replacement ÃSYM → B, with the identical

sphere integrals that yield single-valued open-string amplitudes (2.11). A further replacement

svAs → svÃbos maps the heterotic-string amplitude (2.22) to the n-point tree amplitudes of

the closed bosonic string [58],

Mbos =
∑

τ,ρ

B(1, τ, n, n−1)S[τ |ρ]1svÃbos(1, ρ, n−1, n) . (2.23)

From the absence of MZVs in the α′-expansion of B, the piece of maximal transcendentality

at a given order in α′ is universal to gravitational amplitudes in the closed superstring, the

heterotic string and the closed bosonic string [58].

The structure of the bosonic- and heterotic-string amplitudes (2.17), (2.22) and (2.23)

matches the open- and closed-superstring results for As and MII. Hence, the results reviewed

in this section imply that the gravity sector of the bosonic and heterotic string exhibits a

double-copy structure. Indeed, we will pinpoint a gauge theory in section 3 which furnishes

the bosonic double-copy component and takes the role of SYM in (2.8) and (2.13).

2.4 Field-theory BCJ relations for string amplitudes

As a common property of the constituents in the above string double copies, they are all

required to obey the BCJ relations of gauge-theory tree amplitudes [2], e.g.

n−1∑

j=2

k1 · (k2+k3+ . . .+kj)ASYM(2, 3, . . . , j, 1, j+1, . . . , n) = 0 . (2.24)

Given that total derivatives in the worldsheet punctures integrate to zero, the same relations

hold for different choices of the right argument ρ in the Z-theory amplitudes Z(π|ρ) in (2.4)

with a fixed integration domain π [51]. Accordingly, the single-valued Z-theory amplitudes

(2.16) obey BCJ relations for either the left or right argument.

For open-string amplitudes As(π) or Abos(π), different disk orderings π are constrained

by the generalization of the BCJ relations (2.24) to monodromy relations [37, 38]. They

augment the BCJ relations by a series expansion in ζ2(α
′sij)

2 which preserve the uniform

transcendentality of the superstring. As firstly pointed out in ref. [82], monodromy relations

can be projected separately to any order in α′ and to any MZV which is (conjecturally) inde-

pendent over Q. Truncating the monodromy relations among (2.17) to zero transcendentality
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leads to the BCJ relations [58]

n−1∑

j=2

k1 · (k2+k3+ . . .+kj)B(2, 3, . . . , j, 1, j+1, . . . , n) = 0 , (2.25)

valid to all orders in α′, as can be easily verified for the four-point example in (2.19). The same

reasoning implies that also single-valued open-string amplitudes satisfy the BCJ relations [80]

n−1∑

j=2

k1 · (k2+k3+ . . .+kj) svAs,bos(2, 3, . . . , j, 1, j+1, . . . , n) = 0 (2.26)

to all orders in α′, ensuring consistency of the double-copy formulae (2.12), (2.22) and (2.23).

2.5 Conformal supergravity as a double copy

Conformal-supergravity (CSG) amplitudes of the non-minimal Berkovits–Witten-type theory

[83] are constructed from the double copy [20]

CSG =
(
(DF )2-theory

)
⊗

(
SYM

)
. (2.27)

Here, in the second factor, SYM stands for any pure super-Yang–Mills theory in dimensions

D ≤ 10, and the first factor is a bosonic gauge theory with the following Lagrangian in any

dimension:

L(DF )2 =
1

2
(DµF

aµν)2 −
g

3
F 3 +

1

2
(Dµϕ

α)2 +
g

2
CαabϕαF a

µνF
b µν +

g

3!
dαβγϕαϕβϕγ . (2.28)

The field strength and covariant derivatives are defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

Dµϕ
α = ∂µϕ

α − ig(T a
R)

αβAa
µϕ

β , (2.29)

DρF
a
µν = ∂ρF

a
µν + gfabcAb

ρF
c
µν ,

F 3 = fabcF a ν
µ F b λ

ν F c µ
λ .

The vector Aa
µ transforms in the adjoint representation of a gauge group G with indices

a, b, c, . . ., the scalar ϕα transforms in a real representation R of the gauge group (with

generators T a
R), and g is the coupling constant8. The Clebsch–Gordan coefficients Cαab and

dαβγ are implicitly defined through the two relations

CαabCαcd = facef edb + fadef ecb , (2.30)

Cαabdαβγ = (T a
R)

βα(T b
R)

αγ + CβacCγcb + (a ↔ b) .

8Note that the conformal supergravities do not inherit the explicit dependence on the gauge group and
coupling, these are only introduced in order to define the non-abelian gauge theory. Only the kinematic
structure of the gauge theory is transferred to the conformal supergravities through the double copy.
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Requiring that the tensors Cαab, dαβγ and T a
R transform covariantly under infinitesimal gauge-

group rotations implies three additional Lie-algebra relations. Together, these five tensor

relations are sufficient to reduce any color structure appearing in a pure-gluon tree amplitude

to contractions of fabc tensors. See appendix B in ref. [20] for all of these identities.

Tree-level gluon amplitudes of the so-called (DF )2 theory defined by the Lagrangian

(2.28) have been shown to obey BCJ relations (2.24) up to at least eight points. The color-

kinematics duality guarantees [14] that the double copy will give amplitudes that are invariant

under space-time diffeomorphisms, i.e. amplitudes in a gravitational theory. In terms of tree-

level amplitudes, the double copy (2.27) for conformal supergravity can be expressed using

the standard KLT formula,

MCSG =
∑

τ,ρ

A(DF )2(1, τ, n, n−1)S[τ |ρ]1ASYM(1, ρ, n−1, n) , (2.31)

where the external states of the (DF )2 amplitude are restricted to gluons in order to obtain

graviton amplitudes in the double copy.

A curious feature of the tree-level amplitudes of (DF )2 theory is that the product between

any two polarization vectors ei · ej always cancels out through non-trivial identities [20], e.g.

A(DF )2(1, 2, 3) = −4(e1 · k2)(e2 · k3)(e3 · k1) (2.32)

A(DF )2(1, 2, 3, 4) = 4
s212s

2
23

s13

(k4·e1
s23

−
k2·e1
s12

)(k1·e2
s12

−
k3·e2
s23

)(k2·e3
s23

−
k4·e3
s12

)(k3·e4
s12

−
k1·e4
s23

)

.

It implies that when considering dimensional reduction, the scalars that come from the extra-

dimensional gluon components will automatically decouple from the theory. In the CHY

formulation of (DF )2 theory given in [65] the ei · ej are manifestly absent. The double poles

∼ s−2
12 in (2.32) reflect a gluon propagator ∼ k−4 due to the four-derivative kinetic term in the

Lagrangian (2.28), and the unusual s13-channel pole in A(DF )2(1, 2, 3, 4) that defies the naive

expectation from the color ordering, is due to an exchange of the ϕα scalar. This exchange

follows from the coupling ∼ CαabϕαF a
µνF

bµν in the Lagrangian (2.28) along with the structure

constants generated from the contraction CαabCαcd, see (2.30).

3 Bosonic string amplitudes from the double copy

In this section, we will consider the extended gauge theory (DF )2 + YM and argue that

massless tree amplitudes (2.17) and (2.23) of the open and closed bosonic string amount to

the following double-copy constructions

(open bosonic string) =
(
Z-theory

)
⊗

(
(DF )2 +YM

)
, (3.1)

(closed bosonic string) =
(
(DF )2 +YM

)
⊗ sv

(
open bosonic string

)
.
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Note that the closed bosonic string can be alternatively viewed as a triple copy involving

single-valued Z-theory

(closed bosonic string) =
(
(DF )2 +YM

)
⊗ sv(Z-theory)⊗

(
(DF )2 +YM

)
, (3.2)

see the discussion around (2.14) for the analogous triple-copy structure of closed superstrings.

The bosonic field theory, (DF )2+YM entering (3.1) is defined by the following Lagrangian

L(DF )2+YM =
1

2
(DµF

aµν)2 −
g

3
F 3 +

1

2
(Dµϕ

α)2 +
g

2
CαabϕαF a

µνF
b µν +

g

3!
dαβγϕαϕβϕγ

−
1

2
m2(ϕα)2 −

1

4
m2(F a

µν)
2 , (3.3)

which augments (2.28) by mass-dependent terms also considered in ref. [20]. This (DF )2+YM

gauge theory smoothly interpolates between the previously introduced (DF )2 theory (m = 0)

and pure Yang–Mills theory (m = ∞). Its field content comprises a massless gluon, a massive

gluon and a massive scalar (see appendix C.1 for the propagators). A priori, the mass is a

free parameter, but we will find that it has to be related to the inverse string tension α′ by

m2 = −
1

α′
. (3.4)

Since m2 is negative, it gives rise to tachyonic modes, i.e. the massive gluon as well as the

massive scalar ϕα are tachyonic. In the context of the open and closed bosonic strings, this

reflects the appearance of scalar tachyon modes that propagate internally. Note that the

Lagrangian (3.3) is normalized such that the limit m → 0 (α′ → ∞) is well behaved; for a

well-behaved limitm → ∞ (α′ → 0) we need to multiply the Lagrangian bym−2 = −α′, which

explains such overall normalization factors appearing in some of the subsequent amplitudes.

