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Abstract

Simulating the dynamics of pedestrian flows is important for the design of safe public

buildings and events. Due to the close connection between intelligent behaviour and

pedestrian flows we propose a new simulation model using the causal entropic force

model [1], which hints at a deeper connection between entropy maximization and

intelligent behaviour.

We simulated pedestrians moving in opposite directions within a two-dimensional

channel. These pedestrians are manipulated by the causal entropic force. In this

study we were able to reproduce the phenomenon of lane formation, which is one of

the basic phenomena of pedestrian dynamics.

In our simulations we were able to link the ratio R between the reservoir temper-

ature and desired velocity to the formation of lanes. We also observed an ordering

effect for large reservoir temperatures leading to fewer lanes formed.

We conclude that the causal entropic force acts as “intelligent noise” in our

simulation models. These results give a good indication that the causal entropic

force may be able to accurately model the dynamics of pedestrian flows.
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1 Introduction

Figure 1: Pedestrians walking in different lanes along a corridor [2].

In this thesis we take a look at pedestrian dynamics and associated phenomena. One

of the fundamental phenomena regarding pedestrian dynamics is the segregation into

lanes of bilateral movement, which occurs in a plethora of different fields. We first

describe lane formation and current simulation models thereof. Specifically, we want

to look at the social force model, that simulates pedestrian movement [3]. Afterwards

we introduce a new model proposing a connection between entropy maximization

and intelligence [1].

This model has been used by Hornischer as a basis for some interesting simulations

involving entropically driven particles [4]. As the concept of intelligent movement is

inherently connected to the movement of pedestrians we propose using a variation

of the causal entropic force model to simulate pedestrian flow. For this we will

use Hornischer’s simulation model as a basis and implement some of the aspects

from the social force model to take a first step into simulating pedestrian movement

through entropy maximization. Our goal in this thesis is to reproduce and analyse

lane formation as encountered in pedestrian dynamics.
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2 Lane formation

Lane formation is a state of movement where different lanes of uniform direction

of movement form (see Fig. 1 & 2). It is a phenomenon that is associated with

self-organization and optimization of movement [5]. We first list different contexts

in which lane formation is observed and then take a look at the optimization of

movement through lane formation.

2.1 Lane formation in different contexts

Lane formation is a widely analysed phenomenon and is encountered in a plethora

of different contexts. It is observed in the behaviour of army ants [6], pedestrian

flow or oppositely charged colloids [7, 8], as well as ionic conductors in an electric

field [9]. Here we want to study lane formation as an emergent behaviour with and

without an external field.

In a system of oppositely charged colloids [7, 8] lane formation can emerge as a

consequence of an external electric field. The colloids can be viewed as two types of

Brownian colloidal particles that interact with each other according to an effective,

screened Coulomb interaction. In that work it was concluded that lane formation

was a very general process. It was observed for oscillating electric fields and both

in two and three spatial dimensions [7, 8].

Lane formation was also observed in the movement of army ants. Army ants

secrete pheromones during their motion that thus form long chemical trails which

are densely populated with ants. These ants were simulated [6] to follow the chemical

trails of the other ants similarly to chemotaxis. That model mostly explored the

effect of turning rates and local perception on traffic flows. In simulations bilateral

movement as well as lane formation was observed and analysed. It was found that

the behaviour of army ants exhibits optimal parameters, which leads to maximized

traffic flow [6].

2.2 Lane formation as optimizing state

Lane formation is a non-trivial aspect of self-organized movement. Let us consider a

set of particles with opposite preferred direction of movement and repulsive interac-

tion between particles. Consider the position xi(t) of particle i at time t , its velocity

vi(t), v0 its target speed and êi its preferred direction of motion. The equation of
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Figure 2: Particles of opposite preferred direction of movement showing lane forma-
tion [5]. Different colors represent different moving directions.

motion can then be written quite generally as

vi = v0êi +
∑
j(6=i)

fij(dij(t)), (1)

where fij is the repulsive interaction between different particles. We also assume

that this interaction decreases monotonically with increasing distance dij between

both particles. We can now quantify the efficiency as

E =
〈〈vi · êi〉i〉t

v0
≤ 1, (2)

which describes the average fraction of the desired velocity with which the particle

approaches its destination. An efficiency close to 1 will thus denote a state of

movement in most particles approach their destinations with their target speed,

while an efficiency close to 0 denotes a state of movement where particles do not

approach their destination at all. Lane formation maximizes this quantity. The

optimization of efficiency also implies the minimization of interaction intensity.〈〈
−
∑

i,j(j 6=i)

fij · êi
〉
i

〉
t

= v0 − 〈〈vi · ei〉i〉t = v0(1− E). (3)

Particles moving with opposite directions in the same lane will collide very fre-

quently, and thus contribute with a large interaction energy. Lane formation mini-

mizes the interaction rate and thus is, in a system of opposite preferred directions,

an optimal self-organized steady state (see [3, 5] for a derivation).
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3 Pedestrian flows

Before we look at lane formation in the context of pedestrian flow we want to take

a look at the general phenomenology observed in pedestrian flow. Here we want to

separate normal pedestrian behaviour from panic behaviour.

3.1 Normal behaviour

Figure 3: Sketch of pedestrians walking in a bottleneck, showing zipper effect [10].
.

In a study of pedestrian behaviour at bottlenecks with unilateral flow, Hoogendorn

and Daamen [11] found that pedestrians, under saturated conditions, form layers

dynamically. These layers have lateral distances between them that are lower than

the average shoulder width of pedestrians. This leads to an effect coined the “zipper”

effect (see Fig. 3). The headway distance between pedestrians, the distance between

one pedestrian and the pedestrian in front of it, was observed to fluctuate around

a constant value throughout the entire layer. These findings lead to the conclusion

that layers merge together and move at the same speed [11].

