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Abstract. In this paper we present a unified theory of explicit (leapfrog) and implicit (Crank-
Nicolson) FDTD time-stepping schemes. This enables us to interface leapfrog FDTD with Crank-
Nicolson FDTD and we will prove that the result is stable at the Courant limit of the leapfrog part. It
also enables us to construct explicit FDTD-like algorithms whose stability condition is less restrictive
than that of leapfrog FDTD, and a remarkable explicit 1:2 FDTD refinement scheme which is stable
up to the Courant limit of the coarse part.
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1. Introduction. The Finite Difference Time Domain (FDTD) algorithm is an
extremely well-known and popular computational method for solving Maxwell’s equa-
tions [14], for calculating the behaviour of electromagnetic fields in time domain. The
FDTD algorithm has a stability condition, the Courant condition[14], which puts an
upper bound on the time step. Usually c∆t < ∆/

√
d where c is the speed of light, ∆t

is the time step, ∆ the discretisation length, and d the number of spatial dimensions.
This stability criterion can be restrictive, as it forces us to choose a small ∆t and

thus to run a very large number of time steps to simulate a given length of time. This
is especially so when the phenomena of interest are waves that move much slower than
c, but the time step still needs to be chosen based on c [16], when small features, much
smaller than the wavelength, need to be resolved [17, 2, 3, 8], or when the simulation
region has an extreme aspect ratio [18].

For this reason, many attempts have been made to relax or circumvent the sta-
bility condition [1, 20, 12]. One well-known, but not very practical, approach is
Crank-Nicolson FDTD [11, 13] a.k.a. FDTD time-stepping with the implicit mid-
point rule [9]. Unlike standard explicit “leapfrog” FDTD, Crank-Nicolson FDTD is
unconditionally stable. It is much less popular than FDTD because its time-stepping
operation is much more complex (it requires the solution of a large sparse set of equa-
tions every time step), and because increasing the time step ∆t still decreases the
accuracy.

In this paper, we will show the following
1. Leapfrog FDTD and Crank-Nicolson FDTD are both special cases of a single

more general time stepping algorithm, which is itself at least as stable as
leapfrog FDTD.

2. Leapfrog FDTD and Crank-Nicolson FDTD can be interfaced in a stable
and energy-conserving way, answering a question posed in [9]:“the energy-
preserving coupling of the leapfrog method and on the implicit midpoint-rule
remains a non-obvious question”. This is provably stable at the stability
condition of the explicit part.

3. There exist intermediate algorithms: they are stabler than leapfrog FDTD
but require only the solution of constant-sized sets of equations.

4. These intermediate algorithms can be interfaced with FDTD in a stable and
energy-conserving way, which enables the construction of an explicit FDTD
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Fig. 1. Spatial and temporal structure of
leapfrog FDTD, as used in eqs. (5,6). Arrows
represent Ey, circles represent Bz. This struc-
ture is spatially and temporally staggered.
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Fig. 2. Spatial and temporal structure of
Crank-Nicolson FDTD, as used in eqs. (7,8).
Arrows represent Ey, circles represent Bz. This
structure is spatially staggered but temporally
collocated.

refinement scheme that remains stable at the stability condition of the coarse
grid, which is long-sought-after [2, 5, 7].

In section 2, we give a brief introduction of leapfrog and Crank-Nicolson FDTD.
In section 3, we provide an overview of the general leapfrog time-stepping equation of
[19, 2], and the techniques used to prove its stability. Then in section 4, we prove the
conditional stability of a general time-stepping operation which is general enough to
include both leapfrog and Crank-Nicolson FDTD. Finally in section 5, we give some
numerical examples of the various algorithms that fit within our general framework.

2. Maxwell’s equations and FDTD. The partial differential equations which
FDTD (approximately) solves are Maxwell’s equations:

∇×E = −1

c

∂B

∂t
(1)

∇×
(
µ−1
r B

)
=

1

c
εr
∂E

∂t
(2)

where E is the electric field, B is the magnetic field, c is the speed of light, and µr and
εr are the relative permeability and permittivity (assumed real and positive). When
we need to refer to specific components of the electric or magnetic field, we will call
them Ex, Ey, Ez, Bx, By, Bz.

For this brief introduction, let us consider the one-dimensional case where E and
B depend on x and t, but not on y and z:

∂Ey
∂x

= −1

c

∂Bz
∂t

(3)

−∂Bz
∂x

=
µrεr
c

∂Ey
∂t

(4)

2.1. Leapfrog FDTD. In leapfrog FDTD, the field components Ey and Bz are
discretized in space and in time as shown in figure 1. We say that Ey is discretized
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at integer time points and Bz at half-integer time points, or that they are temporally
staggered. (3) and (4) are then discretized as follows:

Ety,i+1 − Ety,i
∆

= −1

c

B
t+1/2
z,i+1/2 −B

t−1/2
z,i+1/2

∆t
(5)

−
B
t+1/2
z,i+1/2 −B

t+1/2
z,i−1/2

∆
=
µrεr
c

Et+1
y,i − Ety,i

∆t
(6)

Repeatedly applying (5) and (6) lets us time step the fields into the future, predicting
future values of Ey and Bz given their present values.

Throughout this paper we will colour discretized field points known at integer
multiples of ∆t in black and those known at half-integer multiples of ∆t in white with
black outline, as we did in figure 1.

In general the spatial discretisation grid usually consists of Yee cells [14], although
more flexible grid constructions are possible [2]. In this paper we make no assumptions
on the precise nature of the spatial grid.

2.2. Crank-Nicolson FDTD. In Crank-Nicolson FDTD, the Ey and Bz points
are temporally collocated, but the spatial discretisation remains the same (figure 2).
Because of this, the central-difference derivative in the temporal direction must be
accompanied by an interpolation:

Ety,i+1 − Ety,i
∆

+
Et+1
y,i+1 − E

t+1
y,i

∆
= −2

c

Bt+1
z,i+1/2 −B

t
z,i+1/2

∆t
(7)

−

(
Btz,i+1/2 −B

t
z,i−1/2

∆
+
Bt+1
z,i+1/2 −B

t+1
z,i−1/2

∆

)
=

2µrεr
c

Et+1
y,i − Ety,i

∆t
(8)

This algorithm is considerably more complicated than leapfrog FDTD. (7) and (8)
must be solved simultaneousely (unlike (5) and (6)), requiring the solution of a large
sparse system of equations every time step.

3. General leapfrog time-stepping. A general leapfrog time-stepping equa-
tion is of the following form [19, 2]:

1

c

[
e+

b+

]
−
[
e−
b−

]
∆t

=

[
0 [?ε]

−1C†[?µ−1 ]
0 0

] [
e−
b−

]
+

[
0 0
−C 0

] [
e+

b+

]
(9)

where [e+,b+]T are the discretized electric and magnetic field components at the
next step and [e−,b−]T are the discretized field components at the current step. C
is a discrete curl operator (usually obtained from finite differences). C is typically
parametrized by a spatial discretisation length ∆ such that lim∆→0 C = ∇×.