Based on a few reasonable assumptions, we can argue that the Lagrangian (3.3) is the

unique field theory that describes the kinematic factors B in the bosonic-string amplitudes,

B(1, 2, . . . , n) = −α′A(DF )2+YM(1, 2, . . . , n)
∣
∣
m2=−1/α′ , (3.5)

which results in the double-copy statements given in eq. (3.1). These assumptions are:

(i) In the low-energy limit α′ → 0, the factors B become YM tree amplitudes.

(ii) In the high-energy limit α′ → ∞, the B/α′ are finite and have at most poles s−2
i...j.

(iii) B are partial amplitudes coming from a bosonic gauge theory that obeys the color-

kinematics duality in (at least) D ≤ 26 dimensions.

The first assumption (i) follows from the field-theory limit of the construction of ref. [58], see

the discussion around (2.21). Assumption (ii) is an observed property of the explicit examples

given in the same paper. Moreover, the general validity of (ii) appears plausible since the limit

α′ → ∞ converts tachyon propagators ∼
[
(ki + kj)

2 − 1
α′
]−1

of the bosonic string to massless
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propagators (ki+kj)
−2. Since tachyon propagators usually line up with massless propagators

in moduli-space integrals9 the limit α′ → ∞ introduces double poles ∼ s−2
ij as for instance

seen in (2.32). Additional poles s−n
ij of higher order n ≥ 3 do not occur since the OPE among

gluon vertex operators does not introduce any singularities |zij |
2α′ki·kj−n with n ≥ 3 into the

worldsheet integrand. Finally, assumption (iii) is consistent with the observation [58] that the

B obeys the well-known relations of gauge-theory partial amplitudes: cyclicity, Kleiss–Kuijf

and BCJ relations.

Under the above three assumptions, both limits α′ → 0,∞ of B result in gauge-theory

amplitudes that have no dimensionful parameter. It is thus a simple task to list all possible

operators of a given dimension in the underlying gauge-theory Lagrangians and to constrain

unknown couplings using color-kinematics duality. From dimensional analysis, it follows that

the limit α′ → 0 is dominated by dimension-four operators (in D = 4 counting), and α′ → ∞

is dominated by dimension-six operators (in D = 6 counting). In ref. [20] it was shown that

there is a unique color-kinematics satisfying dimension-six Lagrangian that is built out of

parity-invariant10 operators involving Fµν ’s and the scalar ϕα, and where the kinetic terms

have at most four derivatives. Once the dimension-four YM term, (F a
µν)

2, is introduced,

there exists a one-parameter solution to the constraints of color-kinematics duality [20], this

free parameter is the mass m and the resulting Lagrangian the one in eq. (3.3). By mutual

consistency of the three assumptions, m2 has to be proportional to (α′)−1.

Color-stripped amplitudes A(DF )2+YM up to multiplicity eight are straightforward to

compute from the Feynman rules of the Lagrangian (3.3). We have confirmed that they

reproduce all known kinematic factors B coming from the open-bosonic-string amplitudes

(2.17), given that the mass is identified with α′ as in eq. (3.4). More precisely we have

derived (2.18) and (2.19) at three and four points as well as the expression for B(1, 2, 3, 4, 5)

in the arXiv submission of ref. [58] from the gauge-theory Lagrangian (3.3). These checks

and the plausibility of the assumptions (i) to (iii) provide strong evidence for our general

conjecture (3.5) on the field-theory description of B. The latter in turn implies the double-

copy structures (3.1) of the massless sector of bosonic open- and closed-string theories.

9A typical disk integral in the opening line for the four-point amplitude of the open bosonic string reads

2α′
∫ 1

0

dz2
z212

3∏
i<j

|zij |
2α′sij =

(2α′)2s13
2α′s12 − 1

∫ 1

0

dz2
z12

3∏
i<j

|zij |
2α′sij =

2α′s13
(1− 2α′s12)s12

F(2)
(2)

. (3.6)

We have used integration by parts to relate it to the basis function F(2)
(2) in (2.2) which in turn defines

B(1, 2, 3, 4) via (2.17). The relative factor of 2α′s13
(1−2α′s12)s12

in (3.6) tends to − s13
s2
12

as α′ → ∞ and thereby

introduces a double pole ∼ s−2
12 into A(DF )2(1, 2, 3, 4).

10Requiring that the theory is defined in D ≤ 26 dimensions rules out the appearance of a Levi–Civita tensor
in the Lagrangian.
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4 Heterotic string amplitudes from the double copy

The field-theory origin of the kinematic factors B in the open bosonic string settles the

double-copy structure of the gravitational tree amplitudes (2.22) of the heterotic string,

(gravity sector of the heterotic string) =
(
(DF )2 +YM

)
⊗ sv

(
open superstring

)
. (4.1)

Given that the amplitude structure is analogous to (2.15) and therefore symmetric under the

exchange of the left- and right-moving kinematic factors, one can also rewrite (2.22) as

Mh
het =

∑

τ,ρ

ASYM(1, τ, n, n−1)S[τ |ρ]1 svAbos(1, ρ, n−1, n) . (4.2)

In this representation, the supersymmetries are attributed to the α′-independent part ASYM

of the KLT-like formula which results in the alternative double-copy formulation

(gravity sector of the heterotic string) =
(
SYM

)
⊗ sv

(
open bosonic string

)
. (4.3)

Alternatively, (4.1) and (4.3) are connected through the following triple-copy reformulation

(gravity sector of the heterotic string) =
(
(DF )2 +YM

)
⊗ sv(Z-theory)⊗

(
SYM

)
, (4.4)

along the lines of (2.14) and (3.2).

In this section, we extend this construction to heterotic-string amplitudes involving ar-

bitrary combinations of gauge-multiplet and supergravity-multiplet states. We will spell out

a field-theory Lagrangian for the first double-copy component in

(heterotic string) =
(
(DF )2 +YM+ φ3

)
⊗ sv

(
open superstring

)
(4.5)

which is equivalent to the triple copy

(heterotic string) =
(
(DF )2 +YM+ φ3

)
⊗ sv(Z-theory)⊗

(
SYM

)
. (4.6)

4.1 The structure of heterotic string amplitudes

Given that the gauge and gravity multiplets of the heterotic string couple via genus-zero

worldsheets, already the gauge sector exhibits structureful tree-level amplitudes with multiple

traces of the color factors. Single-trace amplitudesAhet can be obtained from the single-valued

projection [80]

Ahet(1, 2, . . . , n) = svAs(1, 2, . . . , n) (4.7)

of the type-I results (2.1). Double-trace amplitudes of gauge multiplets in turn have been

reduced to linear combinations of their single-trace counterparts (4.7) [43]. The expansion

coefficients in these double-trace results exemplify that multi-trace contributions generically

violate uniform transcendentality, and it is an open problem to generalize the explicit relations
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of ref. [43] to higher numbers of traces. In fact, the Lagrangian given in the next subsection

will implicitly reduce any multi-trace sector to linear combinations of (4.7).

Mixed amplitudes Mg+h
het involving external gauge-multiplets g and gravity-multiplets h

can also be organized according to the trace structure of their color dependence. The single-

trace sector with ≤ 3 gravitons as well as the double-trace sector with ≤ 1 graviton has been

expressed in terms of the gauge amplitudes [43]. The amplitude relations of this reference

include11

Ahet(1, 2, . . . , n; p) =

n−1∑

j=1

(ep · xj)Ahet(1, 2, . . . , j, p, j+1, . . . , n) (4.8)

Ahet(1, 2, . . . , n; p, q) =

n−1∑

1=i≤j

(ep · xi) (eq · xj)Ahet(1, . . . , i, p, i+1, . . . , j, q, j+1, . . . , n)

−

[
(ep · eq)− 2α′(ep · q)(eq · p)

]

2
[
1− 2α′(p · q)

]

n−1∑

l=1

(p · kl)
l∑

1=i≤j

Ahet(1, 2, . . . , i−1, q, i, . . . , j−1, p, j, . . . , n)

− (eq · p)
n−1∑

j=1

(ep · xj)

j+1
∑

i=1

Ahet(1, 2, . . . , i−1, q, i, . . . , j, p, j+1, . . . , n) + (p ↔ q) , (4.9)

with gluon legs 1, 2, . . . , n, graviton momenta p, q, graviton polarizations ep, eq as well as

region momenta xj ≡ k1+k2+ . . .+kj. By analogy with the field-theory result [31], amplitude

relations of this type are expected to exist for all multi-trace sectors of the heterotic string

and any number of gluons and gravitons [43, 80]. This would allow us to reduce the massless

tree-level S-matrix of the heterotic string to the same basis of sphere integrals seen in the

gravity sector (2.22) or the type-II string (2.9) and leads us to conjecture that

Mg+h
het =

∑

τ,ρ

A(DF )2+YM+φ3(1, τ, n, n−1)S[τ |ρ]1 svAs(1, ρ, n−1, n) (4.10)

for a suitable choice of non-supersymmetric kinematic factors A(DF )2+YM+φ3(1, τ, n, n−1).