At intermediate and high densities pedestrian crowds behave very similarly to

gases, fluids and granular flows. This similarity is apparent in different phenomena of

pedestrian movement. For example, Helbing likens the tracks of pedestrians in snow

to streamlines of fluids [12]. At the interface between opposite walking directions

phenomena similar to “viscous fingering” is observed [13]. Segregation into lanes

of uniform walking directions occurs similarly to phenomena of segregation and

stratification in granular matter. Another similarity is the oscillation of passing

direction at bottlenecks [14], which can be compared to the “saline oscillator” [15].

For a more detailed comparison between the behaviour of pedestrian crowds and

gases, fluids and granular flows see [12].

Other phenomena observed in pedestrian flow in non-panic situations include:
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• Pedestrians tend to take the fastest route, which does not necessarily have

to be the shortest. Pedestrians also seem to minimize the effort associated

with taking a certain path [16]. Their ways can be accurately approximated

through polygons [3].

• A pedestrians desired speed corresponds to the least energy consuming walking

speed. The desired walking speed is Gaussian distributed with an average of

1.34m/s and a standard deviation of 0.26m/s [17, 18].

• The distance between pedestrians and obstacles, such as other pedestrians or

walls, decreases with increasing density and higher desired walking speed [19].

• Pedestrians at rest are uniformly distributed over the entire available area,

with pedestrian density increasing around “attractive” places, such as street

vendors. Acquainted individuals may form groups, which in turn behave like

a single pedestrian. The size of such groups are Poisson distributed [20, 21].

3.2 Panic situations

Panic situations usually occur at mass gatherings. While sometimes the reason for

panic to erupt can be apparent, as in the case of a fire or other life threatening

situations [22, 23], panics seemingly also occur for no discernible reason at all. The

resulting stampedes often lead to people being crushed or trampled down. While

experiments involving panic behaviour are difficult because of the obvious ethical

concerns, the analysis of panic disasters has yielded some information on the be-

haviour of panicking crowds. We now take a look at the observed behaviour of

pedestrians in panic and escape situations.

• During panic situations individual pedestrians try to move faster and overtake

others [24].

• Traversing bottlenecks becomes increasingly uncoordinated and jams build up

at bottlenecks and, in particular, exits [25]. These jams at exits can lead

to clogging and arching, making the exits nearly intraversable [24]. This be-

haviour is similar to the flow of rough granular matter through small openings

[12].

• The interaction in crowds leads to pressure buildups, which lead to extreme

pressures of up to 4500 Newtons per meter [23, 26].

• Pedestrians in panic situations will adopt herding behaviour, and overlook or

inefficiently use alternative exits [22].

7



3.3 Social force model

To simulate pedestrian dynamics Helbing introduced the social force model for

pedestrian dynamics [3, 14]. In this model it is assumed that every pedestrian

wants to move with a desired speed v0i in a desired direction e0i . If the actual speed

of the pedestrian deviates from the desired speed, the pedestrian will experience a

restoring force with relaxation time τ

F 0
i =

1

τ
(v0i e

0
i − vi). (4)

Here 1
τ
v0i e

0
i can be seen as an acceleration term while 1

τ
vi is equivalent to a friction

term.

The social force model also assumes a repulsive force between two pedestrians i

and j that becomes increasingly large as they approach each other.

f soci,j (t) = Ai exp[(rij − dij)/Bi]nij

(
λi + (1− λi)

1 + cos(φij)

2

)
, (5)

where Ai the interaction strength, Bi the range of the repulsive force, dij the distance

between the centers of mass of pedestrians i and j, and rij the sum of their radii. nij

denotes the normalized connection vector pointing from pedestrian i to pedestrian

j. Setting λi < 1 leads to the anisotropic behaviour of pedestrian interaction, i.e.

the interaction with the front neighbour of the pedestrian has a higher impact on its

behaviour. The social force model includes time-dependent attractive interactions

towards special ’attractions’, and acquainted individuals. For simplicity these effects

as well as anisotropic behaviour were dropped in [3].

For panicking individuals, physical interaction also plays a role and a “body-

force” counteracting compression as well as a “sliding friction force” for tangential

friction is introduced

f phij = kΘ(rij − dij)nij + κΘ(rij − dij)∆vtjitij, (6)

where Θ(z) = z for z ≥ 0 and 0 otherwise, tij denotes the tangential direction while

∆vtji is the tangential velocity. κ and k represent large constants to reasonably scale

the forces.
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3.3.1 Phenomenology of the social force model

Figure 4: Lane formation as observed in [3]. Different colors represent different
moving directions.

The social force model has reproduced the empirically observed phenomenon of lane

formation (see fig. 4). In this simulation we see the “zipper” effect observed in

[11], as the outer lanes restrict the available space and form a bottleneck for the

center layer. These simulations also observed a “noise-induced ordering”, which in-

creases segregation of lanes with medium noise amplitude in contrast to small noise

amplitude. Further increasing of the noise amplitude leads to a blocking phase tran-

sition that Helbing coins “freezing by heating” [27]. By increasing the fluctuation

strength, which the author suggests as equivalent to temperature, at sufficiently

high densities, lanes were broken up and a phase transition was observed (see figure

5). In contrast to the expected disordered state, equivalent to a “gaseous” state, the

system assumed a locked state, similar to a solid. This “freezing by heating” effect

was attributed by Helbing to the driving term as well as the dissipative friction.

Figure 5: Blocking transition induced by noise [3]. Different colors represent different
moving directions.

Simulations of bilateral movement at bottlenecks show the oscillation of the

moving direction in non-panic situations. A pedestrian that moves through the bot-

tleneck leads to pedestrians with the same walking direction to easily pass through.

If, because of a fluctuation, the number of pedestrians on one side drops, the re-

sulting pressure also drops, which allows particles moving in the opposite walking

direction to get a chance at occupying the passage (see fig.6). Dynamics at inter-

sections with more than two preferred directions of movement hold short-lived and

unstable patterns of motion [3, 28].

In panic situations both the level of fluctuations and the desired velocity increase

[24]. It is also assumed that panicking individuals are more likely to do what other
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Figure 6: Oscillation of passing direction at bottleneck [3]. Different colors represent
different moving directions.

people do. An additional herding interaction was implemented in [3] to simulate

this effect.

