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SchNetPack is a toolbox for the development and application of deep neural networks to the
prediction of potential energy surfaces and other quantum-chemical properties of molecules and
materials. It contains basic building blocks of atomistic neural networks, manages their training
and provides simple access to common benchmark datasets. This allows for an easy implementation
and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atom-
centered symmetry functions and the deep tensor neural network SchNet as well as ready-to-use
scripts that allow to train these models on molecule and material datasets. Based upon the PyTorch
deep learning framework, SchNetPack allows to efficiently apply the neural networks to large datasets
with millions of reference calculations as well as parallelize the model across multiple GPUs. Finally,
SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained
models easily accessible to researchers that are not yet familiar with neural networks.

I. INTRODUCTION

One of the fundamental aims of modern quantum
chemistry, condensed matter physics and materials sci-
ence is to numerically determine the properties of
molecules and materials. Unfortunately, the compu-
tational cost of accurate calculations prove prohibitive
when it comes to large-scale molecular dynamics simula-
tions or the exhaustive exploration of the vast chemical
space. Over the last years however, it has become clear
that machine learning is able to provide accurate pre-
dictions of chemical properties at significantly reduced
computational costs. Conceptually, this is achieved by
training a machine learning model to reproduce the re-
sults of reference calculations given the configuration of
an atomistic system. Once trained, predicting proper-
ties of other atomistic systems is generically cheap and
has been shown to be sufficiently accurate for a range of
applications [1–18].

A common subclass of machine learning models for
quantum-chemistry are atomistic neural networks. There
exist various architectures of these models, which can be
broadly split into two categories: descriptor-based mod-
els that take a predefined representation of the atomistic
system as input [19–24] and end-to-end architectures that
learn a representation directly from atom types and po-
sitions [25–28].

SchNetPack provides a unified framework for both cat-
egories of neural networks. While we plan to support
more architectures in the future, SchNetPack currently
includes implementations for SchNet [15, 27], an end-
to-end continuous convolution architecture, as well as
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Behler–Parrinello networks which are based on atom-
centered symmetry functions (ACSF) [19, 29] and an ex-
tension thereof which uses weighted atom-centered sym-
metry functions (wACSF) [24].

SchNetPack furthermore contains functionality for ac-
cessing popular benchmark datasets, training neural net-
works on (multiple) GPUs to predict a variety of chemical
properties. It is built in an extensible manner and is im-
plemented using the PyTorch deep learning framework.

The remainder of the paper is structured as follows.
In Section II, we present how models in SchNetPack
are structured and briefly review (w)ACSF and SchNet
representations. Section III outlines how SchNetPack
manages the training process for atomistic neural net-
works and gives an overview of the integrated datasets.
Section IV summarizes details about the implementa-
tion, while Sections V and VI provide code examples for
training an atomistic neural network and calculating a
power spectrum using the interface to the Atomic Simu-
lation Environment (ASE). Section VII presents results
of SchNetPack on standard benchmarks, before we con-
clude and give an outlook on future extensions.

II. MODELS

Models in SchNetPack have two principle components:
representation and prediction blocks (see Figure 1). The
former takes the configuration of the atomistic system as
an input and generates feature vectors describing each
atom in its chemical environment. The latter uses these
atom-wise representations to predict the desired proper-
ties of the atomistic system. The only difference between
descriptor-based and end-to-end architectures is whether
the representation block is fixed or learned from data. In
the following two sections, we will explain the possible
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FIG. 1: Basic building blocks of a model predicting the property P from the positions R and atomic numbers Z of
the atomistic system. We use the abbreviation spk for the schnetpack package. All representation and prediction

blocks are collected in the spk.representation and spk.atomistic package respectively. The right and left panels
illustrate various choices for these building blocks.

choices for these components in detail.