[?ε] and [?µ−1 ] are symmetric and positive definite (typically diagonal) mass ma-
trices representing (position-dependent) electric permittivity ε and inverse magnetic
permeability µ−1.

The † as in C† indicates the conjugate transpose. In practice C is usually real,
and we will use the transpose CT when that is the case. The arguments in this section
work just as well for complex C, and we will need this in one of our proofs later on,
which is why we use the conjugate transpose here.

The time-stepping equation (9) is already a powerful general framework. Classi-
cal FDTD, spatially refined FDTD, higher-order FDTD, in uniform or non-uniform
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media, can all be brought under the form (9), and they can all be proven to be
conditionally stable because (9) is provably conditionally stable. Though this paper
focusses on the FDTD context, (9) is not limited to that context, and the results we
will obtain are valid for all methods that can be brought under the form (9), including
Finite Element and Discontinuous Galerkin methods, provided their mass matrices
obey certain commutation relations.

3.1. The time-stepping operator and its eigenvalues. We can rewrite (9)
as follows:

[
e+

b+

]
=

(
I

c∆t
−
[

0 0
−C 0

])−1(
I

c∆t
+

[
0 [?ε]

−1C†[?µ−1 ]
0 0

])
︸ ︷︷ ︸

Tleapfrog

[
e−
b−

]
(10)

The linear operator Tleapfrog which maps the past fields onto the future fields is the
so-called time-stepping operator associated with (9). The eigenvalues of this operator
are key to understanding the long-term behaviour of algorithms based on (9).

• If some eigenvalues λ lie inside the unit circle (|λ| < 1), the algorithm has
unphysical losses. There are decaying modes where the continuous physics is
lossless.

• If some eigenvalues λ lie outside the unit circle (|λ| > 1), there are modes
which exhibit unphysical growth. The algorithm is unstable.

Only if the eigenvalues of Tleapfrog all lie on the unit circle (all |λ| = 1) is it possible for
these algorithms to be both stable and energy-conserving. This condition is necessary,
although (in very rare cases) it is not sufficient [4]. Understanding the eigenvalues of
a class of time-stepping operators which are more general than (10) will be the central
focus of this paper.

3.2. Conditional stability.

3.2.1. The Fourier method. The most common way in which FDTD can be
shown to be stable is the Fourier method [14], in which the time-stepping equations are
written for a uniform unbounded space. Complex exponential solutions with wavevec-
tor ~k and frequency ω are inserted into the time-stepping equations. Demanding that
a nontrivial solution exists then gives a discrete dispersion relation f(~k, ω) = 0. If

this dispersion relation has real ω for all real ~k, the algorithm is stable.
This method can only show stability in uniform media and works best on regular

Cartesian grids. It is typically assumed that stability in uniform media implies stabil-
ity in non-uniform media as well, and exceptions to this rule are very rare. However,
there are more powerful proof techniques that can show stability in the non-uniform
case as well.

3.2.2. Stability in the non-uniform case. In the general non-uniform case,
stability of (9) can be shown using a relation between its eigenvalues and eigenvectors
and those of the space-discrete, time-continuous system [19, 2].

Theorem 1. The eigenvalues of Tleapfrog lie on the unit circle, provided ∆t is
sufficiently small.
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Proof. Eigenvalues λ and eigenvectors [e,b]T of Tleapfrog obey

λ− 1

c∆t

[
e
b

]
=

[
0 [?ε]

−1C†[?µ−1 ]
0 0

] [
e
b

]
+ λ

[
0 0
−C 0

] [
e
b

]
=

[
0 [?ε]

−1C†[?µ−1 ]
−λC 0

] [
e
b

]
(11)

which can be seen by substituting [e−,b−]T = [e,b]T , [e+,b+]T = λ[e,b]T into (9).
Let us consider the time-continuous limit ∆t → 0. In this limit λ → 1, and

λ−1
c∆t
→ iω

c (where ω is to be determined, but it is finite: the limit exists)

iω

c

[
e
b

]
=

[
0 [?ε]

−1C†[?µ−1 ]
−C 0

] [
e
b

]
(12)

It will be convenient to bring (12) under a form where the matrix in the rhs.
becomes anti-hermitian, which can be done by virtue of the symmetricity and positive-
definiteness of the mass matrices:

ẽ = [?ε]
1/2e(13)

b̃ = [?µ−1 ]1/2b(14)

C̃ = [?µ−1 ]1/2C[?ε]
−1/2(15)

where the square roots of the symmetric positive-definite mass matrices should be
interpreted as Cholesky decomposition. (12) now becomes

iω

c

[
ẽ

b̃

]
=

[
0 C̃†

−C̃ 0

] [
ẽ

b̃

]
(16)

We see that the matrix in the rhs. is anti-hermitian. Its eigenvalues are therefore
purely imaginary, and come in complex conjugate pairs. ω is therefore real.

Let us transform (11) in the same way:

λ− 1

c∆t

[
ẽ

b̃

]
=

[
0 C̃†

−λC̃ 0

] [
ẽ

b̃

]
(17)

We can now use solutions of (16) to construct solutions of (17). If ωn, [ẽn, b̃n]T

is a solution of (16), then λ(ωn), [α(ωn)ẽn, b̃n]T is a solution of (17):

λ(ωn)− 1

c∆t

[
α(ωn)ẽn

b̃n

]
=

[
0 C̃†

−λ(ωn)C̃ 0

] [
α(ωn)ẽn

b̃n

]
=
iωn
c

[
ẽn

λ(ωn)α(ωn)b̃

]
(18)

Thus {
λ(ωn)−1
c∆t

α(ωn) = iωn
c

λ(ωn)−1
c∆t

= iωn
c λ(ωn)α(ωn)

(19)

Elliminating α(ωn) gives

λ(ωn)2 + (∆2
tω

2
n − 2)λ(ωn) + 1 = 0(20)

This quadratic polynomial can be solved easily for λ(ωn) (the eigenvalues of Tleapfrog),
but it is interesting to note that the properties of the roots that we are interested
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in (i.e. whether or not they lie on the unit circle) are actually determined by the
structure of this polynomial: it is palindromic with real coefficients. This class of
polynomials has solutions that are either on the unit circle or on the real axis, and
they come in pairs whose product is 1 (if λn is a solution, so is 1/λn). This is not
a coincidence: similar stability analyses for higher-order time-stepping schemes give
rise to higher-degree, but still palindromic, polynomials [15].

We seem to find two discrete solutions from a single continuous solution, but this
is not so: if we had started from the continuous eigenvalue −ωn with corresponding
eigenvector [−ẽn, b̃n]T , we would find the same solutions. So a pair of complex
conjugate eigenvalues of (16) gives us a pair of eigenvalues of Tleapfrog.