The factors of A(DF )2+YM+φ3(1, τ, n, n−1) capture the color degrees of freedom of the

gluons and the extra polarization vectors of the gravitons such as ep and eq in (4.8) and

(4.9). Given that the factors of ASYM within As contribute gauge-multiplet polarizations,

the external states in (4.10) are gauge and gravity multiplets if A(DF )2+YM+φ3(1, τ, n, n−1)

involve external scalars s and gluons g, respectively. Denoting their appearance in the ith

and jth leg by is and jg, respectively, the independent three- and four-point instances read

A(DF )2+YM+φ3(1s, 2s, 3g) = 2δA1A2(e3 · k1) , (4.11)

11The type-I analogue of (4.8) can be found in ref. [42], and the field-theory limit of (4.8) and (4.9) has been
computed in the CHY [28] and BCJ [14] frameworks.
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as well as

A(DF )2+YM+φ3(1s, 2s, 3s, 4s) = −λ2 f̂
A1A2B f̂BA3A4

2s12
−λ2 f̂

A2A3B f̂BA4A1

2s23

− s13

{ 2α′δA1A2δA3A4

s12(1− 2α′s12)
+ cyc(2, 3, 4)

}

,

A(DF )2+YM+φ3(1s, 2s, 3s, 4g) = iλf̂A1A2A3

(e4 · k3
s12

−
e4 · k1
s23

)

, (4.12)

A(DF )2+YM+φ3(1s, 2g, 3s, 4g) = δA1A3

{(e2 · k1)(e4 · k3)

s12
+

(e2 · k3)(e4 · k1)

s14

+ (e2 · e4) +
2α′f24

1− 2α′s24

}

.

We recall the notation f24 = s24(e2 · e4) − (e2 · k4)(e4 · k2), and the five-point analogues of

(4.12) can be found in appendix C.2. The subscript of A(DF )2+YM+φ3 as well as the notation

A1, A2, . . . and f̂A1A2A3 for the adjoint indices and the structure constants will become clear

below. Similarly, the coupling λ controls the relative weight of single-trace and multi-trace

contributions12, and the conventions for the overall normalization of (4.10) are detailed in

appendix A. Note that the heterotic-string amplitudes (4.10) are understood to comprise at

least two external gluons, and the purely gravitational cases requiring a different bookkeeping

of normalization factors are captured by (2.22).

Using a combination of the arguments in ref. [58, 82], it will be argued in appendix C.3

that the kinematic factors in (4.10) obey BCJ relations

n−1∑

j=2

k1 · (k2+k3+ . . .+kj)A(DF )2+YM+φ3(2, 3, . . . , j, 1, j+1, . . . , n) = 0 , (4.13)

for arbitrary number of external gluons and adjoint scalars.

4.2 Scalar extension of the (DF )2 theory

As a main result on the heterotic-string amplitudes, the kinematic factors A(DF )2+YM+φ3 in

(4.10) are conjectured to follow as the color-ordered amplitudes in a field theory involving

scalars and vectors with Lagrangian [20]

L(DF )2+YM+φ3 =
1

2
(DµF

aµν)2 −
g

3
F 3 +

1

2
(Dµϕ

α)2 +
g

2
CαabϕαF a

µνF
b µν +

g

3!
dαβγϕαϕβϕγ

−
1

2
m2(ϕα)2 −

1

4
m2(F a

µν)
2 +

1

2
(Dµφ

aA)2 +
g

2
CαabϕαφaAφbA (4.14)

+
gλ

3!
fabcf̂ABCφaAφbBφcC ,

12The coupling λ can be inserted into the Kac–Moody currents of the gluon vertex operators, which then

obey the following OPE JA(z)JB(0) ∼ f̂ABCJC(0) λ√
2z

+ δAB

z2
.
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with F 3 defined in (2.29). This augments the Lagrangian (3.3) by massless13 scalars φaA

that are charged under a global group Ghet as well as the local gauge group G. We treat it

as a single field that carries adjoint gauge-group indices a, b, c, . . . and global-group adjoint

indices A,B,C, . . ., and this allows for a cubic scalar self-interaction with an unconstrained

and dimensionless coupling λ. Note that the global group Ghet becomes the gauge group of

the heterotic string after the double copy (4.5) is performed, and in the tree-level context of

this work, Ghet can be generalized beyond the rank-sixteen cases realized by compactification

of sixteen spacetime dimensions [63, 64]. As for the (DF )2+YM theory, the Lagrangian (4.14)

is normalized such that the limit m → 0 (α′ → ∞) is well behaved. For a well-behaved limit

m → ∞ (α′ → 0) in turn, we need to multiply the Lagrangian by m−2 = −α′, and rescale

the bi-adjoint scalar φaA → mφaA and redefine its self-coupling mλ = λ′, which explains why

such steps are needed in some of the subsequent formulas.

The kinematic factors A(DF )2+YM+φ3 appearing in the massless heterotic-string ampli-

tudes (4.10) we claim to arise from the partial tree-level amplitudes of the Lagrangian (4.14)

after color-decomposing with respect to the local gauge group G. As exemplified by (4.11)

and (4.12), these color-ordered amplitudes still depend on the degrees of freedom of the global

group Ghet through the appearance of δAB and f̂ABC tensors.

That the identification of the kinematic factor in eq. (4.10) is correct can be argued

through similar considerations as in section 3. By considering the A(DF )2+YM+φ3 as unknown

factors appearing in the massless heterotic-string amplitudes, we assume the following minimal

properties (in addition to the properties already considered for the B amplitudes in section 3),

(i) In the low-energy limit −1/α′ = m2 → ∞ combined with the abelian limit of Ghet

(λ → 0), the factors A(DF )2+YM+φ3 become tree amplitudes in 26-dimensional YM

theory dimensionally reduced to D = 10, where the scalars arise as internal components

of the gluons.

(ii) In the limit λ → ∞, the multi-trace terms of A(DF )2+YM+φ3 are suppressed, and their

pure-scalar sector gives trivial φ3 tree amplitudes.

(iii) A(DF )2+YM+φ3 are partial amplitudes coming from a bosonic gauge theory that obeys

the color-kinematics duality in (at least) D ≤ 10 dimensions.

The first property comes from the knowledge that heterotic-string amplitudes in the field-

theory limit and abelian limit become double copies between 26-dimensional YM theory and

ten-dimensional SYM [63, 64]. The second property comes from considering gluon scattering

at tree level in the heterotic string and taking the gauge-group coupling to be large in com-

parison to the gravitational coupling in units of α′. This limit can be implemented via λ → ∞

which gives single-trace amplitudes of uniform transcendentality, consistent with the single-

valued projection (4.7) of the open-string amplitudes [80]. A double copy with φ3 amplitudes

13Adding a mass term for the scalars φaA allows to address massive gauge bosons coupled to gravity upon
double copy with YM amplitudes, see [13] for a double-copy description of spontaneous symmetry breaking.
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on one side is equivalent to the identity operation, and thus property (ii) is consistent with

eq. (4.5). Assumption (iii) follows from (4.13) based on the arguments in appendix C.3.

The amplitudes obtained from the Lagrangian (4.14) obey all of the above properties,

and have the right behaviour in the limits α′ → 0 and α′ → ∞ (see section 3 for the analogous

α′ → 0,∞ properties in case of the kinematic factors of the bosonic string). From the analysis

in ref. [20], L(DF )2+YM+φ3 given in (4.14) is the unique Lagrangian with these properties.

More on property (i): Property (i) deserves some further explanation as it is not

obvious from simply staring at the Lagrangian (4.14). After the rescaling φaA → mφaA,

the limit m → ∞ and λ → 0 can be taken by keeping all terms proportional to m2 and

dropping the rest. The ϕα is now an auxiliary field that can be integrated out, this gives the

φ4 interaction that is typical of dimensionally reduced YM theory:

LYM+scalar = −
1

4
(F a

µν)
2 +

1

2
(Dµφ

aA)2 −
1

2
(ϕα)2 +

g

2
CαabϕαφaAφbA

−→ −
1

4
(F a

µν)
2 +

1

2
(Dµφ

aA)2 −
g2

4
facef ebdφaAφbAφcBφdB , (4.15)

where the overall m2 has been removed by a trivial rescaling. Note that since we obtain

dimensionally reduced YM theory, we can simply think of the φaA scalars as being the extra-

dimensional gluons coming from the 26-dimensional theory. This interpretation works even

for finite m, but in the limit m → 0 the interpretation breaks down (as previously men-

tioned, dimensional reductions of the pure (DF )2 theory yield scalars that automatically

decouple [20]).

More on property (ii): To elaborate on a stronger version of property (ii), we may take

the m → ∞ limit of the Lagrangian (4.14) while keeping the product λ′ ≡ mλ finite (which

is now a dimensionful coupling constant). This yields the YM+ φ3 Lagrangian introduced in

ref. [12],

LYM+φ3 = −
1

4
(F a

µν)
2 +

1

2
(Dµφ

aA)2 −
g2

4
facef ebdφaAφbAφcBφdB +

gλ′

3!
fabcf̂ABCφaAφbBφcC ,

(4.16)

which gives rise to (possibly supersymmetric) EYM upon double-copy with (S)YM. The claim

(4.5) is consistent with the α′ → 0 limit (λ′ = mλ finite), where the heterotic-string amplitude

(4.10) should reproduce the KLT formula

Mg+h
EYMSG =

∑

τ,ρ

AYM+φ3(1, τ, n, n−1)S[τ |ρ]1ASYM(1, ρ, n−1, n) (4.17)

for EYM amplitudes. Indeed, the m → ∞ limit of the kinematic factors A(DF )2+YM+φ3 in

(4.10) yields amplitudes of the YM+ φ3 theory

lim
m→∞

mns−2A(DF )2+YM+φ3(1, 2, . . . , n)
∣
∣
∣
λ′=mλ fixed

= AYM+φ3(1, 2, . . . , n) , (4.18)
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where ns is the number of external scalars, and thus this generalizes the low-energy limit

of the pure-gluon amplitudes (2.21). Note that the purpose of inserting an overall factor of

mns−2 and redefinition of λ is to make the dimensions agree on the two sides of the equality.

