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Abstract

Nonequilibrium steady states (NESS) give rise to nontrivial cyclic probability fluxes
that breach detailed balance (DB), and thus it is not clear how to define a potential analog
to the equilibrium case. In this thesis we argue that possibly there is a formal way to
define such a NESS potential for systems describable by a Fokker-Planck equation. DB in
NESS can be restored [1] by mapping the phase space into a parameterized family of non-
intersecting cycles containing the invariant manifolds of the corresponding deterministic,
dynamical system. Transition rates between neighboring cycles are obtained from the
microscopic dynamics, i.e., from the drift and diffusive currents. Since fluxes between
cycles obey DB, we can integrate over the set of cycles. We present some evidence that
this gives us a nonequilibrium potential which reaches minimum solely for NESS.

The main goal of this thesis is to put forward a tentative theory for deriving a general-

ized potential function whose extrema identify the NESS. We will present results of a first

numerical test based on two well-known dynamical systems: the van-der-Pol oscillator and

the Brusselator. Our results, although not conclusive, are encouraging.
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Chapter 1

Introduction

In nature equilibrium is more the exception than the rule [2]. Many systems we
encounter everyday are far from equilibrium and show eye-catching patterns and
collective behavior. Some well-known examples are swarming of starling or fish
schools [3], swimming bacteria [3–6], clustering in cosmic dust [7], thermal convection
of a hot liquid in a coffee cup [8], and even traffic jams [2]. Collective behavior
arises from the interaction of many similar units, for example molecules and birds
in flocks, whose individual interactions become dominated by the influence of the
others, collectively interacting [3]. Some examples are shown in Figure 1.1. A
non-zero flux of energy or matter is observed as characteristic for nonequilibrium
systems, for example the constant pumping of a laser [9] or glucose in the glycolytic
cycle [10]. Despite their omnipresence a framework for theoretical description is
still missing [11]. Providing a nonequilibrium counter-part to the well understood
equilibrium physics has become one of the greatest challenges in modern statistical
physics [11–13]. Such a framework may provide (new) insights into many fields,
for example, the glycolytic cycle, which is even at the basis of our life1, population
dynamics or active biological systems.

Nonequilibrium has different origins and systems can be grouped into equivalence
classes based on the underpinning mechanism [5]. The first class are systems that
are still relaxing towards equilibrium but have not yet reached it. The speed of
relaxation can take arbitrary values down to extremely slow as for glasses. Systems in
the second class have boundaries through which fluxes of energy or matter establish
nonequilibrium conditions. A very simple example for this is a system coupled to
two reservoirs at different temperatures implying a non-zero heat-flow through our
system. We might say the system is subject to external driving. Note that such
systems do not posses an equilibrium state where all fluxes vanish, because such
state cannot satisfy the boundary conditions. The third class is represented by the
so-called active matter, which dissipates energy at the lowest dynamical level of the

1... and the annoying traffic jams during our daily trip to work
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Figure 1.1: Gallery of collective behavior in biological systems. Interaction among
individual units is dominated by integration of groups (collection). These systems
are examples of active matter, which constantly converts (free) energy into directed
motion and hence is not in equilibrium [4]. (a) Wingless locusts marching in the
field. (b) A rotating colony of army ants. (c) A three-dimensional array of golden
rays. (d) Fish are known to produce such vortices. (e) Before roosting, thousands
of starlings producing a fascinating aerial display. They are also trying to avoid a
predator bird close to the central, finger-like structure. (f) A herd of zebra. (g)
People spontaneously ordered into “traffic lanes” as they cross a pedestrian bridge
in large numbers. (h) Although sheep are known to move very coherently, just as the
corresponding theory predicts, when simply standing (no motion), well developed
orientational patterns cannot emerge. Images taken from [3].
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1. Introduction

individuals. Such dynamics are irreversible by design. An example is the beating
flagellum of swimming bacteria.

In this thesis we start by reviewing the current framework to describe nonequilib-
rium steady states (NESS) with focus on concepts necessary to explore a candidate
ansatz for a NESS potential. Therefore we will address the following key questions:

(i) What distinguishes equilibrium from nonequilibrium stationary states?

(ii) How are these states reached? And what are the underlying dynamics?

(iii) Can we give a general method for classifying NESS?

The main goal of this thesis is to put forward a tentative theory for deriving a
generalized potential function whose extrema identify the NESS. In the remaining
part of this introduction we will outline a thermodynamic description to compare
equilibrium and NESS. In Chapter 2 we will review the for our course needed con-
cepts of dynamical systems theory and stochastic dynamics. Afterwards, in Chapter
3 we introduce our candidate ansatz for a NESS potential. We focus on the numerical
aspects in Chapter 4 and present our results for two dynamical systems in Chapter
5. Finally, a discussion follows in Chapter 6.

1.1 Equilibrium versus nonequilibrium

Before we explore the rich and stunning phenomenona of nonequilibrium, we should
review what we call an equilibrium state and how we describe it with thermody-
namics. In thermodynamics equilibrium is governed by extremal principles. On the
one hand, for isolated systems the entropy is maximized. On the other hand, for
systems coupled to a reservoir the principal of minimum energy leads to a defini-
tion of equilibrium: an equilibrium state minimizes a thermodynamic potential. For
instance a system coupled to a single reservoir, held at a constant temperature T
and volume V , equilibrium is reached if (and only if) the Helmholtz free energy F
is minimized. Hence it is called thermal equilibrium. If other quantities are held
constant other potentials are minimized. Some well-known potentials are the Gibbs
free energy, enthalpy and internal energy [10,14].

In our phenomenological understanding, equilibrium is time-independent and
spatially uniform. This enables us to use only a few macroscopic observables, which
completely characterize our equilibrium distribution. Macroscopic measurements are
performed at time and length scales much larger than the atomic scale. We might
see this as coarse-graining in space and time. During measurement, the particles
undergo rapid (compared to macroscopic timescales) and complex motions. This
atomic view is known as microscopic description, where each particle is taken into
account. Macroscopic observables are for example pressure, volume and internal
energy [14,15].

We note that equilibrium states arise as a relaxation in the long-time limit be-
cause systems in general have a tendency to reach equilibrium [14]. The length of the

3



1.1 Equilibrium versus nonequilibrium

relaxation can be different, depending on the initial configuration, but equilibrium
does not depend on the initial configuration [11].

A system being at or close to thermal equilibrium is successfully described by
the Boltzmann-Gibbs framework. As inputs it requires a set of possible states si–the
mircostates–and an expression for the internal energy, given by a Hamiltonian H(s)
for each configuration. Finally, given a temperature T we can write the stationary
distribution p∗(s) = Z−1 exp [−βH(s)], where β ≡ 1/kBT is the inverse temperature,
kB the Boltzmann constant and Z is the partition function, given as sum over
all states. In many cases the partition function is difficult to compute or even
inaccessible [11].

We are now ready to answer question (i). For homogeneity in space and time
to hold the distribution of states cannot depend on either of them. Therefore no
net fluxes2 can be present in equilibrium. This concept is known as detailed balance
(DB) and states: each possible transition between two states is balanced by its
reverse [16]. In other words the flux from state A → B, rBA, is equal to its reverse
flux B → A, rAB,

rBA = rAB. (1.1)

This is a strong statement and enables us to define potentials [7,11,17,18]. We will
have a closer look to its implications in Section 2.3.4.

The balance of fluxes between all states to satisfy DB condition requires re-
versibility of the equations of motion, which is known as microscopic reversibility.
It is related to the time invariance of the microscopic equations [11]. In thermody-
namics, the distinction between reversible and microscopic irreversible processes is
manifested in the second law of thermodynamics, which assigns zero entropy change
only for reversible processes.

In NESS however there are non-vanishing steady fluxes and detailed balance is
breached. Hence macroscopic descriptors ϕ are not spatially homogeneous ϕ = ϕ(x).
Due to this fact, we are unable to define a NESS potential, that gains a minimum
only in NESS. As counterpart to extremal Helmholtz free energy in thermal equi-
librium.

To define a potential for NESS many attempts have been made. Some of them
based on entropy production to be extremal in NESS [11, 19], but they have been
challenged and later proven wrong [19,20].

A nice analogy between equilibrium states and NESS can be drawn with elec-
trostatics and magnetostatics, as shown in Table 1.1. In electrostatics all currents
vanish by definition and only the charge distribution is of interest. Likewise in equi-
librium all currents vanish in favor of DB and only the probability density function
(PDF) is of interest. On the other hand in magnetostatics currents are steady and
produce in time constant magnetic fields. In the theory of magnetostatics the focus
resides on the electric currents and the charge distribution is often neglected, as well
as in NESS the probability distribution is not considered [11].

2By net flux we mean the sum of directed fluxes for a single possible transition, i.e. net flux
equals rBA − rAB for transition A ↔ B (see below).
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1. Introduction

stationary charges/no fluxes ⇒ electrostatics ⇔ equilibrium

steady currents/fluxes ⇒ magnetostatics ⇔ NESS

Table 1.1: Analogy between equilibrium and nonequilibrium steady states vs. elec-
trostatics and magnetostatics. The absence of any currents or fluxes in electrostatics
can be compared to the detailed balance (DB) condition for equilibrium states in
statistical physics. Likewise the existence of steady (cyclic) fluxes in NESS can be
related to steady current in magnetostatics [11]. Taken and modified from [21].
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Chapter 2

Theory

2.1 Introduction

In this chapter we want to review to most important ideas needed to introduce our
new approach for a potential of nonequilibrium steady states. The main concepts
are invariant manifolds from dynamical system theory and evolution equations for
probability distributions, such as the Fokker-Planck and Master equation. We will
begin with a brief description of dynamical systems in Section 2.2 and proceed
further with stochastic processes in Section 2.3.1.

2.2 Dynamical Systems

The study of dynamical systems (DS) became very popular among mathematicians
or physicists due to their wide range applicability. Dynamical systems can be used
to describe for example classical physics, e.g. a pendulum, the flow of water in a
river, the amount of mosquitoes swarming around a lake in the summer or weather
simulations [22,23].

The point of interest in dynamical systems is the long-term time evolution. Be-
cause dynamical systems often involve non-linearity, complex behavior like periodic
orbits or even chaos can be observed. Hence long-term predictions become impos-
sible, e.g. a (nearly exact) weather forecast of one month. The focus of analyzing
dynamical systems shifts from finding exact solutions to a more structural or topo-
logical analysis of the system. These includes finding fixed points, attractors and
repellors, etc., and analyze their stability and dependence on control parameters.
The latter is known as bifurcation theory and deals with topological changes in the
system due to control parameter [22–24].

In the next section we introduce the basics of dynamical systems theory and
will focus mainly on stationary and periodic solutions, namely fixed points, limit
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2. Theory

cycles and invariant manifolds. We sometimes restrict ourselves to two-dimensional
systems only to reduce complexity.

2.2.1 Basics

A dynamical system is defined by assigning to each possible state a change rate for
all times. For example a certain birth-death ratio for every amount of individuals
in case of a population dynamical model.

Following [25], a dynamical system can be described as an autonomous differen-
tial equation, defined on a differentiable manifold M

dx

dt
≡ ẋ = f(x), (2.1)

where x ∈ M and f is a smooth vector field. For our purposes M ⊆ Rn and
therefore has a single chart, i.e. our standard Cartesian coordinates [25,26].

A solution for the system in Eq. (2.1) is a flowline or integral curve ϕ(x, t) of
the flow ϕt(x) = ϕ(x, t) which satisfies [27]

d

dt
ϕ(x, t) = f (ϕ(x, t)) . (2.2)

We say that the vector field f generates the flow ϕt, whose flowrate dtϕ corresponds
to f in Eq. (2.1). In other words for any position s the flow ϕt(s) follows the vector
field f(ϕt(s)). Given an initial condition ϕ(x0, t0) = x0 ∈ M, the initial value
problem γ(t0) = x0 has an unique solution γx0(t) called trajectory or orbit. That is
a flowline parameterized in time t [25, 27].

Drawing all flowlines together into the space of M creates the so-called phase
space. This drawing is already known from classical mechanics and statistical
physics. Figure 2.1 is an example of a two-dimensional phase space called phase
plane. For autonomous systems a qualitative insight of the system can be gained
even if an analytic solution is missing, e.g., the existence of fixed points and closed
orbits can be observed [22,24].

It is important to note here that due to uniqueness of f , the trajectories of f
cannot intersect, because if they would, the rate of change at x, ẋ = f(x) would not
be unique. This is the reasons why the phase space of a dynamical system does not
look fuzzy, filled with criss-crossing trajectories, as one sees in Figure 2.1 [22].

2.2.2 Fixed points

Let us focus now on a special kind of solutions with particular physical importance
namely the stationary ones, called fixed points x∗, equilibria or zeros. These are
defined by

ẋ = f(x∗)
!

= 0. (2.3)

Once found an equilibrium, we may ask what happens to small perturbations, will
they grow or decay? This behavior is analyzed within stability analysis. There are
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2.2 Dynamical Systems

Figure 2.1: Phase space plot of the van-der-Pol oscillator (on the left) with µ = 0.4
and Brusselator (on the right). Plotted are the unstable equilibria (red dot) enclosed
in a stable or attracting limit cycle (blue line). The gray lines are flowlines of the
respective system, whose direction is indicated by small arrows. We can observe the
attractive behavior of the limit cycles as the flowlines are approaching them. These
limit cycles are asymptotically stable and globally attractive since they are the only
attractors. Own simulations. See Sec. 3.3 and references for further details [24,25].

different types of stability for equilibria, stable, unstable and as special case center.
In case of a stable equilibrium perturbations will decay in time. Therefore the flow
is directed towards them, we call them attractors or sinks. Whereas for unstable
equilibrium perturbations will grow over time because the flow points away. They
are also called repellers or sinks.