The solutions λn = λ(ωn) are

λn =
−(∆2

tω
2
n − 2)±∆tωn

√
∆2
tω

2
n − 4

2
(21)

λn is a unit phasor if ∆2
tω

2
n ≤ 4. All solutions are stable if λn is a unit phasor for all

n, i.e. if ∆tmaxn(ωn) ≤ 2, or

∆t ≤ ∆t,max =
2

cρ

([
0 C̃†

−C̃ 0

]) =
2

c
∥∥∥C̃∥∥∥(22)

where ρ(·) is the spectral radius and ‖ · ‖ is the matrix norm ‖M‖ = max|~x|=1|M~x|.
(22) is the Courant condition, the condition under which the general leapfrog

time-stepping equation (9) is stable.

From a pair of eigenvalues of the time-continuous system (ωn,−ωn) we have ob-
tained a pair of eigenvalues of the leapfrog system (λn, 1/λn). It is convenient to have
a one-to-one correspondence between ωn and λn, and we make the following arbitrary
choice: positive ωn correspond to λn on the unit circle with positive imaginary part,
or on the real axis with −1 < λn < 0. Negative ωn correspond to λn on the unit circle
with negative imaginary part, or on the real axis with λn < −1. The case λ = −1
remains undefined. This choice is expressed in the following formulas

λn =
−(∆2

tω
2
n − 2) + ∆tωn

√
∆2
tω

2
n − 4

2
(23)

∆tωn =


√

2− (λ−1
n + λn) =(λn) ≥ 0 ∨ (−1 < λn < 0)

−
√

2− (λ−1
n + λn) =(λn) < 0 ∨ λn < −1

= A(λn)(24)

We will use the function A(λ) further in this paper. Because λn ≈ exp(iωn∆t) near
ωn∆t = 0 (this is a second-order accurate approximation, because leapfrog time-
stepping is second-order accurate), it follows that A(λ) ≈ arg(λ) near λ = 1. Specifi-
cally: A(exp(iα)) = 2 sin(α/2) for real α.

4. T-shifting. Figure 3 shows the temporal structure of leapfrog FDTD, with
electric fields known at integer multiples of ∆t, and magnetic fields known at half-
integer multiples of ∆t (see also figure 1), such that the electric fields at t = n∆t can
be updated using the magnetic fields at t = (n + 1/2)∆t, and the magnetic fields at
t = (n+ 1/2)∆t can be updated using the electric fields at t = (n+ 1)∆t, and so on.
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Fig. 3. Leapfrog dis-
cretisation: Ey points (ar-
rows) defined at integer time
steps, Bz points (dots) at half-
integer time steps.
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Fig. 4. Magnetic shift:

one magnetic point (Bz, dot)
shifted by ∆t/2 towards the
past.
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Fig. 5. Electric shift:
one electric point (Ey, arrow)
shifted by ∆t/2 towards the
future.

In figure 4, one magnetic field point has been shifted along the time axis by
−∆t/2. It must be updated using Crank-Nicolson implicit FDTD. Similarly, in figure
5, one electric field point has been shifted along the time axis by +∆t/2. It too must
be updated using Crank-Nicolson implicit FDTD.

In what follows we will discuss time-stepping where an arbitrary subset of electric
and magnetic field points has been shifted in this way. To this end we introduce
diagonal indicator matrices whose diagonal values indicate whether or not the ith
electric or magnetic discretisation point is a shifted point

P (x, y)i,j =

0 i 6= j
x ith magnetic point is not shifted
y ith magnetic point is shifted by −∆t/2

(25)

Q(x, y)i,j =

0 i 6= j
x ith electric point is not shifted
y ith electric point is shifted by + ∆t/2

(26)

Given 2 numbers a, b with a 6= b, we have for all x, y:

P (x, y) =
P (a, b)− aI

b− a
(y − x) + xI = P (a, b)

y − x
b− a

− a(y − x)

b− a
I + xI(27)

where I is the unit matrix. Thus, if a matrix M commutes with P (a, b), it also
commutes with all P (x, y):

MP (x, y) = MP (a, b)
y − x
b− a

−M a(y − x)

b− a
+Mx

= P (a, b)
y − x
b− a

M − a(y − x)

b− a
M + xM

= P (x, y)M(28)

Similarly, if M commutes with Q(a, b), it also commutes with all Q(x, y).
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4.1. Magnetic T-shifting. The time-stepping equations where some arbitrary
subset of magnetic field points has been T-shifted are (29)

1

c

[
e+

b+

]
−
[
e−
b−

]
∆t

=

[
0 [?ε]

−1CT [?µ−1 ](I −RB)
−RBC 0

] [
e−
b−

]
+

[
0 [?ε]

−1CT [?µ−1 ]RB
−(I −RB)C 0

] [
e+

b+

]
(29)

where RB = P (1, 1/2) and thus I−RB = P (0, 1/2). We will make two more assump-
tions:

• RB commutes with [?µ−1 ] (which is trivially true in the common case where
[?µ−1 ] is diagonal), or equivalently that all P (x, y) commute with [?µ−1 ]

• At least one of the diagonal elements RB,ii is 1/2. If they are all 1 (i.e.
RB = I), then (29) reduces to the purely explicit case.

The time-stepping operator TRB for (29) is

TRB =

(
I

c∆t
−
[

0 [?ε]
−1CT [?µ−1 ]RB

−(I −RB)C 0

])−1

·
(

I

c∆t
+

[
0 [?ε]

−1CT [?µ−1 ](I −RB)
−RBC 0

])
(30)

When RB = I, TRB reduces to Tleapfrog.

4.1.1. Stability. The first step is to show a relation between the unit-norm
eigenvalues of TRB and eigenvalues of a purely explicit time-stepping operator, which
we will do in theorem 2.

Theorem 2. Let [en,bn]T be an eigenvector of TRB with corresponding eigen-
value λn, i.e.

λn

[
en
bn

]
= TRB

[
en
bn

]
(31)

If |λn| = 1 and λn 6= −1, then there exists a leapfrog time-stepping operator TL of the
form (10) and a diagonal matrix κB such that

λn

[
en

κ−1
B bn

]
= TL

[
en

κ−1
B bn

]
(32)

Proof. Setting [e−,b−] = [en,bn] and [e+,b+] = λn[en,bn] in (29) gives us an
equation for the eigenvalues λn and eigenvectors [en,bn]T of TRB :

1

c

λn − 1

∆t

[
en
bn

]
=[

0 [?ε]
−1CT [?µ−1 ]((λn − 1)RB + I)

(−λn + (λn − 1)RB)C 0

] [
en
bn

]
(33)

Let us introduce the “hatted” magnetic field

κBb̂n = bn(34)
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where the diagonal matrix κB will be specified later. In terms of b̂n, en, (33) becomes

1

c

λn − 1

∆t

[
I 0
0 κB

] [
en
b̂n

]
=[

0 [?ε]
−1CT [?µ−1 ]((λn − 1)RB + I)

(−λn + (λn − 1)RB)C 0

] [
I 0
0 κB

] [
en
b̂n

]
(35)

1

c

λn − 1

∆t

[
en
b̂n

]
=[
0 [?ε]

−1CT [?µ−1 ]((λn − 1)RB + I)κB
κ−1
B (−λn + (λn − 1)RB)C 0

] [
en
b̂n

]
(36)

Of course, this procedure does not change the solutions λn for any invertible κB .
What we would like to do is choose κB such that (36) becomes an equation for the
eigenvalues of a purely explicit (leapfrog) time-stepping operator, i.e. we would like to
bring (36) under the form (11). What we want is this:{

κ−1
B (−λn + (λn − 1)RB) = −λn (a)

[?µ−1 ]((λn − 1)RB + I)κB is symmetric and positive definite (b)
(37)

(37.a) can be solved easily:

κB =
(1− λn)RB

λn
+ I(38)

(37.b) is trickier: ((λn − 1)RB + I)κB is a diagonal matrix which commutes with
[?µ−1 ]. We must therefore demand that its diagonal elements are strictly positive.

