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Abstract. For high precision in source reconstruction of magnetoencephalography

(MEG) or electroencephalography data, high accuracy of the coregistration of sources

and sensors is mandatory. Usually, the source space is derived from magnetic resonance

imaging (MRI). In most cases, however, no quality assessment is reported for sensor-

to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals

are provided. It has been shown, however, that RMS of residuals do not correlate with

coregistration errors. We suggest using target registration error (TRE) as criterion for

the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty

in coregistrations at all points of interest. In total, 5 544 data sets with sensor-to-head

and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed.

An adaptive Metropolis algorithm was used to estimate the optimal coregistration

and to sample the coregistration parameters (rotation and translation). We found

an average TRE between 1.3 and 2.3 mm at the head surface. Further, we observed

a mean absolute difference in coregistration parameters between the Metropolis and

iterative closest point algorithm of (1.9± 1.5)◦ and (1.1± 0.9) mm. A paired sample

t-test indicated a significant improvement in goal function minimization by using the

Metropolis algorithm. The sampled parameters allowed computation of TRE on the

entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for

head-to-MRI coregistrations.

Index terms— Coregistration, magnetoencephalography, quality assessment, target

registration error
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1. Introduction

The accuracy of the coregistration for magnetoencephalography (MEG) source

reconstructions is limited by stochastic and systematic errors in the three measurement

modalities involved: MEG, 3D-digitizer and magnetic resonance imaging (MRI). While

several suggestions have been made in the past to improve the accuracy of the

coregistrations (Singh et al. 1997, Adjamian et al. 2004, Troebinger et al. 2014, Meyer

et al. 2017), no standard has been yet established. In the present study we assess

the quality of coregistrations using target registration error (TRE). TRE is an error

vector, of a point localization, resulting from coregistration uncertainties. We propose

a sequence of methods that are able to estimate TRE at any point of interest.

Coregistration procedures for MEG studies typically involve estimating sets of

homologous positions, or coordinates, across at least two out of the three data modalities

involved. Each of the three modalities, (MEG, 3D-digitizer and MRI), provides a unique

device coordinate system. The MEG device coordinate system is defined by the MEG

manufacturer to provide sensor positions. MRI acquires an image relative to scanner-

specific coordinates. During 3D-digitization, anatomical landmarks are used to establish

a subject-specific head coordinate system. Within this paper, all positions will be

reported relative to this head coordinate system. The term ‘MEG coordinates’ will

refer to those which were originally given relative to the MEG device coordinate system

and subsequently transformed to the 3D-digitized head coordinate system. Likewise,

coordinates which are extracted from an MRI scan and transformed to the 3D-digitized

head coordinate system, will be referred to as ‘MRI coordinates’. In practice, the

results of brain activity studies are typically presented in head coordinates derived from

brain internal fiducials only identifiable in structural MRI data, for example, MNI-

coordinates‡ (Evans et al. 1993).

For convenience, we will use the following labels for the different coregistrations.

MEG to head coordinate transformations will be referred to as MEG-to-head whereas

head to MRI coordinate transformations will be referred to as head-to-MRI. Both are

assumed to be proper rigid transformations (rotation and translation). To assess the

overall quality of the two coregistrations as a unit, they will be linked and referred to

as MEG-to-MRI.

There are a number of issues which contribute to coregistration uncertainty. During

MEG recordings the positions of the localization coils (coils for short) are estimated via

magnetic field measurements and inverse modeling. The solutions depend on signal

quality and coil positions relative to the sensors (Ahlfors & Ilmoniemi 1989, Fuchs

et al. 1995). However, the coils make contact with the skin and can introduce error if

their positions change while under tension. Further, MRI scans may show systematic

spatial deformations of the head shape, for instance due to air-filled cavities in the head

‡ At the Montreal Neurological Institute (MNI), brain atlases were constructed from different sets of

MR images. Different atlases are also named according to the number of MR images, which are the

basis of the atlases (e.g. MNI305).
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or even via physical deformations of the head surface, for example by headphones. In

addition, estimation of the skin surface from MRI data depends on a threshold. The

extracted surface may therefore appear systematically above or below the actual skin

surface. According to Singh et al. (1997) defining anatomical landmarks, during the

registration procedure, using two points on the ears and a third on the nasion only allows

repeatability on the order of one millimeter at best. The overall accuracy of the 3D-

digitizer is influenced by the precision in digitizing the coil positions and the head shape.

However, during the digitization procedure these points can migrate slightly due to the

elastic nature of the human skin. Finally, coordinate transformations are based either

on matching corresponding points (fiducials) between two coordinate systems or on

surfaces (surface matching). Pure fiducial based coregistrations are sensitive to fiducial

localization errors and are highly likely to suffer larger errors than surface matching

coregistrations when there are small numbers of fiducials (Singh et al. 1997, Huppertz

et al. 1998).

Several techniques have addressed the problem of fiducial localization errors.

One option is to fixate the participant’s head using bite bars or head casts (Singh

et al. 1997, Meyer et al. 2017). Another common approach is to digitize the coils

and head surface relative to an additional reference, attached to the subject’s head

(Polhemus 2012). This technique does account for head movements during digitization.

However, the methods proposed in this paper are also applicable to other MEG-to-head

coregistrations, which use either different definitions of the head coordinate system or

additional mechanical means.

Schwartz et al. (1996) compared the two registration families (fiducial-based and

surface matching) with respect to the head-to-MRI coregistrations. They used between

2 000 and 4 000 head shape points for surface matching and 3 points for pure fiducial-

based registrations. Their surface matching algorithm was based on a distance transform

and the mean distance of all head shape points as cost function. They reported

an accuracy improvement for the surface matching technique compared to manual

registrations. The achieved accuracy of the registration was proportional to the number

of head shape points. Registration errors of 0.7 ± 0.3 mm were reported, estimated on

a 150 mm cube, sampled every 2 mm using simulation tests. Huppertz et al. (1998) also

estimated the accuracy of a surface matching technique for head-to-MRI registrations

for electroencephalography (EEG) data analysis. Between 1 000 to 1 800 head shape

points were digitized and an iterative bisection search was used for surface matching.

They computed mean registration errors of 1.4 to 1.8 mm for 7 fiducial points using

a test–retest design with 10 repetitions and 20 subjects. The larger registration error

compared to Schwartz et al. (1996) might be related to the points, where the registration

error was measured. More specifically, Schwartz et al. (1996) defined an equidistant grid

in the MRI volume, while Huppertz et al. (1998) used 7 fiducials at the head surface.

Naturally, the points on the head surface show larger mean registration errors due to

rotation uncertainties than fiducial points near the origin. Wagner & Fuchs (2001) used

a similar approach to Huppertz et al. (1998) utilizing approximately 300 head shape
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points. Their algorithm minimizes the L1-norm of the distances of head shape points

to the MRI surface. Unfortunately, no information about the achieved accuracy was

provided.

