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Abstract

Energy-loss magnetic chiral dichroism (EMCD) is a versatile method for studying mag-

netic properties on the nanoscale. However, the classical EMCD technique is notorious

for its low signal to noise ratio (SNR), which is why many experimentalists have adopted

a convergent beam approach. Here, we study the theoretical possibilities of using a con-

vergent beam for EMCD. In particular, we study the influence of detector positioning as

well as convergence and collection angles on the detectable EMCD signal. In addition, we

analyze the expected SNR and give some guidelines for achieving optimal EMCD results.
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1. Introduction

Electron magnetic chiral dichroism (EMCD), the electron microscopic equivalent to X-

ray magnetic circular dichroism (XMCD), is a very versatile tool for investigating magnetic

materials on the nanometer scale. Ever since its theoretical prediction [1] and subsequent

realization [2], EMCD has been gaining popularity in many fields, including magnetic

nano-engineering and spintronics.

There are, however, two severe limitations with the classical EMCD approach: spatial

resolution and signal-to-noise (SNR) ratio. In the classical EMCD approach, one sends a

plane wave into a crystal that was tilted into systematic row condition and subsequently

measures the inelastically scattered electrons at particular points of the diffraction plane

far away from the diffraction spots (see also fig. 1). While plane waves are well-suited

for an elegant theoretical treatment, they are not so useful in practice. First of all, from

a fundamental point of view, it is impossible to actually create or measure true plane

waves, due to the limited extent of the microscope and the apertures, as well as the beam

rotation induced by the magnetic lenses [3]. Secondly, from an experimental point of view,

a (quasi) plane wave has a very low current density at the sample. Together with the fact

that the signal has to be measured off-axis — where it can be orders of magnitude smaller

than on-axis — with (ideally infinitely) small detectors, this results in a notoriously low

SNR. Another issue is resolution. When acquiring spectra in diffraction mode, the spatial

resolution is usually defined by using a selected area aperture (typically of the order of

100 nm), thereby reducing the signal even further. Alternatively, one can measure in

image mode using energy-filtered TEM (EFTEM) [4, 5]. Due to the required energy-slit,

this again leads to low intensity, in addition to poor energy resolution.

To overcome these limitations, several new approaches have been proposed and tested,

ranging from alternative measurement geometries in scanning transmission electron mi-

croscopy (STEM) [6–10], over vortex beams [11–13], to the use of aberration correctors

to manipulate the phase of the electron beam [14, 15]. However, all these methods ex-

hibit very low signal, are typically limited to atomic resolution [16, 17], and may require

changing components of the microscope or operating it under non-standard conditions.

Thus, these new methods are not yet applicable for many practical applications.

However, there is a third alternative that has gained increasing popularity in exper-

imental EMCD in recent years: convergent-beam EMCD. It improves both the spatial
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Figure 1: Sketch of the convergent beam setup. (a) The incident beam with convergence semi-angle α is
centered on a crystal plane. (b) Sketch of the general positions of the areas with “positive” (i.e., higher
than non-magnetic) signal I+ and “negative” (i.e., lower than non-magnetic) signal I−. (c) Schematic
elastic diffraction pattern for large α. (d) Schematic elastic diffraction pattern for small α. The diffraction
spots are labeled 0, G, -G. Diffraction disks are depicted as black dashed lines, the Thales circles are
depicted as gray dotted lines. α is the convergence semi-angle, β is the collection semi-angle. The four
detector positions A–D are described in the text.

resolution and the SNR at the same time while still making use of the original, straight-

forward measurement setup by using a convergent beam and finite collection apertures

instead of plane waves. This method has been used experimentally to boost the spatial

resolution of classical EMCD (see, e.g., [18–24], and it has long been known that large

collection apertures can improve the SNR [25]. Therefore, it is surprising that, to our

knowledge, the influence of the convergence angle and the effect the interplay between

convergence and collection angle has on both the signal and the SNR has not been studied

extensively from a theoretical point of view so far (although it has been studied, e.g., for

aberrated probes [26]).