A special case occurs if perturbations neither grow or decay over time, which
needs special treatment. Such equilibrium is known as a center. This for example
occurs for an ideal pendulum, where solutions are cyclic trajectory around the center
fixed point or concentric circles. This introduces another kind of solutions, the closed
or periodic orbits. These will be discussed later in Section 2.2.3.

Speaking of equilibrium we may think about potentials where one analyzes simi-
lar quantities, that is equilibrium can be stable, unstable or even meta-stable [22,23].

A dynamical systems can be in principle be highly nonlinear. To analyze the
stability of our system to small perturbations we linearize it, that is, we approximate
our system locally with the Jacobian matrix (Df)ij ≡ ∂jfi of f . Then the eigenvalues
λi of the linearized system

ẏ = Df(x∗)y, (2.4)

are considered. This linearization approximates the nonlinear system (2.1) in x∗

and is only valid within some neighborhood U of x∗, similar to the local derivative
of any function.

Let {λi}i be the eigenvalues of Df(x∗). The fixed point x∗ is called hyperbolic
if the real-part <(λi) is non-zero for all eigenvalues. A hyperbolic fixed point is
attracting if <(λi) < 0, ∀i, and repelling if <(λi) > 0, ∀i. Furthermore if there
are λ+ and λ− such that <(λ+) > 0 and <(λ−) < 0 x∗ is called a saddle. A non-
hyperbolic fixed point or center has purely imaginary eigenvalues and thus created
cyclic orbits around x∗ [23, 25].

8



2. Theory

For a hyperbolic equilibrium the Hartman-Grobman theorem ensures the exis-
tence of such linearizing mapping as (2.4). This mapping preserves the structure of
the flow via mapping the flow ϕt to eDf(x∗)t. This can be chosen even to preserve
time parameterization as well [25].

So far we did not consider any dependence of the existence and position of the
equilibria on any control parameter of the system. In fact changes of stability,
position and existence of equilibria can occur due to changes in control parameters.
Changes where these properties of an equilibrium change are called bifurcation. We
will not deal with bifurcations in the remainder of this thesis.

2.2.3 Periodic solutions

Nonlinear systems possess another type of special solutions, namely periodic or closed
orbits. Any solution trajectory γ(t) of Eq. (2.1) which satisfies γ(t+τ) = γ(t) for all
t is known as periodic solution. τ is the so-called period time. In nonlinear systems
this cyclic motion is not limited to orbits around a non-hyperbolic equilibrium. For
those system there sometimes exits a limit set.

Figure 2.2: Example of a Poincaré cross-
section Σ. A flowline c of the dynamical
system F (x) intersects with the Poincaré
section Σ at points P (k). n(x) is the nor-
malvector of Σ at x. These intersections
are equilibria of the so-called Poincaré
map, see Eq. (2.5). Taken from [24].

A limit set of x is the set of lim-
its points p for which there exists a se-
ries (tn(x))n∈N such that the distance
|ϕtn(x)−p| vanishes in the limit t→∞.
The limit set is denoted by ω(x). An
α(x)-limit set is the set of points for
which t goes to negative infinity. A so-
lutions whose limit set is a cyclic orbit
is also called a limit cycle.

What immediately comes into mind
is the question if one can also do a
stability analysis for periodic solutions.
To answer this we need to introduce
the concepts of attracting and repelling
closed sets, generalizing the idea from
single fixed points.

We define an attracting periodic so-
lution γ if within some neighborhood
x ∈ U of γ for each ε > 0 and future
time the distance |ϕt(x)−γ| < ε. Imag-
ine an ε-sized “tube” around γ which
contains the flow. Note that with this
definition solutions (as in the case of
center fixed points) with constant dis-
tance to γ are called attracting, but do
not approach γ any further as time pro-
gresses, for example, the concentric solutions of a harmonic pendulum. It is possible

9



2.2 Dynamical Systems

that periodic solutions have fixed radii, hence two solutions can be ε-close, but none
will end in each other. If furthermore the distance |ϕt(x) − γ| → 0 as t → ∞, we
call it asymptotically stable. Solutions which do not fulfill those two stability criteria
are called unstable [28].

Another way to look at periodic solutions is the Poincaré map or first return map.
For such we define a hypersurface Σ of dimension n − 1 which is nowhere parallel
to the flow. Σ can be of any shape and is not required to be a flat hyperplane. A
simplified example is shown in Figure 2.2. The difficulty in selecting Σ is to ensure
that intersections only occur after a full period, if the orbit has a winding number
greater than one. Σ is also called Poincaré cross-section. The Poincaré map P then
is

P :Σ→ Σ

si 7→ si+1,
(2.5)

where si is the point of the i-th intersection in time and si+1 the next. Here, one
already sees the advantage that cyclic solutions are reduced into a set of points.
A limit cycle by definition is a fixed orbit and therefore it will produce a single
intersection s∗ with P (s∗) = s∗. Thus s∗ is an equilibrium of P .

Let’s stay with this result a bit longer. A limit cycle is transformed into a equilib-
rium by transforming the state space. Abstracting we can say that a nonequilibrium
but cyclic solution is mapped via a specific transformation of the phase space into
equilibrium. This concept will be an important idea later in the transformation into
the so-called cycle space [23, 28].

2.2.4 Invariant sets and manifolds

An invariant set S for a flow ϕt is defined as

ϕt(x) ∈ S, ∀x ∈ S and ∀t. (2.6)

We call S invariant under the flow ϕt. Furthermore if S is a manifold, it is called
an invariant manifold. Important examples, the stable and unstable manifolds, will
be discussed in Section 2.2.5.

Because stationary behavior is important while studying a dynamical system, a
generalization for equilibria and periodic orbits is a nonwandering set, a collection
of nonwandering points. A point p is called a nonwandering point if given any
neighborhood U of p, there exists an arbitrary large t such that ϕt(U) ∩ U is a
non-empty set. We can straightforwardly conclude that the flow will forever stay
within U .

2.2.5 Stable and unstable manifolds

Looking again at equation (2.4) and defining A ≡ Df(x∗)

ẏ = Ay, (2.7)

10



2. Theory

Figure 2.3: Visualization of invariant subspaces and manifolds as well as Hartman-
Grobman theorem. Panel (a) shows the stable manifold theorem: the local subspaces
Es and Eu of the linearized system Eq. (2.4) are tangential to the corresponding
invariant manifolds Ws and Wu in the hyperbolic equilibrium (indicated by the
circle). Pabel (b) shows the Hartman-Grobman theorem, which states that there
exists within a neighborhood U a linearizing mapping h of the flow ϕ that is structure
and time preserving. This mapping h uniquely maps the invariant manifolds onto
the invariant subspaces. Taken from [24].

we obtain a linear ordinary differential equation. The solution of Eq. (2.7) reads

y(t) = eAty0, (2.8)

given an initial value y0. The operator eAt defines a flow ϕt(y) = eAty, as in the
Hartman-Grobman theorem.

As before let λi be the eigenvalues of A and vi the corresponding eigenvectors.
What happens if an eigenvector serves as initial condition, y0 = cvi, c ∈ R? The
answer gives the motivation for an invariant subspace

ϕt(cvi) = etAcvi = cetλivi ∈ span (vi) ,∀t. (2.9)

The flow stays for all times in a subspace spanned by vi, the so-called invariant
subspace. These are divided into three different kinds,

Es ≡ span {vi | <(λi) < 0} stable subspace,

Eu ≡ span {vi | <(λi) > 0} unstable subspace,

Ec ≡ span {vi | <(λi) = 0} center subspace,

(2.10)

with dimensions dim(Es) = ns, dim(Eu) = nu, dim(Ec) = nc. With n the dimensions
of the system this obviously fulfills n = ns + nu + nc. A graphical representation of
invariant subspaces is given in Figure 2.3.

If we rewrite the last term of Eq. (2.9) by splitting real and imaginary part with
λi = <(λi) + i=(λi) ≡ α + iβ

etλivi = etαeitβvi, (2.11)

11



2.2 Dynamical Systems

one sees that solutions lying in Es exponentially decay forwards in time, because
α < 0, as t → ∞, etα goes to zero. This decay can be either monotonic, β = 0, or
oscillatory, β 6= 0. Analogously, solutions in Eu grow exponentially (α > 0) or if in
Ec do neither (α = 0). Note that under time reversal a stable equilibrium becomes
unstable. Solutions approaching x∗ in positive time will go away under t 7→ −t and
vice versa, because we invert direction by time reversal.

These subspaces are as the linearized system (2.4) only valid in some neighbor-
hood U of x∗ close to equilibrium. For the nonlinear system an analog is defined
with the local invariant manifolds W. The definitions state

Ws
loc(x

∗) =

{
x ∈ U

∣∣∣∣ lim
t→+∞

ϕt(x) = x∗ and ϕt(x) ∈ U, ∀t ≥ 0

}
Wu

loc(x
∗) =

{
x ∈ U

∣∣∣∣ lim
t→−∞

ϕt(x) = x∗ and ϕt(x) ∈ U, ∀t ≤ 0

}
,

(2.12)

where Ws
loc is the local stable invariant manifold and Ws

loc the local unstable invariant
manifold of x∗. Here we see that the concept of stable and unstable is not invariant
under time reversal. Thus the stable invariant manifold is the local set of points
within U where flow will reach x∗ in positive time direction. The unstable invariant
manifold is the local set where the flow originated in x∗. Equivalently one can say
the flow will reach x∗ under time reversal, ergo in negative time direction.

The following stable manifold theorem for a fixed point theorem gives existence
and important properties of this manifolds,

Theorem 1. Let x∗ be a hyperbolic fixed point of ẋ = f(x). Then there exist a local
stable and unstable manifold Ws

loc(x
∗) and Wu

loc(x
∗) which

(i) have the same dimensions ns, nu as the corresponding linear subspaces, and

(ii) are tangential to the corresponding linear subspace in x∗ [25].

These concepts can be extended globally as global invariant manifolds Ws and
Wu

Ws =
⋃
t≤0

ϕt (Ws
loc(x

∗))

Wu =
⋃
t≥0

ϕt (Wu
loc(x

∗)) .
(2.13)

The global stable invariant manifolds is the union of points inM, whose flow will end
up in the local stable invariant manifold. This motivates to call them also domain
of attraction. Analogously by replacing t 7→ −t on finds the unstable manifold or
repelling set. Note that invariant manifolds are unique just as the flow [25].

Due to existence and uniqueness theorem of solutions of (2.1) two stable (or
two unstable) invariant manifolds of two distinct equilibria cannot intersect, nor a
invariant manifold cannot intersect with itself. Nevertheless intersection of stable
and unstable invariant manifolds of the same or distinct equilibrium is possible and
reflects complex behavior. Intersection of manifolds of the same equilibrium are
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2. Theory

called homoclinic and intersection of the manifolds of different equilibria are called
heteroclinic [24, 25].

Invariant here means that a set will not change under the flow as time progresses.
The invariant subspaces, defined by the linearized system, are approximations of the
local invariant manifolds and tangential to them in x∗ but both are only valid within
some neighborhood of x∗. The invariant manifolds are the nonlinear counterparts
[24].

The careful reader may ask two question right now: is there a center manifold
and do invariant manifolds have periodic solutions? The answer to the first is yes:
there is a concept of center manifold. Just to give an idea what they are, the main
aspects are reviewed here.

Remember that the center subspace Ec is spanned by eigenvectors with vanishing
eigenvalue. Then there exists a center manifold Wc tangential to Ec in x∗. The center
manifold in contrast need not be unique [24,25].

The answer to the second question is also yes: there are invariant manifolds for
periodic solutions. These are defined as follows.

Ws
loc(γ) =

{
x ∈ U

∣∣∣∣ lim
t→+∞

|ϕt(x)− γ| = 0 and ϕt(x) ∈ U, for t ≥ 0

}
Wu

loc(γ) =

{
x ∈ U

∣∣∣∣ lim
t→−∞

|ϕt(x)− γ| = 0 and ϕt(x) ∈ U, for t ≤ 0

}
,

(2.14)

where γ is a periodic solution and U a neighborhood of x∗ [25].

2.2.6 A question of dimensions

At this point we could go on with some more complex behavior in nonlinear dynam-
ical systems, such as bifurcations, strange attractors, fractals and chaos. But in two
dimensions we have the lucky situation to have the Poincaré-Bendixon theorem. For
two dimensional systems this theorem states there are only three possible types of
invariant manifolds, namely,

(i) equilibria,

(ii) closed orbits, and

(iii) unions of equilibria and trajectories connecting them.

Such complicated things like strange attractors and chaos1 cannot occur in two
dimensions. This obviously makes our life lots easier.

Another useful theorem for two-dimensional systems is the following.

Theorem 2. Inside any closed orbit γ there must be at least one equilibrium. If
all equilibria inside γ are hyperbolic, then there must be an odd number, 2n + 1, of
which n are saddles and n+ 1 either sinks or sources.