(((λn − 1)RB + I)κB)ii = ((λn − 1)RB,ii + 1)

(
(1− λn)RB,ii

λn
+ 1

)
=

{
1 RB,ii = 1

(1+λn)2

4λn
RB,ii = 1/2

(39)

Thus, we must demand

(1 + λn)2

4λn
> 0(40)

This is possible in two cases: either =(λn) = 0 and <(λn) > 0, or |λn| = 1 and
λn 6= −1.

But, if we can write (36) under the form (11) at all, then |λn| = 1 or λn lies on
the negative real axis (section 3). These conditions are only consistent if |λn| = 1 and
λn 6= −1.

Thus, we can use (38) to transform (36) into an equation of the form (11), if and
only if |λn| = 1 and λn 6= −1. Inserting (38) into (36), we get

1

c

λn − 1

∆t

[
en
b̂n

]
=

[
0 [?ε]

−1CT [?µ−1 ]P
(
1, cos(arg(λn)/2)2

)
−λnC 0

] [
en
b̂n

]
(41)
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keeping in mind that ((λn− 1)RB + I)κB = P
(
1, cos(arg(λn)/2)2

)
is only valid when

|λn| = 1. Let us expand this a little 1
c
λn−1

∆t

[
en
b̂n

]
=

[
0 [?ε]

−1CT [?µ−1 ]P
(
1, cos(αn/2)2

)
−λnC 0

] [
en
b̂n

]
(a)

λn = exp(iαn) (b)
(42)

where α ∈]− π, π[.
(42.a) is now of the form (11), an eigenvalue equation of a leapfrog time-stepping

operator (note [?µ−1 ]P
(
1, cos(α/2)2

)
in (42.a) plays the role of [?µ−1 ] in (11)). The

leapfrog time-stepping operator TL is

TL =

[ I
c∆t

0

C I
c∆t

]−1
 I
c∆t

[?ε]
−1C†[?µ−1 ]P

(
1, cos

(
arg(λn)

2

)2
)

0 I
c∆t

(43)

The converse of theorem 2 also holds: should we find a unit-norm solution of (32)
(noting that κB and TL depend implicitly on λn), then we can transform it into a
unit-norm solution of (31). The question is now: how many unit-norm solutions of
(32) can we find? If we can find one for all n, then all eigenvalues of (31) have unit
norm.

A unit-norm solution of (32) can be written as follows:

exp(iαn)

[
en

κ−1
B bn

]
= TL

[
en

κ−1
B bn

]
(44)

with −π < αn < π, λn = exp(iαn).
We know the eigenvalues of TL from (23), so (44) becomes:

exp(iαn) =
−(∆2

tωn(αn)2 − 2) + ∆tωn(αn)
√

∆2
tωn(αn)2 − 4

2
(45)

where iωn(αn)/c is an eigenvalue of[
0 [?ε]

−1CT [?µ−1 ]P
(
1, cos(αn/2)2

)
−C 0

]
(46)

Applying the function A (see (24)) to both sides of (45) gives

2 sin
(αn

2

)
= ∆tωn(αn)(47)

The maximum ∆t for which (47) has a solution for all n, which is the maximum
∆t for which all eigenvalues of TRB have unit norm, is given by theorem 3.

Theorem 3. (47) has a solution αn for all n, with −π < αn < π, if

∆t <
2

maxn |ωn(π)|
(48)

Proof. (48) implies that for all n

ωn(π)∆t < 2 sin
(π

2

)
(49)

ωn(−π)∆t > 2 sin

(
−π
2

)
(50)

Thus, by the intermediate value theorem, ωn(αn) − 2 sin
(
αn
2

)
= 0 must have a root

with −π < αn < π.
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Note that the condition (48) can be interpreted as the Courant condition of the
explicit part: it is the Courant condition for a configuration in which µr is effectively
∞ in the implicit part, no waves propagate there, so only the explicit part matters.

4.1.2. Energy conservation. In order to rigorously prove energy conservation,
one ingredient is still missing. In addition to ∆t being small enough that all eigen-
values of the time-stepping operator lie on the unit circle, the time-stepping operator
itself must be diagonalizable.

If the time-stepping operator TRB is diagonalizable, then there exists a matrix S
and a diagonal matrix D = diag(λ1, · · · , λn) such that

SDS−1 = TRB(51)

If the time step is small enough for the algorithm to be stable (i.e. all |λi| = 1), then
for any vector v we have

|Dv|2 = |v|2(52)

The time-stepping operator maps vt onto vt+1:

vt+1 = TRBvt = SDS−1vt(53)

S−1vt+1 = DS−1vt(54)

|S−1vt+1|2 = |S−1vt|2(55)

Thus, the quantity |S−1v|2 is exactly conserved by the discrete time-stepping. It is a
discrete analogon of the continuous conserved energy.

Theorem 4. TRB is diagonalizable.

Proof. The diagonalization theorem states that a matrix is diagonalizable if and
only if the algebraic multiplicity of every eigenvalue equals its geometric multiplicity.

Consider an eigenvalue λn of TRB . Suppose it has algebraic multiplicity k. Then

λn

[
en,j
bn,j

]
= TRB

[
en,j
bn,j

]
(56)

with j = 1, · · · , k. The geometric multiplicity is

dim

(
span

([
en,1
bn,1

]
, · · · ,

[
en,k
bn,k

]))
(57)

Recall theorem 2, in particular (32):

λn

[
en,j

κ−1
B bn,j

]
= TL

[
en,j

κ−1
B bn,j

]
(58)

Being eigenvectors of a leapfrog time-stepping operator TL, the [en,j , κ
−1
B bn,j ]

T are
known to be linearly independent for ∆t strictly below the Courant limit (this is not
proven in this paper, but see e.g. [2]). Because κB is invertible, the [en,j ,bn,j ]

T are
also linearly independent. Therefore,

dim

(
span

([
en,1
bn,1

]
, · · · ,

[
en,k
bn,k

]))
= k(59)

The geometric multiplicity of λn equals its algebraic multiplicity. TRB is diagonaliz-
able.
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4.2. Electric T-shifting. An entirely analogous line of reasoning works for elec-
tric T-shifting, so we will not go into detail. The fully discrete system with hybrid
explicit/implicit updating is

1

c

[
e+

b+

]
−
[
e−
b−

]
∆t

=

[
0 RE [?ε]

−1CT [?µ−1 ]
−C(I −RE) 0

] [
e−
b−

]
+

[
0 (I −RE)[?ε]

−1CT [?µ−1 ]
−CRE 0

] [
e+

b+

]
(60)

where RE = Q(1, 1/2) and thus I−RE = Q(0, 1/2), and [?ε] must commute with RE .