(Accordingly, the α′ → 0 limit of the heterotic amplitude (4.10) needs the analogous rescaling.)

Consistency as α′ → ∞: The compatibility of the double copy (4.10) with the La-

grangian (4.14) in the opposite limit m → 0 can also be seen. Correlation functions of the het-

erotic string again yield worldsheet integrals whose expansion in a uniform-transcendentality

basis of (svF )ρ
σ involves coefficients ∼ 2α′

2α′si...j−1 . As explained in section 3, the latter usually

line up with massless propagators s−1
i...j such that the limit α′ → ∞ introduces double poles

s−2
i...j into A(DF )2+YM+φ3 as expected from the massless limit of (4.14).

Relating α′ to the mass parameter of (DF )2 +YM+φ3 theory: At this point, one

can also see that the mass parameter m2 = −(α′)−1 of (4.14) needs to be interlocked with

α′ in the Koba–Nielsen factor of the disk integrals (2.2) and their single-valued projection.

Our argument is based on the level-matching condition for left- and right-moving degrees of

freedom which removes the tachyon from the heterotic-string spectrum. Tachyon propagation

in massless four-point amplitudes of the heterotic string is suppressed by the zeros of the

Virasoro–Shapiro factor

svAs(1, 2, 3, 4) =
Γ(1 + 2α′s12)Γ(1 + 2α′s13)Γ(1 + 2α′s23)

Γ(1− 2α′s12)Γ(1− 2α′s13)Γ(1− 2α′s23)
ASYM(1, 2, 3, 4) (4.19)

at 2sij = α′−1. Like this, the tentative tachyon poles (1−2α′s12)
−1 of the four-point examples

A(DF )2+YM+φ3(1, 2, 3, 4) in (4.12) are cancelled by the factor of Γ(1−2α′s12)
−1 within (4.19).

This cancellation crucially depends on having the same value of α′ in the two sides of the

double copy (4.10).

These arguments can be repeated in the context of the closed bosonic string: The double

copy of the kinematic factors B in the tree amplitudes (2.23) of the closed bosonic string

introduces double poles at 2sij = −m2. Once the mass parameter of the underlying (DF )2+

YM theory is adjusted to α′, these double poles conspire with the zeros of the accompanying

sphere integrals at 2sij = α′−1. Hence, the field-theory mass parameter must be related to

α′ in order to arrive at the kinematic pole structure for tachyon propagation.

The above discussion is tailored to open-string conventions for the normalization of α′.

The conventional closed-string normalization of α′ in (4.19) and related equations can be

attained by replacing α′ → α′
4 which identifies the mass of the closed-string tachyon to be

twice the mass of the open-string tachyon.

Explicit checks: Amplitudes up to multiplicity eight can be straightforwardly com-

puted from the Feynman rules of the (DF )2 + YM+ φ3 theory (see appendix C.1); we have

explicitly checked that these agree with all the corresponding kinematic factors extracted from

heterotic string amplitudes up to multiplicity five, as well as the triple-trace color structure14

14We are grateful to Sebastian Mizera for sharing the integration-by-parts reduction of the worldsheet integral
entering the triple-trace sector of the six-gluon amplitude of the heterotic string.
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∼ δA1A2δA3A4δA5A6 in the six-point heterotic-string amplitude (4.10).

5 Gauge-gravity amplitude relations and CSG from α′ → ∞

This section is dedicated to field-theory implications of our double-copy representations of

string amplitudes. We discuss some connections between the α′ → ∞ limit of heterotic-

string amplitudes and those of conformal gravity, including its coupling to gauge theories. In

this limit, the double-copy structure of the heterotic string is explained to imply amplitude

relations in more exotic examples of gauge-gravity theories, see section 5.2 below.

5.1 Amplitude relations for conformal supergravity coupled to gauge bosons

As reviewed in section 2.5, the α′ → ∞ limit of the ((DF )2 + YM)-theory amplitudes can

be double copied with SYM to yield conformal-gravity amplitudes [20] of Berkovits-Witten

type [83] (see also [84, 85]). In ref. [65], it was shown that these conformal-gravity amplitudes

can also be obtained from the heterotic ambitwistor string. Given the relation between the

tensionless limit of usual string theory and ambitwistor strings [86–88], it is reasonable to

expect the α′ → ∞ limit of the heterotic-string relations (4.8) and (4.9) to apply to color-

stripped amplitudes ACSG+SYM in conformal supergravity coupled to gauge bosons.

Indeed, it will be shown in appendix D.1 through the CHY formalism that this is the

case for a small number of external gravitons. While the amplitude coefficients in (4.8) for

the one-graviton case do not depend on α′ and allow for the immediate translation

ACSG+SYM(1, 2, . . . , n; p) =
n−1∑

j=1

(ep · xj)ASYM(1, 2, . . . , j, p, j+1, . . . , n) , (5.1)

the two-graviton relation (4.9) explicitly depends on α′ via
ep·eq−2α′(ep·q)(eq·p)

1−2α′(p·q) in the second

line. The limit α′ → ∞ reduces this kinematic coefficient to
(ep·q)(eq ·p)

spq
and therefore gives

rise to the amplitude relation

ACSG+SYM(1, 2, . . . , n;p, q) =

n−1∑

1=i≤j

(ep · xi) (eq · xj)ASYM(1, . . . , i, p, i+1, . . . , j, q, j+1, . . . , n)

−
(ep · q)(eq · p)

2spq

n−1∑

l=1

(p · kl)
l∑

1=i≤j

ASYM(1, 2, . . . , i−1, q, i, . . . , j−1, p, j, . . . , n) (5.2)

− (eq · p)
n−1∑

j=1

(ep · xj)

j+1
∑

i=1

ASYM(1, 2, . . . , i−1, q, i, . . . , j, p, j+1, . . . , n) + (p ↔ q) ,

see appendix D.1 for a detailed derivation from the CHY formalism. Note that CSG+ SYM

is a ten-dimensional generalization of Witten’s twistor string theory [89] (including the con-

formal gravity sector that is often discarded). The generalization of (5.1) and (5.2) to three
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gravitons, which can also be derived from the α′ → ∞ limit of the corresponding heterotic-

string relations [43], can be found in appendix D.2. Further generalizations to arbitrary

numbers of gravitons and traces are encoded in the double-copy (4.10) along with the La-

grangian in section 4.2.

Since the CSG+ SYM amplitudes can be obtained from the α′ → ∞ limit of the double

copy ((DF )2 +YM+ φ3)⊗ SYM they correspond to a double copy between (DF )2 + φ3 and

SYM, where the Lagrangian for the (DF )2+φ3 theory is obtained by setting m = 0 in (4.14).

From this fact it is clear that (5.2) can be used to straightforwardly identify BCJ numerators

of the (DF )2 + φ3 theory after writing the ASYM factors in a Kleiss–Kuijf basis, in similar

fashion to the method introduced in ref. [14] where corresponding EYM relations employ BCJ

numerators of the YM+ φ3 theory; see ref. [14] for further details.

Further amplitude relations can be obtained for multi-trace sectors of CSG+ SYM. In

appendix D.3, double-trace amplitudes ACSG+SYM({1, 2, . . . , r | r+1, . . . , n}) of the gauge mul-

tiplet associated with color factors Tr(T a1T a2 . . . T ar)Tr(T ar+1 . . . T an) are expressed in terms

of (single-trace) gauge-theory amplitudes, e.g.

ACSG+SYM({1, 2 | 3, 4}) =
s14
s12

ASYM(1, 2, 3, 4) , (5.3)

ACSG+SYM({1, 2, 3 | 4, 5}) =
1

s45

[
s15ASYM(1, 2, 3, 4, 5) − s25ASYM(2, 1, 3, 4, 5)

]
. (5.4)

The multiparticle generalization of these examples and the CHY integrand associated with

the double-trace sector can be found in appendix D.3.

5.2 More exotic examples of gauge-gravity theories

In this subsection, we will investigate more exotic gauge-gravity theories that can be obtained

by double-copying (DF )2 with massless gauge theories coupled to a bi-adjoint scalar. These

additional gauge-gravity theories will be argued to share the amplitude relations of either

EYM or CSG+ SYM.

As shown in [65], the double copy of (DF )2 with itself produces the amplitudes of R3

(six-derivative) gravity coming from bosonic ambitwistor strings. If one instead considers

the double copy of (DF )2 with (DF )2 + φ3, one then obtains the amplitudes of R3 gravity

coupled to (DF )2 gauge bosons. Interestingly, given the similarity of the CHY integrands

of both theories [65], it is easy to show that the amplitude relations in this section and

appendices D.2 and D.3 can be carried over to this R3 +(DF )2 theory. For this purpose, the

amplitude subscripts in (5.1), (5.2) and their generalizations need to be adjusted according

to CSG+SYM → R3+(DF )2 and SYM → (DF )2, respectively. Since we show in this paper

that the amplitude relations for CSG+SYM are related to an α′ → ∞ limit, it is reasonable

to suspect the same is true for R3 + (DF )2. It would be interesting to identify the finite-α′

version of these relations.