A. Representations

An atomistic system containing n atoms can be de-
scribed by its atomic numbers Z = (Z1, . . . , Zn) and po-
sitions R = (r1, . . . , rn). The interatomic distances are
given as rij = ‖ri − rj‖. In the following, we will briefly
describe the currently implemented representations, i.e.
(w)ACSF [24] and SchNet [27]. For further details, refer
to the original publications.

1. (w)ACSF

Behler–Parrinello network potentials [19] have proven
very useful for systems as diverse as small molecules,
metal and molecular clusters, bulk materials, surfaces,
water and solid-liquid interfaces (for a recent review, see
[30]). Due to this impressive number of applications,
Behler–Parrinello networks are now firmly established as
a highly successful neural network architecture for atom-
istic systems.

For these networks, so-called atom-centered symmetry
functions (ACSFs) form the representation of the atom-
istic system. Contrary to the approach taken by SchNet,
where features are learned from the data, ACSFs need
to be determined before training. Hence, using symme-
try functions can be advantageous in situations where
the available training data is insufficient to learn suitable
representations in an end-to-end fashion. On the other
hand, introducing rigid hand-crafted features might re-
duce the generality of the model. In the following, we
will briefly review ACSFs and a variant called weighted

ACSFs, or wACSFs for short. We refer to References [29]
and [24] for a more detailed discussion.

ACSFs describe the local chemical environment around
a central atom via a combination of radial and angular
distribution functions.
a. Radial Symmetry Functions: Radial ACSF de-

scriptors take the form:

Gradi,α =

N∑
j 6=i

g(Zj)e
−γα(rij−µα)2f(rij), (1)

where i is the central atom and the sum runs over all
neighboring atoms j. γα and µα are parameters which
modulate the widths and centers of the Gaussians. Typi-
cally, a set of nrad radial symmetry functions with differ-
ent parameter combinations α ∈ {1, . . . , nrad} are used.
In SchNetPack, suitable γα and µα are determined au-
tomatically via an equidistant grid between zero and a
spacial cutoff rc, adopting the empirical parametrization
strategy detailed in Reference [24].

A cutoff function f ensures that only atoms close to
the central atom i enter the sum and is given by

f(rij) =

{
1
2

(
cos(

πrij
rc

) + 1
)
, rij ≤ rc ,

0 , else .
(2)

For convenience, we will use the notation fij = f(rij)
in the following. Finally, g(Zj) is an element-dependent
weighting function. In ACSFs, g(Zj) takes the form

g(Zj) = δZj ,Za
=

{
1 if Zj = Za

0 else.
(3)

Hence, radial ACSFs are always defined between the cen-
tral atom and a neighbor belonging to a specific chemical
element.



3

b. Angular Symmetry Functions: information about
the angles between atoms are encoded by the na angular
symmetry functions

Gangi,α =21−ζα
N∑

j 6=i,k>j

g(Zj , Zk) (1 + λθijk)
ζα

× e−γα(r2ij+r
2
ik+r

2
jk)fij fik fjk , (4)

where θijk is the angle spanned between atoms i, j and
k. The parameter λ takes the values λ = ±1 which shifts
the maximum of the angular terms between 0 and π.
The variable ζα is a hyperparameter controlling the width
around this maximum. γα once again controls the width
of the Gaussian functions. As with radial ACSFs, a set of
nang angular functions differing in their parametrization
patterns α ∈ {1, . . . , nang} is chosen to describe the local
environment. For angular ACSFs, the weighting function
g(Zk, Zj) can be expressed as

g(Zk, Zj) =
1

2

(
δZjZa

δZkZb
+ δZjZb

δZkZa

)
, (5)

which counts the contributions of neighboring atoms j
and k belonging to a specific pair of elements (e.g. O-H
or O-O).

Due to the choice of g, ACSFs always are defined for
pairs (radial) or triples (angular) of elements and at least
one parametrized function Gi,α has to be provided for
each of these combinations. As a consequence, the num-
ber of ACSFs grows quadratically with the number of
different chemical species. This can lead to an impracti-
cal number of ACSFs for systems containing more than
four elements (e.g. QM9).

