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I. INTRODUCTION

The quantum entanglement or entanglement entropy is of great importance in characterizing the

correlations between non-local physical quantities in quantum many-body systems. For instance, it

can be used as an order parameter to probe the quantum phase transitions at critical points [1–5].

For a system in pure state with density matrix ρ, one can divide it into two spatial regions A and B,

the entanglement entropy SA of the subsystem A can be calculated by the von Neumann entropy as

SA = −trA (ρA ln ρA), where ρA = trBρ is the reduced density matrix of A obtained by tracing out

the degrees of freedom which belong to the Hilbert space of the subsystem B. The entanglement

entropy can also be described by a more general notion–the entanglement Rényi entropy, defined as

Sn = 1
1−n

ln tr (ρnA), where the positive number n is the order of the Rényi entropy, which returns

to the von Neumann entropy when taking n → 1. The important and amazing property of the

entanglement entropy is that it is proportional to the area of the boundary surface which divides
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the systems into subsystems A and B, namely, the area law. 1 The area law, together with the

fact that entanglement entropy describes the lack of information, say, measured by observer in a

subsystem A, inspired the studies of interpreting the black hole area entropy as the entanglement

entropy between quantum states inside and outside of the horizon [7–10].

In the framework of the AdS/CFT correspondence or the gauge/gravity duality [11–13], the

entanglement entropy also gained a novel holographic interpretation, called the holographic entan-

glement entropy (HEE) proposed by Ryu and Takayanagi [14, 15]. In this proposal, the entangle-

ment entropy of the subsystem A in the boundary d-dimensional CFT can be calculated from the

area AγA of a co-dimensional-2 static minimal surface γA in the bulk gravity side. More explicitly,

the HEE of A is

SA =
AγA

4Gd+1
, (1)

Soon after, Fursaev gave a proof to the above HEE formulae eq.(1) by applying the off-shell

Euclidean path integral approach to manifolds with conical singularities in the context of the

AdS/CFT correspondence [16]. The proof has been improved and generalized from recent studies

by Lewkowycz and Maldacena [17] by the replica trick. Besides, another derivation of the HEE

for spherical entangling surfaces has been provided by Casini, Huerta and Myers in [18]. So far

there are also many evidences to check the HEE proposal within the AdS3/CFT2 correspondence

[19–21]. In addition to various applications of HEE, such as using HEE to probe the confine-

ment/deconfinement phase transition in the large N gauge theories [22] and the phase structures

in condensed matter systems [23–27], the utility of HEE has been extended to study the renormal-

ization group flows in quantum filed theories [28–30], please refer to [31] for a recent review and

references therein.

The original HEE conjecture eq.(1) was made in the large N and large ’t Hooft coupling limit,

which indicates that the dual gravitational theory is the classical Einstein theory. In the full

version of the AdS/CFT correspondence, due to the strong/weak duality property, there are two

kinds of corrections to the theory: one is the higher curvature effects from (super)gravity (which

is the α′ correction to the boundary CFT), the other is the large N corrections to the boundary

quantum field theory, associated with the perturbations from the bulk gravitational theory. For

higher curvature or higher derivative terms in the bulk, the corrections to the HEE area law eq.(1)

have been studied in the presence of the gravitational Chern-Simons term (with gravitational

1 There are indeed some exceptions to violate the area law such as entanglement entropy from fermions [6].
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anomalies) [32, 33], and also in quantum field theory which is dual to the general Lovelock gravity

in the asymptotically AdS spacetime [34–41].

The universal behavior of entanglement entropy in low-energy excited states is very important

in understanding the quantum entanglement nature of the system, which has been studied by many

authors, for example [42][43]. Usually it is difficult to investigate the properties of entanglement

entropy of systems with generic configurations either from the quantum field theory or from the

holographic approaches. However, one can consider two different limits of the subsystem to analyze

the properties of the entanglement entropy. The first limit is to study the entanglement entropy

with small size for the subsystem, which has been shown in [42] that the entanglement entropy and

Rényi entropy of the 2-dimensional CFT in vacuum and the low-energy excited states are scaled

with the primary operators in the theory. Later, the HEE proposal has been applied to study the

related problem and the scaling relation for the first order quantum excited entanglement entropy.

A novel universal relation between the linearized order entanglement entropy S(1) and the energy

E(1) of the subsystem with small size in the boundary CFT has been found [44]

E(1) = TeS
(1), (2)

where Te is called the entanglement temperature which is proportional to the reciprocal of the

size of the CFT. Apparently eq.(2) is reminiscent of the familiar first law of thermodynamics. For

the other limit, one can also consider entanglement entropy of local excited states in which the

subsystem is of large size. There are various investigations in this direction from the quantum field

theory side [45–47], in which the authors have proposed that entanglement entropy with large size

subsystem is proportional to the logarithm of quantum dimension of excitations of local operators.

The related problems from holographic point of view can also be found in the recent papers [48–68].

Despite these interesting progresses, the studies on entanglement entropy with low-energy ex-

citations mostly focused on the linearized perturbations. In the present paper, we will extend

the study of the low-energy excitations of the entanglement entropy to second order, from the

perspective of the gauge/gravity duality. Specifically, we systematically study the first law-like

relation between the variations of entanglement entropy and the variations of energy for the strip

subsystem in the boundary CFT up to second order perturbations. We study the HEE and energy

in three examples, i.e., general d-dimensional (for d ≥ 3) CFT dual to d+1-dimensional Reissner-

Nordström-Anti de Sitter (RN-AdS) black brane, the 2-dimensional CFT dual to 3-dimensional

spinning BTZ black hole and the 2-dimensional CFT dual to 3-dimensional non-rotating charged

black hole in AdS3. We show that, in the first two examples, the first law-like relation becomes an
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inequality when taking into account of the second order low-energy corrections (and keeping the

spatial size of the subsystem fixed), namely,

Te

(

S(1) + S(2)
)