In table 2 below we give an overview of possible double-copy constructions involving gauge

theories coupled to a bi-adjoint scalar. While the entries of R3 gravity and its couplings to
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the (DF )2 theory have just been discussed, it remains to introduce one last gauge-gravity

theory: The entry “CG + (DF )2” in table 2 refers to conformal gravity coupled to (DF )2

gauge bosons.

⊗ SYM (DF )2 YM+ φ3 (DF )2 + φ3

SYM supergravity CSG EYM SG CSG+ SYM

(DF )2 CSG R3 gravity CG+ (DF )2 R3 gravity + (DF )2

Table 2. Overview of the double-copy constructions discussed here involving pure gauge theories, or
gauge theories coupled to a bi-adjoint scalar.

The fact that the amplitudes coming from the theories in the last column of the table

satisfy the same type of relations suggests that the same is true for the next-to-last column.

Indeed, amplitudes of CG + (DF )2 will be argued to satisfy the same relations as EYM

amplitudes: For one graviton, one has

ACG+(DF )2(1, 2, . . . , n; p) =

n−1∑

j=1

(ep · xj)A(DF )2(1, 2, . . . , j, p, j+1, . . . , n) , (5.5)

while for two gravitons, one inherits the structure of (4.9) in the α′ → 0 limit,

ACG+(DF )2(1, 2, . . . , n; p, q) =

n−1∑

1=i≤j

(ep · xi) (eq · xj)A(DF )2(1, . . . , i, p, i+1, . . . , j, q, j+1, . . . , n)

−
1

2
(ep · eq)

n−1∑

l=1

(p · kl)
l∑

1=i≤j

A(DF )2(1, 2, . . . , i−1, q, i, . . . , j−1, p, j, . . . , n) (5.6)

− (eq · p)
n−1∑

j=1

(ep · xj)

j+1
∑

i=1

A(DF )2(1, 2, . . . , i−1, q, i, . . . , j, p, j+1, . . . , n) + (p ↔ q) .

Similarly, for a higher number of gauge bosons and gravitons as well as for the multi-trace

sectors, one can export the amplitude relations of EYM [28, 30, 31, 42] by adjusting AEYM →

ACG+(DF )2 and ASYM → A(DF )2 . In appendix D.4, we introduce the CHY integrand for the

CG+ (DF )2 theory and justify the agreement of its amplitude relations with those of EYM.

5.3 Conformal-supergravity amplitudes and twisted heterotic strings

As pointed out by Huang, Siegel and Yuan [66], type-II amplitudes (2.9) can be converted

into those of supergravity by flipping the sign of α′ in one of the open-string constituents of

their KLT representation. Introducing the notation

As(π(1, 2, . . . , n)) ≡ As(π(1, 2, . . . , n))
∣
∣
α′→−α′ (5.7)

– 23 –



for the formal α′ → −α′ operation, this statement is

MSG =
∑

π,σ

As(1, π(2, 3, . . . , n−2), n, n−1)Sα′ [π|σ]1As(1, σ(2, 3, . . . , n−2), n−1, n) , (5.8)

where the α′-dressed KLT matrix Sα′ [π|σ]1 is related to its field-theory incarnation (2.6) by

promoting the momentum dependence to (k1+kB) · kj →
sin(2πα′(k1+kB)·kj)

2πα′ with Sα′ [2|2]1 =
sin(2πα′s12)

2πα′ . By the organization of the type-II amplitudes in ref. [59], the entire α′-dependence

has been explained [66] to drop out from (5.8) and only the supergravity amplitude remains.

As pointed out in [90], both (5.8) and the conventional string-theory KLT relations [1] may

be understood as a consequence of the so-called twisted period relations [91], a result in

intersection theory.

Since this cancellation of all MZVs can be traced back to properties of the sphere integrals,

the analogous combination with one of As replaced by Abos reduces to the kinematic factors

∑

π,σ

Abos(1, π(2, 3, . . . , n−2), n, n−1)Sα′ [π|σ]1As(1, σ(2, 3, . . . , n−2), n−1, n) (5.9)

=
∑

τ,ρ

B(1, τ(2, 3, . . . , n−2), n, n−1)S[τ |ρ]1ASYM(1, ρ(2, 3, . . . , n−2), n−1, n) ,

i.e. to the zero-transcendentality piece of the gravitational heterotic-string amplitude (2.22).

Following the discussion of section 3, the kinematic factors B of the bosonic string de-

generate to the double-copy constituent A(DF )2 of conformal supergravity when taking the

limit α′ → ∞. Then, the right hand side of (5.9) reduces to the KLT representation (2.31)

of the tree amplitudes of conformal supergravity [20], i.e. we are led to the following new

representation:

MCSG = − lim
α′→∞

1

α′

∑

π,σ

Abos(1, π(2, . . . , n−2), n, n−1)Sα′ [π|σ]1As(1, σ(2, . . . , n−2), n−1, n) .

(5.10)

Since the tensionless limit of these “twisted” heterotic string amplitudes gives the same result

as the ambitwistor strings, this is another way of seeing that the amplitudes coming from

the gravity sector of the heterotic ambitwistor string correspond to conformal-supergravity

amplitudes.

Likewise, we can compactify the bosonic-string factor of (5.10) to the same sixteen-

dimensional internal manifolds as used for the heterotic string, giving gauge groups SO(32)

or E8 × E8 (or more general gauge groups at tree level) and tree amplitudes

Acomp
bos (1, π(2, 3, . . . , n−2), n−1, n) =

∑

ρ

Fπ
ρA(DF )2+YM+φ3(1, ρ(2, 3, . . . , n−2), n−1, n) .

(5.11)

Then, taking the high-energy limit α′ → ∞ of the “twisted” heterotic string yields conformal
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supergravity coupled to SYM,15

MCSG+SYM = lim
α′→∞

∑

π,σ

Acomp
bos (1, π, n, n−1)

∣
∣
∣
λ fixed

Sα′ [π|σ]1As(1, σ, n−1, n) , (5.12)

and reproduces the amplitude relations in section 5.1 upon color decomposition. When trans-

lating these ten-dimensional amplitudes (5.12) to four dimensions, we obtain Witten’s twistor

string theory [89], and the corresponding scattering equations present in the Roiban–Spradlin–

Volovich (RSV) formula [92] are now a natural consequence of the α′ → ∞ limit, as originally

considered by Gross and Mende [93].

6 Summary and Outlook

In this work, we have proposed field-theory double-copy structures for all massless tree-level

amplitudes of bosonic and heterotic strings. One side of the double copy comprises the same

Z-theory amplitudes or moduli-space integrals over punctured disk and sphere worldsheets

as seen in their superstring counterparts. The additional, non-supersymmetric double-copy

components specific to bosonic and heterotic strings are conjectured to descend from mas-

sive gauge theories whose Lagrangians are spelt out in the main text. These gauge-theory

Lagrangians are combinations of dimension-four and dimension-six operators whose relative

scaling is controlled by the mass parameter α′ = −m−2. The dimension-six part which domi-

nates in the α′ → ∞ limit is known as the (DF )2 gauge theory in the double-copy construction

of conformal supergravity [20].

Our results give particularly striking examples for the ubiquity of field-theory structures

in string amplitudes and universal properties across different string theories. Apart from

the universal α′-dependent moduli-space integrals, tree-level amplitudes in different string

theories are characterized by gauge theories which specify the kinematic factors. Properties

of the moduli-space integrals require these field theories to obey the duality between color

and kinematics in the same way as the Z-theory amplitudes do. Given that the respective

string-theory context fixes the mass dimensions and the particle content of the field-theory

operators, the α′ → 0,∞ behaviour and the color-kinematics duality uniquely specify the

extensions of the (DF )2 theory relevant to bosonic and heterotic strings.

We also showed that relations analogous to those of EYM hold for the amplitudes involv-

ing gauge and gravity multiplets in conformal (super-)gravity, and that they can be obtained

by taking the α′ → ∞ limit of the corresponding heterotic-string amplitudes. Since the the-

ory of gluons coupled to conformal gravity is precisely the one coming from the heterotic

ambitwistor string, our results add to the claims that the latter is more naturally associated

with the tensionless limit of ordinary strings.

While the results of this work only concern massless external states, the organization of

the moduli-space integrals into (n−3)!× (n−3)! bases should extend to scattering of massive

15In contrast to (4.18), the α′ → ∞ limit in (5.12) is performed at fixed λ rather than at fixed λ′ = mλ. By
the relative normalization (3.5) of B and A(DF )2+YM, there is no analogue of the factor α′−1 in (5.10).
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string resonances [58]. It is conceivable that the accompanying kinematic factors depending

on the higher-spin polarizations can also be traced back to field theories that generalize the

(DF )2 +YM+ φ3 Lagrangian.

Another important line of follow-up research concerns loop amplitudes. For massless

one-loop amplitudes of maximally supersymmetric open strings, a double-copy structure re-

sembling matrix elements of gravitational R4 operators has been recently proposed in ref. [57].

The (generalized) elliptic functions of the worldsheet punctures in the reference are tailored

to maximal supersymmetry, but the results of ref. [48] on one-loop open-string amplitudes in

orbifold compactifications might pave the way to generalizations with reduced supersymmetry.

It would be interesting to investigate similar double-copy structures in one-loop amplitudes

of bosonic and heterotic strings as well as higher-loop generalizations.