1 See e.g. [25] or [22] for further reading.
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2.3 Stochastic Dynamics

Fokker-Planck and Master-equation ⇒ motion of probability density

Langevin ⇒ noisy motion of single particle

Table 2.1: Different stochastic evolution equations. While Fokker-Planck and
Master equations describe dynamics of probability distributions, which are related
to ensemble averages, the Langevin equation describes realizations of fluctuating
processes, out of which ensemble averages can be obtained by means of simulations.

As a consequence, we can define an axis connecting the inside fixed point with
the closed orbit, which will be needed later in the cycle transformation, see Sec. 3.1.
This furthermore yields that if we have a limit cycle, which is a closed orbit, we can
be sure that there always is a fixed point enclosed.

2.3 Stochastic Dynamics

In real-world systems time evolution often shows irregularity and complexity, which
cannot be related to any deterministic evolution law. Such behavior is called fluc-
tuations, and can be caused by complex or unknown internal or external influences
called noise. This can be for example a large number of particles interacting, like
a particle bouncing around in a fluid, where there is no hope that we can predict
all collisions, since we do not know every initial position, or an intrinsically non-
deterministic behavior, like in quantum systems.

Fluctuating systems are known as stochastic systems. These can be found in
numerous fields, e.g. in physics, theoretical biology, and chemistry. Some examples
are motion of a Brownian particle, growth of bacterial population, actual arriving
times of metros in a station. The methods of stochastic systems can also be applied
in economics and in finance. One example is the Black-Scholes theory in finance.

Stochastic systems are described by equations such as Langevin, Master and
Fokker-Planck equation, where the first takes noise into account on a microscopic
level, the last one refrains from the microscopic picture by describing the evolution
of averages.

Due to fluctuations we measure different values for different realizations, i.e.,
for different initial conditions for the example of the particle in a fluid. In analogy
to thermodynamics we introduce the Gibbs ensemble. A Gibbs ensemble is defined
as a great number of independent system with identical dynamics but with differ-
ent phase, which is their configuration and velocity [29]. We can define ensemble
averages 〈A〉 of each single measurement Ai [9, 29]

〈A〉 ≡ lim
N→∞

1

N

N∑
i=1

Ai. (2.15)

In this section an introduction to stochastic systems is given. We will begin with
basic concepts like stochastic processes and Markov chains. From the Chapman-
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Kolmogorov equation for transition probabilities we will go on to the Langevin
equation and stochastic calculus. Finally we will introduce concepts for evolution
of probability density functions, i.e. Fokker-Plank and Master equation, in contrast
to the stochastic calculus.

2.3.1 Stochastic Processes

A random variable X is a (observable) quantity, whose instantaneous realization
cannot be predicted, e.g. the number shown by a thrown die. A stochastic process
is a process depending on a random variable, i.e. YX(t) = F (X, t) where YX is a
stochastic process as an arbitrary function F of a random variable and time t. t does
not need to be interpreted as time but in the context of physics it is often. Such
a process is described in the ensemble picture. Substitution of X with the value of
one specific realization x gives back the classical physical formulas.

Given a continuous probability distribution pX(x), also called probability density,
averages can be calculated from

〈YX(t)〉 =

∫
Ω

F (x, t)pX(x)dx, (2.16)

where Ω is the sample space, i.e., the set of all possible states. If Ω is discrete
averages can be calculated as summation 〈YX(t)〉 =

∑
k

F (xk, t)pk.

Of special use are the so-called moments µn

µn = 〈xn〉 =

∫
xnp(x)dx, (2.17)

which we will see later in the Kramer-Moyal expansion.

One important probability distribution is the Gaussian distribution or normal
distribution. Given the first two moments, average µ and variance σ2 it is given by

p(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.18)

Two examples of the Gaussian distribution are shown in Figure 2.4.

We are interested in the time evolution of a system and therefore consider a
stochastic process as a sequence of random variables {Xti}i indexed by a parameter
ti, which is often used as time. We assume t1 < t2 < . . . < tn with finite n. Keep in
mind that t can be a continuous variable. A realization xi of each Xti for all ti’s is
called a trajectory

{x1, t1;x2, t2; . . . ;xn, tn}. (2.19)

The joint probability expresses the likelihood to observe a trajectory

pn(x1, t1; . . . ;xn, tn). (2.20)
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2.3 Stochastic Dynamics

The index of pn here emphasizes that n points are given by a fixed value. If less
k < n points are given, the probability to find these subset of a trajectory

pk(x1, t1; . . . ;xk, tk) =

∫
pn(x1, t1; . . . ;xn, tn)dxk+1 · · · dxn, (2.21)

is the so-called marginal distribution pk. The marginal distribution is given by the
integration over the remaining xk+1 . . . xn state variables.

If we prescribe x1, . . . , xk with fixed values or conditions, we can determine the
joint probability of the other n − k variables, which is the so-called conditional
probability

pn−k(xk+1, tk+1 . . . ;xn, tn|x1, t1; . . . ;xk, tk). (2.22)

This is the conditional probability of Xk+1, . . . , Xn conditional that X1, . . . , Xk have
the values x1, . . . , xk. We interpret this as transition probability of a system to evolve
into xk+1, . . . , xn given that the remaining state variables have fixed values. Bayes
rule gives the connection between conditional and marginal probability [16]

pn−k(xk+1, tk+1; . . . ;xn, tn|x1, t1; . . . ;xk, tk) =
pn(x1, t1; . . . ;xn, tn)

pk(x1, t1; . . . ;xk, tk)
. (2.23)

2.3.1.1 Markov property

Many physical processes are independent of their evolution history but solely de-
pend on the current state, i.e., the future (xi+1, ti+1) only depends on the current
(xi, ti) state. This is known as Markov property or sometimes referred as memory-
less processes. The transition probability is hence given by two-point functions
p2(xi+1, ti+1|xi, ti)2. The time evolution is fully determined by p2, and therefore
it is called a propagator. If the propagator is furthermore time independent, it is
called stationary or homogeneous Markov process. One example of such process is
Brownian motion.

The Markov property enables to use some handy simplification when treating
such stochastic processes. For a full description of the system we only need two
functions, namely p1(x, t), the probability density, and a propagator p2(x′, t′|x, t).
Any joint probability pn can be reduced to

pn(x1, t1; . . . ;xn, tn) =

[
n−1∏
i=1

p2(xi+1, ti+1|xi, ti)

]
p1(x1, t1). (2.24)

Let’s set k = 2 for readability. Integrating Eq. (2.24) over x2 we find the marginal
distribution p2(x3, t3;x1, t1). Using Bayes rule p2(x3, t3;x1, t1) = p2(x3, t3|x1, t1) ·
p1(x1, t1) and dividing both sides by p1 we find an important equation of this section:
the Chapman-Kolmogorov equation (CKE)

p2(x3, t3|x1, t1) =

∫
p2(x3, t3|x2, t2)p2(x2, t2|x1, t1)dx2. (2.25)

2This is read from right to left, i.e., the system evolves (x′, t′)← (x, t)
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Because the whole dynamics for a Markov process are encoded in p1 and p2, we can
rewrite the CKE (2.25) as

p1(x3, t3) =

∫
p2(x3, t3|x2, t2)p1(x2, t2)dx2, (2.26)

which is the second form of the CKE. We will call the (2.25) two-point CKE and
the latter one-point CKE.

An often studied version of a Markov process is a Markov chain. It has a discrete
sample space. If furthermore the sample space has finite N elements, we call it a
finite Markov chain. The transition probability between all states then can be
represented as a N ×N matrix Tt, where t denotes time. T is a so-called stochastic
matrix, which has non-negative entries (since probabilities cannot be negative) and
each column sums up to unity. In this matrix representation p1 takes the form of a
N × 1 vector. The time evolution for a stationary Markov chain can be expressed
by p1(t′) = Tτp1(t), where τ = t′ − t. Stationary distributions p∗1 = lim

t→∞
Ttp1(t0) are

eigenvectors of T with unity eigenvalue, p∗ = Tp∗.
The concept of a Markov process, which is by definition independent from history,

can be used to model a process with finite memory m by introducing additional m
variables. Such a process is called higher order Markov process or Markov process
with memory m. Hence we call it m-th order Markov process. For example we
can rewrite a process depending on the last two states in history as a second order
Markov process by adding one variable, which takes the second last as a new state
vector with one more dimension [16].

2.3.2 Langevin equation and stochastic differential equa-
tions

Real-world physics often includes fluctuations, since we cannot control all param-
eters. Whether fluctuations (and thus a stochastic approach) are negligible is a
question of scales. Consider for example a particle with mass m in a fluid at
temperature T . From the equipartition theorem (in one dimension, for simplicity)
m
2
〈v2〉 = k

2
T , with k Boltzmann constant and v velocity, it follows that the thermal

velocity vT ∝
√
m−1. Hence for small m the stochastic character is not negligible.

The particle will collide with the molecule of the fluid in a random fashion and so
the velocity jumps at each collision. This is known as Brownian motion.

To take these fluctuations into account we need to modify the corresponding
macroscopic deterministic force relation by introducing a new additive force: a
Langevin force. Hence the force acting on a particle becomes a stochastic quantity
and with that also the velocity [9]. The Langevin equation (LE) for Brownian motion
reads

v̇ = −γv︸︷︷︸
deterministic

+ σΓ(t)︸ ︷︷ ︸
stochastic

. (2.27)

Γ(t) is a Langevin force and σ a scaling constant. See Figure 2.4 for some typical
trajectories and the corresponding probability distribution.
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2.3 Stochastic Dynamics

Figure 2.4: Left panel shows Gaussian distributions [see Eq. (2.18)]. Plotted
distributions have different standard deviations σ and same mean value µ = 0.
Right panel shows 12 example trajectories of two-dimensional Brownian motion.
The plotted Brownian motion is purely stochastic ẋ = σΓ(t) [see Eq. (2.27)]. All
trajectories originated in the origin (green dot) and the final position after 500 steps
is depicted by the red dot. x and y are in arbitrary units. Γ is a Gaussian distribution
as shown in the left panel. Own simulations.

The Langevin equation consists of a deterministic and stochastic part. We often
know the first part a priori and can define a Langevin equation with the following
algorithm.

(i) Write a deterministic macroscopic equation;

(ii) add a stochastic part as Langevin force;

(iii) adjust the coupling constant σ so that your model fulfills expectations.

In [16] this is called a Langevin approach. And its the most simple stochastic model
one can think of.

Since Eq. (2.27) is a stochastic equation, its properties can only be given within
the ensemble picture. On average we expect our deterministic dynamics to hold
again and hence it is reasonable to require [9]

〈Γ(t)〉 = 0. (2.28)

Multiplying Γ at two different times t and t′ gives us the correlation; we assume
that the collisions are statistically independent and hence set

〈Γ(t)Γ(t′)〉 = δ(t− t′). (2.29)

Such a δ-correlated noise source is known as white noise, due to its spectrum. Non-
δ-correlated noise sources are called colored noise.

White noise has a handy implication: δ-correlated Langevin forces are Markov
processes. This is caused by the fact that δ-correlation reflects statically indepen-
dence. Thus, for Brownian motion, the velocity after a collision only depends on the

18
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instantaneous value and not on its history. As mentioned in Sec. 2.3.1.1 we can still
model finite memory processes with higher order Markov processes. Often, values
for Γ are drawn from a Gaussian distribution similar to Eq. (2.18). The noise then
is called Gaussian white noise.

The Langevin equation (2.27) is linear. But Langevin equations in general can
be non-linear. We write them as

dX(t)

dt
= a(X, t) + b(X, t)Γ(t), (2.30)

where X is an arbitrary observable. Equation (2.30) is a general stochastic differen-
tial equation (SDE). SDE’s differ from ordinary differential equations, because for
example Brownian motion is nowhere differentiable and so the corresponding SDE
also is not differentiable. Integration is still possible but there is an additional degree
of freedom which led to different interpretations. Widely known are Stratanovich
and Itô, which are different choices for how noise is taken into account in a Riemann
integral. For further details see references [9, 30].

In Eq. (2.30) we see that b can depend on the random variable X. In case b is
constant in X we call it a Langevin equation with additive noise. If b = b(X, t) it
is called multiplicative noise. If a and b are both time-independent and non-zero b
multiplicative noise can always be transformed into additive [9].

Let me give some remarks on a Langevin approach. It can be utilized to study
stochastic influences on a system whose macroscopic behavior is already known.
As in Eq. (2.30) we just add an external force, the Langevin force. This can be
applied to dynamical system as of Section 2.2. This leads to the seconds remark: the
Langevin approach does not work for internal noise [16]. Internal or intrinsic noise
cannot be switched off and is inseparably coupled with the mechanism of evolution,
and thus a standalone a(X, t) is inaccessible. Examples are chemical reactions and
light absorption and emission [16].