Recently, alternative weighting functions have been
proposed which circumvent the above issue. In these
so-called weighted ACSFs (wACSFs), the radial weight-
ing function is chosen as g(Zj) = Zj while the angular
function is set to g(Zk, Zj) = ZkZj . Through this sim-
ple reparametrization, the number of required symmetry
functions becomes independent of the actual number of
elements present in the system, leading to more compact
descriptors. SchNetPack uses wACSFs as the standard
descriptor for Behler–Parrinello potentials.

Irrespective of the choice for the weighing g, both ra-
dial and angular symmetry functions are concatenated as
a final step to form the representation for the atomistic
system, i.e.

Xi =
(
Gradi,1 , . . . G

rad
i,nrad

, Gangi,1 |λ=±1, . . . , , G
ang
i,nang

|λ=±1
)
.

(6)

This representation Xi can then serve as input for pre-
diction block of the atomistic network.

2. SchNet

SchNet is an end-to-end deep neural network architec-
ture based on continuous-filter convolutions [15, 27]. It

follows the deep tensor neural network framework [25],
i.e. atom-wise representations are constructed by start-
ing from embedding vectors that characterize the atom
type before introducing the configuration of the system
by a series of interaction blocks.

Convolutional layers in deep learning usually act on
discretized signals such as images. Continuous-filter con-
volutions are a generalization thereof for input signals
that are not aligned on a grid, such as atoms at arbi-
trary positions. Contrary to (w)ACSF networks which
are based on rigid hand-crafted features, SchNet adapts
the representation of the atomistic system to the train-
ing data. More precisely, SchNet is a multi-layer neural
network which consists of an embedding layer and sev-
eral interaction blocks, as shown in the top left panel of
Figure 1. We describe its components in more detail in
the following:
a. Atom Embeddings: Using an embedding layer,

each atom type Zi is represented by feature vectors
x0
i ∈ RF which we collect in a matrix X0 = (x0

1, . . . ,x
0
n).

The feature dimension is denoted by F . The embed-
ding layer is initialized randomly and adapted during
training. In all other layers of SchNet, atoms are de-
scribed analogously and we denote the features of layer l
by X l = (xl1, . . . ,x

l
n) with xli ∈ RF .

b. Interaction Blocks: Using the features X l and
positions R, this building block computes interactions
which additively refine the previous representation ana-
logue to ResNet blocks [31]. To incorporate the influence
of neighboring atoms, continuous-filter convolutions are
applied which are defined as follows:

xl+1
i = (X l ∗W l) ≡

∑
j∈nbh(i)

xlj �W l(rij) . (7)

By � we denote element-wise multiplication and nbh(i)
are the neighbors of atom i. In particular for larger sys-
tems, it is recommended to introduce a radial cutoff. For
our experiments, we use a distance cutoff of 5Å.

Here, the filter is not a parameter tensor as in stan-
dard convolutional layers, but a filter-generating neural
network W l : R → RF which maps atomic distances to
filter values. The filter generator takes atom positions
expanded on a grid of radial basis functions which are
closely related to the radial symmetry functions (1) of
(w)ACSF. For its precise architecture, we refer to the
original publications [15, 27].

Several atom-wise layers, i.e. fully-connected layers

xl+1
i = W lxli + bl (8)

that are applied to each atom i separately, recombine the
features within each atom representation. Note that the
weights W l and biases bl are independent of i and are
therefore the same for all atom features xli. Thus the
number of parameters of atom-wise layers is independent
of the number of atoms n.

In summary, SchNet obtains a latent representation of
the atomistic system by first using an embedding layer to
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obtain features X0. These features are then processed by
L interaction blocks which results in the latent represen-
tation XL which can be passed to the prediction block.
We will sketch the possibilities for the architectures of
these prediction blocks in the following section.

