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ABSTRACT

Complex principal oscillation pattern (CPOP) analysis is introduced as an extension of conventional POP
analysis. Both are intended to resolve regular evolving patterns from processes with many degrees of freedom.
While POP analysis, like many other techniques, deals with the concept of the system state as a real vector, it
is argued that this notion be extended into the complex domain. The approach used here results from a critical
review of the theory of linear systems of first order. It turns out that these systems cannot appropriately model
standing oscillations. The notion of the traveling rate of a mode is defined, and it is demonstrated that the
mode’s frequency and traveling rate are directly coupled via the system matrix. One consequence is that clean
standing oscillations cannot be modeled by linear systems of first order.

CPOP analysis introduces a new vector of state. By defining the complex state “state + i - momentum,” both
the conventional state itself and its momentum are simultaneously described. The method is capable of resolving
oscillatory patterns of any given traveling rate from a stationary process. First experiments show that the CPOPs
evolve more regularly and with less noise than corresponding POPs. A prediction scheme that is appropriate
for CPOPs is defined by introducing a transformation technique that can be considered as a causal Hilbert
transform. With this scheme prediction skills that are significantly stronger than those of the POP mode! are

VOLUME 6

gained.

1. Introduction

A characteristic problem in climatological studies is
that the involved processes are usually of very high
complexity with a huge number of degrees of freedom.
Although each of these free components might, at a
certain time, play a crucial role, there is a general con-
sensus that many important features of the climate
system are govérned by rather low-order dynamical
subsystems. If this is true, one can decompose the state
of the system into a deterministic and a random por-
tion. The major task for the climate statistician is,
therefore, to find the right decomposition or, at least,
to extract significant physical signals from the noisy
system.

There are several methods to reduce complex pro-
cesses to lower-order ones, such as: empirical orthog-
onal functions (EOFs) and their complex form
(CEOFs), singular value decomposition (SVD), ca-
nonical correlation analysis (CCA), and principal in-
teraction and oscillation patterns (PIPs and POPs).
Common to all methods is that they normally reduce
the number of degrees of freedom by at least one order
of magnitude. This is achieved by splitting the space—
time variability of the process in question into the time-
variability of some generic spatial patterns.
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Each has its own advantages and disadvantages. For
instance, EOFs are a very ¢legant and simple tool to
derive statistically and geometrically orthogonal pat-
terns. With some particular exceptions (see North
1984) this approach is generally nondynamical, and
so the physical interpretation of the patterns often re-
mains an unsolved question. POP analysis is, by def-
inition, a dynamical approach, but the POP patterns
normally lack orthogonality. Hasselmann (1988) ar-
gues that with respect to space-time variability the POP
technique appears superior to many other techniques
since it extracts dominant features at dominant fre-
quencies. For example, for prescribed frequency bands,
the POPs should reduce to CEOFs.

In this paper we introduce complex principal oscil-
lation pattern (CPOP) analysis. POPs are not in every
case superior to EOFs. As an example, we demonstrate
that POP analysis is unable to resolve standing oscil-
lations, a capability shared by all EOF techniques.
Moreover, we show that the impossibility of modeling
standing oscillations is inherent in any linear system
of first order. In a certain sense, CPOP analysis emerges
from POP analysis just as the CEOFs emerge from
EOFs. While the CEOF analysis is able to resolve trav-
eling features, which are invisible for the EOF tech-
nique, the CPOPs now comprise standing features,
which cannot be found by POPs.

The main lines of the CPOP model are very similar
to those of the POP model. Therefore, as far as both
models coincide we will not go into the details. They
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are best described in Storch et al. (1988). The dynam-
ical aspects of both models can be summarized in the
following manner.

It is at the heart of all the statistical techniques that,
given a process of high complexity, it is possible to
decompose the process into a deterministic part and a
random part. The idea presented by Hasselmann
(1988) is that once we know the general structure of
the physical laws that govern the deterministic part,
we can estimate the actual parameters of these laws
Jfrom the data, together with the projection patterns.
This is the general PIP concept.

In the POP approach we predetermine the physical
system to be /inear. This can be justified empirically
by the fact that many of the climatic features indeed
arise from waves and oscillations. Theoretically one
can argue that as long as there exists a basic state of
the system, the perturbations about this basic state will
be governed by linear dynamics, just as in classical
perturbation theory. The POPs describe the modes of
this linear system. We will sketch the main issues of
the POP model in sections 2 and 3.

In section 4 we introduce the traveling rate of a mode
and show that, for a given linear system of first order,
the frequency of the mode is bounded only by the norm
of the system matrix and this traveling rate, yielding
the impossibility of modeling standing oscillations.

In section 5 we show that to adequately model an
oscillation one must have, for each oscillating com-
ponent of the system, a further conjugate component,
which oscillates in the same way but with a different
phase (shifted by #/2). In Hamiltonian mechanics this
is taken into account by considering a priori the 2n-
dimensional phase space of state and momentum, with
n being the degree of freedom of the system. In this
formulation a standing oscillation of the state is turned
into a cycle of state and momentum.

In our approach toward pattern analysis we follow
the same lines: we model state and momentum si-
multaneously. But unlike Hamiltonian mechanics, we
do not work in a 2rn-dimensional real phase space but
in an n-dimensional complex phase space. That means
we consider the complex vector of state “‘state
+ i-momentum,” where momentum is defined by
means of the Hilbert transform. Rewriting the POP
formalism in this new complex setting leads to the
CPOP analysis, which is introduced in detail in
section 6.

The seventh section is devoted to testing the CPOP
model with three sorts of data:

1) a series of synthetical low-order processes with
known modes;

2) monthly mean sea surface temperatures con-
taining the El Nifio mode;

3) daily tropical winds containing the Madden-Ju-
lian Oscillation.