In this work, we present simulations that show that convergent beam EMCD is in

many ways superior to classical EMCD. In particular, we present simple rules of thumb

for how to obtain close-to-optimal SNR while at the same time improving the spatial res-

olution to close to atomic resolution. This is expected to open new avenues for optimizing

EMCD measurements in general, but particularly for the characterization of fine grained

materials, thin films, as well as the magnetic structure in the vicinity of interfaces and

defects. Thus, it is expected to lead to great advances in material science.

2. Methods

In this work, we present extensive simulations for the model system of a 10 nm thick

bcc Fe crystal, tilted 10◦ from the [0 0 1] zone axis (ZA) to produce a systematic row case
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including the (2 0 0) diffraction spot. All simulations were performed using an acceleration

voltage of 300 kV without spherical aberration2. The beam was focused (with varying

convergence semi-angle α) onto the entry surface of the sample and positioned on an

atomic plane. The complete measurement setup is depicted in fig. 1.

The inelastic scattering was performed using the mixed dynamic form factor (MDFF)

approach [2, 27, 28]. The MDFF was modeled with an idealized fully spin-polarized cross-

density of states [28] and Slater-type orbital wavefunctions [29], taking into account the

dipole allowed transitions 2p → d. The elastic scattering both before and after the inelastic

scattering were taken into account using the multislice algorithm [30]. A 2048×2048 grid

with ca. 0.09 Å/px was used together with a slice thickness of 1 Å and the electrostatic

potentials given by Kirkland [30].

For extracting the EMCD effect, one needs to measure and compare the signal strengths

at two different positions I+, I−. In the context of this work, two different (albeit closely

related) definitions of the EMCD effect are used. On the one hand, we use the “difference

signal”, sometimes also refered to as “absolute EMCD effect”, defined as

I0 =
I+ + I−

2
. (1)

On the other hand, we use the “quotient signal”, sometimes also refered to as “relative

signal”, defined as

S = 2· I+ − I−
I+ + I−

=
∆I

I0
. (2)

The quotient signal is the one originally proposed (up to the prefactor of 2) and used

in several later works [1, 5, 7, 31–33]. By dividing by the average intensity I0, it is

automatically normalized to the incident dose — although it still depends on the sample

thickness. For quantitative work, the difference signal is method of choice as it allows the

application of sum rules for determining the ml/ms ratio [34–36].

To find the optimal conditions for extracting an EMCD signal, two different schemes

were used. On the one hand, a pointwise comparison of corresponding points on the

upper/lower or left/right halves of the diffraction plane was performed to obtain a visual

indication of the distribution of the EMCD effect. On the other hand, circular collec-

tion apertures (of varying collection semi-angle β) were centered at four different sets of

2The spherical aberration is not expected to play a major role here, though, as we are working mostly
in the diffraction plane.
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points of the diffraction plane: (A) on the Thales circle, (B) at the intersection of adja-

cent elastic diffraction disks3, (C) just outside the elastic diffraction disks such that the

collection aperture touched adjacent diffraction disks4, (D) in an “optimal position”, i.e.

at a convergence and collection angle dependent point determined by a downhill simplex

optimization algorithm [37] where the maximal EMCD effect can be obtained. All four

positions are also depicted schematically in fig. 1.

3. Results

3.1. Position of the EMCD Effect

In order to check the applicability of convergent beam EMCD, it is first necessary to

determine where an EMCD effect can be expected in the diffraction plane (if at all). To

that end, fig. 2a–d show simulated energy filtered diffraction patterns for the Fe L3 edge for

different convergence angles. For classical EMCD (i.e., the first column in fig. 2), it is well

known that there are four areas exhibiting magnetic information, one in each quadrant

of the diffraction plane. Therefore, in fig. 2e–h, we plotted the difference EMCD effect

∆I calculated pixel by pixel from the difference of the upper and the lower half-plane.