There is substantial variability in the literature concerning head-to-MRI

coregistration methods. For example, handheld laser scanners (Koessler et al. 2011,

Hironaga et al. 2014) and photogrammetry systems (Koessler et al. 2007, Baysal &

Şengül 2010, Qian & Sheng 2011) are proposed as alternatives to the electro-magnetic 3D

digitization of electrode positions or head surface scanning. Baysal & Şengül (2010) used

a single camera photogrammetry system for EEG electrode localization and reported

a maximum localization error of 0.77 mm with 25 electrodes. In a similar setting,

Qian & Sheng (2011) reported a maximum localization error of 1.19 mm. They used

2 mirrors in addition to the system of Baysal & Şengül (2010). Koessler et al. (2007)

compared a geodesic photogrammetry system with the Polhemus FASTRAK and other

electrode digitization techniques. They reported an RMS position error of 1.27 mm for

the geodesic photogrammetry system and 1.02 mm for the Polhemus. Koessler et al.

(2011) tested EEG-to-MRI coregistrations using a 3D laser scanner. An average of

5 263 face shape points were recorded and an iterative closest point (ICP) algorithm

was applied to the face shapes. They reported a mean residual error of the electrode

coregistration of 2.11 mm for 65 electrode positions. Hironaga et al. (2014) proposed

a 3D laser scanner system for the MEG-to-MRI coregistration. They found superior

registrations using the forehead surface compared to the upper head shape. Further,

they reported that TRE was at the submillimeter level using their regional registration

method. Our methods, proposed below, can be directly applied to data sets of the

photogrammetry and laser scanner systems as mentioned above.

Previous studies have often only provided RMS of matched point residuals, for

example, residuals of coil positions or head shape points, as a measure of the goodness

of fit. It has been shown, however, that these RMS of residuals and TRE are uncorrelated

(Fitzpatrick 2009). Hence, the RMS of residuals are not well suited for determining the

quality of the coregistrations. Finally, previous studies concerned with the accuracy of

coregistration measured or simulated TRE at only a few points (Fuchs et al. 1995, Singh

et al. 1997, Huppertz et al. 1998, Adjamian et al. 2004). In the present study we sample

the distribution of coregistration parameters, and therefore TRE becomes a computable

measure at any point of interest. Consequently, we propose an overall assessment of the

quality of individual coregistrations based on TRE.

2. Methods

2.1. Instrumentation

All data sets in our analysis were recorded using a Neuromag Vectorview MEG with 102

planar magnetometers and 204 planar gradiometers. In our laboratory, five localization

coils are always used. At the beginning of each measurement the five coils are energized
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by currents of unique frequencies. This allows one to disentangle the superimposed

fields and to estimate each coil’s position, with respect to the MEG device, separately.

For the 3D-digitization of the coils and head shape, a Polhemus FASTRAK system was

used, which has a accuracy specification of 0.8 mm RMS for all receiver positions in a

radius of 760 mm from the transmitter (Polhemus 2012). This distance is never exceeded

in our lab. The MRI surface extraction is based on the Freesurfer segmentation of 3 T

T1-weighted MPRAGE or MP2RAGE images with a voxel size of 1 mm× 1 mm× 1 mm.

2.2. Head coordinate system

The definition of head coordinates depends on the MEG or EEG setup. In the present

study Neuromag head coordinates were used. This coordinate system is often referred

to as RAS, which is a mnemonic for the axes’ pointing directions: right, anterior and

superior. The first axis of the head coordinate system is aligned with anatomical points

on each ear, with coordinates increasing from left to right. The second axis intersects

perpendicularly, at the origin with the first, such that it runs through the nasion from

posterior. Thereby, the origin is not necessarily located at the middle between the ears.

Again, the third axis intersects at the origin, perpendicular to the first and second axes

and coordinates are counted positive from inferior towards the subject’s vertex. This

coordinate system was defined in Ahlfors & Ilmoniemi (1989) and is common for data

acquisition with Neuromag devices (Elekta Neuromag 2007, pages 25–26).

2.3. Rotation by quaternions

We used unit quaternions for the parametrization of rotations and their uncertainties for

the following reasons. Quaternions provide a convenient four-dimensional representation

of object rotations. They can be directly used to find the least squares solution of

the coregistration of two corresponding point sets, while prohibiting reflections (Besl

& McKay 1992). This is an advantage over the singular value decomposition based

method, which permits reflections and may thereby yield an improper rotation matrix.

Furthermore, quaternion parameters provide an efficient method for three-dimensional

rotations involving no trigonometric function computations. The quaternion-based

rotation is continuous over the unit sphere in R4. The axis of a rotation is defined

by a unit vector ~u. A unit quaternion representing the rotation around ~u by an angle

of θ is written as

q = exp [(θ/2) (u1i+ u2j + u3k)]

= cos (θ/2) + (u1i+ u2j + u3k) sin (θ/2)

= q0 + q1i+ q2j + q3k , (1)

where i, j and k represent the three imaginary units of quaternions. Using (1), the

rotation of a vector ~v around ~u by an angle of θ is defined by

~v′ = q (v1i+ v2j + v3k) q−1 = R (q)~v , (2)
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where the inverse rotation quaternion q−1 is simply obtained by converting the sign of

the exponent in (1) and R (q) denotes the respective rotation matrix as a function of

q. In the scope of this paper, the imaginary parts of the quaternion are referred to as

rotation parameters and the real part is redundant for unit quaternions. In order to

evaluate rotations using a spatial distance, the rotation effect at a radius R is used.

On the plane orthogonal to the rotation axis, a rotation by an angle of θ relates to a

distance of R · θ. The relation of angles and unit quaternion parameters is derived from

q21 + q22 + q23 = sin2 (θ/2) (3)

and for small angles θ ≈ 2
√
q21 + q22 + q23. Hence the effect of rotations for points at the

surface of a sphere, with a radius R, is approximated by multiplying them (q1 , q2 , q3)

with the diameter of sphere 2R. This scaling is used in section 2.9, where the rotation

parameters are sampled together with the translation parameters in the 6-dimensional

parameter space. We selected R = 100 mm as a scaling radius to approximate the radius

of human heads.

2.4. Coregistration model

2.4.1. MEG-to-Head This coregistration is based on M < 10 corresponding points,

for example, coil positions. Coil positions were first measured by the 3D digitizer and

expressed in the head coordinate system. They are estimated in MEG device coordinates

based on fitting a magnetic dipole field for each coil using mne-python (Gramfort 2013).

The coregistration for the MEG-to-head alignment of the points A = (~a1, ~a2, . . . , ~aM)

localized in the MEG andB =
(
~b1, ~b2, . . . , ~bM

)
digitized in the head coordinate system

is given by

~bm = R (p)~am + ~s+ ~εm , m = 1, 2, . . . , M , (4)

where the transformation is defined by the quaternion p dependent rotation R and the

translation ~s plus the error vector ~εm. The estimated solution to the coregistration

problem is the set of parameters p̂ and ~̂s, which minimizes the residuals ~δm in the least

squares sense according to

p̂, ~̂s = argmin
p, ~s

M∑
m=1

|R (p)~am + ~s−~bm|2 (5)

~̂bm = R (p̂)~am + ~̂s (6)

~δm = ~bm − ~̂bm . (7)

We implemented the quaternion-based least squares solution for the problem in (5) as

proposed by Besl & McKay (1992). For approximate parameter covariance estimation,

the problem in (4) is centred and linearized at the minimum of (5) as

~bcm = Jm · (p̃1, p̃2, p̃3, s̃1, s̃2, s̃3) + ~εm , m = 1, 2, . . . , M , (8)
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where the superscript c denotes vector subtraction of the respective mean,
∑M

m=1
~bm =∑M

m=1
~̂bm, and the Jacobians read

Jm =

 0 2b̂c3m −2b̂c2m 1 0 0

−2b̂c3m 0 2b̂c1m 0 1 0

2b̂c2m −2b̂c1m 0 0 0 1

 , (9)