While the double-copy structure of string amplitudes is perturbative in the current con-

text, the fact that kinematic factors of type I, IIA/B and heterotic theories uniformly arise

from a field-theory perspective, with a simple Lagrangian interpretation, suggests a connec-

tion to non-perturbative string dualities. Understanding the role of the (DF )2 + YM + φ3

gauge theory and Z-theory at loop level may shed new light on these dualities, such as the

heterotic/type-I duality [94], or even M-theory [95].
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A Overall normalizations of color/coupling-stripped amplitudes

This appendix summarizes our normalization conventions for the color-ordered and/or coupling-

stripped string- and field-theory amplitudes given in the main text. With the shorthand

C(1, 2, 3, . . . , n) = Tr
(
T a1T a2T a3 · · · T an

)
(A.1)
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for Chan–Paton color factors, the color- and coupling-dressed string amplitudes are given by

Aopen bos = gn−2
∑

σ∈Sn−1

Abos

(
1, σ(2, 3, . . . , n)

)
C
(
1, σ(2, 3, . . . , n)

)
,

Atype I = gn−2
∑

σ∈Sn−1

As

(
1, σ(2, 3, . . . , n)

)
C
(
1, σ(2, 3, . . . , n)

)
,

Mg+h
heterotic

∣
∣
∣
single
trace

= gng−2
(κ

2

)nh ∑

σ∈Sng−1

Ahet

(
1, σ(2, 3, . . . , ng); p, q, . . .

)
C
(
1, σ(2, 3, . . . , ng)

)
,

Mg+h
heterotic =

(κ

2

)n−2
Mg+h

het ,

Mclosed bos =
(κ

2

)n−2
Mbos ,

Mtype II =
(κ

2

)n−2
MII , (A.2)

where ng and nh denote the numbers of external gluons and gravitons, respectively, with

total n = ng +nh. The coupling constants κ and g appear in the ten-dimensional low-energy

effective action as G−1/2LGR ∼ 4
κ2R and G−1/2LYM ∼ 1

4(F
a
µν)

2, where the metric and the

field strength are expanded as Gµν = ηµν +κhµν and F a
µν = ∂µA

a
ν −∂νA

a
µ+ gfabcAb

µA
c
ν . Note

that the color-stripped heterotic single-trace amplitude Ahet has a slightly different overall

coupling-dependent factor relative to the color-dressed amplitude Mg+h
het ; the relative factor

is (2g/κ)ng−2 which is proportional to λng−2.

The corresponding field-theory amplitudes are normalized in analogous manner, e.g.

Agauge = gn−2
∑

σ∈Sn−1

Agauge

(
1, σ(2, 3, . . . , n)

)
C
(
1, σ(2, 3, . . . , n)

)
,

Mgravity =
(κ

2

)n−2
Mgravity , (A.3)

where the “gauge” subscript stands for YM, SYM or (DF )2 theory, including the deformations

of the (DF )2 theory, and “gravity” stands for Einstein, EYM, conformal supergravity, or

deformations thereof.

B Single-valued MZVs in the α′-expansion

For tree amplitudes (2.2) and (2.9) of the open and closed superstring, the α′-expansion gives

rise to MZVs (2.10) in a uniformly transcendental pattern [59, 74–77]: The wth order in α′

is exclusively accompanied by MZVs (2.10) of weight w = n1 + n2 + . . . + nr. Moreover,

the (n−3)! × (n−3)! matrix form of (2.2) is suitable to relate coefficients of different MZVs

that are conjecturally independent over Q: Let Pw and Mw denote (n−3)!× (n−3)! matrices

whose coefficients are degree-w polynomials in α′sij with rational coefficients, then (upon
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suppressing the indices π, ρ ∈ Sn−3 in (2.2)) [59]

F = 1 + ζ2P2 + ζ3M3 + ζ22P4 + ζ5M5 + ζ3ζ2P2M3 + ζ32P6 +
1
2ζ

2
3M

2
3 + ζ7M7 + ζ5ζ2P2M5

+ ζ3ζ
2
2P4M3 + ζ42P8 +

1
2ζ

2
3ζ2P2M

2
3 + ζ3ζ5M5M3 +

1
5ζ3,5[M5,M3] +O(α′9) . (B.1)

For instance, the coefficient of ζ2ζ3 is a matrix product P2M3 involving the coefficients P2 and

M3 of ζ2 and ζ3, and similarly, ζ3,5 is accompanied by a matrix commutator of M3 and M5

(see [59] for the continuation to higher weights and explanation of the rational prefactor 1
5).

The state-of-the-art-methods16 to obtain the explicit form of the Pw and Mw at n points

involve the Drinfeld associator [69] (also see [101]) or a Berends–Giele recursion for Z-theory

amplitudes [54]. Results up to and including seven points are available for download via [102].

Once the closed-string tree amplitude is cast into the form (2.9), the matrix svF can

be obtained by imposing certain selection rules on the MZVs in the analogous open-string

expansion (B.1) which are obscured by the string-theory KLT formula [1]. These selection

rules have been pinpointed to arbitrary weights [59] (see [77] for earlier work on weights ≤ 8)

and were later on identified [62] with the single-valued projection [60, 61]. As exemplified by

the leading orders

svF = 1 + 2ζ3M3 + 2ζ5M5 + 2ζ23M
2
3 + 2ζ7M7 + 2ζ3ζ5{M5,M3}+O(α′9) , (B.2)

the closed-string α′-expansion follows from (B.1) by acting with the single-valued projection

(2.11) [60, 61] on the MZVs, see the references for sv(ζn1,n2,...,nr) at higher weight and depth.

C More on (DF )2 +YM+ φ3 amplitudes

C.1 Feynman rules

As a gentle warning to the reader, we note that the gauge-theory Lagrangians throughout the

paper are given using a Lorentzian metric of mostly-minus signature. Amplitudes obtained

from standard Feynman-rule calculations in this metric are then compared with the string-

theory results after flipping the metric signature. Consequently, all amplitudes found in the

paper use a mostly-plus metric.

We now collect the Feynman rules employed for calculations in the mass-deformed scalar-

coupled (DF )2 + YM + φ3 theory with Lagrangian (4.14). In mostly-minus signature, the

propagators for the gluon Aa
µ, scalars ϕ

α and φaA are as follows:

a1, µ1 a2, µ2

k
= i

ηµ1µ2δa1a2

k2(k2 −m2)
(C.1)

16An earlier all-multiplicity method is based on polylogarithm manipulations [51]. Moreover, five-point
expansions have been performed to arbitrary orders in α′ by exploiting the connection with hypergeometric
function [96, 97] (also see [98–100] for (N≤7)-point results at certain orders in α′).
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α1 α2

k
= i

δα1α2

k2 −m2
(C.2)

a1, A1 a2, A2

k
= i

δa1a2δA1A2

k2
(C.3)

The three- and four-vertices in mostly-minus signature are:

k1, a1, µ1

k2, a2, µ2

k3, a3, µ3 = gfa1a2a3
{

(k21 + k22 −m2)ηµ1µ2kµ3
1 − kµ1

1 kµ2
2 kµ3

1

−2kµ1
2 kµ2

2 kµ3
1 + 2

3k
µ1
3 kµ2

1 kµ3
2

}

+ Perms(1, 2, 3)

(C.4)

k1, a1, µ1

k2, a2, µ2

k3, α3

= 2igCα3a1a2(kµ1
2 kµ2

1 − k1 · k2ηµ1µ2) (C.5)

k1, α1

k2, α2

k3, a3, µ3 = igT a3α1α2
R (kµ3

1 − kµ3
2 ) (C.6)

k1, a1, A1

k2, a2, A2

k3, a3, µ3

= gfa1a2a3δA1A2
(
kµ3
1 − kµ3

2

)
(C.7)
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k1, a1, A1

k2, a2, A2

k3, α3

= igCα3a1a2δA1A2 (C.8)

k1, a1, A1

k2, a2, A2

k3, a3, A3

= igλfa1a2a3 f̂A1A2A3 (C.9)

k1, α1

k2, α2

k3, α3

= igdα1α2α3 (C.10)

k1, a1, µ1

k2, a2, µ2

k4, a4, µ4

k3, a3, µ3

= −ig2fa1a2bf ba3a4
{

1
8(k1 − k2) · (k3 − k4)η

µ1µ2ηµ3µ4

+1
4

(
(k1 + k2)

2 + (k3 + k4)
2 −m2

)
ηµ1µ4ηµ2µ3

−
(
1
2k

µ1
4 kµ4

4 + 2kµ1
4 kµ4

3 + 2kµ1
2 kµ4

4 + kµ1
4 kµ4

4

)

ηµ2µ3

+kµ1
1 (2k1 + k2 + k3)

µ2ηµ3µ4 + 2kµ1
2 kµ3

4 ηµ2µ4

}

+Perms(1, 2, 3, 4)

(C.11)
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k1, a1, µ1

k2, a2, µ2 k3, a3, µ3

k4, α4

= 2g2fa1a2bCα4ba3ηµ1µ3kµ2
3 + Perms(1, 2, 3) (C.12)

k1, a1, µ1

k2, a2, µ2 k3, α3

k4, α4

= ig2(T a1
R T a2

R + T a2
R T a1

R )α3α4 + Perms(3, 4) (C.13)

k1, a1, µ1

k2, a2, µ2 k3, a3, A3

k4, a4, A4

= ig2(fa1a4bf ba2a3 + fa1a3bf ba2a4)δA1A2ηµ1µ2 (C.14)

Expressions for five- and six-vertices can be found in ref. [20]. Partial amplitudes are

obtained introducing gauge-group generators (canonically) normalized as

fa1a2a3 = −iTr([T a1 , T a2 ]T a3) , (C.15)

where fa1a2a3 are real structure constants.