≤ E(1) + E(2), and S(2) ≤ 0, (3)

where S(i) and E(i), (i = 1, 2) are the i-th order corrections to entanglement entropy and energy

of the subsystem in the CFT. In addition, the cosmic censorship conjecture (CCC) for the black

hole will naturally impose an upper bound to the boundary HEE at second order perturbations in

each of those three examples. However, in the third example, the inequality (3) can be violated

due to the fact that E(2) = 0, while S(2) is not always negative. This violation is caused by the

Weyl anomaly of the U(1) gauge theory in the 2-dimensional CFT. Besides, as was pointed out in

[69], the quantum corrections or loop corrections to the HEE contain two parts, one is from the

entanglement between bulk regions separated by the minimal surface, the other one comes from

the variations of the minimal surface area. The low-energy corrections considered in this paper is

exactly of the second kind. Moreover, we also show that the second order HEE actually reflects the

structure of the two-point correlation functions of the boundary renormalized stress tensor. For

d = 2, we show that the corrected scaling relation is consistent with the estimation from the dual

CFT2. For other recent studies on second order quantum corrections to entanglement entropy,

readers can refer to [70].

The rest parts of the paper are organized as follows: in section II, we describe the general

formula for the area functional of bulk co-dimensional-2 surface up to second order perturbations.

In sections III and IV, we study the first law-like relation between HEE and energy for a strip region

in the CFT which is dual to RN-AdSd+1 black brane. In section V, we continue studying the HEE

with second order excitations for two interesting examples in the asymptotically AdS3 spacetime,

one is the spinning BTZ black hole, the other is the charged AdS3 black hole. Conclusions and

discussions are drawn in Section VI.

II. PERTURBATIONS OF THE BULK CO-DIMENSIONAL-2 SURFACE

The area of the bulk spacelike co-dimensional 2 surface in d+ 1-dimensional spacetime is

A =

∫ √
γdd−1ξ, (4)

where

γij =
∂XA

∂ξi
∂XB

∂ξj
gAB (5)
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is the induced metric and ξi is the coordinate on the surface, while XA and gAB are the coordinate

and the metric of the bulk background spacetime, respectively. Then the variations of the area

functional are

δA = −1

2

∫ √
γ

(

γijδγ
ij +

1

2
γikγjlδγ

ijδγkl +O
(

(δγ)3
)

)

dd−1ξ, (6)

δ2A =
1

2

∫ √
γ

((

1

2
γijγkl + γikγjl

)

δγijδγkl +O
(

(δγ)3
)

)

dd−1ξ. (7)

where δ
√
γ =

√
γ

2

(

γijδγij − 1
2γ

ikγjlδγkjδγli
)

(up to the second order). Note that
√
γ and γij in

eqs.(6-7) are their zeroth order on-shell values
√

γ(0) and γ
(0)
ij . Besides, the variations of γij and

γij are in the small dimensionless parameter ε expansion

δγij = γ
(1)
ij + γ

(2)
ij +O(ε3), (8)

δγij = −γ(1)ij + γ(1)ikγ
(1)j
k − γ(2)ij +O(ε3), (9)

where the indices are lowered and raised by the zeroth order metric γ
(0)
ij and γ(0)ij . Consequently,

A(1) =
1

2

∫
√

γ(0)γ
(0)
ij γ(1)ijdd−1ξ =

1

2

∫
√

γ(0)γ(1)dd−1ξ, (10)

A(2) =

∫
√

γ(0)
(

−1

2
γ(1)ijγ

(1)
ij +

1

8

(

γ(1)
)2

+
1

2
γ(2)

)

dd−1ξ. (11)

where the induced metric is expanded as

γ
(0)
ij =

(

∂XA

∂ξi
∂XB

∂ξj

)(0)

g
(0)
AB, (12)

γ
(1)
ij =

(

∂XA

∂ξi
∂XB

∂ξj

)(0)

g
(1)
AB +

(

∂XA

∂ξi
∂XB

∂ξj

)(1)

g
(0)
AB , (13)

γ
(2)
ij =

(

∂XA

∂ξi
∂XB

∂ξj

)(0)

g
(2)
AB + 2

(

∂XA

∂ξi
∂XB

∂ξj

)(1)

g
(1)
AB +

(

∂XA

∂ξi
∂XB

∂ξj

)(2)

g
(0)
AB , (14)

The following relation holds if only consider the first order perturbations,

(

∂XA

∂ξi
∂XB

∂ξj

)(1)

g
(0)
AB = δ

(

∂XA

∂ξi
∂XB

∂ξj

)

g
(0)
AB = 0 (15)

provided that the zeroth order EoM of the bulk co-dimensional 2 minimal surface is satisfied (on-

shell). However, the above equality does not hold when performing the perturbations up to second

order,

(

∂XA

∂ξi
∂XB

∂ξj

)(1)

g
(0)
AB 6= 0. (16)

The asymptotically AdSd+1 spacetime in the Poincaré coordinates is

ds2 =
L2

z̃2
(

dz̃2 + ḡµν(z̃, x)dx
µdxν

)

, (17)
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in which z̃ is the radial coordinate of the AdSd+1 spacetime. The general form of the bulk co-

dimensional 2 static surface can be expressed by z̃ as a function of xi such as z̃ = z̃(xi), then the

area functional eq.(4) becomes

A = Ld−1

∫

dd−1x

z̃d−1

√

det

(

ḡij(z̃, x) +
∂z̃

∂xi
∂z̃

∂xj

)

. (18)

Let us focus on the situation that eq.(17) is a slightly perturbed geometry obtained from the

pure AdS spacetime and study the small variation of eq.(18) which deviates from its pure AdS

counterpart. Generally speaking, in order to determine the shape of the bulk minimal surface,

one needs to expand ḡij = ηij + ḡ
(1)
ij + ḡ

(2)
ij as well as z̃ = z̃(0) + z̃(1) + z̃(2), and then solve the

Euler-Lagrange equation for the bulk static minimal surface up to second order to get z̃(1) and z̃(2).

However, when the explicit integration form of the area functional (for the bulk minimal surface)

in eq.(18) is known, we can expand it around the minimal surface in pure AdS spacetime in terms

of ε to arbitrary orders. Applying this method, we can study the low-energy excitation corrections

to the HEE in vacuum states.