(Wheeler & Ikeuchi 1995). Under the assumption of homoscedastic errors ε with zero

mean and variance σ2
ε , the parameter covariance matrix of the respective linear least

squares estimate of the quaternion p̃ and translation ~̃s yields

Var [p̃1, p̃2, p̃3, s̃1, s̃2, s̃3] = σ2
ε ·
(
JTJ

)−1
(10)

(Björck 2015, equation (2.1.6)), where JT =
(
JT
1 , J

T
2 , . . . , J

T
M

)
. As a result of the

centring, there is no coupling between quaternion and translation parameters and two

matrices are derived separately as

Var [p̃1, p̃2, p̃3] = σ2
ε ·

(
4

M∑
m=1

(
|~̂bcm|2I − ~̂bcm~̂bc

T

m

))−1
(11)

Var [s̃1, s̃2, s̃3] = σ2
ε · I/M , (12)

where I is the identity matrix of size 3. The right hand expression of (11) is equivalent

to a related variance estimate of Markley & Mortari (2000, equation (33)).

2.4.2. Head-to-MRI This is a coregistration of N ∼ 500 points describing the head

shape as measured by the 3D digitizer D =
(
~d1, ~d2, . . . , ~dN

)
. A second list with a

point matrix E is estimated via the segmented MRI data E = {~e1, ~e2, . . . , ~eP}. The

subset F =
(
~f1, ~f2, . . . , ~fN

)
that best corresponds to D depends on the quaternion q

and the translation ~t and is the result of the closest point operator C, defined by

~fn = argmin
~f

|R (q) ~dn + ~t− ~f |2 , ~f ∈ E (13)

F = C
(
R (q)D + ~t1ᵀ, E

)
, 1ᵀ = (1, . . . , 1) ∈ R1×N . (14)

For the operator C, we used an efficient balltree implementation of the scikit-learn

module (Pedregosa et al. 2012). Omitting the explicit notation of C, the head-to-MRI

problem reads as

~fn
(
q, ~t
)

= R (q) ~dn + ~t+ ~ηn , n = 1, 2, . . . , N (15)

and a solution is

q̂, ~̂t = argmin
q,~t

N∑
n=1

|R (q) ~dn + ~t− ~fn
(
q,~t
)
|2 (16)

~̂fn = R (q̂) ~dn + ~̂t (17)

~ζn = ~fn

(
q̂, ~̂t
)
− ~̂fn , (18)
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where ~η and ~ζn are the error and residual vectors, respectively. In realistic setups,

the optimization problem of (16) may not have a unique solution and due to the non-

linearity of C, no closed-form solution is available. Thus, an approximate solution is

found using an iterative closest point (ICP) algorithm, which is likely to find local

minima and therefore depends on the starting value (Besl & McKay 1992). Hence,

the starting value was manually set by utilizing the 3D-digitized ear and nasion points

and the 3D rendered MRI segmentation of the head shape. The estimates
{
q̂, ~̂t
}

were

computed by the ICP implementation in mne-python (Gramfort 2013). An overview of

the coordinate system definitions and respective coregistration parameters is depicted

in figure 1.

0

0
y

z

MEG

0

0
y′

z′

head

0

0
y′′

z′′

MRI

0

0
y′

z′

y

z

p̂

~̂s

0

0
y′′

z′′

y′

z′

q̂

~̂t

Figure 1. In the top row, the MEG, head and MRI coordinate systems are shown

separately. The MEG coordinates are denoted by (y, z) and the respective axes are

plotted by dashed lines relative to the contour of the MEG sensor configuration. Dotted

lines represent the axes of the head coordinates (y′, z′) and the head contour is outlined

within the respective coordinate frame. The MRI coordinate axes are plotted by dash-

dotted lines, the respective coordinates are denoted by (y′′, z′′) and a sagittal MRI slice

is shown accordingly. In the bottom row, the notations and line styles are adopted from

the top row and MEG/head and head/MRI coordinates are depicted relative to each

other in the left and right box, respectively. The parameter notations {p̂, ~̂s} and {q̂, ~̂t}
denote rotations and translations of MEG-to-head and head-to-MRI, respectively. Axes

scaling is identical for all of the five sub-figures.
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2.5. Data sets

2.5.1. MEG-to-Head MEG data sets measured in our MEG laboratory in the years

from 2007 to 2016 were retrieved from the archive and analysed. For the present

study, the term ‘MEG data set’ denotes an MEG measurement block with coil position

acquisition at the beginning of the block. All included data sets had five coils attached

to the participant’s head. We further restricted our selection to MEG data sets where

none of the 204 gradiometers were marked as a bad channel. In agreement with Elekta

Neuromag (2007, pages 38–39), two further quality control criteria were taken into

account. First, the goodness-of-fit value for each coil had to be 0.98 or larger. Second,

the discrepancy between coil distances calculated from either MEG localization or from

3D digitization had to be smaller than 5 mm. In total, 7 314 MEG data sets were

considered, 5 544 of them matched all of our selection criteria and formed the basis of

the MEG-to-head coregistration analysis. A total of 1 770 MEG data sets were rejected,

7 had bad gradiometers, 81 because of no coil measurement, 349 had less than 5 active

coils, 405 because of the discrepancy between coil distances and 928 had goodness-of-fit

values below 0.98.

2.5.2. Head-to-MRI For the head-to-MRI coregistrations, only those MEG data sets

were considered for which a segmented MRI data set was available and which included

more than 200 head shape digitization points. Head-to-MRI coregistrations were

conducted using MNE, where the head surface extracted from MRI is matched with

the 3D-digitized head shape using the ICP algorithm (Hämäläinen 2010, pages 195–

197). Head shape points with a distance greater than 10 mm from the MRI surface were

excluded, as suggested by Hämäläinen (2010, page 317). A total of 128 head-to-MRI

data sets were selected for the analysis. A total of 149 head-to-MRI data sets were

rejected because they had less than 200 head shape points. Most of the rejected data

sets were from a time prior to our laboratory adopting more strict procedures. The

recommended number of head shape points was increased over the years.

2.6. Scales of the coordinate systems

When coregistering data sets of different modalities, but from the same participant (i.e.

the same head), one would not expect a need to scale the dimensions. However, as

briefly raised in the introduction, different methods may lead to systematic differences

in the metrical scaling. Thus far, we had assumed identical scalings in the different

coordinate systems, that is, there is no change in length during the transformations.

This assumption, however, can be checked by analysing distance measures within each

coordinate system separately. The available data allowed pairwise comparisons of MEG

with head and head with MRI coordinates. To this end, we conducted a singular

value decomposition (SVD) of the centred point clouds in both coordinate systems. For
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convenience, we introduce the centring (demeaning) matrix for M points

CM = I − 1

M
11ᵀ , (19)

where I is the identity matrix of size M and 11ᵀ is an M×M matrix with each element

equal to one. For the centred point sets in the two coordinate systems Ac = ACM and

Bc = BCM , this reads as

Ac = UA diag (~σA)V ᵀ
A (20)

Bc = UB diag (~σB)V ᵀ
B (21)

c = |~σA|/|~σB| (22)

where ~σA and ~σB are the vectors of the positive singular values. The scaling coefficient

c between two systems is the quotient of the l2-norms of the singular value vectors.