The simulations have also shown clogging as well as arching for desired velocities

over 1.5 m/s, which is consistent with observations. This leads to the “faster is

slower” effect. Since a higher desired velocity leads to clogging and arching in

certain conditions, it can lead to a lower average speed. This is highly dependent on

the friction parameter κ. The “faster is slower” effect sets in through a combination

of clogging due to bottlenecks and strong friction. Helbing proposes that this can be

minimized by avoiding bottlenecks in construction [3, 28]. He further advises that

the widening of escape routes will lead to a similar effect, with a stronger effect in

case of narrow corridors, high or different desired velocities and high densities.

Helbing also proposes a change in velocity dependent on a nervousness parame-

ter to simulate panics without a definite source. Here small fluctuations in velocity

can lead to a feedback loop causing high desired velocities, that thus create panic.

Further adjustments to the model have been made to account for different situa-

tions. One would be the evacuation of a smoke filled room, where exits have to be

found first. Here Helbing proposes a preferred direction dependent on those of other

pedestrians around it and a nervousness factor.

In conclusion the model reproduces many different phenomena of pedestrian

dynamics. For numerous panic situations the model has to be expanded and there

is a large amount of different forces acting on the pedestrian. We now want discuss

the concept of causal entropic force to motivate a simulation model based on entropy

maximization.
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4 Causal entropic force

Figure 7: Light-cone representing phase space with causal entropic force driving the
system away from the restricted area [4].

The concept of entropy maximization has been used in different fields such as cos-

mology, geophysics and computer science [29–33]. Research in these fields has hinted

at a possible connection between entropy maximization and intelligence. A first step

towards a formal physical relationship between these two has been proposed in a

paper by Wissner-Gross and Freer [1]. Starting from the general entropic force

they proposed a system that does not maximize immediate entropy production, but

rather maximize entropy production between the present state and a future time

horizon.

Figure 7 shows the different states a system can reach within the time interval

[0, τ ]. If a part of this phase space is restricted, the causal entropic force will

maximize the amount of states the system can evolve into. Consequently the causal

entropic force will push the system away from restricted states.
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4.1 Formal derivation

We start from a classical entropic force F in a canonical ensemble

F (X0) = T∇XS(X)|X0 , (7)

where T is the reservoir temperature, S(X) the entropy associated with macrostate

X and the current macrostate X0. Instead of maximizing the instantaneous en-

tropy production Wissner-Gross and Freer [1] associated the causal path entropy of

macrostate X with all possible phase-space paths in a finite time interval [0, τ ].

The causal path entropy Sc of macrostate X can then be written as the path

integral

Sc(X, τ) ≡ −kB
∫
X(t)

Pr(χτ |x(0)) lnPr(χτ |x(0))Dχτ (8)

with Pr(χτ |x(0)) is the conditional probability for the system to evolve through

path χτ given the initial system state x(0). This probability equates the integral

over all possible paths taken by the open system’s environment during the time

interval [0, τ ]

Pr(χτ |x(0)) =

∫
ξ

Pr(ξτ |x(0))Dξ. (9)

The resulting causal entropic force is then

Fc(X0, τ) = Tc∇XSc(X, τ)|X0 (10)

with causal path temperature Tc, which determines the tendency of the system to

evolve to a macrostate of higher causal entropy. Assuming position coordinates

qj(0), we can rewrite this as

F (X0, τ) = Tc
∂Sc(X0, τ)

∂qj(0)
. (11)

Using equation 8 this comes to

F (X0, τ) = −Tckb
∫
∂Pr(χτ |x(0))

∂qj(0)
ln[Pr(χτ |x(0))]Dχτ . (12)

We assume the environment of our system to be a heat reservoir with reservoir

temperature Tr, which rethermalizes the forced degrees of freedom at a timescale ε.

This rethermalization is assumed to happen via nonlinear Langevin dynamics with
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temporally discretized additive thermal noise as well as friction terms (compare [1]).

Under this assumption the system is deterministic within the interval [t, t + ε] and

thus we can rewrite any non-zero conditional path probability as the product of the

probabilities of its intervals

Pr(χτ |x(0)) =

[
N∏
n=1

Pr(x(tn+1)|x(tn))

]
Pr(χε|x(0)). (13)

Where tn = nε and N = τ/ε. We can write the gradient as

∂Pr(χτ |x(0))

∂qj(0)
=

[
N∏
n=1

Pr(x(tn+1)|x(tn))

]
∂Pr(χε|x(0))

∂qj(0)
. (14)

We now choose ε to be smaller than any kinetic or spatial variation of internal system

forces h(x)

ε�

√
2mj

|∇q(0)hj(x(0))|
, (15)

ε�

√
1

|∇p(0)hj(x(0))|
. (16)

Therefore we can Taylor expand qj(ε)

qj(ε) = qj(0) +
pj(0)

2mj

ε+
fj(0) + hj(0)

2mj

ε2, (17)

with fj(t) as a random Gaussian force.

〈fj(t)〉 = 0 (18)

〈fj(t)fj′(t′)〉 =
mjkBTr
ε2

δijδ(t− t′) (19)

From this we can conclude that Pr(χε|x(0)) is Gaussian in qj(ε) and

Pr(χε|x(0)) ∼ exp

(
−1

2

(qj(ε)− 〈qj(ε)〉)2

〈q2j (ε)〉 − 〈qj(ε)〉2

)
(20)

=
(qj(ε)− 〈qj(ε)〉)2

〈q2j (ε)〉 − 〈qj(ε)〉2
Pr(χε|x(0)) (21)

=
2fj(0)

kBTr
Pr(χε|x(0)) (22)
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Using this we can simplify equation (12) to

F (X0, τ) = −2Tc
Tr

∫
fj(0)Pr(χτ |x(0)) ln[Pr(χτ |x(0))]Dχτ . (23)

For a more detailed derivation see [1, 4].