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY IN ADSd+1 BLACK BRANE

In the Einstein-Maxwell theory

I =
1

16πGd+1

∫

dd+1x
√−g

(

R+
d(d− 1)

L2
− L2

g2s
FµνF

µν

)

, (19)

the charged black brane in AdSd+1, i.e. the RN-AdSd+1 black brane is (d ≥ 3)

ds2 =
L2

r2f(r)
dr2 +

r2

L2

(

−f(r)dt2 + dx2i
)

,

f(r) = 1− M

rd
+

Q2

r2d−2
,

and

A = µ

(

1− rd−2
o

rd−2

)

dt, µ =

√

d− 1

2(d− 2)

gsQ

L2rd−2
o

. (20)

where gs is the dimensionless coupling constant of the U(1) gauge field, ro is the radius of the outer

horizon, L is the curvature radius of the AdS spacetime, M and Q are the mass and charge of the

black brane, respectively, and

Besides, the cosmic censorship conjecture (CCC) requiresM ≥ 2roQ. In the Poincaré coordinate

z = L2/r, the metric becomes

ds2 =
L2

z2

(

dz2

f(z)
− f(z)dt2 + dx2i

)

, (21)
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with f(z) = 1 − Mzd

L2d + Q2z2d−2

L4d−4 ≡ 1 − M̃ zd

Ld + Q̃2 z2d−2

L2d−2 , where M̃ ≡ M/Ld and Q̃ ≡ Q/Ld−1 are

dimensionless mass and charge of the RN-AdSd+1 black brane.

In order to study the HEE in the background eq.(21) perturbatively, M̃ and Q̃ can be taken as

the small parameters which act as the sources of the geometric perturbation away from the pure

AdSd+1 spacetime (the perturbations can also be caused by adding external matter fields or the

fluctuations from the metric itself). Taking M̃ and Q̃ as the first order perturbation, both the

metric components gtt and gzz undergo a second order variation as

δgtt =
Ld−2

rd−2
M̃ − L2d−4

r2d−4
Q̃2 =

zd−2

Ld−2
M̃ − z2d−4

L2d−4
Q̃2 ≡ g

(1)
tt + g

(2)
tt ,

δgrr =
Ld+2

rd+2
M̃ +

L2d+2

r2d+2
M̃2 − L2d

r2d
Q̃2 =

zd+2

Ld+2
M̃ +

z2d+2

L2d+2
M̃2 − z2d

L2d
Q̃2 ≡ g(1)rr + g(2)rr . (22)

We will focus on the case that the boundary CFT is divided into two intervals A + B and

taking the subsystem A to be a strip in the region x1 ∈ [−l/2, l/2] and xb ∈ [−L0/2, L0/2] with

(b = 2, 3, · · · xd−1). The bulk static minimal surface γA is a co-dimensional-2 surface, which is

described by x1 = x1(z), then the bulk static hypersurface becomes

ds2 =
L2

z2

[(

1

f(z)
+

(

∂x1
∂z

)2
)

dz2 + dx2a

]

, (23)

and its area is

AγA = 2Ld−1Ld−2
0

∫

dz

zd−1

√

1

f(z)
+

(

∂x1
∂z

)2

, (24)

The bulk static minimal surface γA is determined from the Euler-Lagrange equation, i.e. by

minimizing the area functional AγA

δAγA

δx1
− ∂z

(

δAγA

δ(∂zx1)

)

= 0, (25)

which results in

p(z) ≡ ∂z

∂x1
=

√

√

√

√f(z)

(

z2d−2
∗
z2d−2

− 1

)

, (26)

where z∗ is the turning point of the bulk minimal surface at which p(z∗) = 0. Besides, it also

reflects the embedding of the minimal surface into the bulk which will be affected by the bulk

geometric perturbations. Consequently, the area of the bulk static minimal surface becomes

AγA = 2Ld−1

∫ z∗

ǫ

dxd−2 dz

zd−1

√

(

1

f(z)
+

1

p(z)2

)

= 2Ld−1

∫ z∗

ǫ

dxd−2 dz

zd−1

1
√

f(z)
(

1− z2d−2

z2d−2
∗

)

, (27)
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where ǫ is the geometric short distance cutoff which is related to the UV cutoff a of the dual CFT

via the UV/IR relation L
ǫ
≃ LA+B

a
, with LA+B the total spatial length of the boundary CFT system

A+B.

From eqs.(26) (27) we have

l

2
=

∫ z∗

0

dz
√

f(z)
(

z2d−2
∗

z2d−2 − 1
)

, (28)

where the spatial size l of the subsystem A is fixed. Recall from eq.(7) that the variation of the area

functional contains the contributions from the bulk metric perturbations as well as the changes in

the embedding, both of which are controlled by the source fields, i.e. the conserved charges of the

AdS black brane. Therefore, the final expression of the area functional is the expansion in terms

of these conserved charges. Defining z2d−2

z2d−2
∗

= ξ, 2 then up to order O(M̃3, Q̃3) we reach

l =
z∗

d− 1

∫ 1

0
dξ

(

ξ
2−d
2d−2 +

M̃zd∗
2Ld

ξ
1

d−1 +
3M̃2z2d∗
8L2d

ξ
d+2
2d−2 − Q̃2z2d−2

∗
2L2d−2

ξ
d

2d−2

)

(1− ξ)−
1
2

=
z∗
√
π

d− 1





Γ
(

d
2d−2

)

Γ
(

2d−1
2d−2

) +
M̃zd∗
2Ld

Γ
(

d
d−1

)

Γ
(

3d−1
2d−2

) +
3M̃2z2d∗
8L2d

Γ
(

3d
2d−2

)

Γ
(

4d−1
2d−2

) − d(d − 1)Q̃2z2d−2
∗

(2d − 1)L2d−2

Γ
(

d
2d−2

)

Γ
(

1
2d−2

)