Table 1 shows a mean scaling of c ' 1.005 for MEG-to-head, which translates to a

Table 1. Scaling statistics of MEG-to-head and head-to-MRI are tested (two-tailed

t-test).

Type mean SD t-value p-value

MEG-to-head 1.005 0.007 50.309 < 0.001

Head-to-MRI 1.003 0.004 7.270 < 0.001

0.5 mm difference at the head surface for a head radius of 100 mm. The expected error

for the coil locations is in a similar range of about 1 mm (Ahlfors & Ilmoniemi 1989, Fuchs

et al. 1995). Thus, we assume that the MEG coordinates are systematically scaled by a

factor of 1.005 and applied the correction to the MEG coordinates. The reason for this

scaling effect might be the slight pressing force on the coils during digitization, which

shifts the coils inwards and thus introduces a smaller scaling for digitization compared

to MEG localization.

Table 1 shows a mean scaling of c ' 1.003 for head-to-MRI, which results in a

0.3 mm difference at the head surface. Both scaling values were significantly different

from 1. However, we have taken into account only the first and ignored the second. This

is because of the large variability between subjects at the level of the surface extraction

from MRI data sets, in comparison to the estimated scaling value. Furthermore, it is

in agreement with Schwartz et al. (1996), who state that surface matching is scaling

independent if scaling effects are smaller than 3 mm.

2.7. Coil localization errors

The MEG-to-head coregistration is based on coil localizations. Fuchs et al. (1995)

investigated coil localization errors for three orthogonal coils (triplets), combined in a

coil set, using a 31-channel Philips MEG. They found that the coil localization error

depends on the coil position relative to the sensor array as well as on the signal strength.
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For a coil position below the sensor array they reported the difference between measured

and true location to be less then 1.8 mm, with a mean of 1.1 mm. The Neuromag

Vectorview device uses simpler single coils (no triplets) and it is a whole-head device

with roughly ten times as many channels. We investigated the device-specific error

magnitude and its spatial dependency for data with 102 planar magnetometers and 204

planar gradiometers. The coils were localized via their magnetic fields, each coil being

modeled as a magnetic dipole (Fuchs et al. 1995). Coil localization was exclusively

based on the data of the 204 gradiometers because gradiometers have a higher signal

to noise ratio for nearby sources due to their inbuilt suppression of distant (interfering)

sources. We estimated the variance of the noise via the norm of the misfit χ between

the magnetic flux sensor signals s and the modeled data

χ
(
~̂r
)

= s−G
(
~̂r
)
G
(
~̂r
)+
s (23)

σ2
noise ∼

|χ|2

204− d
, (24)

where G
(
~̂r
)

is the leadfield of the magnetic dipole at ~̂r and G
(
~̂r
)+

is the respective

pseudoinverse. The optimization has d = 6 degrees of freedom for each coil and we

assumed that the noise follows an independent normal distribution with zero mean,

σ2
noise variance and the respective probability density πnoise in each channel. Without

prior knowledge about the parameters, the log-likelihood of the magnetic dipole location,

given the measurement data, is defined by

log π (~r | s) =
204∑
l=1

log πnoise (χl (~r)) . (25)

Samples are drawn from the probability density π (~r | s) of the coil location, given the

measurements, using the adaptive Metropolis algorithm of Haario et al. (2001) on the

log-likelihood, see (25). We performed 10 000 runs of the Metropolis algorithm, including

1 000 burn-in samples. In this test, 5× 5 544 coil positions of our MEG-to-head data sets

were included. The maximal spatial error was only weakly dependent on the location

in space. We estimated the dependency to 1.5× 10−3, which represents 0.15 mm at a

distance of 100 mm. Since this effect is about a 10-th of the expected maximal error, we

assumed equal coil localization errors for the volume of interest. However, Fuchs et al.

(1995) found a stronger dependency of the localization error on the position relative to

the sensors. This effect is likely related to the shape of the sensor array, as they used a

31-channel Phillips-MEG with parallel sensor orientation and a smaller head coverage

compared to the whole head, radially oriented sensor setup in the present study.

2.8. Estimating errors from residuals

All residuals ~δm and ~ζn, as defined in section 2.4, were separately concatenated from

either K = 5 544 MEG-to-head or L = 128 head-to-MRI coregistrations in the

samples ∆ and Z, respectively. The empirical distribution functions of a sample ∆
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of size K is denoted by Fδ,K and may be defined in terms of the order statistics

∆(1) ≤ ∆(2) ≤ . . . ≤ ∆(K) by

Fδ,K (x) =


0 if x < ∆(1)

k/K if ∆(k) < x ≤ ∆(k+1), 1 ≤ k < K

1 if x ≥ ∆(K)

(26)

(Pratt & Gibbons 1981, equation (2.1)). We modelled the distributions of the error

elements of ~εm and ~ηn using theoretical distributions for continuous random variables,

for example, a logistic or a normal distribution. However, the errors cannot be

assessed directly. Therefore, the optimal theoretical distribution for the errors is

chosen on the basis of the distributions of the residuals. From a list of continuous

candidate distributions we selected those with no, or one, shape parameter. These

were implemented in scipy and had good convergence (excluding rice and erlang

distributions). Overall, these criteria resulted in a list of 69 distributions. For the

n-th candidate with distribution function Gn, 0 (x | λn, µn, σn), the parameters shape

λn, mean µn and scale σn were optimized according to

ŷδ, n = argmin
λ, µ, σ

{
sup
x

∣∣∣Fδ,K (x)−Gn, 0 (x | λ, µ, σ)
∣∣∣} (27)

ŷζ, n = argmin
λ, µ, σ

{
sup
x

∣∣∣Fζ, L (x)−Gn, 0 (x | λ, µ, σ)
∣∣∣} (28)

n = 1, 2, . . . 69 ,

where the optimization argument is the one-sample, two-sided Kolmogorov–Smirnov

statistic (Pratt & Gibbons 1981, equation (7.1)). The generalized normal and the

Students’s t-distribution yielded the smallest Kolmogorov–Smirnov statistics in (29)

for the MEG-to-head Fδ,K (x) and head-to-MRI Fζ, L (x), respectively.

The best fitting distributions were used as a basis to simulate residuals. Utilizing the

generalized normal distribution GN (λ, 0, σ2) for ε̃ we simulated δ̃ (λ, σ2) by replacing

~am with ~̃am = ~bm + ~̃εm in (5). Accordingly, with the Student’s t-distribution with

shape λ and scale τ for ζ̃ the residuals η̃ (λ, σ2) are simulated by replacing ~dn with

~̃dn = C
(
~̂dn, E

)
+ ~̃ζn in (16). The two-sample, two-sided Kolmogorov–Smirnov statistics

(Pratt & Gibbons 1981, equation (3.1))

Dδ̃ (λ, σ) = max
x

∣∣∣Fδ,K (x)− Fδ̃, K (x | λ, σ)
∣∣∣ and (29)

Dζ̃ (λ, σ) = max
x

∣∣∣Fζ, L (x)− Fζ̃, L (x | λ, σ)
∣∣∣ (30)

were scanned for the set of parameters given in table 2, which was selected in proximity

of the optimum. Additionally, the normal distribution was tested for comparison

(table 2). Scanning of the Kolmogorov–Smirnov goal function is not deterministic since

we drew samples from a distribution to simulate errors and residuals. Therefore, error

estimates of the Kolmogorov–Smirnov statistics were computed via multiple simulations

of error distribution parameters, more specifically, 5 simulations for MEG-to-head
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Table 2. Shape and scale parameters of the error distributions that were used to scan

the Kolmogorov–Smirnov goal function.