Likewise, fig. 2i–l, show the difference EMCD effect ∆I calculated pixel by pixel from the

difference of the right and the left half-plane. Fig. 2m–p show the quotient EMCD effect

S calculated from the difference of the upper and lower half-plane, while fig. 2q–t show

the quotient EMCD effect S calculated from the difference of the right and left half-plane.

The first main result from those maps is that with increasing convergence angle, the

areas where the quotient EMCD is strong is “pushed out” such that it can generally

be found close to the rim of the elastic diffraction disks. The same is mostly true also

for the left/right half-plane subtracted difference signal (fig. 2i–l). Only the top/bottom

subtracted difference signal (fig. 2e–h) exhibits strong signal inside the diffraction disks

which can be attributed to artifacts caused by the Ewald sphere curvature as discussed

below.

The fact that the areas with strong EMCD signal are “pushed out” can be explained

qualitatively by considering the relative contributions of the different scattering vectors.

3In case the elastic diffraction disks did not overlap, the apertures were centered on the systematic
row

4In case such a touching configuration was not possible, the aperture was positioned on the systematic
row
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Figure 2: Energy-filtered diffraction patterns (a–d), pointwise difference EMCD maps based on up-
per/lower halfplane subtraction (e–h), pointwise difference EMCD maps based on left/right halfplane
subtraction (i–l), pointwise quotient EMCD maps based on upper/lower halfplane subtraction (m–p)
and pointwise quotient EMCD maps based on left/right halfplane subtraction (q–t) for convergence
semi-angles of 0 mrad (a, e, i, m, q), 7 mrad (b, f, j, n, r), 14 mrad (c, g, k, o, s), and 20 mrad (d, h,
l, p, t). The black dotted circles indicate the three most intense diffraction disks, whereas the white
dashed circles indicate the classical Thales circles. The energy-filtered diffraction patterns are shown in
contrast-optimized logarithmic scale.
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Assuming ideal conditions, a point-like detector, and using the dipole approximation

[7, 38, 39], the EMCD difference signal is proportional to∫
~q × ~q′

q2q′2
d2qd2q′, (3)

where one has to integrate over all combinations of scattering vectors connecting points

inside the convergence disks (with radii α, see Fig. 1) with the point-like detector. Due to

the 1/(q2q′2) dependence, contributions from short scattering vectors are dominant and

due to the ~q × ~q′ dependence, contributions are strongest for perpendicular scattering

vectors.

In the limit of small convergence angles, only one pair of scattering vectors is possible

and the situation reduces to the case of classical EMCD: the perpendicularity requirement

suggests that the signal is strongest close to the Thales circle.5 For large convergence

angles, this explanation no longer holds as then, many combinations of scattering vectors

can contribute.

First, we consider detector positions inside the diffraction disks. Without loss of gen-

erality, we will assume a detector position inside the 0 diffraction disk. As stated above,

the dominant contributions stem from short scattering vectors. For the sake of simplicity,

we assume that the complex prefactor coming from elastic scattering is approximately

constant in the immediate surrounding of the detector where |~q| is small. For any suffi-

ciently short scattering vector ~q from a point inside the diffraction disk to the detector,

the scattering vector −~q also connects a point inside the diffraction disk to the detector.

As the contributions of (~q, ~q′) and (−~q, ~q′) are equal in magnitude but opposite in sign

for any scattering vector ~q′, all these contributions will average out. This implies that

inside the elastic diffraction disks, the difference EMCD effect will be small. In addition,

the very strong total intensity inside the diffraction disks will cause the quotient EMCD

effect to be suppressed even stronger than the difference EMCD effect.

Secondly, if the detector is positioned far away from large diffraction disks, neither the

perpendicularity constraint nor the shortness requirement can be fulfilled, thus leading to

an asymptotically vanishing EMCD effect.

Thirdly, if the detector is positioned close to the intersection of the diffraction disks,

5The exact position depends on the characteristic momentum transfer qz = q′z, as well as the details
of the elastic scattering.
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there are always pairs of scattering vectors that are short and fulfill the orthogonality

requirement, thus yielding an appreciable EMCD effect.