 ,(29)

which in turn gives

z∗ = z
(0)
∗ + z

(1)
∗ + z

(2)
∗ +O(M̃3, Q̃3), (30)

where

z
(0)
∗ =

lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

) ,

z
(1)
∗ = − M̃

√
π

(d+ 1)Ldl

Γ
(

d
d−1

)

Γ
(

d+1
2d−2

)





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





d+2

,

z
(2)
∗ =

M̃2

L2d





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





2d+1






1

4(d+ 1)





Γ
(

1
2d−2

)

Γ
(

d
d−1

)

Γ
(

d
2d−2

)

Γ
(

d+1
2d−2

)





2

− 3

8(2d + 1)

Γ
(

1
2d−2

)

Γ
(

3d
2d−2

)

Γ
(

d
2d−2

)

Γ
(

2d+1
2d−2

)







+
dQ̃2

2(2d− 1)L2d−2





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





2d−1

. (31)

2 It is clear that here ξ is different from ξi in section II, which is the coordinates of the induced metric.
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Therefore, the corresponding area is

AγA = 2Ld−1Ld−2
0

∫ z∗

ǫ

dz

zd−1

1
√

f(z)
(

1− z2d−2

z2d−2
∗

)

=
2Ld−1

(d− 2)

(

L0

ǫ

)d−2

− 2
√
πLd−1Ld−2

0

(d− 2)

Γ
(

d
2d−2

)

Γ
(

1
2d−2

)z2−d
∗ +

M̃

Ld

√
πLd−1Ld−2

0

2(d − 1)

Γ
(

1
d−1

)

Γ
(

d+1
2d−2

)z2∗

+
3M̃2

8L2d

√
πLd−1Ld−2

0

(d− 1)

Γ
(

d+2
2d−2

)

Γ
(

2d+1
2d−2

)zd+2
∗ − Q̃2Ld−2

0

√
π

Ld−1

Γ
(

d
2d−2

)

Γ
(

1
2d−2

)zd∗ +O(M̃3, Q̃3). (32)

Substituting eq.(31) into eq.(32), we obtain 3

A(0)
γA

=
2Ld−1

(d− 2)

(

L0

ǫ

)d−2

− Ld−1Ld−2
0

(d− 2)ld−2





2
√
πΓ
(

d
2d−2

)

Γ
(

1
2d−2

)





d−1

,

A(1)
γA

=
M̃Ld−2

0 l2

8
√
π(d+ 1)L

Γ
(

1
d−1

)

Γ
(

d+1
2d−2

)





Γ
(

1
2d−2

)

Γ
(

d
2d−2

)





2

,

A(2)
γA

=
M̃2Ld−2

0

√
π

4Ld+1





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





d+2
( −1

(d+ 1)2(d− 1)

Γ
(

1
2d−2

)

Γ
(

d
2d−2

)





Γ
(

1
d−1

)

Γ
(

d+1
2d−2

)





2

+
3

2(2d + 1)

Γ
(

d+2
2d−2

)

Γ
(

2d+1
2d−2

)

)

− Q̃2Ld−2
0 l

2Ld−1





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





d−1

(33)

Therefore, the corresponding HEE is

SγA =
1

4Gd+1

(

A(0)
γA

+A(1)
γA

+A(2)
γA

)

+O(M̃3, Q̃3). (34)

Note that the first order value is always positive S
(1)
γA > 0, while the second order is always negative

and it is bounded by the CCC as

S(2)
γA

≤ Q̃2Ld−2
0 l

8Gd+1Ld−1





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





d−1
(

2r2o
√
π

lL4





lΓ
(

1
2d−2

)

2
√
πΓ
(

d
2d−2

)





3
(

3

2(2d + 1)

Γ
(

d+2
2d−2

)

Γ
(

2d+1
2d−2

)

− 1

(d+ 1)2(d− 1)

Γ
(

1
2d−2

)

Γ
(

d
2d−2

)





Γ
(

1
d−1

)

Γ
(

d+1
2d−2

)





2
)

− 1

)

. (35)

3 Note that eq.(33) holds for d > 2. The special case is d = 2, in which the dominant term in the zeroth order in
the area is given by limǫ→0 2L

∫ z∗

ǫ

dz
z

= 2L ln z∗
ǫ

≃ 2L ln l
a
, i.e. the logarithmic divergence.
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IV. THE BOUNDARY STRESS TENSOR OF THE DUAL CFTd

The d+ 1 dimensional bulk spacetime can be written into the ADM form as

ds2 = N2dr2 + gµν (N
µdr + dxµ) (Nνdr + dxν) ≡ gABdx

AdxB (36)

and the boundary stress tensor can be calculated from the Brown-York formalism

T µν =
1

8πGd+1
(Kgµν −Kµν) , (37)

in which

Kµν = NΓr
µν =

N

2
grA (gµA,ν + gAν,µ − gµν,A) , (38)

The variation of the stress tensor with respect to the dimensionless parameter ε is

δTµν =
−1

8πGd+1
(δKgµν +Kδgµν − δKµν)

= T (1)
µν + T (2)

µν +O(ε3), (39)

where

T (1)
µν =

−1

8πGd+1

(

K(0)g(1)µν +K(1)g(0)µν −K(1)
µν

)

, (40)

T (2)
µν =

−1

8πGd+1

(

K(0)g(2)µν + 2K(1)g(1)µν +
(

K(2) −K
(1)
αβ g

(1)αβ
)

g(0)µν −K(2)
µν

)

, (41)

with

K(1) = g(0)µνK(1)
µν − g(1)µνK(0)

µν ,

K(2) = g(0)µνK(2)
µν − g(1)µνK(1)

µν + g(1)µλg
(1)ν
λ K(0)

µν − g(2)µνK(0)
µν ,

K(1)
µν = N (1)Γ(0)r

µν +N (0)Γ(1)r
µν ,

K(2)
µν = N (2)Γ(0)r

µν + 2N (1)Γ(1)r
µν +N (0)Γ(2)r

µν . (42)

When the boundary is spatially flat, such as the RN-AdSd+1 black brane, the boundary counterterm

added to cancel the UV divergence is

Ict =
−(d− 1)

8πGd+1L

∫

∂M
ddx

√−g, (43)

which contributes to the boundary stress tensor as

T ct
µν =

2√−g

δIct
δgµν

=
−(d− 1)

8πGd+1L
gµν . (44)
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Then the first order renormalized stress tensor on the fixed r hypersurface is

T (1)
µν + T ct(1)

µν =
−1

8πGd+1

(

−g
(1)
µν

L
+

(

(d− 1)r2

2L3
g(1)rr +

g
(1)λ
λ

L
− r

2L
g(0)αβg

(1)
αβ,r

)

g(0)µν +
r

2L
g(1)µν,r

)

.(45)

The expectation value of the renormalized stress tensor of the boundary CFTd can be calculated

from variation of the full action with respect to the metric ḡµν on the conformal boundary (the

asymptotic boundary is located at z = ǫ → 0) [71, 72].