4.3. General T-shifting. What do the time-stepping equations look like if we
allow both electric and magnetic T-shifted points, given by RE and RB respectively?
We seek an equation with the following properties:

• If RE = I, it should reduce to (29).
• If RB = I, it should reduce to (60).
• If RE = I and RB = I, it should reduce to (9).
• If RE = I/2 and RB = I/2, it should reduce to (61).

1

c

[
e+

b+

]
−
[
e−
b−

]
∆t

=

[
0 0
−C 0

] [
e−
b−

]
+

[
0 [?ε]

−1CT [?µ−1 ]
0 0

] [
e+

b+

]
(61)

The simplest such equation is

1

c

[
e+

b+

]
−
[
e−
b−

]
∆t

=[
0

(
RE − I

2

)
ĈT + ĈT

(
RB − I

2

)
−(I −RB)C − C(I −RE) 0

] [
e−
b−

]
+

[
0 (I −RE)ĈT + ĈT (I −RB)

−
(
RB − I

2

)
C − C

(
RE − I

2

)
0

] [
e+

b+

]
(62)

where for brevity we used ĈT = [?ε]
−1CT [?µ−1 ]. Again [?ε] must commute with RE ,

and [?µ−1 ] must commute with RB .

4.3.1. Stability. The time-stepping operator for (62) is TRE ,RB :

TRE ,RB =

(
I

c∆t
−
[

0 (I −RE)ĈT + ĈT (I −RB)
−
(
RB − I

2

)
C − C

(
RE − I

2

)
0

])−1

·
(

I

c∆t
+

[
0

(
RE − I

2

)
ĈT + ĈT

(
RB − I

2

)
−(I −RB)C − C(I −RE) 0

])
(63)

Theorem 5. Let [en,bn]T be an eigenvector of TRE ,RB with corresponding eigen-
value λn, i.e.

λn

[
en
bn

]
= TRE ,RB

[
en
bn

]
(64)
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If |λn| = 1, then there exists a leapfrog time-stepping operator TL such that

λn

[
ẽn
b̃n

]
= TL

[
ẽn
b̃n

]
(65)

where ẽn = [?ε]
1/2en, b̃n = [?µ−1 ]1/2bn as in (13-14).

Proof. It can be shown by induction that if a diagonal matrix A commutes with
a symmetric positive-definite matrix B, then A also commutes with the Cholesky
factors of B. In particular, from our assumption that [?ε] commutes with RE , we get
that RE also commutes with [?ε]

1/2, and the same for RB and [?µ−1 ].
Knowing this, we can start from (62), use the transformation (13-14) and write

an equation which the eigenvalues of TRE ,RB obey:

1

c

λn − 1

∆t

[
ẽn
b̃n

]
=

[
0 FE(λn)C̃T + C̃TFB(λn)

GB(λn)C̃ + C̃GE(λn) 0

] [
ẽn
b̃n

]
(66)

FE(λn) = RE(1− λn)− I

2
+ λnI = Q

(
1

2
,
λn
2

)
(67)

FB(λn) = RB(1− λn)− I

2
+ λnI = P

(
1

2
,
λn
2

)
(68)

GB(λn) = RB(1− λn) +
λnI

2
− I = −P

(
λn
2
,

1

2

)
(69)

GE(λn) = RE(1− λn) +
λnI

2
− I = −Q

(
λn
2
,

1

2

)
(70)

If |λn| = 1, we can show with straightforward arithmetic (using λ†n = λn = λ−1
n ) that

GB(λn)C̃ + C̃GE(λn) = −λn
(
FE(λn)C̃T + C̃TFB(λn)

)†
(71)

Let us introduce the notation
(
FE(λn)C̃T + C̃TFB(λn)

)†
= Ψ(λn) for brevity.

We can now relate unit-norm eigenvalues of TRE ,RB to unit-norm eigenvalues of
a leapfrog time-stepping operator, just as we did in section 4.1:λn−1

c∆t

[
ẽn
b̃n

]
=

[
0 Ψ(exp(iαn))†

−λnΨ(exp(iαn)) 0

] [
ẽn
b̃n

]
(a)

λn = exp(iαn) (b)
(72)

(72.a) is of the form (17): it is an equation for the eigenvalues of a leapfrog time-
stepping operator (note Ψ(exp(iαn)) in (72.a) plays the role of C̃ in (17)). This
expression is the reason why we allowed the possibility of complex C in section 3.

The leapfrog time-stepping operator TL is

TL =

[ I
c∆t

0

Ψ(λn) I
c∆t

]−1 [ I
c∆t

Ψ(λn)

0 I
c∆t

]
(73)

The argument now proceeds entirely as it did in section 4.1. We know the solutions
of (72.a) {

λn =
−(∆2

tωn(αn)2−2)+∆tωn(αn)
√

∆2
tωn(αn)2−4

2 (a)
λn = exp(iαn) (b)

(74)
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where iωn(αn)/c is an eigenvalue of the anti-Hermitian matrix[
0 Ψ(exp(iαn))†

−Ψ(exp(iαn)) 0

]
(75)

Simplifying (74) (in the same manner as (45)→(47)) gives

ωn(αn)∆t = 2 sin(αn/2)(76)

As in section 4.1, finding the unit-norm eigenvalues becomes a matter of finding
intersections between these purely real continuous functions, and if an intersection
exists for all n then all eigenvalues have unit norm. These intersections are guaranteed
to exist for all n if

∆t <
2

maxn |ωn(π)|
(77)

What remains to be shown is that the stability condition (77) is no more restrictive
than for the leapfrog case.

2

maxn |ωn(π)|
=

2

c‖FE(exp(iπ))C̃T + C̃TFB(exp(iπ))‖

=
2

c
∥∥∥Q( 1

2 ,
exp(iπ)

2

)
C̃T + C̃TP

(
1
2 ,

exp(iπ)
2

)∥∥∥
=

2

c‖C̃‖n(π)
(78)

where n(α) =
‖Q( 1

2 ,
exp(iα)

2 )C̃T+C̃TP( 1
2 ,

exp(iα)
2 )‖

‖C̃‖ . It follows immediately from the prop-

erties of a submultiplicative matrix norm that n(π) ≤ 1: the stability condition (77)
is no more restrictive than that of leapfrog FDTD.