4.2 Simulation results

Wissner-Gross and Freer used this concept to test the causal entropic force model

in four different simple scenarios [1]. They simulated a particle in a 2 dimensional

box and let the 2 degrees of freedom evolve via the causal entropic force. This has

lead the particle to move to the center of the box.

In similar fashion, an inverted pendulum is manipulated through a causal entropy

driven cart. The simulation has shown that the causally entropy driven cart will

manipulate the pendulum to an upright position and attempt to balance it there,

as this is the position with maximum causal entropy.

For a third example a tool-use puzzle, based on puzzles used for animals, was

used. Here a disk subject to causal entropic forcing used a disk simulating a tool

to free a third object from an enclosure too narrow to reach. A fourth system has

shown social cooperation in two socially forced agents freeing a bigger disk to allow

direct manipulation. These last two simulations have shown similarities to cognitive

behaviour, showing a good first step in the connection between intelligent behaviour

and entropy maximization.
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5 Simulation model

As a basis to our simulations we take Hornischer’s simulation model [4] and try

to apply it to pedestrian dynamics. As described by Helbing in [3] a model that

simulates pedestrian dynamics should always reproduce the phenomenon of lane

formation in order to be realistic. For this we take the concepts of desired velocity

v0 and direction e0 from the social force model and apply them to Hornischer’s

model of entropically driven particles. We take the friction and acceleration term

from the social force model and replace all social force terms with the causal entropic

force.

5.1 Calculation of the causal entropic force

To calculate the causal entropic force we need to sample the probability Pr(χτ |x(0)).

We use M Brownian trajectories starting from the current state x0 with a finite time

horizon of τ . We then assign a phase space volume Ωi to each trajectory

Ωi ∝
1

Pr(χτi|x(0))
. (24)

Normalization then implies

M∑
i

ΩiPr(χτi|x(0)) = 1, (25)

Ωi =
1

MPr(χτi|x(0))
(26)

Using this in Eq. 23 :

Fj(X0, τ) = −2Tc
Tr

∫
fj(0)Pr(χτ |x(0)) ln[Pr(χτ |x(0))]Dχτ (27)

≈ −2Tc
Tr
〈
∑
i

fij(0)
1

MΩi

ln

(
1

MΩi

)
Ωi〉 (28)

=
2Tc
TrM

〈
∑
i

fij(0) ln(MΩi)〉 (29)

=
2Tc
TrM

〈
∑
i

fij(0) ln(Ωi)〉 (30)
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Adding a vanishing term will yield

Fj(X0, τ) =
2Tc
TrM

〈
∑
i

fij(0) ln

(
Ωi

〈Ωi′〉

)
〉. (31)

As in Hornischer’s simulations [4] we choose the radius of gyration to quantify the

phase space volume Ωi:

Ri =
1

M

M∑
k=1

(rk − rmean)2 (32)

With M = τ
δt

as the number of steps per sampling path.

Figure 8: Schematic of trajectory including first step (blue ellipse) and radius of
gyration used as weight for Ωi (red ellipse) [4].

A trajectory closer to an obstacle or restricted phase space will be more likely

to fold and thus be statistically smaller, while a trajectory in open space will more

likely be elongated. This leads to a good quantification of the phase space volume,

given a large enough number of sampling paths. The force at time t = 0 fij for the

trajectory is given through the first step of the trajectory.
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5.1.1 Implementation
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Figure 9: Example for the trajectory horizon with no desired velocity v0. Parame-
ters: 2500 trajectories, Tr = 0.0001, v0 = 0.00, τ = 2.5, δt = 0.1.

The Brownian sample trajectories evolve according to the Langevin equation:

mv̇ = ξ(t) + h(x) (33)

with mass m = 1, h(x) representing external forces, such as walls or other pedes-

trians, and ξ as Gaussian noise. The first step as well as the radius of gyration of

every trajectory is used to calculate the causal entropic force. The parameters of τ

and δt define the total number of timesteps. Here we have to choose the parameters

carefully, as with too large a number of steps the first step loses influence over the

trajectory and for significant results a very large number of sample trajectories is

needed [4]. An example of those trajectories and the resulting horizon can be seen

in figure 9. It is also noted that a trajectory colliding with a particle will treat

this particle like a wall and reflect off the particle. During the simulation of sample

trajectories other particles are assumed to move at their current speed in the same

direction they are currently moving in. Thus the trajectories will not collide with

particles moving away from them at a higher speed than themselves.
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5.2 Equations of motion
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Figure 10: Example for the trajectory horizon with desired velocity v0. Parameters:
2500 trajectories, Tr = 0.0001, v0 = 3.2d/s, τ = 2.5, δt = 0.1.

Our entropically driven particles obey the following equation of motion:

mv̇ = FC(t) + h(t) +
v0e0 − v
trel

(34)

with causal entropic force FC(t) and external forces h(t). We included the driving

term 1
trel
v0e0 and the dissipative friction term −1

trel
v from the social force model to

simulate the pedestrians tendency to reach the desired velocity v0 as well as direction

of motion e0 within a certain time frame trel. Once pedestrians get close enough to

touch each other they experience a repulsive force through a harmonic force Hij

Hij = −Ku(rij − d)n̂ij, (35)

with the diameter of pedestrians d, the distance between pedestrian i and pedestrian

j, rij and the normalized connection vector between both pedestrians nij. The

function u(z) is 0, if its argument is below 0 and equals its argument if it is above

0. This force is not present in the virtual trajectories used to calculate the causal

entropic force, as pedestrians will bounce off each other in that case. The resulting

direction of movement and desired velocity also influence the trajectory horizon, as

pedestrians tend to have a large velocity in comparison to the Brownian noise used

to calculate the causal entropic force.

Instead of a nearly circular envelop of the sampling trajectories as in figure 9

this results in a cone shaped horizon as in figure 10. This results in an anisotropic
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pedestrian interaction similar to the consequences of parameter λi < 1 in the social

force model (section 3.3).