δ (I + Ibdy + Ict) = bulk terms +
1

2

∫ √−ḡddx〈Tµν〉δḡµν , (46)

where ḡµν = L2

r2
gµν = z2

L2 gµν , Ibdy is the boundary action required by a well-defined variational

principle and 〈Tµν〉 =
(

r
L

)d−2 (
Tµν + T ct

µν

)

=
(

L
z

)d−2 (
Tµν + T ct

µν

)

. For the RN-AdSd+1 black brane

eq.(20), the nonvanishing components of 〈T (1)
µν 〉 are

〈T (1)
tt 〉 =

(d− 1)M̃

16πGd+1L
,

〈T (1)
xixi

〉 =
M̃

16πGd+1L
. (47)

Subsequently, the trace of the first order stress tensor is

〈T (1)λ
λ 〉 = g(0)tt〈T (1)

tt 〉+ g(0)xixi〈T (1)
xixi

〉 = 0, (48)

which indicates that the boundary dual CFTd is conformal anomaly free up to first order quantum

corrections.

The second order renormalized stress tensor is

T (2)
µν + T ct(2)

µν =
−1

8πGd+1

(

− g
(2)
µν

L
+

(

r2d

L3
g(1)rr +

2g
(1)λ
λ

L
− r

L
g(0)αβg

(1)
αβ,r

)

g(1)µν

+

(

(d− 1)r2

2L3
g(2)rr +

(d− 1)r4

8L5

(

g(1)rr

)2
− (d− 1)g(1)rλg

(1)
rλ

L
− r

2L
g(0)αβg

(2)
αβ,r

− r2

L3
g
(1)λ
λ g(1)rr +

r

L
g(1)αβg

(1)
αβ,r −

g(1)αβg
(1)
αβ

L
+

g
(2)λ
λ

L

)

g(0)µν +
r

2L
g(2)µν,r

)

. (49)

Thus the nonvanishing components of 〈T (2)
µν 〉 are

〈T (2)
tt 〉 =

−1

8πGd+1

(

(3d − 11)zd

8Ld+1
M̃2 +

(d− 1)zd−2

2Ld−1
Q̃2

)

,

〈T (2)
xixi

〉 =
−1

8πGd+1

(

(11 − 3d)zd

8Ld+1
M̃2 +

(d− 1)zd−2

2Ld−1
Q̃2

)

. (50)

It is straightforward to check that

〈T (2)λ
λ 〉 = ḡ(0)µν 〈T (2)

µν 〉 − ḡ(1)µν 〈T (1)
µν 〉

=
1

8πGd+1

(

(3d2 − 15d + 4)zd

8Ld+1
M̃2 − (d− 2)(d− 1)zd−2

2Ld−1
Q̃2

)

. (51)
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When taking the UV cutoff to the CFT, i.e., z = ǫ → 0 to the asymptotic boundary, 〈T (2)λ
λ 〉 → 0.

With the explicit expressions of 〈Ttt〉, we can calculate the energy associated to the subsystem A

in the boundary CFT, which is

E =

∫

dxd−2
b

∫ l
2

− l
2

dx〈Ttt〉

= E(1) + E(2) +O(M̃3, Q̃3), (52)

where

E(1) =
(d− 1)Ld−2

0 lM̃

16πGd+1L
,

E(2) = 0. (53)

Therefore, we can check that the first law-like relation for the boundary CFTd holds at the first

order perturbation, namely,

TeS
(1)
γA

= E(1), (54)

with the entanglement temperature given by

Te =
2(d2 − 1)Γ

(

d+1
2d−2

)

√
πΓ
(

1
d−1

)





Γ
(

d
2d−2

)

Γ
(

1
2d−2

)





2

l−1. (55)

When including the contribution from the second order excitations, we have

Te

(

S(1)
γA

+ S(2)
γA

)

< E(1) + E(2). (56)

Eq.(56) gives a consistent entropy bound for the subsystem A resembling the Bekenstein bound

[73]. Similar related arguments can be found in the study of the excitation of relative entropy for

spherical entangling surface [56].

V. ASYMPTOTICALLY ADS3 SPACETIME

In this section, we will study the holographic entanglement entropy of CFT2 with second order

excitations in asymptotically AdS3 spacetime, following the spirit that they are formed by small

spatially homogeneous metric perturbations from the pure AdS3 spacetime. The first example is

the spinning BTZ black hole and the second one is the non-rotating charged black hole in AdS3

spacetime.
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A. Spinning BTZ black hole

The metric of the spinning BTZ black hole [74, 75] is

ds2 = −(r2 − r2+)(r
2 − r2−)

L2r2
dt2 +

L2r2

(r2 − r2+)(r
2 − r2−)

dr2 + r2(dφ− r+r−
Lr2

dt)2, (57)

where the black hole is of mass M = (r2+ + r2−)/(8G3L
2), angular momentum J = r+r−/(4G3L)

and temperature T = (r2+ − r2−)/(2πr+L
2) = β−1. The CCC requires ML ≥ J , and if we take