2.3.3 Fokker-Planck equation

Instead of adding a stochastic character to known dynamics, as discussed for the
Langevin approach in Section 2.3.2, we can view a stochastic process from a different
perspective. Consider a homogeneous heat equation in one dimension ∂tu = Dt∂

2
xu

with thermal diffusion constant Dt. A solution u(x, t) determines the determinis-
tic distribution of heat. The diffusion process itself is, indeed, stochastic but the
evolution of the distribution is deterministic. The reason is that diffusion is related
to the mean-squared displacement 〈(x(t′)− x(t))2〉 where fluctuation are “averaged
out”. In the same manner the Fokker-Planck equation (FPE) describes evolution of
(probability) distributions3. Hence the FPE is a deterministic (partial) differential
equation for a distribution function of a fluctuating process. The FPE is best suited
to deal with a continuous state space. For discrete ones we will use the Master
equation in Section 2.3.4.

3The heat equation and FPE are mathematically equivalent, if we set the drift-term of the FPE
to zero.
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We could also solve the Langevin equation and obtain expectation values, but
in case of non-linear Langevin equations this could be challenging [9]. Therefore we
use the Fokker-Plank equation.

A general form of the Fokker-Plank equation in one dimension is

∂p

∂t
(x, t) =

[
− ∂

∂x
K(x, t) +

∂2

∂x2
D(x, t)

]
p(x, t), (2.31)

with K drift and D diffusion coefficients. These coefficients can depend on position
x and time t, as indicated, and therefore the partial derivatives on the right-hand
side also apply to them. In higher dimensions K becomes a drift vector and D a
diffusion tensor, see Eq. (A.1).

2.3.3.1 Kramers-Moyal expansion

We aim here to derive a differential expression for the probability distribution p,
which is the Fokker-Planck equation. We follow the derivation in [9]. Beginning
with the Chapman-Kolmogorov equation (2.26) we transform it into an expression
of moments. Afterwards the moments are recast into the so-called Kramer-Moyal
expansion coefficients, which is a series expansion. If this series stops after the
second term we arrive at the Fokker-Planck equation.

Consider the the identity

p2(x′, t+ τ |x, t) =

∫
δ(y − x′)p2(y, t+ τ |x, t)dy. (2.32)

The δ-distribution can be expanded into a Taylor series which yields

p2(x′, t+ τ |x, t) =
∞∑
ν=0

1

ν!

∫
(y − x)νp2(y, t+ τ |x, t)dy

(
d

dx

)ν
δ(x− x′). (2.33)

We assume that we know all moments µν . By using the definition of moments µν
(2.17) and inserting (2.33) into (2.32) yields

∂p

∂t
(x, t) =

[
∞∑
ν=1

(
− ∂

∂x

)ν
D(ν)(x, t)

]
p(x, t), (2.34)

known as Kramer-Moyal expansion4. The coefficients D(ν) are called Kramer-Moyal
coefficients. We consider here Markov processes; for non-Markovian processes the
D(ν) would depend on earlier times and hence is not so easy treatable.

As a consequence, a Langevin equation with continuous stochastic variable and
δ-correlated noise leads to a FPE; the Kramer-Moyal expansion may stop after the
second term, see also Section 2.3.3.2. See Appendix A.1.2 for how to obtain drift-
and diffusion constant if we know the Langevin equation.

4More precisely this is a Kramer-Moyal forward (in time) expansion, but it can be shown that
forward and backward expansions are equivalent [9].

20



2. Theory

2.3.3.2 Pawula theorem

The similarity between Eq. (2.31) and (2.34) is evident. We can identify the drift
coefficient K = D(1) and diffusion D = D(2). But the series in Eq. (2.34) is infinite.
The Pawula theorem tells us that an expansion of the distribution function, e.g., the
Kramer-Moyal expansion, stops after the first or second term or has infinitely many
terms. If it stops at the second one, we find the Fokker-Planck equation, which
happens for δ-correlated noise and a continuous state space x. For discrete state
spaces the series has infinitely many terms, but we can truncate it after the second
term and get an approximate Fokker-Planck equation. Truncating the series at
higher order term would lead to negative probabilities but also to a better agreement
with the original equation [9].

2.3.4 Master equation

If the state space is discrete, for example in chemical reactions, we are better suited
with the Master equation than the Fokker-Planck equation.

The Master equation is an equivalent form of the Chapman-Kolmogorov equation
in case of a Markov process. It is a differential equation for the transition probability
in the limit of vanishing time difference. This can be rewritten as a differential
equation for the distribution function, similar as the Fokker-Planck equation, and
reads

∂p

∂t
(x, t) =

∫
[w(x|x′)p(x′, t)− w(x′|x)p(x, t)] dx′, (2.35)

with w(y|x) the transitions per unit time going from x to y5. For a discrete state
space, where then jumps between the states occur, the Master equation is more
compactly written as

∂pn
∂t

(t) =
∑
m6=n

[wnmpm(t)− wmnpn(t)] , (2.36)

where summation is over the whole state space. wnm is identified as the discrete
version of w in case of a transition from m to n, where n and m are discrete indexing
parameters. Similarly, pn is the probability function for the state n. Equation (2.36)
can be written in form of a stochastic matrix similar to the ones for Markov processes
in Section 2.3.1.1. For further reading also refer for example to [16] or [11]. Further-
more network theoretical approaches are possible for these matrix representation.
See [19] for further reading.

The Master equation has an intuitive (physical) interpretation: it is a direct rep-
resentation of transitions per unit time between all states of a system. Multiply the
transition rates w with the probability of a state and we find the actual probability
flux j within our systems

jnm ≡ wnmpm︸ ︷︷ ︸
influx n←m

− wmnpn︸ ︷︷ ︸
outflux n→m

. (2.37)

5We have dropped out time dependence in w because for simplicity we assume a stationary
stochastic processes.

21



2.3 Stochastic Dynamics

In the same manner Eq. (2.36) can be reformulated as

∂tpn = jtot
n ≡ jin

n − jout
n ≡

(∑
m 6=n

wnmpm

)
−

(∑
m 6=n

wmnpn

)
, (2.38)

where jin
n and jout

n are the total fluxes entering and leaving state n. Or as conservation
equation [11]

∂tpn =
∑
m6=n

jnm. (2.39)

2.3.4.1 Steady state and detailed balance

We now want to focus on stationary states within the network representation of the
Master equation. Stationarity entails ∂tpn = 0 and hence with Eq. (2.36) follows

0 =
∑
m 6=n

[wnmpm(t)− wmnpn(t)] ≡ jtot
n , ∀n, (2.40)

where jtot
n is the total flux of n. This can be achieved in two possible configurations:

locally, where each transition vanishes, or globally, where only the total current
vanishes.

First we consider the local stationarity, which is given by the detailed balance
(DB) condition. Detailed balance requires that each possible transition is balanced
by its reverse jn = 0, ∀n, which is only possible for

wnmpm = wmnpn. (2.41)

Detailed-balanced stationary states are unique and correspond to thermal equilib-
rium [11]. As we worked out in Section 1.1, for the DB case we can define a
thermodynamic-like potential Φ. Considering an arbitrary path P = si → sj →
. . .→ sk → sl trough our system and its reverse, i.e., in opposite direction, P−1 and
applying Eq. (2.41) iteratively to each neighboring states, yields

pk = pi
wji . . . wlk
wkl . . . wij

≡ pi
Π[P ]

Π[P−1]
, (2.42)

where Π[P ] ≡ wji . . . wlk is the product of transitions rates for path P . Since in
equilibrium DB condition holds, Eq. (2.42) is valid for any path P connecting si
with sk. This can be called a path independence or integrability condition. Thus we
can define a potential Φio between si and an arbitrary reference state so from Eq.
(2.42) as [11]

Φio ≡ ln

[
Π(P)

Π(P−1)

]
. (2.43)

The steady state probability pi of state si can now be written with the potential
as [11]

pi ∝ exp [Φio] , (2.44)
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Figure 2.5: Difference of stationary states in a discrete three-state stochastic sys-
tem. Panel (a) shows the detailed balance condition where each single transition is
balanced by its reverse and hence all net fluxes between each state vanish, see Eq.
(2.41). Panel (b) shows a cyclic flux. Fluxes occur as nonequilibrium steady-state
(NESS) where only the sum of all incoming and outgoing fluxes of a state vanishes,
see Eq. (2.40).

where proportionality is due to normalization of p. This can also be written as
pi ∝ exp [−Φoi] by using logarithmic laws. That form is more alike to the known
thermodynamic potential exp[−βH] as discussed in Sec. 1.1.

For global stationarity there is a set of states where in-between non-zero net
fluxes occur. Hence only jtot

n = 0 remains valid. This corresponds to nonequilibrium
steady states (NESS), where DB is breached. Hence a potential as in the case where
DB holds, Eq. (2.43), is not possible. Since Eq. (2.40) needs to be satisfied, fluxes
in the stationary state, if non balanced locally, need to occur in cycles. If they
were not in cycles, which means recurrent, the probability would change over time
and that contradicts the stationarity. The simplest example is a three state system,
n ∈ {1, 2, 3}, where

j21 = j32 = j31 = const. 6= 0 (2.45)

and all other j’s vanish. See Figure 2.5 for a graphical representation of the difference
of detailed balance condition and cyclic fluxes.

However, for NESS there exist graph-theoretical approaches to obtain the steady
state distribution. Those are based on Kirchhoff’s law, which originally was used
to describe electrical networks, and consist of decomposing cycles into spanning
trees [1,11,19]. While still possible to obtain a steady state distribution, it requires a
lot more effort and even NESS are not unique. There are possibly numerous steady
states that a system can reach but only one, if any, equilibrium state. Another
question currently addressed in nonequilibrium research is what initial conditions
lead to the same NESS, that is, determining the so-called dynamical equivalence
class (see Ref. [11]).
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Chapter 3

Methods and concepts

In this chapter we describe our approach towards a nonequilibrium steady state
(NESS) potential. For further reading on this ansatz please refer to [1, 7] and [31].

3.1 Cycle transformation

In this section we will get to know the keystone of our approach towards a NESS
potential, namely, the cycle transformation. The aim of the cycle transformation is
to regain detailed balance for NESS and ultimately be able to define a potential.
As we know, due to conservation laws, fluxes in NESS can only be closed, cyclic
trajectories. The cycle transformation can be seen analogously to the Poincaré
cross-section as introduced in Sec. 2.2.3. The P (i)’s take the role of new descriptors
as replacement for states in a Master equation. Analogously we will recast the states
and transitions into a (complete) set of cycles and weights.

Following [1], we (at least for now) assume the our dynamical systems can be
described as a Markov process in a finite space. Furthermore, we assume ergodicity,
which means that any state can be reached from another in finite time. It ensures
the existence of a steady-state [1]. We define a cycle as an ordered set of vertices
which form a self-avoiding closed path. The equivalence is the cyclic permutation.

The stationary dynamics can be represented as graph G = (V,E) with N vertices
vi ∈ V and edges (i, j) ∈ E. The vertices take the role of the process’ states and
the edges the transitions. The dynamics of the process are encoded in transitions
rates w and fluxes j as described in Sec. 2.3.4.

The cycle transformation is a decomposition of a graph G into a superposition
of cycles with a weight assigned to each cycle. It replaces the vertices V by a set
of cycles C and new edges EC. That defines a new, transformed graph H = (C, EC).
Basically we changed the domain V to C, i.e., states to cycles. Figure 3.1 shows a
decomposition of a six state network on the l.h.s. into two possible superpositions
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3. Methods and concepts

Figure 3.1: Decomposition of a six state network (l.h.s.) into two possible super-
positions of cyclic fluxes (r.h.s). The numbers represent the strength of the directed
fluxes. Taken from [1].

of cycles1 on the r.h.s. As we see decompositions are numerous and non-unique but
it has been shown that all cycle weights can be chosen non-negative [1].

H gives rise to a new Master equation where the original states and probabilities
are replaced by cycles α ∈ C and weights or currents cα. It reads

dcα
dt

=
∑
β∈C

vαβcβ − vβαcα, (3.1)

with vαβ the transition rate from cycle β to α, which replace the transition proba-
bilities wij. Transitions between cycles take place at states belonging to both cycles.
This is expressed with the help of indicator (or passage) functions χαi , which is
χαi = 1 if state i lies on cycle α and otherwise zero. The product of indicator func-
tions gives us the common states since it vanishes for non-mutual states. Hence, the
transition rate vαβ is given by [31]

vαβ =
∑
i∈V

χαi χ
β
i c
∗
α∑

γ∈C
χγi c

∗
γ

, (3.2)

with c∗ the steady state weights. It has been recently shown [1] that Eq. (3.1) fulfills
detailed balance. Thus, we can write down a potential Φ in the same manner as in
Sec. 2.3.4.1, especially Eq. (2.44),

c∗α ∝ e−Φα . (3.3)

Furthermore, this implies a path independence and such can be checked numer-
ically. An example of cycle space (depicted by the circles) is shown in Fig. 3.2
together with two paths connecting the same cycles. One chooses different paths
through the cycle space and compare the potential values Φ. Such numerical tests
of a candidate ansatz for a NESS potential is the main objective of this thesis. We
will elaborate in the following the steps we took to reach this goal.

1We label the cycles by Greek letters.
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3.1 Cycle transformation

Figure 3.2: A schematic representation of the so-called cycle space. Each circle
corresponds to a cycle. Two different paths (solid and dashed lines) connecting the
cycles α and β are shown. Detailed balance enables us to multiply transition rate
along different path to gain a potential difference independent of the path chosen.