Type name shape scale in mm

MEG-to-head Gen. normal 1.7, 1.8 . . . 2.1 1.30, 1.35 . . . 1.55

Normal 0.90, 0.95 . . . 1.10

Head-to-MRI Student’s t 3, 4 . . . 7 0.90, 1.00 . . . 1.30

Normal 1.30, 1.35 . . . 1.60

and 10 simulations for head-to-MRI. For head-to-MRI, 5 simulations were insufficient

because of higher variability in the corresponding Kolmogorov–Smirnov statistic. The

minimum of the Kolmogorov–Smirnov goal function corresponds to a certain distribution

function, which is taken as a model to approximate the error distribution. Hence, these

distribution parameters were utilized to sample the coregistration parameters in the

following section.

2.9. Coregistration parameter sampling

In the previous section we approximated the distribution of errors for the point

measurement in the coregistration problem of (4) and (15). We denoted the probability

densities of the error distributions by πε and πη for MEG-to-head and head-to-

MRI, respectively. For the sampling of coregistration parameter distributions, we

considered the centred and pre-registered problems. The centring matrix transforms

the coregistration points into their centred representation, for example, Bc. During

pre-registration, coordinates from each modality are converted to head coordinates and

aligned with the corresponding data set. Having already applied a least squares or ICP

optimization, all that remains in terms of error is the misalignment between the sets of

data points and hence p̂ = q̂ = 0 and ~̂s = ~̂t = ~0.

Log probability densities of a spatial error vector (e.g. ~a) are defined by

log π (~a) =
3∑

n=1

log π (an) .

The log-likelihood of the MEG-to-head parameters {p, ~s}, given the observation Bc and

B̂c reads

log ρ
(
p, ~s | Bc, B̂c

)
=

M∑
m=1

log πε̂

[
R (p)~̂bcm + ~s−~bcm

]
. (31)

For the log-likelihood of the head-to-MRI parameters
{
q,~t
}

, given the observation

F c and F̂ c, the additional closest point operator C is required and log φ is therefore

equivalently defined as

log φ
(
q, ~t | Ec, F̂ c

)
=

N∑
n=1

log πη̂

[
R (q) ~̂f c

n + ~t− C
(
R (q) ~̂f c

n + ~t, Ec
)]
. (32)
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Utilising the log-likelihood, the target distributions of the parameters p, ~s and q, ~t

given the observation, are sampled using a Metropolis algorithm on (31) and (32),

respectively. Metropolis algorithms draw samples from an unknown distribution using

samples from a known distribution, which is referred to as proposal distribution. The

original Metropolis algorithm uses a fix proposal distribution. However, the convergence

rate of the sample, to the desired unknown distribution, depends on the choice of

the proposal distribution. The adaptive Metropolis algorithm updates the proposal

distribution by optimising the convergence using information from the sample chain at

the current state. Haario et al. (2001) used a Gaussian kernel proposal distribution with

zero mean, hence only the proposal covariance needed updating. An adaptive update

scaling of the covariance of 2.42/d was used, following Haario et al. (2006), with the

dimensionality of the parameter-space d = 6. The algorithm is non-Markovian but

it has correct ergodic properties according to Haario et al. (2001). During parameter

sampling, the adaptation of the Metropolis algorithm was performed for each step.

Before sampling, the rotation parameters were scaled by 2R = 200 mm to homogenise

the parameter space. The initial proposal variance was set to (5 mm)2 for the MEG-

to-head parameters and to (0.5 mm)2 for the head-to-MRI parameters based on prior

experience. We performed 105 Metropolis algorithm iterations of the MEG-to-head and

500×N iterations of the head-to-MRI coregistrations, where N is the number of head

shape points. A burn in sample size of 1 000 was used for both MEG-to-head and head-

to-MRI. The Metropolis sampling was implemented using the software library of Parno

et al. (2017). Since the adaptive Metropolis algorithm has correct ergodic properties,

integral expressions over functions of the probability density of the parameters like the

mean and the variance can be estimated by the respective expressions of sums over the

functions on the sample. Since the mean of the rotation parameters does not represent

the mean rotation in general, we decided to provide the sample MLE instead of the

mean. In the expression of the variance of a parameter x, the mean is replaced by the

sample MLE accordingly as∫ ∞
−∞

ρ (x) (x− xMLE)2 dx ≈ 1

N

N∑
n=1

(xn − x̂MLE)2

spread (x) =

√√√√ 1

N

N∑
n=1

(xn − x̂MLE)2 , (33)

where ρ is the probability density and N is the sample size. Throughout this paper, the

measure in (33) is referred to as ‘spread’.

2.10. MEG-to-MRI

In the previous section, we referred to the centred and pre-registered problems for each

of the two coregistrations (MEG-to-head and head-to-MRI ) separately. These centrings

introduce a systematic shift between the translation parameters in the coordinate

systems of both coregistrations. However, taking this into account is straightforward.
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One has to add the mean point ~̄b of the first, and to subtract the mean point ~̄d of

the second coregistration, that is, de-centring after the first and re-centring before the

second transformation. Consequently, the chained coregistration of a point ~aMEG based

on the MEG-to-head and head-to-MRI, as computed by the Metropolis algorithm, can

be written as:

~aMRI
k, l = R (ql) ·

(
R (pk)~a

MEG + ~sk + ~̄b− ~̄d
)

+ ~tl (34)

~aMRI
MLE = R (qMLE) ·

(
R (pMLE)~aMEG + ~sMLE + ~̄b− ~̄d

)
+ ~tMLE , (35)

where ·MLE is the maximum likelihood estimate of the parameter from the Metropolis

algorithm. The indices k and l in (34) refer to the k-th and l-th subsample of MEG-to-

head and head-to-MRI Metropolis samples, respectively. For random sampling, k and l

are drawn from the discrete uniform distribution of natural numbers between 1 and the

corresponding Metropolis sample size. Apart from the additional indexing, the notation

is adopted from (4) and (15), respectively (figure 1). We defined TRE ~ψ for the point

~aMEG by

~ψ
(
~aMEG | pk, ql, ~sk, ~tl

)
= ~aMRI

k, l − ~aMRI
MLE . (36)

The RMS of TRE, defined by

RMS (Ψ) =

√√√√ 1

G

G∑
g=1

|~ψg|2 , (37)

was used as a quality measure based on TRE at a specified point grid of size G. Statistics

of ~ψ and RMS (Ψ) were estimated by computation of (36) and (37) for a large number

of subsamples {pk, ~sk} and
{
ql, ~tl

}
.