From fig. 2, it is also obvious that the upper/lower difference shows severe left/right

differences, particularly for larger scattering angles. The origin of these different symmetry

properties can be found in the tilting of the Ewald sphere with respect to the crystal

and the influence of higher order Laue zones (HOLZs), causing an inherent upper/lower

asymmetry of the signal [40–42]. Some artifacts introduced by the HOLZ can be seen

particularly well close to the edges of fig. 2m6. Due to the asymmetric Ewald sphere

and the HOLZ contributions, the intensity in the upper half-plane is slightly lower than

the corresponding intensity in the lower half-plane. While this intensity difference is not

caused by the spin-polarization of the sample, it can easily be misinterpreted as a “fake”

EMCD effect. While this is of some concern already for classical EMCD, where one

typically measures at the Thales circle, it does become a vital issue for larger convergence

angles, where one is forced to measure at larger scattering angles. Especially when dealing

with the difference EMCD signal, the upper/lower asymmetry can give rise to very large

artifacts (see fig. 2g,h). One way to overcome this could be to use the double-difference

technique [35].

However, as the setup is symmetric with respect to a right/left mirror operation7, the

right/left difference maps do not suffer from this effect. Therefore, in the remainder of

this work, we use the right/left difference method to extract EMCD signals.

3.2. EMCD Signal Strength and SNR

In this section, we will analyze both the achievable signal strengths ∆I and S as well

as the SNR ∆I/δ∆I and S/δS associated with them as a function of convergence and

collection angles for the four detector positions A–D defined above. This is conception-

ally similar to previous studies that included estimations for the SNR for plane wave

illumination [25] and for aberrated probes [26]. To calculate the SNR, we will include

the pre-edge background intensity B which does not contribute to the signal but does

increase the noise. We will also use the jump ratio defined by

r =
I0 +B

B
(4)

6Note that the figures show only a subset of the total simulated area, so the “artifacts” close to the
edge are not calculation artifacts but actually coincide with HOLZ reflections consistent for the chosen
scattering geometry.

7Provided the sample is oriented in a perfect systematic row condition [4, 42].
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Figure 3: Difference signal ∆I (a–d) and SNR ∆I/δ∆I (e–h) for the four sets of detector positions A–D
as a function of convergence and collection semi-angles. The SNR is given for a jump ratio of r = 2 in
fractions of the maximum SNR.

to simplify the equations.

Note that while we will give general formulas that should be applicable to all cases

at the beginning of each section, further derivations will be based on the assumption of

pure Poissonian shot noise to derive simplified formulas and actual numbers. This neglects

other noise sources such as read-out noise and electronic noise (which will be low compared

to the shot noise for the intensity requirements derived below), or uncertainties introduced

by the background subtraction process [43]. Nevertheless, the numbers calculated below

will give a good rule of thumb for the intensity necessary to obtain a statistically significant

EMCD signal.

In addition, the EMCD signal strength itself will depend on a number of parameters,

including the sample material, sample thickness, and scattering geometry. Therefore,

angles will be discussed in relation to the Bragg angle (here: θB ≈ 6.9 mrad) and may

differ in different systems.

3.2.1. Difference EMCD Effect

First, we will treat the difference EMCD effect ∆I which is most useful for quantifying

EMCD signals using sum rules [34]. Fig. 3a–d shows the difference EMCD signal depen-

dence on the convergence and collection semi-angles for the four sets of detector positions

A–D defined above. The first thing that catches the eye is the fact that if the convergence

or the collection angle (or both) are small, both the difference EMCD signal and the SNR
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vanish. This is to be expected as in those cases the overall intensity decreases rapidly,

which is why experimentalists started using convergent beam EMCD in the first place.

However, using extremely large collection angles is usually not recommended either, as

then positive and negative contributions to the difference EMCD signal could average out.