3.1.1 Continuous cycle space

The most important problem at the very core of our approach is the following: to
calculate the cycle transition rates v, i.e., evaluate Eq. (3.2), we need to know the
steady state weights c∗. This requires a full mathematical solution of the original
Master equation. It is argued [31] that this issue can be resolved by using a contin-
uum representation of the problem, i.e., the cycle space, and use the Fokker-Planck
equation to find an alternative way to determine the transitions rates v.

A Fokker-Planck equation can be derived from the continuity equation ∂tP =
∇·J for the probability density P and current J . In analogy to convection-diffusion
processes, the current can be written as the sum of advection or drift current JK
and diffusion current JD

∂tP = ∇ · J = ∇ · (JK + JD). (3.4)

Those currents can be written as

JK = P · K, (3.5)

JD = −D∇P, (3.6)

where K is the drift coefficient or field and D the diffusion coefficient. As a result,
we can differentiate between currents, which arises from drift, JK , and those which
are caused by a diffusion process, JD. Inserting the above relation into Eq. (3.4)
yields a Fokker-Plank equation, same as Eq. (A.1),

∂tP = ∇ · (KP −D∇P ). (3.7)

As we see from Eq. (3.7), we derived a decoupling of the current in drift and
diffusion currents. The drift current arises from a deterministic drift K and diffusion
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3. Methods and concepts

from a stochastic diffusion process. The drift current is treated as dynamical system,
denoted by DS(K),

∂tϕ = K(ϕ), (3.8)

where ϕ is the order parameter of the continuum representation. The stationary
behavior as the long time limit is dominated by invariant manifolds, i.e., ω-limit
cycles and fixed points. Almost all2 initial conditions will end up after sufficient
long time in a stable invariant manifold. As consequence, stable invariant manifolds
are the states, which are most likely occupied and hence correspond to maxima in
the probability density.

We now devise the following strategy: if we fill the space between the invariant
manifolds with a family of non-overlapping, smooth cycles containing the invariant
manifolds, we have effectively performed a cycle transformation. See Fig. 3.3 where
some members of a cycle family (dashed lines) between the invariant manifolds (solid
lines) and a fixed point are shown. The shape of the cycles determines which states
in phase space it passes through. If we alter the shape, we alter the states included
in the cycle and thus we select different cycles. Those correspond to different states
in the cycle space. Hence, if we fix the start and end points of a path in the cycle
space, e.g., to be the invariant manifolds, we can define different paths between the
manifolds by defining cycle families of different shape.

Distinct cycles are identified by a continuous parameter p onto an axis intersect-
ing the manifolds. An example is also shown in Fig. 3.3. This p̂-axis3 is defined in
analogy to the Poincaré cross-section to be nowhere parallel to the flow and uniquely,
i.e. only once, intersect each cycle. It is the starting and ending point for each cycle.
Within one family the label p replaces the Greek letters for different cycles. As a
result, limit cycles then correspond to a single state in the cycle space, which is the
cycle identified with p and hence have lost the periodic behavior. Furthermore by
exploiting detailed balance and integrating transition rates of neighboring cycles be-
tween invariant manifolds we arrive at a NESS potential. Since the stable invariant
manifolds are most likely occupied they correspond to a minimum in the potential.
An explicit formulation how to obtain such a potential will be given in Sec. 3.2.

3.1.2 The Crosswind Operator

In the previous section we filled the space between invariant manifolds with a family
of non-overlapping cycles, or strictly speaking, we performed a cycle transformation.
Now we want to focus on how the deformation of the trajectories of DS(K) into
closed orbits is carried-out. We describe the deformation operation with a so-called
crosswind operator R. This crosswind operator is a local operator, which redirects
the flow to be tangential to the closest cycle in the family. This can be imagined as
a local crosswind changing the direction of the flow and forcing it into closed orbits.

2Indeed, this strongly depends on the topology of the dynamical system and hence the basin of
attraction.

3We denote by p̂ the unit vector of the axis and by the p the intersection value of a cycle with
p̂-axis.
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3.1 Cycle transformation

Figure 3.3: Example for a constructed L-drift field. The solid lines represent
invariant manifolds. Let us assume that the fixed point B is unstable, C is a stable
limit cycle (attractor), and the seperatrix between D and E is unstable. A p̂-axis
that parameterizes a connection of the manifolds is depicted as well. The inset shows
what one expects for a constant crosswind operator, as discussed in Sec. 4.2.1. The
closing angle should vanish on the invariant manifolds, since the drift points along
these manifolds and hence no crosswind is needed to close these. Taken from [31].
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3. Methods and concepts

It obviously depends on the cycle family C, i.e., the shape of the cycles. We will
usually drop the family dependence and simply write R but we should keep in mind
that R varies for different families. The application of the crosswind operator on
DS(K) defines a new dynamical system, which we call DS(L),

L(ϕ) ≡ R(ϕ)K(ϕ). (3.9)

It is argued [31] that there is always a finite diffusivity involved, i.e., D > 0,
and hence both K and L are possible trajectories of an ensemble described by a
corresponding Fokker-Plank equation. Due to noise influences it is possible that
some systems actually are on the trajectories defined by DS(L). In other words,
one can find systems in the ensemble that follow the cycle defined by DS(L) when
interpreted as dynamical system.

Let us assume we have a two-dimensional system. The crosswind operator can
then be given as rotation matrix4

R(ϕ) =

 cos β(ϕ) sin β(ϕ)

− sin β(ϕ) cos β(ϕ)

 , (3.10)

where the closing angle β is the amount of “deformation” that is needed to twist
the trajectories of DS(K) to closed orbits. The magnitude of this deformation is
quantified by the norm of the closing angle β and depends on the shape of the cycle
family. On an invariant manifold the drift points exactly along the manifold and
hence β vanishes. In the picture of the crosswind, on invariant manifolds no winds
are blowing, since they already are closed orbits; see the inset of Fig. 3.3. Note,
that R only changes the direction of the flow not its magnitude, hence

|L| = |RK| = |K|. (3.11)

We may call this ‘energy preserving’.

The closing angle β can be explicitly determined for a cycle family C by com-
paring the direction of the flow between L and K, that is

β(ϕ) = arcsin

(
L(ϕ)×K(ϕ)

|L(ϕ)||K(ϕ)|

)
= arcsin

(
L(ϕ)×K(ϕ)

|K(ϕ)|2

)
, (3.12)

where × is the cross product of two vectors. We note here why the sine is used: If
we would use the cosine, which is symmetric around the origin, we would not have a
sign change when crossing the stable invariant manifold. But the crosswind should
change its sign when crossing a stable invariant manifold to stop trajectories from
ending in the manifold.

4It does not matter whether rotations clock- or counterclockwise are used, it would only change
the sign of the closing angle and therefore is only conventional.
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3.1 Cycle transformation

Figure 3.4: Shown are some cycles of the DS(L) (solid black lines) and the drift
field DS(K) (dashed gray lines). The local curvilinear coordinates (r, s) are locally
tangential to the cycles. The closing angle β (in blue) between the drift vector K
and cycle tangent ŝ is shown as well.

3.1.2.1 Coordinate transformation

This subsection is more a technical interlude about different representations of a
position in either the original phase space and the continuous cycle space. For
simplicity we restrict ourselves to the two-dimensional case. Let the position in
the phase space be given by ϕ = (x, y) in the global (x, y) phase space coordinate
system. For a given cycle family, i.e., a set of closed curves parameterized by their
projections p onto the p̂-axis we can use mainly two different representation of ϕ: a
parametric representation as well as local curvilinear coordinates.

The parametric representation uses the cycle family parameter p and the “com-
pletion time” τ , which is the normalized period time of the cycle associated with p.
Hence any position ϕ can be represented with the tuple (τ ; p) or more explicitly

ϕ = γ(τ ; p), (3.13)

where γ(p) is the trajectory of the cycle associated with paramter p. Equivalently,
we sometimes use the position s on a cycle, which can also be normalized to the
cycle length. The relation between the two representations reads, ds = |L(s)|dτ .

The local coordinate system is defined by two vectors: the local tangent and
normal unit vectors, ŝ and r̂, respectively. The tangential points along the flow,
parallel to L, on the cycle and hence locally spans ŝ. A corresponding orthogonal
coordinate is denoted with r̂ and is defined to point in the direction of increasing p.
The local frame is therefore called (r, s)-system.
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3. Methods and concepts

3.2 Towards a NESS potential

In this section we want to develop explicit formulas for a candidate ansatz of a NESS
potential as presented by [31]. The full procedure can be summarized as follows. A
more detailed description of the each step follows afterwards.

(I) Determine drift and diffusion fields, K(ϕ) and D(ϕ), from the microscopic
dynamics.

(II) Find the invariant manifolds of the corresponding dynamical system DS(K).

(III) Choose an axis intersecting invariant manifolds analogously to the Poincaré
section. We may call this axis p̂ and introduce a parameterization p.

(IV) Perform a cycle transformation of the phase space, that is:

a) find a suitable family of cycles containing the invariant manifolds;

b) determine the crosswind operator R along each cycle.

(V) Calculate the transition rates between neighboring cycles from R and D.

(VI) Integrate the logarithm of the transition rates along p to obtain a potential
difference between the invariant manifolds.

Theoretically, the drift and diffusion field, K and D, for step (I) could be found
from analyzing experimental data, see for example the approach presented by Battle
et al. [6]. But here for the first test of validity of this ansatz, we use known dynamical
systems. This avoids the additional error source of evaluating experimental data.
The criteria of selection of the dynamical systems are that they be two dimensional
and posses a stable limit cycle with a single unstable node enclosed by the stable
manifold and no other attractors or repellers. For the used systems and their details
please refer to Sec. 3.3. Consequently, from the known dynamics the trajectories
of the drift field can be obtained by (numerical) integration of the corresponding
dynamical system DS(K). How we performed this numerical calculations will be
discussed in Sec. 4.1.

The invariant manifolds in step (II) can be determined from long time observation
and may reach stationary dynamics of the system either from long time experiments
or, in our case, from long time integrations. Please see Sec. 4.1.2 for how the
invariant manifolds are numerically determined.

To choose the p̂-axis we need to make sure that it fulfills the required properties
as described in Sec. 3.1.1. We only use systems with a topology that allows us to
define a straight line from the enclosed fixed point to the surrounding limit cycle. For
simplicity we choose p̂ parallel to the x-axis of the phase space and place the origin,
p = 0, on the fixed point; we chose units such that the limit cycle has coordinate
p = 1.

Step (IV) will be discussed in Sec. 4.2. The last points (V) and (VI) need a bit
more elaboration, which is presented in the following section.
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3.2 Towards a NESS potential

3.2.1 Computing the potential

Now we want to give explicit formulas of the candidate ansatz for a NESS potential.
This equation set is adapted from [31]. To idea is to find a way to quantify the
transitions between neighboring cycles from the diffusivity D and crosswind operator
R without solving the original Master equation.

To compute the transition rate vβα between two neighboring cycles from cycle α
directed to β, the densities of systems ρα on these cycles is considered. By definition,
the cycle weights or currents cα need to be constant along a cycle. Thus, we can
write [31]

ρα(s)|L(s)|δr(s) = cα = const., (3.14)

where δr is the locally orthogonal distance between the cycle, and s the arc length
along a cycle; for the definition of the curvilinear coordinates see Sec. 3.1.2.1. Equa-
tion (3.14) is the continuity equation for the flux along a cycle α. For the continuous
cycle space we replace the discrete enumeration of cycles with a continuous param-
eter, that is chosen to be the p parameter, as discussed in Sec. 3.1.1. Rewriting Eq.
(3.14) into a continuum version by defining cα ≡ δp c(p), yields

c(p) = ρ(p, s)|L(p, s)|dr
dp
. (3.15)

Because we aim to provide a first test of our ansatz for a NESS potential, we
now make a simplification: we assume the diffusion matrix D to be the identity
matrix, i.e. D = DI, with scalar diffusion constant D. This can be seen as isotropic
diffusion, which may be considered artificial but has the benefit that the diffusion
matrix remains the identity matrix under transformation into the local coordinates
(r, s) with an orthogonal matrix. We note that other forms of D are possible.

Hence transitions between the cycles due to diffusion occur in r̂-direction. With
the above simplification this can be written as JD ≡ JD · r̂. Furthermore in (r, s)-
coordinates the gradient of ρ reads,

∇(r,s)ρ · r̂ =
∂ρ

∂r
=
∂ρ

∂p

∂p

∂r
≡ ∂ρ

∂p
|∇(r,s)p|, (3.16)

where we treat p as a scalar field, whose contour lines coincide with the cycles of the
chosen cycle family. For readability, we drop the indices of the gradient and note
that all gradient in this section are in local (r, s)-coordinates. Hence the gradient of
p points in direction of r̂.

The diffusion in r̂-direction is according to Eq. (3.6) at position s,

JD(s) = −D(s) [∇ρ(s) · r̂] , (3.17)

and integrated over a cycle, γ(s; p),

JD = −
∮
D(s)

∂ρ(s)

∂r
ds = −

∮
D(s)|∇p(s)|∂ρ(s)

∂p
ds, (3.18)
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where Eq. (3.16) is used. The integrals in Eq. (3.18) are line integrals over the
trajectory γ(s; p).