3. Results

3.1. Errors and residuals

3.1.1. MEG-to-Head The smallest value for the maximal deviation measured by

the Kolmogorov–Smirnov statistics (see (30)), between the points and theoretical

distributions was found for the generalized normal distribution with shape λ = 1.7

and which estimated to Dδ̃ = 4.5× 10−3 ± 0.6× 10−3. The maximal Kolmogorov–

Smirnov-value for the normal distribution with scale σε̂ = 1.05 mm was only slightly

larger: Dδ̂ = 6.2× 10−3± 0.8× 10−3. The normal distribution is the special case of the

generalized normal distribution with shape λ = 2. Hence, we decided to approximate

the error distribution of ε using the commonly used normal distribution. The probability

density of the error estimate ε̂ was therefore defined as

πε̂ (x) =
1

σε̂
√

2π
exp

[
− x2

2σ2
ε̂

]
. (38)

This choice provided control over our approximations, since closed form solutions

are available under the precondition of the normal distribution for the relation
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between variances (error, residual, and parameter) in a least squares estimation

(Fitzpatrick 2009). The ratio between the variances of errors and residuals was found

to be σ2
ε̂/σ

2
δ = 1.65 ≈ 5/3, which is approximately the ratio of the number of data

points and the number of data points minus the degrees of freedom of the least squares

fit, namely 3M/ (3M − 6) = M/ (M − 2). Figure 2a demonstrates the distribution-wise

similarity between ∆̂ and ∆ using a Q–Q plot, where ε̂ ∼ N
(
0, (1.05 mm)2

)
. If both

distributions were identical, the Q–Q plot would show a straight diagonal. Divergence

from linearity at both ends show that the deviations between the two distributions were

mainly observed with respect to the tails. The residuals ∆̂ and ∆ were distributed

between −3 to 3 mm, with approximately zero median and mean. In figure 2b, the

distribution of observed RMS of residuals is plotted for the 5 544 MEG-to-head data

sets. One RMS value is calculated over the 5 residual vectors ~δm of the coil positions.

Figure 2b shows that RMS values were smaller or equal to 2.5 mm for 99 % of the MEG-

to-head data sets. The RMS values were distributed between 0.4 to 3.6 mm, with a

median of 1.3 mm.

3.1.2. Head-to-MRI The smallest Dζ̃ was found for a Student’s t-distribution with

shape λ = 4 and scale τ = 1.1 mm withDζ̂ = 5× 10−3±1× 10−3. Hence, the probability
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Figure 2. The MEG-to-head residuals Q–Q plot (a) depicts every 100th data point of

the ∆̂-quantiles over the ∆-quantiles. The r-value is the correlation coefficient between

the paired sample quantiles. The empirical distribution function of RMS of observed

MEG-to-head residuals is depicted in (b).
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Figure 3. The Head-to-MRI residuals Q–Q plot (a) depicts every 100th data point

of the Ẑ-quantiles over the Z-quantiles, where η̂ follows the t-distribution with shape

4 and scale 1.1 mm. The r-value is the correlation coefficient between the paired

sample quantiles. The empirical distribution function of RMS of observed head-to-

MRI residuals is depicted in (b).

density of the error estimate η̂ is expressed efficiently as

πη̂ (x) ∝
(

1 +
x2

τ 2λ

)−(λ+1)/2

, (39)

directly proportional to a normalization constant. We found a ratio between the

variances of errors and residuals of σ2
η̂/σ

2
ζ = (λτ 2/ (λ− 2)) /σ2

ζ = 2.87. The Q–Q plot in

figure 3a demonstrates the similarity between Ẑ and Z in distribution, where η̂ follows

the t-distribution with shape 4 and scale 1.1 mm. Residual values of Ẑ and Z were in

the range of −4 to 4 mm, as indicated in figure 3a, with approximately zero median

and mean. The best fit normal error distribution yielded substantially worse head-to-

MRI residuals with a Kolmogorov–Smirnov statistic of Dζ̂ = 9× 10−3 ± 7× 10−4. In

figure 3b, the distribution of observed RMS of residuals is plotted for the 128 head-to-

MRI data sets. One RMS value is calculated over the head shape point residuals ~ζn for

each data set. An RMS of up to 2.2 mm was not exceeded for 99 % of the head-to-MRI

data sets. The RMS values were between 0.8 to 2.9 mm, with a median of 1.4 mm.

3.2. Parameter-distribution sampling

3.2.1. MEG-to-Head and head-to-MRI The MLEs and spreads of the coregistration

parameters from the Metropolis algorithm samples were averaged over the data sets in

table 3. The first row in table 3 demonstrates accurate estimates of the Metropolis
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algorithm with no differences compared to the least squares estimates. For the MEG-

to-head data sets we found sample spreads of the Metropolis algorithm results of 0.6 to

0.9 mm for the scaled quaternion parameters and 0.5 mm for the translations.

The spreads of MEG-to-head parameters in table 3 are identical, up to the first

decimal place, to the theoretical estimate of (11) and (12):

200 mm · σε ·

√√√√√diag

(4
M∑
m=1

(
|~̂bcm|2I − ~̂bcm~̂bc

T

m

))−1 =

 0.8± 0.1

0.9± 0.1

0.6

mm

σε/
√
M = 0.5 mm ,

where σε = 1.05 mm and M = 5. The numbers on the right hand side of the equation

refer to sample means and standard deviations over the 5 544 data sets. This comparison

provides a quality check of the Metropolis algorithm.

The results of the sample spreads, of the head-to-MRI coregistration parameters in

table 3, are similar to the results of MEG-to-head, with slightly larger values in the scaled

quaternion part of 0.6 to 1.0 mm and smaller values in the translation part of 0.2 to

0.4 mm. Contrarily, the sample MLEs of head-to-MRI in table 3 show deviations up to

several millimeters. This indicates considerable difference between the pre-registration

of the ICP and the subsequent registration of the Metropolis algorithm. We found a

mean absolute difference of the ICP compared to the Metropolis algorithm results of

(1.9± 1.5)◦ in the rotations and (1.1± 0.9) mm in translations. The respective paired

Table 3. Statistics of the Metropolis algorithm parameter results in mm.

MEG-to-head 2R · p1 2R · p2 2R · p3 s1 s2 s3

MLE 0.0 0.0 0.0 0.0 0.0 0.0

Spread 0.8± 0.1 0.9± 0.1 0.6 0.5 0.5 0.5

Head-to-MRI 2R · q1 2R · q2 2R · q3 t1 t2 t3

MLE 0.6± 3.3 0.4± 2.4 −0.2± 1.3 0.1± 0.7 −0.2± 1.2 0.1± 0.3

Spread 0.9± 0.3 1.0± 0.3 0.6± 0.2 0.3± 0.1 0.4± 0.1 0.2± 0.1

differences of RMS of residuals were tested. According to the t-statistic, RMS computed

by the Metropolis MLE were significantly smaller than RMS computed by the ICP fit

with t = 3.04 and two-sided p < 0.01. However, the difference of the means was only in

the order of 0.02 mm.

In order to test the correlation of RMS (Ψ) and RMS of residuals, we computed

these measures separately for our MEG-to-head and head-to-MRI data sets. RMS (Ψ)

and RMS of residuals were computed separately over coil positions of MEG-to-head and

head shape points of head-to-MRI. Correlation coefficients were determined accordingly
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Figure 4. The estimated RMS (Ψ) is plotted over the number of head shape points

N. Ψ is computed at each head shape point. Data points indicate the mean over the

samples of RMS (Ψ) and the dash-dotted line was fit to these points. The error bars

show the 50th to 95th percentiles over the samples of the measure.

over the 5 544 and 128 data sets. We found correlation coefficients of 0.017 and −0.116

for MEG-to-head and head-to-MRI, respectively.

3.2.2. MEG-to-MRI We found 126 out of the 128 head-to-MRI data sets to have a

corresponding MEG-to-head, taking into account the selection criteria of section 2.5.1.