ML ≡ α to be the small parameter, the magnitude of J cannot be determined generally. In the

following we will require that ML and J are of the same order, the special case of which is the

near extreme BTZ black hole, namely ML → J , hence

δgtt = g
(1)
tt = 8G3M, δgtx = g

(1)
tx = g

(1)
xt = −4G3J

L
,

δgrr = g(1)rr + g(2)rr =
8G3L

4M

r4
+

16G2
3L

4

r6
(

4M2L2 − J2
)

, δgxx = 0. (58)

So the components of the first and second order renormalized boundary stress tensor are

〈T (1)
tt 〉 =

α

2πL2
, 〈T (2)

tt 〉 = G3

πLr2
(

5M2L2 + 3J2
)

,

〈T (1)
tx 〉 = 〈T (1)

xt 〉 = − J

2πL
, 〈T (2)

tx 〉 = 〈T (2)
xt 〉 = 0,

〈T (1)
xx 〉 =

α

2πL2
, 〈T (2)

xx 〉 = − G3

πLr2
(

5M2L2 + 3J2
)

. (59)

Then 〈T (1)λ
λ 〉 = 0, and 〈T (2)λ

λ 〉 = −14G3α
2

πLr2
− 6G3J

2

πLr2
, which tends to zero at the asymptotic AdS

boundary.

The covariant HEE method is required to calculate the HEE for the spinning BTZ black hole,

since the background is no longer static. The bulk minimal curve can be easily obtained by

converting eq.(57) into the pure Poincaré coordinate

ds2 =
L2

z2
(

dz2 + dw+dw−
)

(60)

via the coordinate transformations

w± =

√

r2 − r2+
r2 − r2−

e(φ±
t
L)

∆±
L ,

z =

√

r2+ − r2−
r2 − r2−

e
φr+
L

+
tr−

L2 , (61)

where ∆± = r+ ± r−. Note that the HEE of the boundary subsystem A with spatial interval

x ∈ [−l/2, l/2] is simply SγA = c
3 ln

l
a
, which can be explicitly expressed as [76]

SγA =
c

6
ln

(

β+β−
π2ǫ2

sinh

(

πl

β+

)

sinh

(

πl

β−

))

, (62)
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in which c = 3L
2G3

is the central charge and β± = 2πL2

r+±r−
are the inverse left and right hand

temperatures of the boundary CFT2. Thus, the HEE of the subsystem A can be expanded as

SγA = S(0)
γA

+ S(1)
γA

+ S(2)
γA

+O(α3, J3, a2)

=
c

3
ln

l

a
+

l2α

6L2
− l4

60cL4

(

α2 + J2
)

+O(α3, J3, a2)

≤ c

3
ln

l

a
+

l2α

6L2
− l4J2

30cL4
+O(α3, J3, a2) (63)

where we have used α ≥ J in the third line and the relation ǫ ≃ a. Eq.(63) shows that the HEE

is naturally bounded at second order perturbations if the CCC still holds for the dual BTZ black

hole.

The energy of the subsystem A in the boundary CFT2 is

E =

∫ l
2

− l
2

dx〈Ttt〉

= E(0) + E(1) + E(2) +O(α3, J3, a2), (64)

where

E(0) = 0, E(1) =
αl

2πL2
and E(2) = 0. (65)

From eqs.(63)(65) we see that the first order result gives the first law-like relation [44] as

TeS
(1)
γA

= E(1), (66)

with the entanglement temperature Te = 3
πl
. Again, including the second order excitations, we

have the inequality

Te

(

S(1)
γA

+ S(2)
γA

)

< E(1) + E(2). (67)

If Te is not modified, eq.(67) shows that the subsystem has reached a maximal entropy under small

fluctuations.

Furthermore, recall that the conformal dimension of the boundary stress tensor of the CFT2

dual to the bulk massless graviton is ∆ = d = 2, so

S(2)
γA

= − l4

60cL4

(

M2L2 + J2
)

= − l2∆

60cL4

(

M2L2 + J2
)

, (68)

which is consistent with the estimation from the dual CFT2 side [42].
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B. Charged black holes in AdS3

The charged black hole in AdS3 can be obtained from the Einstein-Maxwell theory

I =
1

16πG3

∫

d3x
√−g

(

R+
2

L2
− L2

g2s
FµνF

µν

)

, (69)

It has the following metric [77]

ds2 = − r2

L2
f(r)dt2 +

L2

r2f(r)
dr2 + r2dφ2, (70)

with

f(r) = 1− M

r2
− Q2

4r2
ln

(

r2

L2

)

and A =
gsQ

2L2
ln

r

rh
dt, (71)

where gs is the coupling constant, Q is the charge, and rh is the black hole outer horizon. When

M
L2 − Q2

4L2

(

1− ln Q2

4L2

)

≥ 0, i.e. the CCC is held, the above metric describes a regular non-rotating

charged black hole with radius L. In the Poincaré coordinate eq.(70) is

ds2 =
L2

z2



−
(

1− Mz2

L4
+

Q2z2

4L4
ln

(

z2

L2

))

dt2 +
dz2

(

1− Mz2

L4 + Q2z2

4L4 ln
(

z2

L2

)) + dx2



 , (72)

As before, let us treat the mass and charge of the black hole as small perturbations in the pure

AdS3 spacetime. When both M and Q are small, the absence of a naked singularity requires M
L2

and Q
L

are of the same order of the magnitudes. For convenience, we define M
L2 ≡ β and Q

L
≡ γ.