B. Prediction Blocks

As discussed in the last sections, both SchNet and
(w)ACSF provide representations Xi with i ∈ {1, . . . , n}
for an atomistic system with n atoms. These representa-
tions are then processed by a prediction block to obtain
the desired properties of the atomistic system. There are
various choices for prediction blocks depending on the
property of interest. Usually, prediction blocks consist of
several atom-wise layers (8) with non-linearities, which
reduce the feature dimension, followed by a property-
dependent aggregation across atoms.

The most common choice are Atomwise prediction
blocks, which express a desired molecular property P as
a sum of atom-wise contributions

P =

n∑
i=1

p(xi) . (9)

While this is a suitable model for extensive properties
such as the energy, intensive properties, which do not
grow with the number of atoms n of the atomistic system,
are instead expressed as the average over contributions.
Atomwise prediction blocks are suitable for many prop-

erties, however property-specific prediction blocks may
be used to incorporate prior knowledge into the model.
The DipoleMoment prediction block expresses the dipole
moment µ as

µ =

n∑
i=1

q(xi)(ri − r0) , (10)

where q : RF → R can be interpreted as latent atomic
charges and r0 denotes the center of mass of the system.

The ElementalAtomwise prediction block is different
from Atomwise in that instead of applying the same net-
work to all the atom features Xi, it uses separate net-
works for different chemical elements. This is particu-
larly useful for (w)ACSF representations. Analogously,
ElementalDipoleMoment is defined for the dipole mo-
ment.

III. DATA PIPELINE AND TRAINING

One of the main aims of SchNetPack is to acceler-
ate the development and application of atomistic neural
networks. To this end, SchNetPack contains a number
of classes which provide access to standard benchmark
datasets and manage the training process. Figure 2 sum-
marizes this.

ANI1

QM9

ISO17 MD17

spk.AtomsData

spk.AtomsLoader

Multithreads Data Loader

DATABASE

LOGGER

csv tensorboard

TRAINER

spk.AtomisticModel
spk.Trainer

FIG. 2: Setup for training models in SchNetPack. Note
that we denote the various choices for dataset classes

mentioned in Section III by their common
spk.AtomsData base class.

The dataset classes automatically download the rele-
vant data, if not already present on disk, and use the
standard ASE package [32] to store them in an SQLite
database. In particular, this means that we use the con-
ventions and units of the ASE package in SchNetPack,
e.g. energies and lengths are in units of eV and Å. Cur-
rently, SchNetPack includes the following dataset classes:

• schnetpack.datasets.QM9: class for the QM9
dataset [33, 34] for 133,885 organic molecules with
up to nine heavy atoms from C, O, N and F.

• schnetpack.datasets.ANI1: functionality to ac-
cess ANI-1 dataset [35] which consists of more than
20 million conformations for 57454 small organic
molecules from C, O and N.

• schnetpack.datasets.ISO17: class for ISO17
dataset [25, 27, 34] for molecular dynamics of
C7O2H10 isomers. It contains 129 isomers with
5000 conformational geometries and their corre-
sponding energies and forces.

• schnetpack.datasets.MD17: class for MD17
dataset [10, 25] for molecular dynamics of small
molecules containing molecular forces.

• schnetpack.datasets.MaterialsProject: pro-
vides access to the Materials Project [36] reposi-
tory of bulk crystal containing atom types ranging
across the whole periodic table up to Z = 94.

We also provide a AtomsLoader class for feeding a model
with (a subset of) a dataset during training using multi-
ple threads. This class also calculates relevant statistics
such as mean and standard deviation.

For convenience, a Trainer class is included in SchNet-
Pack which manages the training process of the model.
This class evaluates the model’s performance on a vali-
dation set, provides functionality for early stopping and
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various learning rate schedules as well as checkpointing
and logging. For the latter, one can choose between csv
files and Tensorboard [37] which is a powerful web-based
visualization interface. SchNetPack supports training on
multiple GPUs for which we use the standard PyTorch
implementation.