From Eq. (3.15) one gets, when also treating p as scalar field,

ρ(p, s) =
c(p)|∇p|
|L(p, s)|

. (3.19)

Hence the derivative of ρ with respect to p reads,

∂ρ

∂p
=
∇p
|L|

∂c(p)

∂p
+ c(p)

∂

∂p

(
|∇p|
|L|

)
. (3.20)

Inserting this into Eq. (3.18) yields,

JD(p) = −
∮
D(s)|∇p|

[
c′
|∇p|
|L|

+ c

(
|∇p|
|L|

)′]
ds, (3.21)

where the primes denote differentiation with respect to p.
The flux normal to a cycle of DS(L) is given by the sine of the angle of the

crosswind β. It reads

JK(p) =

∮
sin β(p, s)ρ(s)|L(s)|ds =

∮
sin β(p, s)c(p)|∇p|ds, (3.22)

where Eq. (3.19) is used again and integration is over the cycle, γ(s; p), at p.
By using detailed balance condition between the cycles, which reads JD+JK = 0,

we obtain by using Eq. (3.21) and (3.21),

c′
∮
D|∇p|2 ds

|L|
= c

∮ [
sin β −D

(
|∇p|
|L|

)′]
|∇p|ds. (3.23)

Equation (3.23) is a differential equation for c, whose solution reads

c(p) = c0 exp


∮ [

sin β −D
(
|∇p|
|L|

)′]
|∇p|ds∮

D|∇p|2 ds
|L|

 . (3.24)

Compared to (3.3) the potential Φ is finally given by

Φ(p) = − ln

(
c(p)

c0

)
. (3.25)

3.3 Dynamical systems

In this section we want to introduce the dynamical systems used for the numerical
testing of our cycle transformation approach. For this first test, we restrict ourselves
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3.3 Dynamical systems

to two-dimensional systems. This enables us to use the Poincaré-Bendixon theorem
(see Sec. 2), which states that in two dimensions fixed points and limit cycles are
the only possible attractors. Because we want to connect two invariant manifolds
we choose some systems with simple topology, i.e., dynamical system with a single
unstable equilibrium enclosed in a attracting limit cycle. Namely, we used the
van-der-Pol oscillator and the Brusselator. Furthermore, we restrict ourselves to
autonomous dynamical systems. The required properties of those systems will be
presented in the following.

3.3.1 van-der-Pol Oscillator

The van-der-Pol equation was first derived to describe nonlinear electrical circuits
used in the first radios. A realization is a so-called van-der-Pol oscillator. The van-
der-Pol equation can also be used to analyze wind-induced oscillations in buildings
and general aeroelastic flutter problems [25]. The analysis of the van-der-Pol equa-
tion played an essential role in the development of the dynamical systems theory.
The van-der-Pol equation reads

ẍ+ µ(x2 − 1)ẋ+ x = 0, (3.26)

where the vanishing r.h.s. corresponds to the unforced van-der-Pol oscillator and
µ is a damping constant. The van-der-Pol oscillator is like a harmonic oscillator
with non-linear damping term. Settings µ = 0 gives us a harmonic oscillator. The
non-linear damping in Eq. (3.26) implies, that for |x| > 1 we have normal damping
leading to decaying amplitude and for |x| < 1, negative damping, that is, self-driving.
The first one leads to energy dissipation and the last one to driving. Balancing the
loss and gain of energy of the van-der-Pol oscillator give rise to a stable limit cycle.
It can be shown that such limit cycle exists for all µ > 0 [22,25].

The phase plane in the left panel of Fig. 2.1 shows the phase space representation
of Eq. (3.26) which is q̇1

q̇2

 ≡
ẋ
ẍ

 =

 q2

µ(1− q2
1)q2 − q1

 . (3.27)

Eq. (3.27) defines a two dimensional dynamical system for the van-der-Pol oscillator,
q̇ = F (q), with q = (q1, q2)T. A stability analysis of Eq. (3.27) reveals a single fixed
point at the origin. In the harmonic case the fixed point becomes a center, which
we expect for a harmonic oscillator. For µ < 0 the fixed points becomes stable, for
0 < µ < 2 an instable focus and for 0 ≤ µ < +∞ an instable node. Since there are
no other fixed points and we know that there is a single stable limit cycle γLC for
µ > 0, we know that γLC = ω(R2 \ 0). As remider, ω is the limit set that is reach
forwards in time. In other words we will for positive µ end in the limit cycle if start
anywhere but not in the origin [24].
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3.3.2 Brusselator

The so-called “Brusselator” is a model for autocatalytic chemical reactions studied
by Nicolis and Prigogine [10], who are known as the Brussels school. An autocat-
alytic reaction is one that has the same chemical species on the product and as well
on reactant side, e.g. [32]

A + X→ 2X.

The reaction described by the Brusselator reads

A→ X

2X + Y→ 3X

B + X→ Y + D

X→ E.

If we constantly supply A and B and remove D and E these reactions can be mainted
far from equilibrium by eliminating some backreactions. Setting the rate of the
backreactions to zero and, for simplicity, the rate constants to unity, we arrive at
the rate equations [32,33]

ẋ = α + x2y − (β + 1)x (3.28)

ẏ = βx− x2y. (3.29)

x and y are the concentrations of the reactants and α and β describe the supply of
the according chemicals. We interpret this a two-dimensional dynamical system. It
has a unique fixed point at (α, β/α), which is stable for 0 < β ≤ α2 + 1 and then
the global attractor. At β = α2 + 1 the system possesses a Hopf bifurcation, which
gives rise to a stable limit cycle. The limit cycle is the global attractor (without the
fixed point) for β > α2 + 1.

We generally use the parameter set (α, β) = (1, 3). Thus, the fixed point resides
at ϕFP = (1, 3). The phase space with the fixed point and limit cycle are shown in
Fig. 2.1.
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Chapter 4

Numerical concepts and
implementation

Now we want to focus onto numerical aspects and the implementation of the candi-
date ansatz for a NESS potential that is presented here.

4.1 Solving Dynamical Systems

For any further analysis and application of the cycle transformation we need to have
a solution or trajectories of the dynamical system. We especially need their long-
time limit, which are the invariant manifolds. Since analytic solution for non-linear
dynamical systems rarely exist, we need to find the solution by numerical integration.
With the decoupling between diffusivity caused by noise and drift described by
dynamical systems, see Sec. 3.1.1, we are able to use deterministic integrators.

4.1.1 Integration with the Dormand-Prince method

The integration method we mainly use for solving dynamical systems is the so-
called Dormand-Prince method (DOPRI) [34]. This method belongs to the family
of explicit Runge-Kutta methods with order (4)5. It supports stepsize control and
dense output. It is best suited for low tolerances in the range of 10−4 to 10−7 [35].
If we need even lower tolerances the DOPRI8 subroutine is used instead, which is
a DOPRI of order 8 with good results for tolerances between 10−7 to 10−12 [35].
The DOPRI 4(5) method uses six evaluations per step because the last step of the
previous equals to first of the following evaluation. The local error is defined as the
difference between the fourth- and fifth-order approximations and used for stepsize
control. Based on this local error, the stepsize is adjusted to gain results within a
certain accuracy when using dense output. In regions of high curvature a shorter
stepsize is used and vice versa.
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Figure 4.1: Distance ∆p between to successive p̂-intersections of the integrated
limit cycle for the van-der-Pol oscillator (left) and Brusselator (right). We see
that they converge exponentially in the so-called transition time and then reach
a certain level dependent on the time step ∆t. The integration of the Brusselator
for ∆t = 10−5 becomes unstable.

One major advantage of the DOPRI method is the ability to make a fourth order
continuous expansion even without any additional function evaluation [35], the so-
called dense output. That are points between one time-step dt, whose values can be
obtained without any additional computational costs. The can be used to increase
precision of the calculated solution. A description of the used implementation of the
DOPRI method can be found in the appendix of [35].

4.1.2 Invariant Manifolds

In this thesis we solely deal with dynamical systems (see Sec. 3.3), whose invariant
manifolds are a stable limit cycle and enclosed unstable fixed point. The existence
of the enclosed fixed point is ensured by Theorem 2 but we need to find it with
analytical tools. The stable limit cycle is an ω-limit set, see Sec. 2.2.3. Hence to
find the ω-sets we need to do long-time integrations. Unfortunately, for numerical
integration we need some finite integration time and need to verify whether these
are chosen sufficiently long. Therefore we check the convergence of the difference
of two p̂-axis intersection of successive iterations. We expect them to converge to a
constant. If this constant if small enough, we accept the integration time of ω-set
as adequately.

Whether we will end up in the limit cycle or stay in a fixed point is a question
of initial condition. But since the limit cycles are the only attractors, any initial
condition that is not of zero measure, e.g. a fixed point, will end in the limit cycle.

The solutions found are stored for further analysis, calculation of the cycle trans-
formation and for the test of the path independence. See Fig. 2.1 for examples of
the obtained limit cycles and fixed point in phase space.
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4.2 Cycle Families

4.2 Cycle Families

Now with the solutions of the dynamical system at hand, we can perform a cycle
transformation as introduced in Sec. 3.1. For this we need first to choose a connect-
ing axis of the invariant manifolds, the p̂-axis. For simplicity we use an axis parallel
to the x-axis of the phase space on the y-value of the fixed point.

For any further computations, we need to have the trajectory of only one period,
so that any point is only included once. For the fixed point this is easy but the
long-time integrations of the limit cycles need to be reduced to one period. This
is achived by searching the last two intersections of the limit cycles data with the
p̂-paxis and cut-off the rest. Since we normally ‘overshoot’ the p̂-axis, due to finite
time steps, we correct this with linear interpolation onto it.

In what follows we will elaborate ways to define and numerically find different
paths through the cycle space, i.e., a cycle family. As a reminder of Sec. 3.1.1, the
requirements for a cycle family are that they (i) fill the full phase space1 (ii) do not
intersect, and (iii) are smooth. The first two points are required for the p projection
to be unique. Smoothness is required here because we need tangential vector, e.g.
to determine the closing angle β. If the cycles where not smooth everywhere, there
would exist a position, where no derivative and hence tangent vector exist.

We use different techniques to find such families. Those can be categorized
into two categories by their underlying theory, which we call the cycle-constant
crosswind - and homotopy-families.

4.2.1 Cycle-Constant Crosswind operator

In this section we show that one can find a single closing angle β that is constant
along a cycle or equivalently one β for each parameter value p. Hence we show that
β = β(p) and β(p, s) = const. along s.

That such an angle β exists is based on the idea that trajectories of DS(K) are
unique. Especially they cannot cross each other. Hence, applying the crosswind op-
erator with a constant β globally defines, analogously to Sec. 3.1.2, a new dynamical
system DS(L). If we do an integration of DS(L), which starts at p0 on the p̂-axis,
the first intersection with the p̂-axis is unique as well, if it exists. Thus, we can
define a function for any given initial p-value, p0, that gives us the first intersection,
p1, in DS(L). Let’s call this function P . It depends on the starting point p0 (this
dependence is indicated as a subscript) and the angle β used to define DS(L). We
fix one p0 and write

Pp0(β) = p1. (4.1)

Due to uniqueness of the solutions of DS(L), P can be inverted, if p1 exist. This
gives us the angle needed to be applied to reach p1 when starting at p0

β = P−1
p0

(p1). (4.2)

1Or at least the area between the invariant manifolds and sufficiently large domain to see the
extrema of the potential.
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4. Numerical concepts and implementation

Figure 4.2: Limit cycle of the original van-der-Pol oscillator dynamical system,
DS(K), and one cycle of DS(L). Both trajectories start at the same position in
phase space depicted by the red triangle. The streamlines of DS(K) are shown in
light-gray. We see that without the crosswind operator applied, which is DS(K), the
trajectories would spiral towards the limit cycle of DS(K).

To close a trajectory we now evaluate P−1 numerically and find the closing angle
β̄

P−1
p0

(p0) = β̄, (4.3)

i.e., the starting position and the first intersection on the p̂-axis are equal. The
validity of the results can be verified by checking if P−1 vanishes on stable invariant
manifolds.

The numerical evaluation is realized as an inversion problem. For a given p0 the
first intersection is determined for several β values and the root of the equation

∆pp0(β̄) ≡ p0 − p1 = p0 − Pp0(β̄) = 0, (4.4)

is searched. The root at β̄ corresponds to a closed orbit. Thus, we can determine
a map that gives the required crosswind angle β for a given intersection value p,
which we call the β − p-map.

From a computational point of view, this is done by using binary search, which
shows fast convergence towards the root. The basic algorithm can roughly be de-
scribed as:

(i) Evaluate Pp0 for N different values of β ∈ [−π, π],

(ii) determine the β’s closest to the root, β− and β+,

(iii) halve the interval βm = 1
2
(β− + β+) and calculate p1(βm),
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4.2 Cycle Families

(iv) update the boundaries with if p0 − Pp0(βm) < 0, set β+ = βm, else β− = βm.

(v) Repeat steps (iii)-(iv) until given precision ∆βtol ≡ β+ − β− is reached.

Note that we can determine the closing angles β for our sample space on p by parallel
calculations, since they do not depend on each other.

Once β is calculated, we check the correctness by verifying that the limit cycle
is stable on the corresponding p value. Therefore we determine the distance off the
intersections with the p̂-axis by integrating for several hundreds periods, analogously
to Sec. 4.1.2.

4.2.2 Homotopy

Up to this point, we have dealt with crosswinds that are constant along a cycle and
thus depend only on p. We now want to introduce a simple method to find a cycle
family, whose crosswind depends on the position on the cycle. For this purpose we
use homotopy.