5.2.1 Interaction range

We can now take a closer look at the interaction range that the trajectory horizon

generates. Assuming our pedestrian moves at desired velocity v0 it will keep moving

in the same direction with that velocity along the virtual trajectories. This will

result in a total distance of sv = τv0. The Brownian trajectories themselves have

an average distance from their starting point

st = σ
√
τdt, (36)

with σ = mkBTr
dt2

. The mass is set to m = 1 and the Boltzmann constant is set to

kB = 1. Assuming the Brownian trajectory has a net displacement from its start

and moves along the direction of movement the pedestrian has, we can write the

displacement as

s = τv0 +
TrkB
dt2

√
dtτ . (37)

This gives us an indicator of the interaction range. It is noted, though, that the

displacement of the Brownian trajectories can be larger, thus the real interaction

range will be larger than s.
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5.2.2 Parameter influences and boundary conditions

First we define the diameter d of one pedestrian as our standard unit of length. With

this all our spacial parameters will be given in units of d. In our simulation we want

to reproduce lane formation and thus choose our boundary conditions accordingly.

We simulate pedestrians in a two-dimensional channel of length 40d and height 20d.

With hard walls in the y-direction and periodic boundary conditions in x-direction.

Every simulated pedestrian is randomly assigned with a desired direction of motion

along the x-axis, either e0i = ex or e0i = −ex, with equal probability. Thus we

create bilateral movement of pedestrians inside a channel, which should result in

lane formation, given the right density, reservoir temperature and desired velocity.

In table 1 we collect all the simulation parameters and their physical significance.

N

Pedestrian movement is strongly dependent on the den-
sity and the amount of simulated pedestriansN . Assum-
ing our boundary conditions of height 20d and length
40d the density is ρ = N

800d2
.

Tr

Increasing the reservoir temperature Tr increases the
step size of sampling trajectories. This results in a larger
interaction range as well as a higher total causal entropic
force.

Tc/Tr

Inspecting eq.31 it is apparent that this parameter lin-
early affects the magnitude of the causal entropic force.
In our simulations this value is at a constant Tc/Tr = 5.

τ and
δt

These parameters influence the amount of steps taken
in a sampling trajectory, as previously discussed. We
want to define our standard unit of time here as pseu-
doseconds s. From here on τ = 2.5s and δt = 0.1s for a
total of 25 steps for each trajectory.

tmax

The total runtime of a simulation. From here on we will
set this parameter to tmax = 100s for a total of 1000 time
steps. Once the system reaches a stable configuration
this parameter does not have a significant influence on
the simulation.

Ntraj

The amount of virtual trajectories used to calculate
the causal entropic force. This parameter needs to be
sufficiently high, so we can assume that enough paths
through phase space were taken and we get a good sta-
tistical approximation of the causal entropic force. It is
set to Ntraj = 2500 for all simulations.

Table 1: Table of simulation parameters.
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6 Results

6.1 Order parameter

To quantify lane formation it is necessary to introduce the concept of an order

parameter [3, 7, 8]. The definition of this parameter varies over different models.

We first define a time and space dependent parameter: the local order parameter

Θ(y, t), which we use to illustrate lanes in our plots and analyse the formation

of lanes. Afterwards, we will define an averaged order parameter, the global order

parameter Θ, to compare different parameters and their influence on lane formation.

For the first parameter we want to look at steady-state, well formed lanes; for this

we consider all pedestrians with y-coordinates in an interval [y, y + δy]. We define

the number of pedestrians with preferred direction in the positive x-direction as

n+(y, t), those with preferred direction in negative x-direction as n−(y, t). Now we

can define the local order parameter as

θ(y, t) ≡ n+(y, t)− n−(y, t)

n+(y, t) + n−(y, t)
. (38)

We immediately see the boundaries for this value as −1 ≤ θ(y, t) ≤ 1. A value of

1 indicates a lane with preferred direction in positive x-direction, while a value of

−1 indicates a lane with an opposite preferred direction. Values around 0 indicate

a mixed state and thus a state without lanes. Plotting its dependence on t and y

gives us an immediate visualisation of our lanes.

We now define the global order parameter

Θ =

〈
〈|n+(y, t)− n−(y, t)|〉y

Ntotal

〉
t

. (39)

Here we average over time t after a transient of tmax/2. An order parameter 0 ≤
Θ ≤ 1 close to 0 denotes a completely mixed state without lane formation, while a

global order parameter of 1 indicates a state of lane formation. This gives us a good

indicator of lane formation for an entire simulation, which allows us to compare

different parameter values.
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6.2 Lane formation
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Figure 11: Global order parameter Θ with no causal entropic force for different
desired velocities v0 and different amounts of simulated pedestrians N .

First of all, we take a look at simulations with the causal entropic force turned

off. We can use this as a baseline to compare values of the global order parameter Θ.

In figure 11 we see the global order parameter Θ for different amounts of pedestrians

N and different desired velocities v0. We observe that Θ is close to 1 for the entire

range of parameters shown in the plot. The order parameter increases slightly from

v0 = 0.8d/s to v0 = 1.6d/s, where it approaches unity for all N . With values

consistently above Θ > 0.9, Θ is still firmly in the range, where we expect lane

formation to occur. This shows us that lane formation is achieved even without the

causal entropic force, purely through the driving and friction term, as well as the

harmonic potential between pedestrians.

Taking a closer look at snapshots of our simulations (see appendix figure 23) we

find a large number of lanes with small width. Plotting the local order parameter

should give us a better look at the formation and time evolution of these lanes.