C.2 Five-point examples of (DF )2 +YM+ φ3 amplitudes

In this appendix, we display five-point examples of the kinematic factors A(DF )2+YM+φ3 in

heterotic-string amplitudes (4.10). Five scalars of the (DF )2 +YM+ φ3 theory give rise to

A(DF )2+YM+φ3(1s, 2s, 3s, 4s, 5s) = i
λ3f̂A1A2B f̂BA3C f̂CA4A5

4s12s45
+ i

λα′δA1A3 f̂A2A4A5

s45(1− 2α′s13)

+ i
λα′δA1A2 f̂A3A4A5

(1− 2α′s12)

( s13
s12s45

+
s25

s12s34
−

1

s12

)

+ cyc(1, 2, 3, 4, 5) , (C.16)
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and three scalars yield

A(DF )2+YM+φ3(1s, 2g, 3g, 4s, 5s) = iλf̂A1A4A5

{
(e2·k1)(e3·k4)

s12s34
−
(e2·k1)(e3·k12)

s12s45
−
(e2·k34)(e3·k4)

s34s15

−
(e2·k1)(e3·k2)− (e3·k1)(e2·k3) + s13(e2·e3)

s23s45
−

(e2·k3)(e3·k4)− (e3·k2)(e2·k4) + s24(e2·e3)

s23s15

+
(e2·e3)

s23
+ 2α′ (e2·k3)(e3·k2)− s23(e2·e3)

1− 2α′s23

( s24
s23s15

+
s13

s23s45
−

1

s23

)}

, (C.17)

where the α′-dependent terms in the last line are separately gauge invariant. With two scalars

and three gluons, the variety of tensor structures can be conveniently represented using the

notation Eij = (ei · ej) + 2α′ sij(ei·ej)−(ei·kj)(ej ·ki)
1−2α′sij

=
(ei·ej)−2α′(ei·kj)(ej ·ki)

1−2α′sij
from [43]

A(DF )2+YM+φ3(1g, 2g, 3g, 4s, 5s) = 2δA4A5

{
(e1·k5)

[
(e2·k4)(e3·k2)− (e2·k3)(e3·k4)

]

s15s23

+
(e3·k4)

[
(e2·k1)(e1·k5)− (e2·k5)(e1·k2)

]

s12s34
−

(e2·k34)(e1·k5)(e3·k4)

s15s34

+
(e3·k12)

[
(e1·k4)(e2·k1)− (e1·k2)(e2·k4)

]
+ (e3·k4)

[
(e1·k2)(e2·k3)− (e1·k3)(e2·k1)

]

s12s45

−
(e1·k23)

[
(e3·k5)(e2·k3)− (e3·k2)(e2·k5)

]
+ (e1·k5)

[
(e3·k2)(e2·k1)− (e3·k1)(e2·k3)

]

s23s45

+ E12
[

(e3·k4)
( s25
s12s34

−
s23

s12s45
−

1

s45

)

+
(e3·k1)s24
s12s45

−
(e3·k2)s14

s45

( 1

s12
+

1

s23

)]

(C.18)

+ E23
[

(e1·k5)
( s12
s23s45

−
s24

s15s23
+

1

s45

)

−
(e1·k3)s25
s23s45

+
(e1·k2)s35

s45

( 1

s12
+

1

s23

)]

+ E13
[e2·k4

s45
+

(e2·k1)(s34 + s45)

s12s45
+

(e2·k3)s14
s23s45

]

+
2α′

1− 2α′s45

( s14
s23s45

+
s35

s12s45
−

1

s45

)(

(e2·k1)(e1·k3)(e3·k2)− (e2·k3)(e3·k1)(e1·k2)

+ E12
[
s23(e3·k1)−s13(e3·k2)

]
+ E23

[
s13(e1·k2)−s12(e1·k3)

]
+ E13

[
s12(e2·k3)−s23(e2·k1)

])
}

.

Finally, the five-gluon case A(DF )2+YM+φ3(1g, 2g, 3g, 4g, 5g) = −(α′)−1B(1, 2, 3, 4, 5) is avail-

able from the arXiv submission of ref. [58].

C.3 BCJ relations of (DF )2 +YM+ φ3 amplitudes

We shall now derive the BCJ relations (4.13) of the kinematic factors A(DF )2+YM+φ3 in

(4.10). The idea is to study the non-supersymmetric chiral half of the underlying heterotic-

string correlators involving the currents JA(z) and ∂Xµ(z) in an open-string setup. Such

disk correlators can be realized by augmenting the open bosonic string by vertex operators

V A(z) = JA(z)eik·X(z) of massless scalars which carry an additional adjoint degree of free-

dom A besides their Chan–Paton generators T a. Such vertex operators may be obtained
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from compactifications of the open bosonic string in the geometries known from the non-

supersymmetric chiral half of the heterotic string and yield tree amplitudes

Acomp
bos (1, π(2, 3, . . . , n−2), n−1, n) =

∑

ρ∈Sn−3

Fπ
ρA(DF )2+YM+φ3(1, ρ(2, 3, . . . , n−2), n−1, n) ,

(C.19)

cf. (5.11). Descending from a worldsheet of disk topology, the color-ordered amplitudes

(C.19) involving gluons and scalars satisfy the monodromy relations [37, 38]. Following the

ideas of ref. [58, 82], one may restrict the α′-expansion of these monodromy relations to

their contributions of lowest transcendentality. Their imaginary parts then degenerate to

BCJ relations with Fπ
ρ → δρπ and yield the desired property (4.13) of A(DF )2+YM+φ3 . Upon

inserting the Z-amplitude expansion (2.7) of the integrals Fπ
ρ, (5.11) gives rise to the double-

copy construction of the compactified open bosonic string noted in table 1.

D Derivation of explicit amplitude relations for conformal supergravity

D.1 CHY derivation of the one- and two-graviton relations

In this section, we will derive the amplitude relations (5.1) and (5.2) for conformal supergrav-

ity coupled to gauge bosons from their representation in the CHY formalism. To begin with,

recall the CHY integrand for an n-point color-ordered amplitude of the gauge multiplet,

ISYM
n (1, 2, . . . , n) = C(1, 2, . . . , n) Pf ′ Ψn({k, e, z}) , (D.1)

where C(1, 2, . . . , n) ≡ (z12z23 . . . zn1)
−1 is the Parke–Taylor factor. The reduced Pfaffian

Pf′Ψn({k, e, z}) of the usual CHY matrix depending on the momenta kj , the polarizations ej
and the complex coordinates zj on the Riemann sphere as well as the integration prescription

can be found in ref. [22]. The Pfaffian may be supersymmetrized via pure-spinor methods

[103], and the result coincides with the n-point correlators of the open pure-spinor superstring

[44, 50] after stripping off the Koba–Nielsen factor (see [104] for the detailed argument). The

expression (D.1) can be generalized to the single-trace sector of an r-graviton, n-gluon EYM

amplitude [26],

IEYM
n+r (1, 2, . . . , n; p1, . . . , pr) = C(1, 2, . . . , n) Pf Ψr({p, ep, z}) Pf

′Ψn+r({k, p, ek , ep, z}) ,

(D.2)

with graviton momenta p and polarizations ep. These expressions were used in ref. [28] to

prove relations equivalent to the α′ → 0 limit of (4.8) and (4.9). Note that the r-particle

Pfaffian Pf Ψr({p, ep, z}) in (D.2) cannot be supersymmetrized.

For the theory of conformal supergravity coupled to gauge bosons, there is an expression

analogous to (D.2) which, as is implicit in [65], can be obtained from the heterotic ambitwistor
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string and is given by

IR2YM
n+r (1, 2, . . . , n; p1, . . . , pr) = C(1, 2, . . . , n) W11 · · · 1

︸ ︷︷ ︸
r

({p, ep, z}) Pf
′Ψn+r({k, p, ek , ep, z}) ,

(D.3)

where W{I} denotes a product of the Lam–Yao cycles. The latter have been introduced in

ref. [105] and were later used in ref. [81] in the study of the CHY formulation of amplitudes

coming from theories involving higher-dimensional operators, such as F 3 for gauge theory

and R2 for gravity. In the particular case appearing in (D.3), it can be written in terms of

the diagonal elements of the C-block of Ψn+r as

W11 · · · 1
︸ ︷︷ ︸

r

({p, ep, z}) =
r∏

i=1

Cpipi ≡
r∏

i=1

( n∑

j=1

epi · kj
zj − zpi

+

r∑

j=1
(j 6=i)

epi · pj
zpj − zpi

)

. (D.4)

We are now ready to prove that (4.8) literally translates into (5.1) for conformal gravity.

In fact, since PfΨr=1 = W1 = Cpp, the proof is identical to the one given in ref. [28], and

amounts to showing that, in this case,

Cpp =

n−1∑

j=1

(ep · xj)
zj,j+1

zj,pzp,j+1
, (D.5)

with xj = k1+k2+ . . .+kj , see the reference for details. The similarity of the results in both

theories is of course not surprising since (4.8) has no explicit dependence on α′.