Hence,

δgtt = g
(1)
tt + g

(2)
tt = β +

γ2

4
ln

r2

L2
, δgxx = 0,

δgrr = g(1)rr + g(2)rr =
L4β

r4
+

(

L4γ2

4r4
ln

r2

L2
+

L6β2

r6

)

. (73)

Beside, the variation of the boundary holographic stress tensor is

〈T (1)
tt 〉 =

β

16πG3L
, 〈T (2)

tt 〉 = 5Lβ2

64πG3r2
+

γ2

64πG3L
ln

r2

L2
,

〈T (1)
tx 〉 = 〈T (1)

xt 〉 = 0, 〈T (2)
tx 〉 = 〈T (2)

xt 〉 = 0,

〈T (1)
xx 〉 =

β

16πG3L
, 〈T (2)

xx 〉 = − γ2

32πG3L
− 5Lβ2

64πG3r2
+

γ2

64πG3L
ln

r2

L2
. (74)

Note that both 〈T (2)
tt 〉 and 〈T (2)

xx 〉 are divergent as r approaches to the boundary. In order to cancel

the divergence, the boundary counterterm from the gauge field is required 4, which is

Igaugect = c1

∫

dx2
√−gFrµF

rµ ln
r

L
, (75)

4 To make the variation of the action in eq.(69) be well-defined, the Gibbons-Hawking boundary term and another
boundary term for the bulk gauge field which satisfies the Neumann boundary condition should be added, which

is IN = L2

8πG3g
2
s

∫ √
−gdx2nrFrµA

µ, with nr =
r
√

f(r)

L
to be the unit normal vector of the timelike boundary.



17

where c1 is the constant which will be fixed by canceling the UV divergence. Eq.(75) will only

contributes to the boundary stress tensor of the CFT2 at the second order,

T gauge
µν =

2√−ḡ

δIgaugect

δḡµν
= c1

(

(

gsQ

2L2

)2 gµν
r2

+ 2
r2f(r)

L2
FrµFrν

)

ln
r

L
, (76)

Therefore, the total second order boundary stress tensor is

〈T (2)
tt 〉total = 〈T (2)

tt 〉+ T
gauge(2)
tt =

5Lβ2

64πG3r2
+

γ2

64πG3L
ln

r2

L2
+ c1

g2sγ
2

4L4
ln

r

L
,

〈T (2)
xx 〉total = 〈T (2)

xx 〉+ T gauge(2)
xx = − γ2

32πG3L
− 5Lβ2

64πG3r2
+

γ2

64πG3L
ln

r2

L2
+ c1

g2sγ
2

4L4
ln

r

L
, (77)

which give the finite results to the total stress tensor when choosing c1 = − L3

8πG3g2s
. Finally,

〈T (2)
tt 〉total =

5Lβ2

64πG3r2
,

〈T (2)
xx 〉total = − γ2

32πG3L
− 5Lβ2

64πG3r2
. (78)

Therefore, 〈T (1)λ
λ 〉 = 0, while 〈T (2)λ

λ 〉 = − 14Lβ2

64πG3r2
− γ2

32πG3L
→ − γ2

32πG3L
when r → ∞, which is the

Weyl anomaly of the U(1) vector field in the 2-dimensional CFT [78]. The anomaly will contribute

an anomalous (a positive) term to the second order entanglement entropy.

In the Poincaré coordinates, the bulk codimensional-2 surface is x = x(z) and the boundary

CFT is divided into two subsystems A and B, in which A is located in x1 ∈ [−l/2, l/2], then

l

2
=

∫ z∗

0

dz
√

(

1− Mz2

L4 + Q2z2

4L4 ln
(

z2

L2

))(

z2∗
z2

− 1
)

= z∗

(

1 +
βz2∗
3L2

+
γ2z2∗
36L2

(

5− 6 ln 2 + ln
L

z∗

)

+
β2z4∗
5L4

)

, (79)

in which z∗ is obtained as

z∗ =
l

2
− l3

24L2
β +

l5

240L4
β2 − l3

(

5 + 6 ln L
l

)

288L2
γ2 +O(β3, βγ2). (80)

The area of the bulk minimal curve now is

AγA = 2L

∫ z∗

a

dz

z

1
√

(

1− Mz2

L4 + Q2z2

4L4 ln
(

z2

L2

))(

1− z2

z2∗

)

= L

(

2 ln
2z∗
a

+
β

L2
z2∗ +

γ2

2L2

(

1− ln 2 + ln
L

z∗

)

z2∗ +
β2

2L4
z4∗

)

+O(α3, βγ2, a2)

= L

(

2 ln
l

a
+

l2β

12L2
− l4β2

1440L4
+

(

l2

18L2
+

l2

24L2
ln

L

l

)

γ2
)

+O(α3, βγ2, a2). (81)
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Therefore, the holographic entanglement entropy of the subsystem A is

SγA =
c

3
ln

l

a
+

cl2

72L2
β − cl4

8640L4
β2 +

cl2

36L2

(

1

3
+

ln L
l

4

)

γ2 +O(α3, βγ2, a2), (82)

in which

S(1)
γA

=
cl2

72L2
β,

S(2)
γA

= − cl4

8640L4
β2 +

cl2

36L2

(

1

3
+

ln L
l

4

)

γ2, (83)

which shows that the second order excitation of HEE from the mass is negative. While the contri-

bution from the charge is positive, in contrast to the d ≥ 3 charged black brane case considered in

Section III 5. Again, the regular condition (CCC) for the charged AdS3 black hole gives a constraint

on its charge and mass, i.e. M
L2 − Q2

4L2

(

1− ln Q2

4L2

)

≥ 0, which results in the entropy bound for the

subsystem A

S(2)
γA

≤ cl2

36L2

(

− l2γ4

3840L2

(

1− ln
γ2

4

)2

+

(

1

3
− ln l

L

4

)

γ2

)

. (84)

It is worth noticing that, unlike the RN-AdS black brane and the spinning BTZ black hole cases,

the function on the right hand side of eq.(84) is not always negative, although bounded by the

CCC. However, it tends to zero for small l/L and γ, and there exists some region that the right

hand side of eq.(84) becomes negative, namely, S
(2)
γA ≤ 0.

In addition, the energy of dual boundary CFT2 is

E =

∫ l
2

l
2

dx〈Ttt〉total

= E(0) + E(1) + E(2) +O(α3, αγ2, a2), (85)

where

E(0) = 0, E(1) =
lβ

16πG3L
and E(2) = 0. (86)

Therefore, it is straightforward to check that the first law-like relation also holds at first order, i.e.