From fig. 3, it is apparent that positioning the detectors on the Thales circle (position

A) gives a large signal (albeit not the best SNR) when both the convergence and collection

angle are slightly larger than the Bragg angle. This is due to the “pushing out” of the

area of strong difference EMCD signal with increasing convergence angle (see also fig. 2),

combined with the increasing intensity for larger convergence angles. Compared to the

Thales circle position, the intersection position (position B) gives both better overall

signal and better SNR. In fact, one can reach 80 % of the optimal signal at about 70 %

of the optimal SNR in the present case. The adjacent position (position C) yields a lower

signal overall, but a nearly optimal SNR. In addition, it allows to use a relatively large

range of convergence and collection angles with little to no impact on signal strength and

SNR. Finally, the optimum position (position D) data is shown for reference.

To calculate the SNR, the following approach was used. If shot noise dominates over

other noise sources (such as read out noise), I± follows a Poisson distribution. By the

central limit theorem, this can be approximated well by a Gaussian distribution with

a standard deviation of δI± =
√
I± +B for sufficiently large signal, where B is the

background intensity. Then the variance (δ∆I)2 of the signal ∆I is given by

(δ∆I)2 = (δI+)
2 + (δI−)

2 = I+ + I− + 2B = 2(I0 +B). (5)

Therefore, the SNR reads
∆I

δ∆I
=

I+ − I−√
(δI+)2 + (δI−)2

=
SI0√

2(I0 +B)
(6)

Not surprisingly, the SNR increases with total intensity I0 and dichroic fraction (quotient

signal) S while it decreases with pre-edge background B. A similar expression was also

reported for maps with an aberrated probe [26], although for larger convergence angles.

To answer the question of how many counts need to be recorded to achieve a certain

statistical significance, one naturally needs to consider the ratio between the elemental

edge and the pre-edge background (which increases the noise level but not the signal).

Assuming a jump ratio r of

r =
I0 +B

B
⇔ B =

I0
r − 1

⇔ I0 +B = I0 · r

r − 1
, (7)
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Figure 4: EMCD effect S (a–d) and SNR S/δS (e–h) for the four sets of detector positions A–D as a
function of convergence and collection semi-angles. The SNR is given for a jump ratio of r = 2 in fractions
of the maximum SNR.

the SNR can be rewritten as
∆I

δ∆I
=

S
√

I0(r − 1)√
2r

. (8)

If B = I0, i.e. for a jump ratio of r = 2, the SNR takes the form

∆I

δ∆I
=

∆I

2
√
I0

=
S
√
I0

2
. (9)

To reach an SNR of k, one needs to achieve a total intensity of

I0 +B ≥ 2r2k2

S2(r − 1)2
(10)

counts. This prediction is in good agreement with the order of magnitude of the intensity

threshold found experimentally [24]. For the special case of k = 3 and r = 2, this gives

I0 +B ≥ 72

S2
(11)

i.e., for an expected dichroic fraction of S = 10 %, an intensity of at least 7200 counts

needs to be achieved in this case.

3.2.2. Quotient EMCD Effect

Fig. 4a–d show the dependence of the quotient EMCD effect on the convergence and

collection angles for the four different sets of detector positions A–D defined above. As

was already noted in sec. 3.1, placing the detectors on the Thales circle (position A) only

gives a large EMCD signal for small convergence and collection angles. For angles larger
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than roughly θB, the signal decreases rapidly as one is then measuring “inside” the elastic

diffraction disk, which will increase I0 and therefore decrease S. Putting the detectors on

the intersection of the elastic diffraction disks (position B) gives an extremely low quotient

signal, unlike the difference signal. Again, this is due to the fact that there is a strong

contribution to I0 inside the diffraction disks which will strongly decrease the quotient

signal. Putting the detectors adjacent to the elastic diffraction disks (position C) gives

a medium quotient EMCD effect, but over a large range of convergence and collection

angles, similar to the difference EMCD signal. Also like the difference signal, the SNR

is close to optimal in this case. In addition, it is interesting to note that the adjacent

position is mostly complementary to the Thales circle position in terms of quotient signal.