As we will show in the example discussed in Section V,
the classes presented in this section allow us to efficiently
train atomistic neural networks and evaluate their per-
formance using a very compact amount of code.

IV. IMPLEMENTATION DETAILS

SchNetPack is implemented in Python using the Py-
Torch (≥0.4) deep learning library [38]. Calculations that
do not require automatic differentiation are performed
using Numpy [39]. SchNetPack is tightly integrated
with the Atomic Simulation Environment (ASE) [32]
which is used to persist configurations of atomistic sys-
tems. We also provide an interface to the ASE calcula-
tor class which allows to easily incorporate SchNetPack
models into ASE workflows, such as performing molecu-
lar dynamics. Logging the training progress to Tensor-
board [37] is facilitated by tensorboardX [40]. Some of
the datasets come in the HDF5 binary file format which
we parse with the h5py package [41]. SchNetPack can be
easily installed using pip [42]. The code for SchNetPack
can be found on GitHub [43].

V. EXAMPLE: TRAINING IN SCHNETPACK

1 import schnetpack as spk
2 import schnetpack.atomistic as atm
3 import schnetpack.representation as rep
4 import torch
5 from torch.optim import Adam
6 import torch.nn.functional as F
7 from schnetpack.datasets import *
8

9 # load qm9 dataset and download if necessary
10 data = QM9("qm9/", properties=[QM9.U0])
11

12 # split in train and val
13 train, val, test = data.create_splits(10000,
14 1000)
15 loader = spk.AtomsLoader(train,
16 batch_size=100,
17 num_workers=4)
18 val_loader = spk.AtomsLoader(val)
19

20 # create model
21 reps = rep.SchNet()
22 output = atm.Atomwise()
23 model = atm.AtomisticModel(reps, output)
24

25 # create trainer

26 opt = Adam(model.parameters(), lr=1e-4)
27 loss = lambda b,p: F.mse_loss(p["y"],b[QM9.U0])
28 trainer = spk.Trainer("output/", model, loss,
29 opt, loader, val_loader)
30

31 # start training
32 trainer.train(torch.device("cpu"))

Listing 1: Minimal code example for training a SchNet
model on the QM9 dataset with SchNetPack.

Listing 1 is a minimal example of how to train a model
with SchNet representation to predict the total energy
U0 on QM9. Training and validation sets with 10k and
1k datapoints are used and the data is loaded asyn-
chronously using four worker threads.

In order to train on a different dataset, one has to only
change line 10 in Listing 1. In the example of ANI-1, it
will read

data = ANI1("ani1/", properties=[ANI1.energy])

Similarly, one can straightforwardly change the repre-
sentation to wACSF by replacing line 21 by

reps = rep.BehlerSFBlock()

In this case however, it is advantageous to use a
ElementalAtomwise output network by changing line 22
to

output = atm.ElementalAtomwise(reps.n_symfuncs)

These examples can also be found in the SchNetPack
source directory in the examples subdirectory.

VI. EXAMPLE: SCHNETPACK FOR CHEMISTS

In addition to the above features, SchNetPack provides
an interface to the ASE Calculator class. This makes it
possible to use SchNetPack models with the calculation
tools available in ASE, such as geometry optimization,
normal mode analysis and molecular dynamics simula-
tions.

The ASE interface is provided via the AseDriver class
in the molecular_dynamics module.

1 import schnetpack.molecular_dynamics as md
2

3 # Load trained model
4 model = md.load_model(model_directory)
5

6 ml_calculator = md.AseInterface(
7 path_to_molecule, model,
8 simulation_directory
9 )

10

11 # Optimize structure
12 ml_calculator.optimize()
13



6

14 # Compute numerical normal models
15 ml_calculator.compute_normal_modes()
16

17 # Setup and run molecular dynamics
18 ml_calculator.init_md()
19 ml_calculator.run_md()

Listing 2: Minimal code example for performing ASE
calculations with a trained SchNetPack model stored in
model_directory.