4.3.2. Energy conservation. As in section 4.1.2, TRE ,RB should be diagonal-
izable in order to guarantee the existence of a discrete conserved energy. That TRE ,RB
is indeed diagonalizable can be shown by an argument which is entirely analogous to
that in the proof of theorem 4.

4.4. Discussion. (62) is the main result of this paper. It tells us how to time
step in FDTD-like discretisation grids where the temporal locations of the discretized
electric and magnetic field components (i.e. at integer or half-integer time steps) are
chosen arbitrarily. In what follows, we will give examples of how, by carefully choosing
the temporal locations of the discretized electric and magnetic field components, we
can construct explicit time-stepping algorithms that are stabler than FDTD.

Consider figure 6. This shows the 212 possible n(α) curves (78) for a periodic
2D configuration with just 12 degrees of freedom (4 Ex points, 4 Ey points, and
4 Bz points, so 28 possible choices for RE and 24 possible choices for RB). Two
curves have n(α) = 1, these are the cases RE = I,RB = I or RE = I/2, RB = I/2
where (62) reduces to leapfrog FDTD. Two curves have n(α) = cos(α/2), these are
the cases RE = I,RB = I/2 or RE = I/2, RB = I where (62) reduces to Crank-
Nicolson FDTD. 4092 remaining curves are intermediate methods, which are stabler
than leapfrog FDTD but not as computationally intensive as Crank-Nicolson FDTD.
Of particular interest are algorithms that are twice stabler than FDTD, and algorithms
that are 2

√
2 times stabler than FDTD. We will discuss these in the next section.
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0 π

2
π

4
3π

4
π

0 (Crank-Nicolson )

1

2 2

1
2

1 (Leapfrog)

α

n
(α
)

Fig. 6. All 212 possible n(α) functions for a periodic 2D FDTD configuration with 2× 2 cells,
i.e. 4 Ex points, 4 Ey points, and 4 Bz points. The maximum stable time step ∆t,max ∝ n(π)−1:
the smaller n(π), the stabler the associated algorithm. The gap between leapfrog and Crank-Nicolson
is bridgeable.

Fig. 7. Standard 2D Yee-cell discretisation for Maxwell’s equations, with nonstandard temporal
discretisation. Arrows are locations of Ex, Ey discretisation points, circles are locations of Bz

discretisation points. Color indicates temporal location (solid black=integer step, white with black
outline=half-integer step). The grid on the left has Courant condition c∆t <

√
2∆, or 2 times

better than FDTD. The grid on the right has Courant condition c∆t < 2∆, or 2
√

2 times better
than FDTD.

5. Examples.

5.1. Two explicit FDTD-like methods that are stabler than Leapfrog
FDTD. The configurations of figure 7 have stability conditions c∆t <

√
2∆ and

c∆t < 2∆, or respectively 2 and 2
√

2 times stabler than FDTD.
Both these configurations can be time-stepped explicitly using a leapfrog ap-

proach: update first the integer-time-step (black) field quantities using values from
the neighbouring half-integer-time-step (white with black outline) field quantities, and
then update the half-integer-time-step field quantities using the neighbouring integer-
time-step field quantities.

We suspect that, within the framework of (62), with the standard second-order
accurate curl operator of 2D FDTD, it is not possible to have a Courant limit larger
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than that of figure 7 (right), except for the unconditionally stable fully implicit case.
Figure 6 provides some evidence for this conjecture: if stabler configurations exist,
they are not representable within a periodic 2× 2 grid.

We will analyse the configuration of figure 7 (left) in some detail. The 2D
Maxwell’s equations are

∂Ex
∂y
− ∂Ey

∂x
=

1

c

∂Bz
∂t

(79)

∂Bz
∂y

=
εrµr
c

∂Ex
∂t

(80)

−∂Bz
∂x

=
εrµr
c

∂Ey
∂t

(81)

In the discretisation of figure 7 (left), discrete time-stepping can be done by repeatedly
updating single “cells” (neighbouring Ex, Ey, Bz of the same colour i.e. at the same
temporal location, figure 8). A “cell update” requires only the solution of the constant
3× 3 set of equations (82)

Bt+∆t
z1

Et+∆t
x2

Et+∆t
y2

−
Btz1Etx2

Ety2


c∆t

=
1

∆



0 1
µrεr

1
µε

0 0 −1
µrεr

0 −1
µrεr

0

1 0 0
−1 0 0
1 0 0
−1 0 0



T


(Bt+∆t
z1 +Btz1)/2

B
t+∆t/2
z2

B
t+∆t/2
z3

E
t+∆t/2
x1

(Et+∆t
x2 + Etx2)/2

E
t+∆t/2
y1

(Et+∆t
y2 + Ety2)/2


(82)

This set of equations can be solved in advance, so this method is explicit (In the case
of figure 7 (right), updates are even simpler, requiring only the solution of a 2× 2 set
of equations to update Bz and Ey, and Ex updates are identical to those of leapfrog
FDTD.).

The discrete dispersion relation (83) can be obtained using Fourier analysis. As-
suming µr = 1, εr = 1, inserting complex exponential solutions and writing the con-
dition for the existence of nontrivial solutions gives

cos

(
∆tω

2

)
=
c2∆2

ty ±
√
c4∆4

t (y2 − 4) + 16∆4

2c2∆2
t + 4∆2

(83)

where y = cos(kx∆) + cos(ky∆). (83) could be unstable in two cases:
• when c4∆4

t

(
y2 − 4

)
+ 16∆4 < 0 for any real y, which can be avoided if

−4c4∆4
t + 16∆4 < 0 or

√
2∆ < c∆t.

• when the rhs. is < −1 or > 1. To find the maxima and minima of the rhs,

∂

∂y

c2∆2
ty ±

√
c4∆4

t (y2 − 4) + 16∆4

2c2∆2
t + 4∆2

= 0(84)

∓c2∆2
t =

c4∆4
ty√

c4∆4
t (y2 − 4) + 16∆4

(85)

∓
√
c4∆4

t (y2 − 4) + 16∆4 = c2∆2
ty(86)

c4∆4
t

(
y2 − 4

)
+ 16∆4 = c4∆4

ty
2(87)

−4c4∆4
t + 16∆4 = 0(88)
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Below the Courant limit, (88) is false, so the derivative has no zeroes and the
rhs. of (83) is either an increasing or a decreasing function of y, it has no
minima or maxima. The extrema thus occur at the extremal values of y, i.e.

at y = ±2. At y = 2, the value is
2c2∆2

t±4∆2

2c2∆2
t+4∆2 ∈ [−1, 1]. At y = −2, the value

is
−2c2∆2

t±4∆2

2c2∆2
t+4∆2 ∈ [−1, 1]. So, the rhs. of (83) is never < −1 or > 1.