If more than one MEG-to-head data set corresponded to a given head-to-MRI, which

occurred if more than one MEG measurement block existed for a given session, only the

first MEG-to-head block was used. Figure 4 depicts the estimated RMS of TRE, denoted

as RMS (Ψ), by the number of head shape points for these data sets. The estimation

of TRE is based on drawing subsamples from corresponding MEG-to-head and head-

to-MRI Metropolis samples. The size of the subsamples is the effective sample size of

the respective Metropolis sample. Utilizing these subsamples, the respective samples of

the RMS (Ψ) were computed over the head shape points according to (36). In a few

cases there are multiple TRE data per head shape point numbers in figure 4 due to

coincidental digitization with the same number of points. The error bars reflect the

range, from the median to the 95th percentile, over the samples of RMS (Ψ) whereas

the points indicate the respective means. We regard the 95th percentile as an upper

bound of the RMS (Ψ) confidence interval. The data sets show a mean RMS (Ψ) of

1.3 to 2.3 mm and an upper bound of 2.1 to 4.0 mm. Overall, both the mean and

the upper bound decrease with the number of head shape points. This TRE measure

serves as a quality criterion for MEG-to-MRI coregistrations and allows thresholding,

for example, 2 mm. Figure 5 shows the estimated TRE at a fine grid on the MRI of
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Figure 5. Estimates of TRE plotted as overlay onto the corresponding MRI slices.

The RMS of TRE is computed for all samples of all grid points. Black lines indicate

the slices in Freesurfer -MRI coordinates. The yellow crosshairs indicate the estimated

minimum of TRE. In the plots, A refers to anterior, P to posterior, I to inferior, S to

superior, R to right and L to left. On the left and right side, the coronal and sagittal

cuts at slice 110 and 100 are plotted, respectively.

one data set. Analogue to TRE, the coregistration rotation error is estimated by the

RMS of
√
q21 + q22 + q23 for the MEG-to-MRI rotation, which is easily sampled from the

Metropolis algorithm results and does not depend on the position in space. The angular

approximation of this rotation error, estimated for each subject, is between 0.8 to 1.8◦,

with the upper bound 95th percentile between 1.3 to 3.1◦. The mean of the rotation

error, across subjects, gives an angular approximation of (1.1± 0.2)◦.

4. Discussion

4.1. Findings

Using an adaptive Metropolis algorithm to sample the six-dimensional coregistration

parameter space, and subsequent MLE, we were able to confirm the results of the least

squares approach to MEG-to-head coregistrations and further, to improve the results of

the ICP algorithm for head-to-MRI coregistrations. As output, the Metropolis algorithm

provides parameter sets with ergodic properties that allow confidence intervals of the

coregistration parameters to be estimated. Target registration error (TRE) is a function

of the coregistration parameters, at any point in space, and statistical indices of TRE

can be derived from the proposed Metropolis sampling.

We found that it is possible to approximate the empirical distributions of

residuals in MEG-to-head and head-to-MRI coregistrations by replacing the point errors

with samples from normal and Student’s t-distributions respectively. The empirical

distributions indicated that 99 % of the data sets yielded RMS of residuals of less than or

equal to 2.5 and 2.2 mm for MEG-to-head and head-to-MRI coregistrations respectively.

Thus, given our results, RMS values larger than these thresholds may indicate a problem
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in the measurement procedure. However, this provides only a preliminary assessment

where the given thresholds are exceeded in about 1 % of the data sets. Further, RMS

of residuals are not well suited as a quality measure for coregistration, as they do not

correlate with the actual errors (i.e. TRE) (Fitzpatrick 2009). This was confirmed in

the present study where very small correlation coefficients, of 0.017 and −0.116, were

observed over the 5 544 MEG-to-head and 128 head-to-MRI data sets respectively. For

source reconstructions, TRE at the source location is the measure of interest. TRE

is the mislocalization of an alignment point due to uncertainty in the coregistration.

According to (36), we can estimate TRE distributions at any point in space if we can

draw samples of the coregistration parameters. An adaptive Metropolis algorithm can

be used to sample the probability density of the coregistration parameters for each

data set. For the MEG-to-head data sets, the MLEs of the Metropolis algorithm were

equal to the least squares estimates. This was the expected result as we used the

probability density of a normal distribution for the errors and in this case the least

squares estimate is equal to the MLE (Press et al. 1992, equation 15.1.3). For the

head-to-MRI data sets, the Metropolis algorithm computed different MLE coregistration

parameters compared to the ICP algorithm. RMS of residuals were significantly reduced

by the Metropolis algorithm compared to the ICP. This may be explained by the fact

that the ICP algorithm finds a local minimum dependent on the initial state of the

iteration (Besl & McKay 1992). Coregistration optimizations like the head-to-MRI,

where only a subset of points in one modality correspond to the points of the other,

depend on both the initial rotation and translation, and are also referred to as local

shape-matching (Besl & McKay 1992). Besl & McKay (1992) propose sampling the

initial rotation and translation parameters for the local shape matching using the ICP

algorithm. However, this method is not common practice in MEG labs, and it is not

implemented in MNE or mne-python, which are commonly used. Compared to ICP,

the Metropolis algorithm searches more globally and it is not completely determined by

its initial state. Samples can be drawn from the parameter distribution and variance,

and higher moments can be estimated from the Metropolis samples because of the

correct ergodic properties (Haario et al. 2001). However, it should be noted that these

advantages are achieved with higher computational costs compared to ICP.

For the translation parameter estimates, the head-to-MRI yielded smaller variances

compared to the MEG-to-head coregistrations. The high accuracy of the head-to-MRI

translation parameters can be explained by the larger number of data points compared

to the MEG-to-head coregistrations. However, rotation parameters were similar between

MEG-to-head and head-to-MRI. This may be explained by the spherical nature of the

head; spheres are rotation invariant in the head-to-MRI coregistration problem.

For our data sets, we observed an RMS of TRE at the head surface of about 1.7 mm

on average. We found an RMS of the rotation errors of about 1.1◦ on average, which was

well predicted by the root of the sum over the squared quaternion spreads from table 3.

Hillebrand & Barnes (2003) found a TRE threshold of 2 mm at the cortical surface

for anatomically constrained beamformers. They suggest that the use of anatomical
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constraints with beamformers is only beneficial if the MEG-to-MRI coregistration and

segmentation error are smaller than 2 mm and 10◦ at the cortex. This result was later

confirmed by Hillebrand & Barnes (2011) for the estimation of the source extent. Our

findings showed, on average, a smaller TRE than the critical 2 mm value reported

by Hillebrand & Barnes (2003) and Hillebrand & Barnes (2011), but 2 mm was still

completely within the range of TRE distributions of the present study. However, with

respect to rotations, our results were consistently below the critical threshold of 10◦. We

found an upper 95th percentile of the coregistration rotation error of 3.1◦ at maximum.

The orientation of the cortical surface also depends on the segmentation, which may

result in errors in the order of 10◦. In contrast to Hillebrand & Barnes (2003) and

Hillebrand & Barnes (2011), we did not assess TRE at the cortical surface but at

head shape points because of the availability of this surface without conducting further

segmentation. However, using the Metropolis sampling of the coregistration parameters,

we are able to compute TRE at any point in space. For source reconstruction, TRE can

be estimated at various points of interest in the source space or at the entire cortical

surface. For example, figure 5 shows TRE computed on a coronal and sagittal slice.