If two continuous curves, γ0, γ1 : [a, b] → X, on the same space X can be
“continuously deformed” into each other, these curves are called to be homotopic.
The continuous mapping between those is said a homotopy H. It is defined as [27]

H : [a, b]× [0, 1]→ X, (4.5)

with the time domain t ∈ [a, b] of the two curves and p ∈ [0, 1] the transformation
parameter; the homotopy needs to satisfy

H(t, 0) = γ0(t)∀t,
H(t, 1) = γ1(t)∀t,
H(a, p) = H(b, p)∀p.

Because we solely deal with closed orbits with a finite period time, the trajectories’
time domain can always be normalized with the period time, such that t ∈ [0; 1].
There are infinite many mappings that fulfill the above conditions. We will differ-
entiate between two general concepts: the so-called linear and chained homotopy,
which will be introduced below.

We will use homotopy to transform the (stable) limit cycle into the enclosed
(unstable) fixed point2. Evaluating H at a discrete set of p’s, gives us numerically
a discrete cycle family.

4.2.2.1 Linear Homotopy

We call a homotopy between two curves, γ0 and γ1, linear or straight-line homotopy
if it is given by

H(t, p) = pγ0(t) + (p− 1)γ1(t). (4.6)

2A fixed point is here a curve, which is constant in time.
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4. Numerical concepts and implementation

As the name suggests, the two curves are transformed into each other on a straight
lines between the points of each curve corresponding to equal times.

Equation (4.6) can be numerically implemented straightforwardly once the po-
sition of the fixed point and trajectory of the limit cycle are determined. However,
by setting γ1 to be the fixed point and γ0 the limit cycle, the homotopy would only
transform the fixed point into the limit cycle. In order to see an extremum in the
resulting potential at the stable limit cycle for this cycle family we need to include
values for p ≥ 1. To resolve this issue, the homotopic transformation is carried out
with the following algorithm:

(i) translate the fixed point γ1 into the origin γ′1 = 0,3

(ii) apply the translated homotopy H ′ on the limit cycle γ0

H ′(t, p) = pγ0(t), (4.7)

(iii) translate back into original space.

This algorithm only works if one curve is constant, i.e., a fixed point. We can
think of this transformation as uniformly “shrinking” a limit cycle into an enclosed
fixed point.

When the cycle family is determined, we need to evaluate the closing angle β, i.e.,
the angle between the drift vector of DS(K) and the tangential vector of the cycles of
the family, in order to determine the potential. β can be calculated with Eq. (3.12).
Thus, we need the cycle tangential vectors L(ϕ) and K(ϕ). The latter is directly
obtained from the dynamical system definition and the former by using a small
trick: since we are applying a straight-line homotopy, i.e., a multiplication of the
distance vector between the fixed point and point on the limit cycle, the associated
tangent does not change its direction. Consequently, we can use the corresponding
drift vector of the limit cycle as L. The magnitude of the drift instead changes, but
with |L(ϕ)| = |K(ϕ)| from Eq. (3.11) we can find the correct magnitude at ϕ.

3The primes denote the translated relations.
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Chapter 5

Testing of the NESS potential

In this chapter we describe the results we obtain when we apply the procedure for a
candidate NESS potential, as introduced in Sec. 3.2. We start with the van-der-Pol
oscillator in Sec. 5.1 and then also apply the procedure to the so-called Brusselator
in Sec. 5.2.

5.1 Van-der-Pol Oscillator

We start by evaluating the van-der-Pol oscillator with the nonlinearity parameter
µ fixed, since we are not interested in bifurcation behavior here. As discussed in
Sec. 3.3.1, for µ ∈ ]0, 2[ there exists a single unstable fixed point in the origin
and an otherwise globally attractive limit cycle. The limit cycle represents the
nonequilibrium steady state of the system. The phase space with fixed point and
limit cycle is shown in Fig. 2.1. We have thus two invariant manifolds: the unstable
fixed point at the origin and the limit cycle around as the stable invariant manifold.

For our ansatz of a NESS potential, presented in Sec. 3.2.1, we assume a constant
and isotropic diffusion tensor D, i.e., D = DI with a scalar diffusion constant D and
identity matrix I. Choosing values for the diffusion constant D is challenging since
in equilibrium it is given by the Einstein-Smoluchowski relation, D ∝ kBT , with
Boltzmann factor kB and temperature T . But there is no well-defined temperature
T for nonequilibrium steady states so that leaves the open question of how to choose
D. In practice, we choose D such that the dynamics of DS(K) are not washed up by
the noise, which provides an upper bond, to D and also such that the non-vanishing
transitions among the cycles take place, which provide a lower bond. The used
values are indicated in Fig. 5.3. Note that all quantities used are in dimensionless
form. With that we have completed step (I) of the procedure.

Continuing with step (II) (finding of the invariant manifolds), the fixed point is
found by analytical treatment, see Sec. 2.2.2. We discussed in Sec. 4.1 how the
differential equations of the van-der-Pol oscillator have been numerically integrated.
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5. Testing of the NESS potential

The DOPRI integration method employed here leaves us some choices to make, i.e.,
integration time T and time step ∆t. Hence we need to find parameters that balance
the precision, i.e. time step, integration time limit T and its needed computation
time. In Fig. 4.1 we see the differences of intersections, ∆p, with a p̂-axis1 of
two successive periods of the limit cycle for different ∆t. We see that ∆p decays
exponentially in the transition time and converges to a value depended on ∆t. It
fluctuates around a certain level, which we may call precision. For ∆t = 10−3 the
fluctuations have a periodic shape. To be sure the solutions are not in the transition
time, we use T = 250. Furthermore we use a time step ∆t = 10−3 since it is a good
balance between precision, which is about 10−6 to 10−8, and computation time. We
define the maximal error, up to which we accept a cycle as closed, to the upper limit
of the distances in Fig. 4.1 to ∆pmax = 10−6.

The p̂-axis for step (III), as already mentioned, is for comparability chosen to
be parallel to the x-axis of the phase space. Its origin, p = 0, is the fixed point of
the dynamical system DS(K). This definition for the p̂-axis satisfies the required
properties (unique intersection with every cycle at least in the considered region).
See the bold black line in Fig. 5.1. Since the p-value are arbitrary we choose it to
be the normalized distance between fixed point and limit cycle.

5.1.1 Cycles Families

We now want to perform the cycle transformation, which is step (IV), for the van-
der-Pol oscillator. For that we use the introduced methods, which are the so-called
cycle-constant crosswind and linear homotopy ; see Sec. 4.2 for further details.

Firstly, we consider the cycle-constant crosswind family. In Fig. 5.1 some cycles
of a cycle family created with that method are shown. The family is created with
a constant increment ∆p, i.e., the distance between neighboring cycles is constant.
The limit cycle (red curve) and unstable fixed point (red triangle) are shown as
well. We can observe that cycles can be formed when defining a new dynamical
system L ≡ RβK, where β = const.∀ϕ, R is the crosswind operator (see Sec. 3.1.2)
and K the drift field of the van-der-Pol oscillator. Rβ denotes here a crosswind
operator that only depends on a constant angle β and not on position in phase
space ϕ. Furthermore it can be observed that the shape of the cycles changes
smoothly: around the fixed point (p� 1) the cycles appear of ellitical shape, while
they convert into the shape of the limit cycle of DS(K) for p ≈ 1, and for p > 1
(here depicted for pmax = 1.2) the ‘edges’ become more emphasized. Also a decrease
in distance between neighboring cycles for p > 1 can be seen on the long sides of
the cycles.

By construction of the cycle-constant crosswind operator we have a unique clos-
ing angle β per cycle p. It depends solely on the cycle, given by p. The numerical
results are shown in Fig. 5.2 for a family ranging from p = 0 to 1.2. As abort condi-
tion for the iteration step of the algorithm we allowed a tolerance of ∆βtol = 10−8.

1Here it does not matter which exact axis is used since we only compare difference on the axis.
But for consistency we also used a x-parallel one.

43



5.1 Van-der-Pol Oscillator

Figure 5.1: Cycle families of the van-der-Pol oscillator. Shown are some members
(uniformly spaced on the p̂-axis) generated with the cycle-constant crosswind or β
(top) and linear homotopy (bottom) methods, see Sec. 4.2 for details. The coloring
denotes the corresponding p-value of the cycle. The p̂-axis (black line), limit cycle
(red curve) and fixed point (red triangle) are shown as well. The light-gray lines show
the streamlines of DS(K). The integration are carried out with ∆t = 5× 10−3 and
an allowed tolerance of a closed cycle ∆pmax = 10−4, see Sec. 4.1.2. For comparison
of the families see Sec. 5.1.1.
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5. Testing of the NESS potential

Figure 5.2: The closing angles β are shown as function of p (left) and as function
of s for the linear homotopy family (right). We use the normalized arc length as
position s. The color-coding in the β−s-plot indicates the p value of the correspond-
ing cycle. The red line shows the limit cycle at p = 1. The vertical dashed lines
correspond to the same colored graphs in the β − p plot. The β(p) map (blue dots)
from the cycle-constant β family is shown as well. We see that β(s; p = 1) = 0∀s.
The value β(s; p = 0) is not defined for any s.

One sees that β(p) decreases monotonically, with a maximum at p = 0, i.e., the
fixed point, if β(0) would be defined. Since p = 0 is a fixed point, by definition,
the drift vanished (please note, that this hold for DS(K) as well as DS(L)). Hence
|K| = |L| = 0 and consequently β is not well-defined there, see Eq. (3.12). More-
over, we note that for p→ 0, β does not approaches zero. The closing angle for the
limit cycle vanished, β(1) = 0.

Secondly, we used the linear or straight-line homotopy as of Sec. 4.2.2. Some
members of the obtained cycle family are shown in Fig. 5.1. Again, also the limit
cycle of DS(K) (red curve) and fixed point (red triangle) are depicted. In direct
comparison to the cycle-constant crosswind family one sees that the shape of the
cycles constructed with homotopy is rather preserved.

In contrast to cycle-constant crosswind family the closing angle for the linear
homotopy family depends upon position s on a cycle, i.e., β = β(s; p). In other
words for a given p a unique function β(p) does not exist. Therefore we plot β over
the normalized arc length s of a cycles for better comparison. See Fig. 5.2 for the
results. The color indicates the corresponding p value. The red line shows β for
p = 1, which is the limit cycle and is constantly zero along the limit cycle. We
can observe that β does not changes sign for one p, but in a periodic manner going
back to zero. The periodic behavior is due to the nearly symmetric drift field of the
van-der-Pol oscillator. The zeros are caused by lines of the dynamical system, where
the drift stays parallel, e.g. for the van-der-Pol the q1-axis. The curves in Fig. 5.2
do not cross each other and keep their shape but are scaled for different cycles.

For a better comparison with the β − p-plot of the cycle-constant crosswind
operator we plot β(s#; p) for some fixed s#, which is then only function of p. The
value of s# is arbitrary, so we select a position where β is not identically zero. See
the vertical lines in the β−s-plot in Fig. 5.2 for which values of s# are used and the
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5.2 Brusselator

corresponding β(p) curves in the β − p-plot. We see that they have a comparable
shape as the β(p) from the cycle-constant crosswind. Furthermore they all intersect
in β(1) = 0.

5.1.2 Candidate NESS potential

Finally, we address the last two steps (V) and (VI) and calculate a candidate NESS
potential. We treat these two steps together since the equations in Sec. 3.2 are
already cycle occupation densities c(p). Our aims are to check whether a) the
obtained potential for each family shows the expected properties and b) if the
potential is path independent. The expected properties in a) are that the potential
is maximal (repelling) in the unstable fixed point and minimal (attracting or stable)
on the limit cycle. Moreover the path independence is fulfilled if for different families
the potentials are equal in the extremal points, which are the invariant manifolds.
To summarize, we now want to test if the potential has its maximum in p = 0, the
fixed point, and minimum at p = 1, the limit cycle.

For this test we use the cycles families presented above. The results obtained
from the equation (3.24) are shown in Fig. 5.3 for both families and different diffu-
sion constants D. Firstly, we see if the properties of a) are fulfilled. If we look at
the shape of the potential Φ(p) separately, they have their maximum in the origin,
decrease continuously to their minimum at p = 1, whose value depends upon D.
We note that the potential fulfills this for both families, i.e. for the cycle-constant
crosswind and linear homotopy as well as for different values of D.

To consider point b) we look at Fig. 5.3, where we see the differences of the
potential ∆Φ obtained from different paths, which we define as ∆Φ(p) = Φ1(p) −
Φ2(p), and for the same D.2 We see that they closely match (vanishing difference
∆Φ) for p ≈ 0. For increasing p they diverge, which is caused by the different
paths or families. The differences cross each other at p ≈ 0.7. At the critical point,
at p = 1 where the limit cycle is, the differences gain a local maximum, which is
non-zero. We will discuss this results in Chapter 6.

5.2 Brusselator

In the above Sec. 5.1 we presented our results for the van-der-Pol oscillator of our
candidate ansatz for a NESS potential. To test the robustness of our results with
a different system, we now apply the same ansatz to the so-called Brusselator. For
details on the system the reader is asked to refer to Sec. 3.3.2. We use the Brusselator
with the parameters α = 1 and β = 3 fixed. According to our discussion, the system
then has an unstable fixed point at (q1, q2) = (1, 3) in the phase space and a stable
limit cycle around it.