TeS
(1)
γA

= E(1), (87)

5 The positive term in S
(2)
γA in eq.(83) can be estimated in the off-shell Euclidean path integral approach, see details

in Appendix A.
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with Te = 3/(πl) the same as in the spinning BTZ black hole. However, when the contributions

from the second order excitations are taken into account, we have

TeS
(2)
γA

≤ cl

12πL2

(

− l2γ4

3840L2

(

1− ln
γ2

4

)2

+

(

1

3
− ln l

L

4

)

γ2

)

, (88)

with TeS
(2)
γA → 0 in the small l/L and γ limits, which is different from previous examples. Although

the CCC gives an upper bound, it cannot always make S
(2)
γA < 0 in the present case. This specific

phenomenon is caused by the Weyl anomaly of the background U(1) gauge field in the charged

black hole in AdS3 spacetime, which results in the violation of the entropy bound relation S(2) ≤ 0

at the second order low energy perturbations. A possible explanation is that, since the CCC is

given by the relation between the conserved charges of the bulk black hole which is associated with

classical symmetries of the theory, it is expected that it will not adequate to constrain the second

order entanglement entropy to be negative with gravitational anomaly.

VI. CONCLUSIONS AND DISCUSSIONS

We studied the HEE of the boundary CFT with low-energy excited states up to second order

of the gravitational perturbations (or geometric perturbations) when the spatial region of the

boundary subsystem is a strip and examined the first law-like relation at the second order. Our

strategy is to start from an exact bulk black brane solution in asymptotically AdS spacetime, and

then regard the black brane as the perturbed geometry deviating from its ground state–the pure

AdS spacetime, through small fluctuations caused by interactions from external fields or operators,

such as the mass and gauge fields. From the viewpoint of the dual boundary CFT, it is equivalent

to treat a thermodynamically stable finite temperature CFT (or grand canonical ensemble) with

thermal and quantum excitations as the perturbed system deviates from its vacuum state CFT.

Following this idea, we solved the bulk co-dimensional-2 minimal surface up to second order in terms

of the conserved charges of the AdS black brane, specifically, we obtained the second order low

energy excitation corrections to the entanglement entropy of vacuum states from the expansion

of the HEE. When the spatial size of the subsystem is fixed, the effective temperature gets no

correction and then the first law-like relation of the dual CFT becomes an inequality due to the fact

that the second order correction to the energy always vanishes while the corresponding correction to

the second order HEE is usually negative. In addition, the HEE is shown to be naturally bounded

(an upper bound) at the second order perturbations by the requirement that the CCC holds for

the bulk black hole and S(2) ≤ 0 for the first two examples. An exception appeared in the charged
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non-rotating black hole in AAdS3 spacetime showed that the second order HEE is not always

negative due the Weyl anomaly of the background U(1) gauge field. The anomalous contribution

to the HEE can also be seem from the Euclidean form of the renormalized effective action of the

theory. The phenomenon observed in the charged AdS3 black hole case indicates that the CCC

which is associated with classical symmetries of the bulk theory, is not adequate to constrain the

second order HEE S(2) ≤ 0 in the presence of the gravitational anomaly. Nevertheless, the deep

connection between the CCC of the bulk black hole and the entropy bound for the dual CFT

requires further study.

We need to emphasize that since all of the perturbations (metric and world-sheet) are known

from the starting point, so there is actually “no” dynamics for those perturbations in our calcula-

tions (for “no” dynamics we mean that we don’t need to solve the EoMs to obtain the solutions in

the present cases). In order to study the second order dynamics of the HEE, we need to consider

the fluctuations from the bulk black brane, and then solve the EoMs for the bulk minimal surface

and the perturbed Einstein equation at second order. From the field/operator duality and the

structure of the area functional eq.(11), one can see that it includes the contributions from the

two-point correlation function of some quasi-local stress tensor, e.g., 〈T (1)T (1)〉 on the minimal sur-

face. Therefore, it would be interesting to take the bulk minimal surface as an additional boundary

for the bulk spacetime and calculate the quasi-local stress tensor on it, we will study this issue in

another paper. Moreover, the expansion in terms of the conserved charges is actually related to

the Fefferman-Graham expansion, using this property, our method can also be utilized to study

the dynamics of HEE with excited states in the asymptotically AdS spacetime.
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Appendix A: Estimation of the positive term in second order HEE

Recall that the total renormalized effective action Itotal can be expanded as

Itotal = I
(0)
total +

1

2

∫ √−ḡd2x〈Tµν〉totalδḡµν +
1

8

∫ √−ḡd2x

∫

√

−ḡ′d2x′〈Tµν〉total〈Tαβ〉totalδḡµνδḡαβ

+

∫ √−ḡd2x〈Jµ〉totalδA(0)µ +
1

2

∫ √−ḡd2x

∫

√

−ḡ′d2x′〈Jµ〉total〈Jν〉totalδA(0)µδA(0)ν + · · ·,

(A1)

where I
(0)
total is the zeroth order contribution of Itotal, A

(0)
µ = gsQ

2L2 δ
t
µ is the source term of the

boundary U(1) gauge field and δA
(0)
µ is proportional to the expectation value of the boundary

current 〈Jµ〉total, in which

〈Jµ〉total = − 1√−ḡ

δItotal
δAµ

, (A2)

which gives 〈Jt〉total = Q
16πG3gsL

and then 〈Jt〉totalδA(0)t ∝ 〈Jt〉total〈J t〉total = −
(

Q
16πG3gsL

)2
.

To calculate the entanglement entropy of the boundary CFT, we can apply the off-shell Eu-

clidean path integral approach [16, 17, 32], the replica trick, i.e., the n-copy of the boundary CFT

induces a Weyl transformation ḡµν → n2ḡµν ≡ (1 + ε)2ḡµν on the AdS boundary, where ε is an

infinitesimal real parameter. Then the entanglement entropy of the subsystem A is computed by

SγA = lim
ε→0

(

1− n
∂

∂n

)

(

−IEtotal
)

, (A3)

where the Euclidean version of IEtotal = −iItotal in which t → −iτ . It turns out that the term

〈T (2)λ
λ 〉 in eq.(78) will contribute a term Q2

32πG3L3 to IEtotal. Consequently, it contribute a positive

term to the HEE at second order low-energy perturbations.
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