In (83), only one of the roots corresponds to solutions near ω = 0,kx = ky = 0,
where we expect (83) to approximate the continuous dispersion relation. This is the
root with the + sign. A Taylor series expansion of (83) with the + sign in ∆t and ∆
gives

1− ω2∆2
t

8
= 1 +

c2∆2
t

4∆2

(
−∆2

2
(k2
x + k2

y) +O(∆4)

)
+O(∆4

t )(89)

ω2

8
=
c2

4

(
1

2
(k2
x + k2

y) +O(∆2)

)
+O(∆2

t )(90)

ω2 = c2(k2
x + k2

y) +O(∆2) +O(∆2
t )(91)

So (83) is indeed a second-order accurate approximation of the continuous dispersion
relation ω2 = c2k2.

At the Courant limit
√

2∆ = c∆t, (83) becomes

cos

(√
2∆ω

2c

)
=

2∆2y ±
√

4∆4 (y2 − 4) + 16∆4

4∆2 + 4∆2
=
y ± |y|

4
(92)

thus there are two solutions cos
(√

2∆ω
2c

)
= y

2 or cos
(√

2∆ω
2c

)
= 0. The first is exactly

the dispersion relation of standard leapfrog FDTD at its Courant limit. The second
are unphysical solutions which exist only at (not below) the Courant limit. It is
therefore probably best to run (82) with a time step slightly below its Courant limit.

To illustrate all this, let us look at figure 9. The exact dispersion relation ω2 =
(k2
x + k2

y)c2 cannot be represented in (y, cos(ω∆t/2)) coordinates, because (k2
x + k2

y)
cannot be recovered from y = cos(kx∆)+cos(ky∆). Nonetheless, only a limited subset
of (y, cos(ω∆t/2)) can possibly obey the exact dispersion. This subset is shaded in
blue. The dispersion relation (83) is shown in red (95% of Courant limit) and yellow
(at the Courant limit). The solutions (92) are clearly visible in the yellow lines. The
exact and discrete dispersion relations match in the well-resolved limit, i.e. the upper
right corner of the plot.

It is true that the update equations (82) are more complex than those of FDTD,
thus calculating a time step takes more time, which counterbalances the fact that
the time step can be larger. However, there is another point that needs to be made:
suppose we are running the configuration of figure 7 (left) in a parallelized fashion.
Suppose the vertical line in figure 8 is a boundary between processors: everything
to the left of it is updated by processor A, everything to the right of it by processor
B. Both in FDTD, and in this configuration, we need to communicate Ey1 from A
to B and Bz1 from B to A once per time step. Thus, by using the configuration of
figure 7 (left), we can effectively halve the amount of interprocessor communication
per unit of time ellapsed in the simulation, which is useful given that interprocessor
communication is a bottleneck for many parallelized algorithms.

5.2. Convergence. In figure 10, we numerically investigate the rate of conver-
gence of (62). In order to do this, we constructed a 2D rectangular cavity with PEC
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Ex1

Ex2

Ey1 Ey2Bz1 Bz2

Bz3

Fig. 8. Location of the quantities used
in (82), which describes how to update a sin-
gle “cell”, i.e. the three outlined (half-integer
time step) points Bz1, Ex2, Ey2, using only
neighbouring black (integer time step) points.

-2 -1 0 1 2

-1.0

-0.5

0.0
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1.0
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os

(ω
Δ

t/
2)

Fig. 9. Plot of the dispersion relation
(83) at 95% of the Courant limit (red) and
at the Courant limit (yellow). The exact dis-
persion relation (not exactly representable in
these coordinates) is shaded in blue. The
well-resolved limit is at y = 2, cos(ω∆t/2) =
1, where the discrete and exact dispersion re-
lations match.

boundary conditions, consisting of 30×30 cells. We excited modes of this cavity with
wavenumbers kx = 2ky (the discretisation error depends on the direction of propa-
gation, so we need to keep kx/ky constant). We compared the numerically obtained
electric and magnetic fields in this cavity with the known exact solution, being careful
to evaluate the exact solution at the correct temporal locations. The error shown in
figure 10 is the mean absolute difference between the exact and the numerical solu-
tion. k∆ on the x-axis is a measure of the well-resolvedness of the wave: it should
be small in order for a finite-difference algorithm to give accurate results. When the
error ∝ (k∆)n, we say that the algorithm is nth-order accurate. On the log-log plot
in figure 10, we can find n from the slope of the lines.

We see that not all choices of RE , RB give rise to second-order accurate algo-
rithms. In particular, algorithm (82) is only first-order accurate. Leapfrog and
Crank-Nicholson FDTD are second-order accurate. Three randomly chosen inter-
mediate algorithms (with diagonal values of RE , RB in (62) chosen at random) also
appear to be second-order accurate, from which we conclude that second-order accu-
racy is likely to be the rule, rather than the exception, among intermediate algorithms
of the from (62).

We do not currently have a general answer to the question of which choices of
RE , RB make (62) second-order accurate, and which do not. We also did not inves-
tigate higher-order discrete curl operators[6] or Lobatto cells[2], both of which are
perfectly compatible with (62), and which may be expected to improve the order of
accuracy.

5.3. Numerical investigation of long-term stability and energy conser-
vation. Leapfrog FDTD conserves the following energy exactly[2]

e = bT−[?µ−1 ]b− + eT+[?ε]e−(93)
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Fig. 10. Point sampled error for eigenmodes of a square cavity, simulated with various algo-
rithms, vs. k∆. The slope of the lines gives the order of accuracy: Leapfrog and Crank-Nicholson
FDTD (nearly overlapping lines at the bottom) are second-order accurate, while algorithm (82) is
first-order accurate. Three randomly-chosen intermediate algorithms also appear to be second-order
accurate.

Crank-Nicolson FDTD conserves the following energy exactly

e = bT−[?µ−1 ]b− + eT−[?ε]e−(94)

Although we know how to construct an exact conserved energy for (62) (by diagonal-
izing the time-stepping operator, sections 4.1.2 and 4.3.2), we will plot (94) instead,
as is common [10, 2, 15]. For energy-conserving algorithms, this quantity oscillates
around a constant value, and the amplitude of this oscillation increases with ∆t.

In figure 11, we consider the four cases of leapfrog FDTD, Crank-Nicolson FDTD,
(62) with randomly chosen RE , RB , and algorithm (82). We plot the energy (94) for
all four cases. The configuration consists of 10 × 10 cells with perfectly conducting
boundary conditions. The fields were initialized randomly at the first step, the same
for each algorithm. All four cases ran at the leapfrog FDTD courant limit.

Clearly, all four cases are stable and energy-conserving, and in fact the inter-
mediate methods have a lower energy oscillation than leapfrog FDTD at the same
∆t.

5.4. Resonant frequencies of a square cavity. In figure 12, we show the
Fourier spectra for fields inside a 10m× 10m square cavity with perfectly conducting
boundary conditions. These spectra have peaks near the resonant frequencies of this
cavity, the first few of which are shown as vertical dashed lines.