Listing 2 shows an example on how trained mod-
els are loaded into the calculator and used for com-
putation. For convenience, SchNetPack provides the
script schnetpack_molecular_dynamics.py which can
be used to perform various simulations out of the box. To
demonstrate the above features, SchNetPack was used to
predict the power spectrum of the keto form of malondi-
aldehyde via molecular dynamics simulations (shown in
Figure 3). The machine learning models are able to re-

0 500 1000 1500 2000 2500 3000
 [cm 1]

In
te

ns
iti

es
 [a

.u
.]

SchNet 1k
SchNet 50k
QM Static

FIG. 3: Power spectra of malondialdehyde at 300 K,
using SchNets trained on 1000 and 50000 data points
taken from the MD17 database. The harmonic normal
mode vibrations obtained with the electronic structure

reference are shown in grey.

produce the peak positions accurately, even when trained
on the smaller data set, demonstrating the efficacy of the
force training procedure. Particularly impressive are the
fine details observed in the spectra. For example, the two
models are able to resolve the structure of the peak at
1700 cm−1 which is due to the symmetric and asymmet-
ric stretching vibrations of the two carbonyl groups.

SchNet simulations of malondialdehyde take approx-
imately 11 milliseconds per timestep on a Tesla P100
GPU. This corresponds to a speedup of almost three or-
ders of magnitude compared to the original electronic
structure reference computations. In the present setup,
Behler–Parrinello networks show a comparable perfor-
mance to SchNet which indicates that both models do not
yet exhaust the full capacity of the GPU for molecules
of this size. It can be expected that ACSF based mod-
els are more efficient when simulating larger systems and
also when using CPUs instead of GPUs.

VII. RESULTS

In this section, we present results on QM9, ANI-
1, MD17 and Material Project datasets obtained with
SchNetPack. A summary of the test set performance of
both Behler–Parrinello (ACSF and wACSF) and SchNet
models can be found in Table I. The reported results are
the average of three models trained on different splits
of the same size. The Python scripts with which we ob-
tained these results using a Tesla-P100 GPU can be found
in the scripts subdirectory of SchNetPack. We refer to
Appendix A for further details on the experiments.

Although Behler–Parrinello networks produce reliable
results for a wide range of experiments, they are consis-
tently outperformed by the SchNet architecture. Due
to its end-to-end nature, SchNet is able to infer effi-
cient molecular representations in a data driven fash-
ion which leads to an improved flexibility compared to
the rigid handcrafted features used in Behler–Parrinello
potentials (ACSF and wACSFs). The expressive power
of SchNet models is enhanced further by their deep ar-
chitecture, compared to the shallow atomistic networks
used in Behler–Parrinello models. These features are
also advantageous for learning molecular forces for which
derivatives of the energy prediction are required for train-
ing. A good example are the results obtained for the
molecules malonaldehyde and acetylsalicylic acid taken
from the MD17 dataset. Here, SchNet outperforms the
other models even on small training sets. SchNet achieves
chemically accurate performance for data sets containing
a wealth of different molecular configurations (ANI-1),
as well as for compounds incorporating a wide range of
chemical elements, demonstrating its high utility.

The prime advantage of Behler–Parrinello models is
their reduced computational cost compared to SchNet,
which is expected to be beneficial e.g. for molecular
dynamics simulations of large molecules. Moreover, it
should be noted that all ACSF and wACSF models pre-
sented here use the empirical scheme introduced in Refer-
ence [24]. Their performance can be improved by careful
fine-tuning of the descriptors. However, such a procedure
is typically tedious, especially considering the excellent
out of the box performance of SchNet.