In figure 24 in the appendix we show the local order parameter for different y

intervals and timesteps. Here we see the formation of stable lanes with uniform

walking direction. We observe that for a higher velocity the systems reach stable
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configurations much faster. Once the configuration reaches a stable state, it does

not fluctuate and there are no lanes moving up or down in the channel. Plotting the
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Figure 12: Average number of lanes formed for different desired velocities v0 and dif-
ferent amounts of simulated pedestrians N without causal entropic force. Averaged
over 30 simulations.

average number of lanes for different values of N and v0 will give us a baseline to

compare with the entropically driven simulations (see figure 12). Here we see that the

average amount of lanes formed seems to be dependent both on the desired velocity

v0 as well as the amount of simulated pedestrians N . For velocities v0 ≤ 2d/s the

average amount of lanes formed is about 9 to 10. With larger desired velocities the

number of lanes formed increases, with N = 100 simulated pedestrians forming the

most lanes with almost 15 lanes on average. For all other N the number of lanes is

within 0.5 to 1 of the number of lanes formed by simulations with N 6= 100, with a

maximum difference of 1.13 between N = 150 and N = 300 simulated pedestrians

at v0 = 2.8d/s. From here on we want to take a closer look at N = 150 and N = 250

pedestrians. It is also noted that the difference in lanes formed between these two

never exceeds 1.
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Figure 13: Global order parameter with causal entropic force for different desired
velocities v0 and different reservoir temperatures Tr. Tc/Tr = 5, N = 150, averaged
over 10 simulations.

In figure 13 we see the global order parameter for entropically driven simulations

with N = 150 pedestrians. We observe the same general behaviour as in the case

without the causal entropic force. The order parameter does not drop below 0.9

again, which indicates lane formation. We also observe a steep increase in order

parameter for lower desired velocities v0 with Tr = 0.00007, with an order parameter

of Θ = 0.97 compared to the Θ ≈ 0.9 at Tr = 0.00004 and Tr = 0.0001.

In figure 14, where we set N = 250, we observe a significantly lower order

parameter Θ for v0 < 1.2d/s with the highest reservoir temperature Tr = 0.0001

leading to the lowest order parameter. A lower reservoir temperature seems to

lead to a higher order parameter for this velocity interval. For intermediate desired

velocities the order parameter approaches unity as observed before in the other

simulations. This further indicates lane formation.
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Figure 14: Global order parameter with causal entropic force for different desired
velocities v0 and different reservoir temperatures Tr. Tc/Tr = 5, N = 250, averaged
over 10 simulations.

We again want to take a look at the local order parameter to confirm the forma-

tion of lanes and check the time evolution for simulations with the causal entropic

force (see figure 25 in the appendix). We first look at the lowest order parameter en-

countered at N = 250, Tr = 0.0001 and v0 = 0.8d/s. Here we observe the formation

of 8 lanes of uniform walking direction. These lanes start forming very quickly at

around 200 timesteps, while showing some instabilities until around 500 timesteps,

with minor instabilities for the entirety of the simulation. The time until the lanes

are formed is comparable to the simulations without the causal entropic force, while

the observed instabilities are phenomena that did not occur at all in the simulations

without the causal entropic force. For a larger desired velocity v0 = 3.2d/s we also

observe the same minor instabilities, while the general formation of the lanes seems

to be at a comparable speed to the simulations without the causal entropic force.

This seems to be a recurring phenomenon over all N , Tr and v0 and these minor

instabilities do not seem to break up lanes or hinder the formation of lanes. To

further compare these simulations to those without the causal entropic force, we

plot the average number of lanes for different amounts of pedestrians N as well as

desired velocities v0 and reservoir temperatures Tr(see figures 15, 16).

25



The average number of lanes formed for N = 150 pedestrians is comparable to

the average number of lanes formed for the simulations without the causal entropic

force and the same velocity dependence is observed. The average number of lanes

formed for the simulations without the causal entropic force seem to be in the margin

of error of the amount of lanes formed for both N = 150 and N = 250 pedestrians.
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Figure 15: Average number of lanes formed for different desired velocities v0 and
different reservoir temperatures Tr. Tc/Tr = 5, N = 150, averaged over 10 simula-
tions.
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Figure 16: Average number of lanes formed for different desired velocities v0 and
different reservoir temperatures Tr. Tc/Tr = 5, N = 250, averaged over 10 simula-
tions.

In the social force model a noise induced ordering effect would lead to a decrease

in the amount of lanes formed [3]. The local order parameter plots have shown

us that there are minor instabilities caused by the causal entropic force. To check

whether these are similar in effect to the noise in the social force model, we increase

the reservoir temperatures drastically in the following simulations. If the causal

entropic force plays a similar role to the noise in the social force model we may

observe an effect similar to the “freezing by heating” effect encountered in the social

force model, leading to a blocking transition.
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Figure 17: Global order parameter Θ for different desired velocities v0 and different
larger reservoir temperatures Tr. Tc/Tr = 5, N = 150, averaged over 10 simulations.

For larger reservoir temperatures Tr and N = 150 we observe a significant drop

in order parameter for low velocities v0 (see figure 17). Here v0 < 1d/s leads to order

parameters below 0.7 with all reservoir temperatures except Tr = 0.0002. For all

reservoir temperatures an increase in v0 leads to a larger order parameter, with Tr <

0.0004 approaching 1. Reservoir temperature Tr = 0.0004 reaches order parameters

between 0.8 and 0.9, while Tr = 0.0005 does not exceed an order parameter of 0.8.

We take a look at the local order parameter for Tr = 0.0005 to analyse whether lane

formation occurs for these parameters (see appendix figure 26).

We observe that, while there do seem to be lanes, they are highly unstable.

We can, however, not observe a blocking transition here similar to the “freezing by

heating” effect. We observe that a velocity of v0 = 1.6d/s leads to similar results,

with the formation of highly unstable lanes. Lowering the velocity even further to

v0 = 0.8d/s results in an essentially disordered state without any lanes. A reservoir

temperature of Tr = 0.0004 at v0 = 3.2d/s seems to be right at the edge of the

formation of stable lanes, with semi-stable lanes. These lanes however, compared

to the lanes for the simulations with Tr = 0.0005, do not seem to split and the

instabilities are confined to the edges of the lanes. One can argue that this is a

sufficiently stable configuration as the amount of lanes formed does not change after
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Figure 18: Global order parameter Θ for different desired velocities v0 and different
larger reservoir temperatures Tr. Tc/Tr = 5, N = 250, averaged over 10 simulations.

a transient. For v0 = 0.8d/s we do observe a disordered state, however this does

not equate to a blocking transition as in the “freezing by heating” effect, as we still

have movement into the preferred direction in our system.