Moving on to the case with two gravitons, writing p1 ≡ p and p2 ≡ q, one has

W11 = CppCqq

= C ′
ppC

′
qq + C ′

pp(eq · p)
zpn

zpqzqn
+ C ′

qq(ep · q)
zqn

zqpzpn
−

(ep · q)(eq · p)

z2pq
, (D.6)

where we have defined C ′
pp ≡

∑n−1
i=1 (ep · xi)zi,i+1/(zi,pzp,i+1) and written

Cpp = C ′
pp + (ep · q)

zqn
zqpzpn

. (D.7)

Analogous expressions can be written for Cqq by swapping p and q. Now, comparing with the

expression for the Pfaffian in (D.2),

Pf Ψr=2 = C ′
ppC

′
qq + C ′

pp(eq · p)
zpn

zpqzqn
+ C ′

qq(ep · q)
zqn

zqpzpn
−

spq(ep · eq)

z2pq
, (D.8)

we see that again we can benefit from the work done in the EYM case. Indeed, one im-

mediately sees that the manipulations involving the tensor structures (ep · xi)(eq · xj) and

(ep · xi)(eq · p) will be exactly the same in the conformal gravity theory, which implies that
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both the first and the third lines of (4.9) apply in this case. Once more, this could be expected

from the absence of explicit α′-dependence in those terms.

The last term in (D.6) has a new tensor structure w.r.t. the Pfaffian. However, it is very

similar in form to the last term in (D.8). In fact, the former can be obtained from the latter

by replacing (ep · eq) with s−1
pq (ep · q)(eq · p). This in turn ultimately implies that one can

perform such a substitution directly in the expression relating the (single-trace) scattering

amplitudes of two gravitons and n gluons in EYM to that of n+2 gluons, and thus obtain the

analogous expression in conformal supergravity. Doing so in the expression given in ref. [28],

we get an additive contribution of

−
(ep · q)(eq · p)

2spq

n−1∑

l=1

(p·kl)
l∑

1=i≤j

ASYM(1, 2, . . . , i−1, q, i, . . . , j−1, p, j, . . . , n)+(p ↔ q) , (D.9)

which has precisely the same form as the α′ → ∞ limit of the second line of (4.9). This

reproduces the second line of (5.2) and completes the proof that the α′ → ∞ limit of the

heterotic-string relations (4.8) and (4.9) applies to conformal supergravity coupled to gauge

bosons.

D.2 The three-graviton relation

In order to conveniently represent amplitudes ACSG+SYM(1, 2, . . . , n; p, q, r) involving three

gravitons and n gluons in terms of gauge-theory amplitudes, we recursively define the shuffle

product of ordered sets P ≡ {p1, p2, . . . , pm} and Q ≡ {q1, q2, . . . , qn} of cardinality m and n,

respectively:

P � ∅ = ∅� P = P , P �Q = {p1(p2, . . . , pm �Q)}+ {q1(q2, . . . , qn)� P} . (D.10)

Then, the notation
∑

σ∈P�Q instructs to sum over all permutations σ of P ∪Q which preserve

the individual orderings of P and Q. This applies to the α′ → ∞ limit of the three-graviton

relation in ref. [43]

ACSG+SYM(1, 2, . . . , n; p, q, r) =
(ep · q)(eq · p)(er · q)

spq

n−1∑

j=1

sjp
∑

σ∈{r,q,p}
�{1,2,...,j−1}

ASYM(σ, j, j+1, . . . , n)

−
(ep · q)(eq · p)

2spq

n−1∑

j=1

(er · xj)
{ j
∑

i=1

sip
∑

σ∈{q,p}
�{1,2,...,i−1}

ASYM(σ, i, i+1, . . . , j, r, j+1, . . . , n)

+ spr
∑

σ∈{q,p}
�{1,2,...,j}

ASYM(σ, r, j+1, . . . , n) +

n−1∑

i=j+1

sip
∑

σ∈{q,p}
�{1,...,j,r,j+1,...i−1}

ASYM(σ, i, i+1, . . . , n)
}
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− (er · p)
{ n−1∑

1=j≤i

(ep · xi)(eq · xj)
∑

σ∈{r}
�{1,...,j,q,j+1,...,i}

ASYM(σ, p, i+1, . . . , n) (D.11)

+
n−1∑

1=i≤j

(ep · xi)(eq · xj)
∑

σ∈{r}
�{1,2,...,i}

ASYM(σ, p, i+1, . . . , j, q, j+1, . . . , n)
}

+

n−1∑

1=i≤j≤k

(ep · xi)(eq · xj)(er · xk)ASYM(1, 2, . . . , i, p, i+1, . . . , j, q, j+1, . . . , k, r, k+1, . . . , n)

+ (ep · (q + r))(eq · r)
n−1∑

j=1

(er · xj)
∑

σ∈{p,q}
�{1,2,...,j}

ASYM(σ, r, j+1, . . . , n)

+
1

3
Fpqr

n−1∑

j=1

sjr
∑

σ∈{p,q,r}
�{1,2,...,j−1}

ASYM(σ, j, j+1, . . . , n) + perm(p, q, r)

with non-local kinematic factors

Fpqr =
1

spqr

{

(ep · q)(eq · r)(er · p)− (ep · r)(er · q)(eq · p) (D.12)

+
[(ep · q)(eq · p)

spq

(
spr(er · q)− sqr(er · q)

)
+ cyc(p, q, r)

]}

.

The methods of appendix D.1 allow for a direct derivation of (D.11) from the CHY formalism.

D.3 The double-trace relation

The double-trace sector of the n-gluon amplitude ACSG+SYM({1, 2, . . . , r | r+1, . . . , n}) can

also be related to (single-trace) gauge-theory amplitudes. The CHY integrand piece associated

with the double-trace sector of Tr(T a1T a2 . . . T ar)Tr(T ar+1 . . . T an) is (up to a sign) just a

product of the corresponding Parke–Taylor factors:

IR2YM
r,n−r ({1, 2, . . . , r | r+1, . . . , n}) = −C(1, 2, . . . , r) C(r+1, . . . , n) Pf ′Ψn({k, e, z}) . (D.13)

Again, this comes naturally from ambitwistor-string correlators of gluon vertex operators,

which involve the same current-algebra OPEs as in ordinary heterotic string theory [106, 107].

The EYM version of (D.13) is given by [26]

IEYM
r,n−r({1, 2, . . . , r | r+1, . . . , n}) = s12···r C(1, 2, . . . , r) C(r+1, . . . , n) Pf ′Ψn({k, e, z}) ,

(D.14)

where s12···r ≡ 1
2(k1 + k2 + · · · + kr)

2. Comparing (D.13) with (D.14), it is easy to see that

one can recycle the EYM double-trace amplitude relations derived in ref. [28] to obtain the

analogous relations for conformal gravity. Indeed, it suffices to multiply the right-hand side
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of the former by −1/s12···r. The desired expression is thus

ACSG+SYM({1, 2, . . . , r | r+1, . . . , n}) = (D.15)

1

s12···r

r−1∑

j=1

n∑

ℓ=r+2

(−1)n−ℓsjℓ
∑

τ∈{r+2,...,ℓ−1}
�{n,n−1,...,ℓ+1}

∑

σ∈{1,2,...,j−1}
�{r+1,τ,ℓ}

ASYM(σ, j, j+1, . . . , r) ,

which, as expected, has the same form as the α′ → ∞ limit of the corresponding (ordinary)

heterotic-string relations for double-trace amplitudes [43]

A
(2)
het({1, 2, . . . , r | r+1, . . . , n}) = −

2α′

1− 2α′s12...r
(D.16)

×
r−1∑

j=1

n∑

ℓ=r+2

(−1)n−ℓsjℓ
∑

τ∈{r+2,...,ℓ−1}
�{n,n−1,...,ℓ+1}

∑

σ∈{1,2,...,j−1}
�{r+1,τ,ℓ}

Ahet(σ, j, j+1, . . . , r) .

Note that the ordered set {r+1, τ, ℓ} in summation range for σ in (D.15) and (D.16) is

understood as inserting the permutation τ from the previous one in between legs r+1 and ℓ.

D.4 The CHY integrand for CG+ (DF )2

The amplitude relations of EYM can be derived as a consequence of the CHY-half-integrand

C(1, 2, . . . , n) Pf Ψr({p, ep, z}) and its multi-trace generalizations [15, 26]. Hence, the ampli-

tude relations of EYM are unchanged when the second half-integrand Pf ′Ψn+r({k, p, ek, ep, z})

is replaced by a different SL(2,C) covariant object. Given that EYM and the CG+(DF )2 the-

ory share a factor of AYM+φ3 in the KLT-form of their tree amplitudes, they must also share

the corresponding CHY-half-integrand C(1, 2, . . . , n) Pf Ψr({p, ep, z}) and its multi-trace gen-

eralizations. This proves our claim in subsection 5.2 on the matching of EYM and CG+(DF )2

amplitude relations. From the (DF )2 constituent in its double-copy structure, the CHY in-

tegrand of the single-trace sector of the CG+ (DF )2 theory is given by

I
R2(DF )2

n+r (1, 2, . . . , n; p1, . . . , pr) = C(1, 2, . . . , n) Pf Ψr({p, ep, z}) W11 · · · 1
︸ ︷︷ ︸

n+r

({k, p, ek , ep, z})

(D.17)

with the W11···1-factor defined in (D.4).
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