The sagittal grid on the right side of the figure shows a small TRE in frontal regions of

the brain. These regions were close to the centre of the coil positions, where the MEG-

to-head produces the smallest TRE, and also close to the face, where the digitization

provides more specific coregistration information compared to occipital regions.

Several studies have addressed the improvement in coregistration error stemming

from particular measurement steps. Singh et al. (1997) aimed to reduce the fiducial

localization error effects using a bite bar. They evaluated their strategy using

Monte Carlo simulations and were able to substantially improve the stability of their

coregistrations, in comparison to the pure fiducial-based method. At the time of Singh

et al. (1997), tracking of head position and rotation, during head shape digitization, had

not been established and, thus, the bite bar was essential to stabilise the head relative

to the digitization reference. A similar bite bar system was also proposed by Adjamian

et al. (2004) which, reduced the fiducial localization error by approximately a factor of

two. They also reported that the bite bar can cause discomfort and introduces artifacts

for some subjects. In our laboratory, coils are placed freely on the anterior, upper part

of the subject’s head surface, independent of anatomical landmarks. To compensate for

head movement during 3D-digitization, head position and rotation are tracked using an

additional reference, mounted on special glasses, which is common practice in present

day MEG laboratories. No additional mechanical hardware, for example, bite bars

or individual head casts, are used to restrict the movement of the subject’s head. The

methods of assessing coregistration errors suggested in the current report are not affected

by mechanical hardware, although, if individual head casts are used a different approach

for the assessment of the head-to-MRI coregistration is needed. Meyer et al. (2017)

suggested the use of head casts that fit to the reconstructed surface of the MRI of

individual subjects. They estimated a maximal coregistration error of 1.2 mm by using

such head casts. Depending on the shape of the subjects head, there was some flexibility
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in the positioning of the head, relative to the cast, which was tracked by a reference coil

on the subject’s nose, in addition to the coils in the cast. They report a predominant

uncertainty of about 1.2 mm standard deviation of the head position relative to the cast

in the z-axis (superiorly oriented head coordinate). However, potential movement of

the subject’s head, in a head cast, presents a problem that was not addressed by the

assessments of our study.

Besides coregistration, head movement during data acquisition or between

measurement blocks are related sources of error in MEG source reconstructions. Uutela

et al. (2001) compared two methods, a correction of sensor signals by alignment of

minimum norm estimates and a correction of forward calculations. They found that

both methods can efficiently reduce the effect of head movement in typical MEG studies.

Later, an alternative method of sensor signal correction, based on multipole expansions,

was proposed by Taulu & Kajola (2005) which is nowadays widely used with Neuromag

devices. All of these methods rely on the accurate estimation of head positions during

the MEG measurement. Hence, their accuracy is intrinsically limited by the error

of MEG-to-head coregistrations. The magnitude of head movements is often greater

than the errors of MEG-to-head coregistrations especially between measurement blocks

and in studies with children. For example, Wehner et al. (2008) reported an average

head position displacement of 12 mm from the beginning to the end of the experiment.

Compared to other sources of error, such as sensor noise and head movement, the

MEG-to-MRI coregistration error provides an absolute limit to the accuracy of source

localization, which, cannot be reduced by longer measurements or sophisticated head

movement corrections.

4.2. Practical recommendations

To facilitate a straightforward implementation of the proposed Metropolis algorithm for

head-to-MRI coregistration in different laboratories, we recommend the estimation of

error variance from the residuals according to the ratio σ2
η̂/σ

2
ζ = 2.87 ≈ 3, which was

found in the present study. For the acquisition of σ2
ζ , we suggest the use of existing

procedures from the respective laboratories (e.g. the ICP). From this starting point,

the estimation of error variance can be validated by error simulations and subsequent

head shape matchings. We recommend starting with variations of normal or Student’s

t-distributions. As soon as a theoretical error distribution is found, with satisfying

Kolmogorov–Smirnov statistics and a satisfying Q–Q plot of simulated and observed

residuals, Metropolis sampling of the log-likelihood (32) can be started. For MEG-to-

head coregistration the Metropolis algorithm is not required in the case of approximately

normally distributed errors, of similar size as reported in the present study. Assuming

the latter conditions are met, parameter samples of MEG-to-head can be generated by

using σ2
ε ·
(
JTJ

)−1
of (10) as the covariance matrix and a standard normal random

number generator. The MEG-to-head error variance σ2
ε can be estimated from residuals

as σ2
ε = σ2

δM/ (M − 2). This is the theoretical ratio for linear least squares fits
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(Björck 2015, page 214) of rotation and translation parameters, where M is the number

of coils. Optimal coregistration parameters are found in closed form for MEG-to-

head and from the maximum likelihood estimate of the Metropolis sample for head-

to-MRI. For corresponding parameter samples of MEG-to-head and head-to-MRI, TRE

is estimated by computation of (34), (35) and (36).

Concerning the head-to-MRI data sets of our lab, the emphasis of facial features,

(e.g. bridge of nose) was used along with a large number of head shape points. Hence,

it is difficult to determine the exact contributions, to TRE, of the sheer number of

points involved and the number of facial features used. Taking into account the spatial

distribution of TRE, in figure 5, we suggest it might also be beneficial to acquire more

head shape points in areas with the highest errors, such as the inion, which tends to

have unique spatial features. A similar argument can be made for coil placement. The

hair complicates the attachment of the coils at occipital regions, which is the reason for

a more frontal coil placement in our laboratory. If possible, we recommend attaching

at least one coil to an occipital location. We recommend using a large number of head

shape points, about 600 yielded the smallest TRE in the current study, emphasis on

facial features as well as the inion. However, the sheer number of head shape points is

not a guarantee for good coregistration. As seen in figure 4, the largest number of head

shape points resulted, accidentally, in the largest TRE. Therefore, and in agreement with

Hillebrand & Barnes (2003) and Hillebrand & Barnes (2011), we recommend checking

that the mean RMS of TRE is not greater than 2 mm at the head surface.

Computations of TRE, like in figure 5, are useful for coil placement and head

shape digitization optimizations in EEG applications as well. For example, for accurate

reconstructions of brain activity in the visual cortex it is beneficial to refine the head

shape digitization at occipital regions. In this case, TRE at the visual cortex is the

measure of interest. Coregistrations for EEG only involve the head-to-MRI problem

although head shape digitization is more challenging due to the electrode cap, compared

to the MEG procedure. As a result of the electrode cap, the number of head shape points

is usually smaller in the EEG coregistration compared to the equivalent procedure in

MEG. For this reason, the uncertainties of the fit are likely to be higher for EEG

compared to the results of the present study. We believe that the availability of TRE

at regions of interest would be useful for the digitization optimization in EEG.

5. Conclusion

Quality assessment of MEG-to-MRI coregistrations can be achieved by using the

Metropolis sampling algorithm of the coregistration parameters and subsequently

evaluating TRE. Further, we propose establishing this assessment procedure in EEG

and MEG laboratories and suggest reporting TRE in the study publications, especially

if source estimates are reported. We recommend the application of the Metropolis

algorithm to achieve higher accuracy when estimating the parameters of the head-to-

MRI problem. Due to the superior results compared to the ICP, and the availability
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of parameter distribution samples and derived measures like TRE, we suggest the

Metropolis algorithm also for EEG coregistration fits.
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