For N = 250 simulated pedestrians (see figure 18) we observe the same general

velocity dependence again, however for the higher density we observed a much larger

global order parameter at all velocities for all reservoir temperatures. With Tr =

0.0004 exceeding Θ > 0.9 at v0 = 2.4d/s and Tr = 0.0005 exceeding Θ = 0.8 at

v0 = 2.4d/s.

The local order parameter plots (figure 27) show that lane formation, in contrast

to the simulations of N = 150, is achieved through a higher pedestrian density.

Here, at Tr = 0.0005 and v0 = 3.2d/s we still observe lane formation similar to

the semi-stable lanes for N = 150 and Tr = 0.0004, and the amount of lanes again

does not change after a transient period. The same is observed for Tr = 0.0004 and

v0 ≥ 2.4d/s, with lanes breaking apart for lower desired velocities v0.
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We can conclude from this that the increase in density seems to have a rather

large effect on the formation of lanes. This effect seems to be mostly present for

large desired velocities, as the order parameter as well as the behaviour is essentially

the same for lower desired velocities.

To analyse the amount of lanes formed in these simulations we first have to

sort out the parameter ranges, where stable lanes have not formed. Because of

the steep drop in order parameter we ignore all simulations at v0 = 0.8d/s. As

stable lanes do not form for N = 150 and Tr = 0.0005, we can rule out the entire

Tr = 0.0005 parameter range for N = 150 pedestrians. With Tr = 0.0004 we

observe the formation of unstable lanes for N = 150 simulated pedestrians with a

velocity of v0 = 3.2d/s. As stated before the amount of lanes does not change after

a transient and we will thus include this parameter in our analysis of the amount of

lanes formed. For N = 250 pedestrians we observed lane formation for Tr = 0.0004

and v0 ≥ 2.4d/s as well as for Tr = 0.0005 and v0 = 3.2d/s.
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Figure 19: Average number of lanes formed for different desired velocities v0 and
different reservoir temperatures Tr. Tc/Tr = 5, N = 150, averaged over 10 simula-
tions.
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Figure 20: Average number of lanes formed for different desired velocities v0 and
different reservoir temperatures Tr. Tc/Tr = 5, N = 250, averaged over 10 simula-
tions.

In figures 19 and 20 we see the amount of stable lanes formed for the valid pa-

rameter ranges. In both graphs we again observe that for all reservoir temperatures

Tr a larger desired velocity v0 will lead to more lanes formed. This is consistent with

our findings for the intermediate values of Tr. We also observe that a larger reservoir

temperature leads to fewer lanes formed, compared to other reservoir temperatures.

This becomes more apparent for Tr ≥ 0.0004, as these values are essentially at the

border of the valid parameter range. Here we see huge differences of up to 3 fewer

lanes. With our simulations at Tr = 0.0005, N = 250 and v0 = 3.2d/s forming on

average only 9± 1.1 lanes formed, while the simulations without the causal entropic

force form 12.1± 0.3 on average. This further indicates an ordering effect.

Taking a look at a snapshot from Tr = 0.0005, v0 = 0.8d/s and N = 250 (see

figure 28) reveals a disordered state, however it does not resemble an ordered blocked

state as one would expect from the “freezing by heating” effect. So we observe an

ordering effect, indicated by the formation of fewer lanes by increasing the reservoir

temperature, that does not lead to a blocking transition by further increasing the

reservoir temperature.
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6.3 Horizon comparison

To analyse the effect of the causal entropic force on our simulations we want to take

a look at the horizon for different parameters. First of all we take a look at the

horizons for low desired velocity v0 and large reservoir temperature Tr.
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(a) Trajectory horizon for v0 = 0.8d/s
and Tr = 0.0001
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(b) Trajectory horizon for v0 = 0.8d/s
and Tr = 0.0005
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(c) Trajectory horizon for v0 = 1.6d/s
and Tr = 0.0004
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(d) Trajectory horizon for v0 = 3.2d/s
and Tr = 0.0005

Figure 21: All plots show the trajectory horizon for different reservoir temperatures
and desired velocities. In all plots the entire channel is shown to better compare the
trajectory range.

In figure 21(a) we see the trajectory horizon for Tr = 0.0001 and v0 = 0.8d/s. For

these parameters we observed an order parameter Θ of over 0.9 for both N = 150 and

N = 250. We observe a cone shaped form of the trajectory horizon. In figure 21(b)

we see a more circular shape of the trajectory horizon with the distance covered

in positive x-direction almost equaling the distance covered in y-direction. For

Tr = 0.0004 and v0 = 1.6d/s (figure 21(c)) we did not observe lane formation in

any simulation and again we observe a similar range in y-direction as in positive x-

direction. In figure 21(d) we observed lane formation only for N = 250 but observe

a more cone shaped form again. We conclude that the formation of lanes depends

greatly on the envelop of the trajectory horizon. We can calculate the displacement
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into the preferred direction of motion and the displacement because of causal entropy

by considering a simple calculation. Taking a look at the formula for the interaction

range (eq.37), the ratio of displacement in preferred direction of motion and the

causal entropy displacement is

τv0
kBTr

√
τdt

dt2

=
τv0dt

2

kBTr
√
τdt

(40)

=
1

200

v0
Tr

; (41)

in the last expansion we have plugged the numerical values used in the simulations.

This calculation predicts that when R ≡ v0
Tr

equals 200 we should expect considerable

lane formation. We now plot the ratio R against the order parameter for N = 150

and N = 250 (see figure 22).
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Figure 22: Ratio R of reservoir temperature and desired velocity for N = 150 and
N = 250.