An interesting effect can be observed when comparing
the performance of standard ACSFs to the recently sug-
gested wACSFs. In tasks which focus on modeling struc-
turally and chemically diverse datasets (QM9), wACSF
produce better results. However in problems for which
small variations of the molecular structure need to be re-
solved (MD17), ACSFs outperform wACSFs. The reason
for this behavior is the loss of spatial resolution of wACSF
which is a direct consequence of the improved elemental
resolution. Whether this problem can be circumvented
by learning elemental weights in a similar manner as in
SchNet will be the focus of future research.

SchNet achieves chemically accurate prediction on the
ANI-1 dataset. The ANI-1 neural network potential [23],
which is based on Behler–Parrinello networks, reported a
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TABLE I: Summary of performance on test set. By N , we denote the size of the combined train and validation set.

Dataset Property Unit Model MAE RMSE time

Malondialdehyde (N=1k)

energy kcal mol−1
SchNet 0.08 0.11 2.5h
ACSF 0.30 0.40 0.6h
wACSF 1.16 1.52 0.6h

atomic forces kcal mol−1 Å−1
SchNet 0.13 0.16 2.5h
ACSF 1.08 1.59 0.6h
wACSF 3.27 4.53 0.6h

Malondialdehyde (N=50k)

energy kcal mol−1
SchNet 0.07 0.09 13.5h
ACSF 0.09 0.11 6h
wACSF 0.69 0.88 6h

atomic forces kcal mol−1 Å−1
SchNet 0.05 0.09 13.5h
ACSF 0.26 0.42 6h
wACSF 1.84 2.51 6h

Acetylsalicylic acid (N=1k)

energy kcal mol−1
SchNet 0.38 0.52 2.5h
ACSF 0.79 1.03 0.7h
wACSF 2.11 2.69 0.7h

atomic forces kcal mol−1 Å−1
SchNet 1.17 1.68 2.5h
ACSF 1.92 2.75 0.7h
wACSF 4.80 6.81 0.7h

Acetylsalicylic acid (N=50k)

energy kcal mol−1
SchNet 0.11 0.14 2d 11.5h
ACSF 0.40 0.53 1d 6h
wACSF 1.20 2.69 1d 6h

atomic forces kcal mol−1 Å−1
SchNet 0.14 0.19 2d 11.5h
ACSF 0.88 1.26 1d 6h
wACSF 2.31 3.14 1d 6h

QM9 (N=110k)

U0 kcal mol−1
SchNet 0.26 0.54 12h
ACSF 0.49 0.92 8h
wACSF 0.43 0.81 6h

dipole moment Debye
SchNet 0.020 0.038 13h
ACSF 0.064 0.100 8h
wACSF 0.064 0.095 8h

ANI-1 (N=10.1M) energy kcal mol−1 SchNet 0.55 0.89 9d 7ha

ANI-1 (N=19.8M) energy kcal mol−1 SchNet 0.47 0.77 12d 15hb

Materials Project (N=62k) formation energy eV / atom SchNet 0.041 0.088 1d 14h

a We used four Tesla P100 GPUs for data-parallel training.
b We used two Tesla P100 GPUs for data-parallel training.

RMSE of 1.2 kcal mol−1 using 80% of the ANI-1 dataset
for training and 10% for validation. Using SchNet, we al-
ready obtain a RMSE of 0.89 kcal mol−1 using a training
set of 10 million reference examples. Raising our splits
up to 80% of the whole dataset for training and 10%
for validation and testing, we obtain a MAE of 0.47 kcal
mol−1 and a RMSE of 0.77 kcal mol−1.

VIII. CONCLUSIONS

SchNetPack is a framework for neural networks of
atomistic systems which simplifies accessing standard
benchmark datasets, training models of different archi-
tectures and evaluating their performance. It provides
an interface to combine it with the functionality of the
ASE package such as molecular dynamics simulations.
We plan on extending SchNetPack further in the future
by adding more datasets, advanced training mechanisms
such as active sampling, support for additional quantum-

mechanical observables and further neural network archi-
tectures. We expect this unification and simplification to
be of great value for the community as it allows to con-
centrate on the design of the neural network models as
well as to easily compare different architectures.
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[1] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi,
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Appendix A: Details on Experiments
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FIG. 4: Time required to go through one training epoch
using 110k QM9 molecules for training.