Lower frequencies are better resolved and are thus predicted more accurately (e.g.
the peaks at 1.5 · 107 and 2 · 107 Hz). Higher frequencies like the peaks near 3 · 107

and 3.5 · 107 Hz are less well-resolved and are predicted less accurately. In any case,
the accuracy of algorithm (82) is comparable to that of leapfrog and Crank-Nicolson
FDTD, both when ran at the leapfrog Courant limit (c∆t = ∆/

√
2) and near its own

Courant limit (c∆t = 1.9∆/
√

2).

5.5. Transmission through a material in which the local propagation
speed is higher. Consider a rectangular waveguide filled with a material with ε = 4,
i.e. a material in which the local speed of light is half of that in vacuum. Naturally,
we can simulate this with leapfrog FDTD, and we can choose the time step based on
this reduced local light speed: the time step can be twice larger than it would be if
the waveguide was filled with vacuum.

As soon as even a small portion of the waveguide is filled with vacuum (or air),
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Fig. 11. Energy vs. time step for leapfrog FDTD, Crank-Nicolson FDTD, and two intermediate
algorithms. The energy plotted here, eq. (94), is only exactly conserved by Crank-Nicolson FDTD.

this ceases to be possible: the FDTD time step must be chosen based on the highest
local propagation speed.

In figure 13, we consider exactly this situation: waves propagate from the left,
mostly through an ε = 4 material, and then they pass through a layer (40 cells wide,
located between x = 40 and x = 80) of ε = 1 material. We simulate this configuration
in three ways

• Pure leapfrog FDTD: this requires 800 steps, shown in the top figure.
• Leapfrog FDTD in the ε = 4 material combined with algorithm (82) in the
ε = 1 material. We now require only 400 time steps, and only need to
repeatedly solve small 3× 3 systems of equations.

• Leapfrog FDTD in the ε = 4 material combined with Crank-Nicolson FDTD
in the ε = 1 material. We now require only 400 time steps, but we need to
repeatedly solve large (3 · 402)× (3 · 402) sparse systems of equations.

Our configuration is 2D, 300 cells wide and 40 cells high, with perfectly conducting
(PEC) boundary conditions. There is no absorbing boundary on the right: the waves
simply have not had enough time to fully propagate to the right edge. Waves are
excited from the left, and have a wavelength in the vertical direction equal to the
height of the waveguide.

The difference between the figures is barely visible to the eye, although very close
inspection of the vacuum layer in the central figure reveals a “blocky” pattern which
is not present in the top and bottom figures, and which is due to the non-constant
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Fig. 12. Fourier spectra of the fields in a square cavity, as simulated with 3 algorithms. Vertical
dashed lines indicate analytical resonant frequencies.

Algorithm Transmitted Bz amplitude
Leapfrog 1.141

Leapfrog + algorithm (82) 1.149
Leapfrog + Crank-Nicolson 1.145

Table 1
Transmitted wave amplitudes for the cases of figure 13.

temporal locations of the Bz discretisation points.
The numerically obtained amplitude of the transmitted wave is shown in table 1

for the three cases. The difference is on the order of 1%.

5.6. Explicit subgridding. Given that algorithm (82) is twice as stable as
FDTD, it is natural to ask if we can combine it with explicit 1:2 FDTD refinement
(as in [2]) to obtain an explicit 1:2 FDTD refinement scheme that remains stable
up to the Courant limit of the coarse grid (usually, explicit subgridding schemes are
stable up to the Courant limit of the fine grid [2], which limits their usefulness). The
discretisation grid for such a thing is shown in figure 14. To do this, we use the
refinement scheme of [2], which lets us construct a curl operator C on the refined
grid, and then use eq. (62) for the time stepping. In the coarse grid, this leads to
the standard leapfrog FDTD update equations. In the fine grid, this gives the update
equation (82). On the interface, we get two distinct update equations, one involving
a 3 × 3 system of equations to update points at integer multiples of ∆t (black) and
one involving a 4 × 4 system of equations to update points at half-integer multiples
of ∆t (white with black outline). These equations are (see figure 16, ∆ is the coarse
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Fig. 13. Bz for waves in a waveguide with ε = 4 being transmitted through a layer of air or
vacuum (ε = 1, between x = 40 and x = 80), calculated with leapfrog FDTD everywhere (top),
leapfrog FDTD in the ε = 4 material and algorithm (82) in the vacuum layer (center), and leapfrog
FDTD in the ε = 4 material and Crank-Nicolson FDTD in the vacuum layer (bottom).

discretisation length, εr = µr = 1):
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Time-stepping the configuration of figure 14 remains just a special case of (62),
and is therefore guaranteed to be conditionally stable. Because the grid is non-
uniform, it is not possible to determine the stability condition through Fourier analy-
sis, and the analytical calculation of n(π) is impractical. However, numerical results
(figure 15) indicate that it is indeed stable up to the Courant limit of the coarse grid,
as expected. A plot of waves propagating from the coarse FDTD grid into the fine
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Fig. 14. Spatial discretisation grid for
1:2 subgridding where the coarse grid is stan-
dard leapfrog FDTD and the fine grid is T-
shifted as in figure 7 (left).
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Fig. 15. Numerically determined eigenvalues
of the time-stepping operator for this 1:2 refine-
ment scheme, at the Courant limit of the coarse
grid (black), below that Courant limit (green), and
above it (unstable, orange).
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Fig. 16. A piece of the coarse-fine interface in the configuration of figure 14, with fields la-
beled for use in (95)-(96). Arrows represent Ex, Ey, circles represent Bz. Solid black indicates
discretisation at integer time steps, white with black outline indicates discretisation at half-integer
time steps.

grid is shown in figure 17, and figure 18 confirms that this subgridding scheme is
energy-conserving.

6. Conclusion. In this paper we proved that in FDTD and several other FDTD-
like methods, we can “T-shift” (change discretisation location along the time axis,
replacing explicit updates by implicit ones or vice versa, see figures 3,4,5) an arbitrary
set of discretisation points without adversely affecting the stability. Neither spurious
gains nor spurious losses are introduced by T-shifting: in the absence of disipative
materials, the eigenvalues of the time-stepping operator remain on the unit circle and
a discrete energy remains conserved. The order of accuracy of the algorithm, on the
other hand, is not guaranteed to remain the same after T-shifting.

Implicit Crank-Nicolson FDTD can be obtained by T-shifting explicit leapfrog
FDTD. Both algorithms can be written as special cases of (62). In this sense, we have
unified leapfrog and Crank-Nicolson FDTD.

With these results, we have constructed an explicit time-domain algorithm for
Maxwell’s equations (algorithm (82)) which is twice stabler than leapfrog FDTD but
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Fig. 17. Plot of Bz for waves prop-
agating from an FDTD grid (left) into
a finer grid (right) as in figure 14. This
is stable up to the Courant limit of the
coarse grid.
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Fig. 18. Energy for this 1:2 refinement scheme,
run at 99% of the coarse Courant limit. See also figure
11.

first-order accurate. We have also constructed a remarkable explicit 1:2 FDTD refine-
ment scheme that remains stable up to the Courant limit of the coarse grid.
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