Finally, the optimum position (position D) is shown for reference.

For calculating the SNR, the same assumption as for the difference signal case are

used. Here, the variance (δS)2 of the signal S can be calculated by error propagation to

read

(δS)2 = 16·
(δI+)

2I2− + I2+(δI−)
2

(I+ + I−)4
. (12)

with a SNR of
S

δS
=

I2+ − I2−

2
√

(δI+)2I2− + I2+(δI−)
2
. (13)

The former can be simplified to

(δS)2 =
16I+I−

(I+ + I−)3
+ 16B ·

I2+ + I2−
(I+ + I−)4

(14)

By virtue of
I+ − I− = SI0

I+ + I− = 2I0

4I+I− = I20 (4− S2)

2(I2+ + I2−) = I20 (4 + S2)

(15)

this can also be written as

(δS)2 =
I0(4− S2) +B · (4 + S2)

2I20
. (16)

Thus, the SNR becomes

S

δS
=

√
2SI0√

I0(4− S2) +B · (4 + S2)
. (17)

12



This can also be written in terms of the jump ratio as

S

δS
=

√
2I0S√

4− S2 + 4+S2

r−1

=
S
√

2(r − 1)I0√
r(4− S2) + 2S2

. (18)

If B = I0, i.e. for a jump ratio of r = 2, the SNR takes the same form as for the difference

EMCD signal, i.e.,
S

δS
=

S
√
I0

2
. (19)

To reach a SNR of at least k, I0 must be chosen such that

I0 ≥
k2

2S2

(
4− S2 +

4 + S2

r − 1

)
(20)

or, equivalently, that the total intensity fulfills

I0 +B ≥ k2r

2S2(r − 1)

(
4− S2 +

4 + S2

r − 1

)
(21)

For the special case of k = 3 and r = 2, this again gives

I0 +B ≥ 72

S2
. (22)

4. Discussion

4.1. Difference EMCD Effect vs. Quotient EMCD Effect

As mentioned above, the difference EMCD signal is the one typically used for quan-

tification due to the applicability of sum rules. However, in some cases determining the

ml/ms ratio may not be required. Instead, it might be sufficient to check if there is any

dichroic signal at all or how it changes, e.g. with position across defects. In such cases,

using the quotient signal instead of the difference signal may even be beneficial in terms

of SNR, as a comparison of eq. 17 and eq. 6 shows:
√
2SI0√

I0(4− S2) +B · (4 + S2)
<

SI0√
2(I0 +B)

(23)

4(I0 +B) < I0(4− S2) +B · (4 + S2) (24)

0 < S2 · (B − I0) (25)

This means that only for B > I0 ⇔ r < 2, i.e. for thick specimens, using the difference

signal is actually better than using the quotient signal in terms of SNR. However, thick

specimens typically yield a low overall EMCD effect owing to oscillations and sign reversal

caused by the elastic scattering and pendellösung [32, 39]. Therefore, the quotient signal

should be prefered unless the application of sum rules is required.
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Figure 5: Energy-filtered diffraction patterns (a, b), pointwise difference EMCD maps based on left/right
halfplane subtraction (c, d) and pointwise quotient EMCD maps (e, f) for on-plane (a, c, e) and off-plane
(b, d, f) beam positions. The convergence semi-angle is 20 mrad. The black dotted circles indicate the
three most intense diffraction disks, whereas the white dashed circles indicate the classical Thales circles.
The energy-filtered diffraction patterns are shown in contrast-optimized logarithmic scale.

4.2. Beam Position Dependence

In this section, we investigate the dependence of the convergent beam EMCD signal on

the beam position. For small convergence and collection angles, one can expect that the

EMCD signal is largely independent of the beam position due to the large illuminated area

and, consequently, the low spatial resolution. For convergence and collection semi-angles

significantly larger than the Bragg angle, however, one can expect a position-dependence

[10]. To study the effect this has on the signal strengths at the various detector positions

as well as on the SNR, we also performed calculations with the beam displaced by half a

lattice plane distance so that it was positioned directly in-between adjacent lattice planes.