We train three models on different splits which are
summarized in Table II. The reported errors and run-
times are their average. We use a Tesla P100 GPU for
training. The scripts which include all the choices for
the hyperparameters are contained in the scripts subdi-
rectory of SchNetPack. One of the main reasons why we

can train SchNet models faster than in the original pub-
lications [15, 27] is that we are using a different learning
rate schedule. In the original publications, the learning
rate was lowered by a factor of 0.96 every 100k iterations.
In our experiments however, the learning rate is reduced
by a decay factor if the validation loss has not improved
over a given number of epochs. We refer to Tables III to
V for details on learning rates, schedules and symmetry
function compositions. While both learning rate sched-
ules lead to comparable results in the long run, our new
setup converges significantly faster.

We can further speed up training by taking advantage
of the support for multiple GPUs in SchNetPack as is
demonstrated in Figure 4. In our experiments, we only
did so for the ANI-1 dataset.

Finding the optimal point to stop the training process
is a well-known problem in the optimization of neural net-
works [44]. It is worth noting that a significant amount
of the training time in our experiments is spent on fine-
tuning the accuracy of the prediction. Figure 5 demon-
strates this for the example of training SchNet on 50k ref-
erence calculations for acetylsalicylic acid. In this case,
approximately 50% of the training time is spend on the
last 0.02 kcal/mol improvement. This also means that
if this minor improvement is not required, the training
can already be stopped after half of the reported train-
ing time when the learning progress flattens out. We plan
to implement more advanced learning rate schedules and
stopping criteria in future versions to alleviate this issue.
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TABLE II: Setup of experiments

Dataset Train Validation Test
Malondialdehyde (N=1k) 950 50 992,237
Malondialdehyde (N=50k) 49,000 1,000 943,237
Acetylsalicylic acid (N=1k) 950 50 210,762
Acetylsalicylic acid (N=50k) 49,000 1,000 161,762
QM9 109,000 1,000 20,813
ANI-1 (N=10.1M) 10,000,000 100,000 11,957,374
ANI-1 (N=19.8M) 17,600,000 2,200,000 2,257,374
Materials Project 60,000 2,000 21,623

TABLE III: Setup for SchNet training

Dataset Learning Rate Decay Factor Minimal Learning Rate Patience ρ Batch Size
QM9 0.0001 0.5 1e-06 25 – 100
ANI-1 0.0001 0.5 1e-06 6 – 400
MD17 (1k) 0.0001 0.5 1e-06 150 0.1 100
MD17 (50k) 0.0001 0.5 1e-06 50 0.1 100
Materials Project 0.001 0.5 1e-06 25 – 32

TABLE IV: Setup for Behler–Parrinello training

Dataset Learning Rate Decay Factor Minimal Learning Rate Patience ρ Batch Size
QM9 0.001 0.5 1e-06 25 - 100
MD17 (1k) 0.01 0.5 1e-06 20 0.1 20
MD17 (50k) 0.01 0.5 1e-06 20 0.1 100

TABLE V: Setup for ACSFs and wACSFs used in the Behler–Parrinello models. The symmetry functions were
standardized in all experiments.

Dataset Type nrad nang nSF centered radial

QM9
ACSF 5 3 115 -

wACSF 22 5 32 -

MD17 (1k)
ACSF 5 3 51 +

wACSF 15 18 51 +

MD17 (50k)
ACSF 5 3 51 +

wACSF 15 18 51 +
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FIG. 5: Force training of SchNet on acetylsalicylic acid (N=50k). Note that approximately 50% of training time is
spend on fine-tuning the last ∼ 0.02 kcal mol−1Å−1.
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