2 The choice which potential curve is Φ1 or Φ2 does not matter since we compare differences.
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5. Testing of the NESS potential

Figure 5.3: Numerical results for the above shown cycle families for a candidate
NESS potential Φ for different values of the diffusion constant D, see Sec. 3.2.1. β =
const. denotes the cycle-constant crosswind family and β(s; p) the linear homotopy.
To check expected properties and path independence the difference between the
potential for a fixed D are shown as ∆Φ ≡ Φ1 −Φ2. The fixed point is a p = 0 and
the limit cycle at p = 1.

In the following we apply the same procedure as for the van-der-Pol oscillator. In
order to avoid duplication we ask the reader to look for more details on the approach
in the above section.

The numerical integration to obtain the limit cycle was carried out with T = 250
and ∆t = 10−3. One can see in Fig. 4.1 that the stationary behavior then has been
reached. The maximal error is ∆pmax = 2× 10−5.

5.2.1 Cycles Families

Again, we use here the cycle-constant crosswind and linear homotopy cycle families
as two different paths trough the cycle space. For consistency we define in the same
manner the p̂-axis to be parallel to the x-axis at the corresponding value of the fixed
point.

At first, let us have a look at the cycle-constant crosswind family shown in Fig.
5.4. Depicted are some members of the cycles family. The color coding shows the
p value of the cycle. The red line denotes the limit cycle of DS(K) and the red
triangle the fixed point. Notable about the limit cycle is the ‘sharp edge’ with high
curvature in its right most region. We see that the cycles smoothly change their
shape likewise as for the constant crosswind family of the van-der-Pol oscillator. For
low p values around the fixed point the cycles are like ellipses and evolve into the
characteristic shape of the limit cycle of the Brusselator for increasing values of p.
We also see that the distance between the cycles reduces on the ‘short’ sides of the
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5.2 Brusselator

Figure 5.4: Cycle families of the Brusselator. Shown are some members (uniformly
space on the p̂-axis) generated with the cycle-constant crosswind or β (top) and
linear homotopy (bottom) methods, see Sec. 4.2 for details.The coloring denotes the
corresponding p-value of the cycle. The p̂-axis (black line), limit cycle (red curve)
and fixed point (red triangle) are shown as well. The light-gray lines show the
streamlines of DS(K). The integration are carried out with ∆t = 5 × 10−3 and an
allowed tolerance of a closed cycle ∆pmax = 10−4, see Sec. 4.1.2. For comparison of
the families see Sec. 5.2.1.
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5. Testing of the NESS potential

Figure 5.5: The closing angles β are shown as function of p (left) and as function
of s for the linear homotopy family (right). We use the normalized arc length as
position s. The color-coding in the β−s-plot indicates the p value of the correspond-
ing cycle. The red line shows the limit cycle at p = 1. The vertical dashed lines
correspond to the same colored graphs in the β − p plot. The β(p) map (blue dots)
from the cycle-constant β family is shown as well. We see that β(s; p = 1) = 0∀s.
The value β(s; p = 0) is not defined for any s.

cycle for increasing values of p. This increase is caused by the streamlines of the
original Brusselator, which are depicted in light-gray as well.

The cycle-constant closing angles β(p) needed to close the trajectories are shown
in Fig. 5.5. It has a comparable shape to the function obtained for the van-der-Pol
oscillator. It starts for p < 0 with positive values, decreases monotonically and
reaches zero at p = 1.

We continue with the cycle family generated with the linear homotopy method.
This family is shown in Fig. 5.4 with limit cycle and fixed point in red. Again,
by definition of the homotopy cycle generator, the distances for each s are constant
over all cycles p (for uniformly spaced p-values). Also caused by the contraction is
that the ‘edges’ for lower p values (p � 1) are more emphasized and become more
curved.

The dependence on the archlengths of the crosswind angle β(s; p) for this family
is shown in Fig. 5.5. Most notably is that β along each cycle does have a sign change
except for the constantly zero β for the limit cycle (red line). Also at some points
the angles seek zero (without sign change). At low s-values, which correspond to
the rightmost ‘sharp edge,’ the angles gain their greatest absolute value. As one
sees the light-gray streamlines are nearly perpendicular to the cycle. Actually, as
we see in Fig. 5.5, the closing angles are even greater than π

2
. Analogously to the

van-der-Pol the dependence of β upon p is shown for some fixed s#
i in Fig. 5.5. We

see that all curves go through p = 1 at β(1) = 0.

5.2.2 Candidate NESS potential

We now want to address the question whether our results are useful to identify a
NESS potential. We proceed in the same manner as in Sec. 5.1.2. Therefore we
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5.2 Brusselator

Figure 5.6: Numerical results for the above shown cycle families for a candidate
NESS potential Φ for different values of the diffusion constant D, see Sec. 3.2.1. β =
const. denotes the cycle-constant crosswind family and β(s; p) the linear homotopy.
To check expected properties and path independence the difference between the
potential for a fixed D are shown as ∆Φ ≡ Φ1 −Φ2. The fixed point is a p = 0 and
the limit cycle at p = 1.

will check whether, a), the potential properties, and b), the path independence are
fulfilled.

We begin with b). For this purpose we look at the potentials Φ depicted in Fig.
5.6 for different values of D. We see that all potential curves start in the origin at the
fixed point and decrease up to p = 1, where the limit cycle is located. The potentials
of the linear homotopy show the expected minimum at the limit cycle. The ones of
the cycle-constant β family also have a minimum there but not as pronounced as
for the linear homotopy family.

This directly leads us to the check of b), the path independence. As we see the
potential (for one D) have significantly different slopes and hence do not match at
the critical point of the limit cycle. If we look at differences in the potential, ∆Φ,
in Fig. 5.6, we can observe that ∆Φ looks like a negative sine curves with different
amplitudes D. The potential differences vanish before the limit cycle and reach a
maximum at the limit cycle, p = 1.
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Chapter 6

Discussion and Outlook

In order to test a candidate ansatz for a NESS potential we have performed the
cycle decomposition of two dynamical systems, namely the van-der-Pol oscillator
and Brusselator. We constructed dynamical systems DS(L), augmented by isotropic
noise, whose orbits are solely cycles. See the cycle families in Fig. 5.1 and 5.4.

For our purpose we need to determine transition rates v between neighboring
cycles. To find these we introduced the crosswind operator R and the closing angle
β. To create families of cycles we used different methods, i.e., the cycle-constant
crosswind operator and linear homotopy.

We disucssed in Chapter 5 the numerical results of a candidate ansatz for a
NESS potential. We see in Figs. 5.3 and 5.6 that the potentials fulfill the expected
property, that is, that they are extremal on the invariant manifolds. Furthermore,
the potentials are repelling for the unstable fixed point and attracting for the stable
limit cycle. On the other hand we checked whether the potentials are independent
of the path taken in the cycle space, which is what we expect from the condition of
detailed balance of the fluxes between the cycles.

For the van-der-Pol oscillator this can be qualitatively seen as verified, since
compared to the numerical values at the minimum, the potential differences can
be seen as small. For the Brusselator we saw significant differences between the
potentials of the different families at the minimum. Hence, the path independence
cannot be verified. We now want to discuss possible reasons for that differences.

The non-zero differences at the limit cycles could be the result of several assump-
tions and simplifications we made. Since, in this thesis we want to do a first test of
our ansatz we have tried to reduce complexity as much as possible. For example, we
assumed an isotropic diffusion tensor, which may be artificial and not physical but
simplifies the equations. Furthermore, we use arbitrary values for the diffusion con-
stants D, since there is no well-defined temperature in our nonequilibrium setting
to relate to. We note that a large value of D (D ≥ 10−2) numerical instabilities are
observed in the calculation of the potential. These instabilities need to be solved if
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Figure 6.1: Squared closing angle β of the Brusselator for the cycle-constant cross-
wind angle family. This quantity already shows the extremal property of a potential
for invariant manifolds.

one wants to seek a robust definition of a NESS potential. Also there are some nu-
merical challenges for the integration. See for example the cycle-constant crosswind
family of the Brusselator (Fig. 5.4) shows a high density of cycles in some regions,
which leads to instabilities. For further investigations one the Brusselator one would
need to use a integrator, which is capable of high-precision integration.

To conduct further exploration of our ansatz, and give a reliable answer to the
question if our ansatz leads to a NESS potential one should also test it for systems
with different topology. In addition, one should also evaluate more paths through
the cycle space. A possible way of constructing them would be to define a specific
cycle in between the invariant manifolds and use linear homotopy to deform cycles
from the one invariant manifold onto the given cycle and then again use homotopy
to deform the cycles from the given cycle to the other manifold.

Nevertheless, we argue that the realization of the properties expected of a poten-
tial may be evidence for the existence of a potential based on the presented ansatz.
If the equation derived in Sec. 3.2.1 turn out not to be the desired equations for a
NESS potential, we would like to draw the attention to another view of the cross-
wind: we could think of the closing angle as kind of expressing ‘how much force’ is
needed to deform orbits to cycles. If we integrate this ‘force’ or find some expres-
sion F (β) that may gives us a potential, which fulfills the expected properties of a
potential. If we, for example, take the simplest function, which is F (β) = β2, we
immediately find this to be a quantity that gains extrema in the invariant mani-
folds. See for instance Fig. 6.1, where we show the squared closing angle for the
cycle-constant crosswind of the Brusselator.

Another simplifying assumption that we need to address in the future is that
so far we have restricted ourselves to two-dimensional dynamical systems. In two
dimension the Poincaré-Bendixon theorem holds and hence invariant manifold are
simple combinations of fixed points, limit cycles and orbits connecting fixed points.
For higher dimensions this is not true and there can be more complicated structures,
e.g. strange attractors. Furthermore, a single closing angle β would not be sufficient
anymore and hence the crosswind operator needs to be redefined.

52



6. Discussion and Outlook

To summarize, identification of a NESS potential still remains a challenging task.
The presented ansatz shows encouraging, albeit not conclusive, evidence that there
is hope to find a NESS potential based on our ansatz, or a related one.
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Appendix

A.1 Fokker-Planck equation

A.1.1 Fokker-Planck equation in higher dimensions

A Fokker-Planck equation for n variables x = (x1, . . . , xn)T ∈ Rn reads

∂p

∂t
(x, t) =

[
−

n∑
i=1

∂

∂x
Ki(x, t) +

n∑
i,j=1

∂2

∂x2
Dij(x, t)

]
p(x, t), (A.1)

where Ki is the drift vector and Dij the diffusion tensor. See Sec. 2.3.3 for further
reading.

A.1.2 Drift and Diffusion constant from Langevin equation

Consider the Langevin equation for a n-dimensional system with state vector X =
(X1, . . . , Xn), which has the general form

Ẋi = ai(X, t) + bij(X, t)Γj(t), (A.2)

with a the deterministic dynamics, b the noise terms and Γ Gaussian white noise.
This is a n-dimensional SDE, see Eq. (2.30). Note that we use Einsteins’ sum
convention here. This drift K and diffusion constant D are then given by [9]

Ki(X, t) = ai(X, t) + bkj(X, t)∂kbij(X, t) (A.3)

Dij(X, t) = bik(X, t)bjk(X, t). (A.4)

For additive noise, i.e., when b = b(t), the derivative and hence second term in Eq.
(A.3) vanishes and a corresponds to our dynamical system f as in Sec. 2.2. If the
second term does not vanish, we call it noise-induced drift [9].

A.2 Master equation

The transition probability p2 (see Sec. 2.3.1) can be rewritten into transitions per
unit time w(x′|x; t),

p2(x, t+ τ |x′, t) = [1− a(x, t)τ ] δ(x− x′) + w(x|x′; t)τ +O(τ 2), (A.5)

with

a(x′, t) =

∫
w(x′|x; t)dx. (A.6)
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Göttingen, den 14. Februar 2018

(Jens Lucht)


	Introduction
	Equilibrium versus nonequilibrium 

	Theory
	Introduction
	Dynamical Systems
	Basics
	Fixed points
	Periodic solutions
	Invariant sets and manifolds
	Stable and unstable manifolds
	A question of dimensions

	Stochastic Dynamics
	Stochastic Processes
	Markov property

	Langevin equation and stochastic differential equations
	Fokker-Planck equation
	Kramers-Moyal expansion
	Pawula theorem

	Master equation
	Steady state and detailed balance



	Methods and concepts
	Cycle transformation
	Continuous cycle space
	The Crosswind Operator
	Coordinate transformation


	Towards a NESS potential
	Computing the potential

	Dynamical systems
	van-der-Pol Oscillator
	Brusselator


	Numerical concepts and implementation
	Solving Dynamical Systems
	Integration with the Dormand-Prince method
	Invariant Manifolds

	Cycle Families
	Cycle-Constant Crosswind operator
	Homotopy
	Linear Homotopy



	Testing of the NESS potential
	Van-der-Pol Oscillator
	Cycles Families
	Candidate NESS potential

	Brusselator
	Cycles Families
	Candidate NESS potential


	Discussion and Outlook
	Appendix
	Fokker-Planck equation
	Fokker-Planck equation in higher dimensions
	Drift and Diffusion constant from Langevin equation

	Master equation

	Acknowledgements