We observe indeed the order parameter Θ reaching unity for both values of N

as the ratio R = 200, or larger values. We do not observe a large difference in the

shape of the graph, as most order parameters were very similar for N = 150 and

N = 250, with mostly qualitative differences in the formation of lanes.
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7 Discussion and outlook

In conclusion, the driving and friction term coupled with the harmonic potential

between pedestrians is enough for the segregation of pedestrians into stable lanes

of uniform walking direction. The causal entropic force, at the right parameters,

does not seem to break up these lanes. At intermediate values of the reservoir

temperature Tr we did observe lane formation and the amount of lanes formed was

within the margin of error of the simulation without the causal entropic force. By

analysing the local order parameter we observed some minor instabilities as well as

noise, which does not appear to destabilize the formation of lanes. The time until

a stable configuration was reached was also comparable to the simulations without

the causal entropic force.

Analysing large reservoir temperatures Tr confirmed that there is an ordering

effect for large enough reservoir temperatures. Similar to the noise induced ordering

in the social force model [3, 12, 14]. However in the social force model a blocking

transition was observed by further increasing the noise, the “freezing by heating”

effect. We however do not observe a blocking transition by increasing the reservoir

temperature. Instead we observed segregation into short-lived unstable lanes. This

indicates that the causal entropic force does not have the same effect on the system

as the noise in the social force model. We compared the trajectory horizons and

observed that a displacement of roughly the same distance covered in x-direction

(or preferred direction of motion) and y-direction (or direction perpendicular to the

preferred direction of motion) is the ratio at which lane formation occurs. Plotting

this ratio revealed an almost monotone dependency of the global order parameter

Θ on the ratio R, with Θ reaching unity at the calculated equal displacement at

R = 200. We can conclude that the causal entropic force acts as an “intelligent

noise”.

The observed effects are a good indicator that the causal entropic force model

may be able to accurately depict the dynamics of pedestrian flows. To further

develop and analyse this simulation model, further phenomena of pedestrians flows,

such as the oscillation of passing direction at bottlenecks, have to be simulated.

Further work could also include the qualitative analysis of the Tc
Tr

ratio as well as a

quantification of the ordering effect.
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8 Appendix

positive x-direction negative x-direction

(a) N = 150, desired velocity v0 =
1.6d/s, showing 9 lanes

positive x-direction negative x-direction

(b) N = 200, desired velocity v0 =
3.2d/s, showing 13 lanes

positive x-direction negative x-direction

(c) N = 250, desired velocity v0 =
2.8d/s, showing 15 lanes

positive x-direction negative x-direction

(d) N = 300, desired velocity v0 =
3.2d/s, showing 11 lanes

Figure 23: All plots show snapshots of different simulations without the causal
entropic force. Red circles denote pedestrians moving along positive x-direction,
green circle denote pedestrians moving along negative x-direction. This shows the
formation of lanes even without the causal entropic force.
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(a) N = 150, desired velocity v0 =
0.8d/s, showing the formation of 7 stable
lanes after around 500 timesteps
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(b) N = 150, desired velocity v0 =
3.2d/s, showing the formation of 7 stable
lanes after around 150 timesteps

 0  100 200 300 400 500 600 700 800 900 1000

Timesteps

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

y
 [
d
]

-1

-0.5

 0

 0.5

 1

L
o
c
a
l 
o
rd

e
r 

p
a
ra

m
e
te

r 
θ
(y

,t
)

(c) N = 250, desired velocity v0 =
0.8d/s, showing the formation of 9 stable
lanes after around 500 timesteps
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(d) N = 250, desired velocity v0 =
3.2d/s, showing the formation of 10 sta-
ble lanes after around 250 timesteps

Figure 24: Plots of the local order parameter. The x-axis shows the time in
timesteps, the y-axis shows the y-coordinate and the local order parameter is color-
coded, with a value of 1 resulting in a preferred direction of movement along positive
x-direction and a value of −1 resulting in a preferred direction of movement in neg-
ative x-direction.
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(a) Tr = 0.0001, N = 150, desired veloc-
ity v0 = 0.8d/s
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(b) Tr = 0.0001, N = 250, desired veloc-
ity v0 = 0.8d/s

 0  100 200 300 400 500 600 700 800 900 1000

Timesteps

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

y
 [
d
]

-1

-0.5

 0

 0.5

 1

L
o
c
a
l 
o
rd

e
r 

p
a
ra

m
e
te

r 
θ
(y

,t
)

(c) Tr = 0.0001, N = 250, desired veloc-
ity v0 = 3.2d/s
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(d) Tr = 0.00007, N = 250, desired ve-
locity v0 = 2.0d/s

Figure 25: Plots of the local order parameter. The x-axis shows the time in
timesteps, the y-axis shows the y-coordinate and the local order parameter is color-
coded, with a value of 1 resulting in a preferred direction of movement along positive
x-direction and a value of −1 resulting in a preferred direction of movement in neg-
ative x-direction.
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(a) Tr = 0.0004, N = 150, desired veloc-
ity v0 = 3.2d/s
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(b) Tr = 0.0005, N = 150, desired veloc-
ity v0 = 0.8d/s
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(c) Tr = 0.0005, N = 150, desired veloc-
ity v0 = 1.6d/s
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(d) Tr = 0.0005, N = 150, desired veloc-
ity v0 = 3.2d/s

Figure 26: Plots of the local order parameter. The x-axis shows the time in
timesteps, the y-axis shows the y-coordinate and the local order parameter is color-
coded, with a value of 1 resulting in a preferred direction of movement along positive
x-direction and a value of −1 resulting in a preferred direction of movement in neg-
ative x-direction.
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(a) Tr = 0.0004, N = 250, desired veloc-
ity v0 = 2.4d/s
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(b) Tr = 0.0005, N = 250, desired veloc-
ity v0 = 3.2d/s
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(c) Tr = 0.0005, N = 250, desired veloc-
ity v0 = 2.4d/s

Figure 27: Plots of the local order parameter. The x-axis shows the time in
timesteps, the y-axis shows the y-coordinate and the local order parameter is color-
coded, with a value of 1 resulting in a preferred direction of movement along positive
x-direction and a value of −1 resulting in a preferred direction of movement in neg-
ative x-direction.

positive x-direction negative x-direction

Figure 28: N = 250, reservoir temperature Tr = 0.0005, desired velocity v0 = 0.8d/s,
showing no formation of lanes
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