Fig. 5 compares the energy-filtered diffraction patterns and point-wise EMCD effects

for on-plane and off-plane beam positions for a large convergence angle. While there

are obvious differences, it is remarkable that both difference and quotient EMCD effects

with the same sign can be found at similar positions adjacent to the diffraction disks.
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Figure 6: Difference EMCD effect (a–d), quotient EMCD effect (e–h) and SNR (i–l) for the four sets
of detector positions A–D as a function of convergence and collection semi-angles for a beam position
in-between atomic planes. The SNR is given for a jump ratio of r = 2 in fractions of the maximum SNR.

While these contributions from adjacent positions are weaker for the difference signal

(with stronger contibutions with reversed sign showing up close to the Thales circle),

the quotient EMCD effect is even stronger for the off-plane condition than for the on-

plane condition. Qualitatively, this can be understood from the fact that the inelastic

scattering kernels contributing to EMCD have the same shape as electron vortex beams:

an azimuthal phase ramp combined with a donut-shaped intensity distribution [28, 44, 45].

Thus, the highest probability for exciting a transition that contributes to the EMCD

signal with a very small probe is actually not on the atomic nuclei, but in the area

surrounding them.8 Of course, the question of how much which atom contributes to the

EMCD effect depends crucially on how the incident and outgoing electron beams channel

through the crystal [46, 47]. However, a full quantitative description of the resulting

thickness dependence is beyond the scope of this work.

8This can also be understood from the fact that the initial p-states contributing to the L-edge have
vanishing probability density at the position of the nucleus.
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Fig. 6 shows the convergence and collection semi-angle dependence of the EMCD sig-

nals for a probe beam positioned between atomic planes, together with the corresponding

SNR (which, for the chosen jump ratio of r = 2, is the same for the difference and for the

quotient signal). Qualitatively, it looks similar to the on-plane case depicted in fig. 4. In

particular for small convergence and collection semi-angles, the maps are identical, as is

to be expected. However, at larger angles, several changes are visible. Note that this is

actually wanted in order to be able to perform lattice-resolved EMCD experiments [10].

Perhaps the most striking difference is the large difference signal enhancement at the

Thales circle for large convergence and collection angles. This is in agreement with fig. 5

which shows the well-known strong position-dependence of the intensity in the regions

of overlapping diffraction disks, leading to the appearance of a strong EMCD difference

signal close to the Thales circle. In addition, for the intersection and adjacent positions,

the difference signal is somewhat decreased. Interestingly, the quotient signal shows an

increase at the same positions. Regarding the SNR, the same general trend is seen at

the off-plane beam position as at the on-plane beam position: the highest values can

usually be achieved at medium angles, in this case particularly with convergence angles

of approximately 2θB (i.e. slightly larger than on-plane) and collection angles of ca. θB

(i.e. slightly smaller than on-plane).

5. Concluding Remarks

In this work, we have explored the possibilities of convergent-beam EMCD using

numerical simulations. We found that this method gives similar EMCD signals as the

classical, parallel beam EMCD method while having superior SNR characteristics, in

accordance with previous works. As a rule of thumb, choosing a convergence semi-angle

slightly larger than the Bragg angle, a collection angle close to the Bragg angle, and

positioning the collection aperture just outside the elastic diffraction disks should give

close to optimal results. In addition, we estimated that more than approximately 7200

counts at the edge under investigation are required (the exact value will depend on the

peak-to-background ratio and the expected dichroic fraction, which, in turn, will depend

on the sample material, thickness, and orientation as well as the scattering geometry).

Especially the improvements in SNR, as well as in spatial resolution, open exciting

new possibilities for EMCD that may soon lead to an even broader applicability of this

exciting technique for material science.
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