The last section contains the CPOP prediction
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scheme. Many aspects of this scheme, like the causal
Hilbert transform, are still under some development.
Nevertheless, our results indicate that even in this rough
state the CPOP prediction achieves higher skill than
the POP prediction. We do not include any comparison
to other techniques.

2. The modes of a linear system

This and the next section provide a short introduc-
tion to the POP model. For details we refer the reader
to Hasselmann (1988) and Storch et al. (1988). A
(discrete) linear system & of dimension # is given by
an evolution equation:

q(t+ 1) = Aq(1), (n

where q(¢) denotes the n-dimensional state vector of
& at time ¢, and A is the n-dimensional system matrix
of §. (As only one time step is modeled, we say that
& is of first order.) This is a set of n coupled linear
equations. They are usually solved by expanding q in
terms of the n complex eigenvectors M, ..., M, of
AJ

q(t) = Yi(OOM; + - -+ + Yn(t)M,,. (2)

The eigenvectors M; are known as the modes of S.
Inserting (2) into (1) yields a set of » uncoupled evo-
lution equations for the complex coefficients v;,

Yt + 1) = (1), (3)

where A; is the jth eigenvalue of A. The solution of
(3) is straightforward:

(1) = N (4a)
Utilizing the polar representation for \; = X\ = p - €*,
(we omit the index j) this can be written as

v(1) = p'e™. (4b)

Hence, the complex mode coefficient evolves as a
damped spiral in the complex plane, with a character-
istic damping rate p and frequency w. As we will see
below, these two numbers play a crucial role for both
POP and CPOP analysis since they mainly characterize
the “quality” of the analyzed patterns. Physically, this
has a very simple meaning; denoting the real and
imaginary part of a complex quantity by the super-
scripts ® and !, respectively, we can write the mode M
as M = MR + ;- M!. The evolution m(t) = y(t)- M
of the mode M = m(0) can thus be written:

mR(7) = p[cos(w)MR — sin(w)M']  (5R)
m'(?) = p‘[cos(wt)M' + sin(wt)MR].  (5I)

Note that m'(¢) = m®(¢ — P/4), with the period P
=2r/w.

For a real system matrix A the modes occur in com-
plex conjugate pairs (if they are complex at all). Two
such complex conjugate modes represent the same real
process m® (7). The full real-mode signal is then given
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by 2mR(¢), whereas the two imaginary parts m!(¢) can-
cel. Thus the general evolution of a damped mode (p
< 1) can be described in a two-dimensional subspace
spanned by the patterns MR and M, as in a succession
of

M'> MR- —-M'-> -MR> M (6)

The general solution of ( 1), that is, each possible time
evolution ¢g(t) of the system &, is a superposition of »
single-mode evolutions of the above kind. In this way
the modes describe the system § completely.

3. Estimating the modes: POPs

In section 2 we discussed the output of a linear sys-
tem as a function of system parameters. In this section
we go the opposite way: we are given some process and
we want to interpret it as the output of some unknown,
approximately linear system. Before any analysis, one
must reduce noisy (or nonlinear) components of the
process by projecting it onto the main EOFs. Further-
more, since we assume the basic state to be fixed, we
only consider anomaly processes about this state. Now,
as long as the anomalies are relatively small, one can
assume a /inear dynamic. This approach can be for-
malized as

q(t + 1) = Aq(¢) + noise, (7)
where q is our low dimensional process and the system
matrix A is to be estimated. Note that (7) describes a
first-order autoregressive process. The estimation of A
is achieved by a simple least-squares fit via the lag 1
and lag 0 covariance matrices:

A = (@t + DGO @ DgHN ™. (8)

The POPs are defined to be the normalized eigenvectors
of A. Note that, as long as the process q(¢) is real, the
matrix A will also be real.

Like normal modes, POPs are real or occur in com-
plex conjugate pairs. By expanding the state q(¢) in
the basis set consisting of these # patterns, as is done
in (2) for the modes, one can derive the evolution of
a POP. The evolution of such a POP is “better” the
less damped it is since otherwise more noise is needed
to excite the POP. For a complex POP, such good
quality can also be measured by the coherence of its
complex coefficient. If real and imaginary parts show
at the POP period a large squared coherency at a phase
lag of /2, then this POP’s evolution is close to its
ideal undisturbed form. Of course, to be useful the POP
should explain a significant amount of the variability
of the process.

The dynamical flavor of the POPs is reflected in the
fact that in (8) two time steps are coupled. As a con-
sequence it appears that the system matrix A is gen-
erally no longer symmetric and the full system of POPs
is not orthonormal, unlike EOFs. In extreme cases this
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can induce problems in discriminating between distinct
POPs (see Blumenthal 1991).

The picture we get is the following: we are given a
stationary process that is the output of some dynamical
system. This system acts, around some equilibrium
point, approximately linear. The modes of the system
(the POPs) are constantly excited by the unresolved
exterior noise and then damped out.

4. Problems with standing oscillations

For the following we introduce two quantities that
are associated with any multivariate process: given such
a process q (for example, the evolution of a pressure
field) at a certain time ¢, the intensity of q(t) is measured
by its geometrical norm |q(¢)|. At a different time ¢,
q has changed to q(¢'). The amount of change can be
measured by the geometrical angle between g(¢) and
q(t"). The states are completely different if they are
orthogonal.

With these notions in mind we again go through the
cycle (6) with the process mR(z) for some complex
mode M. As it is prescribed in (5R), mR(¢) passes
more or less different patterns with varying intensity.
In fact, since m®(7) evolves like a spiral in a two-di-
mensional space there are always orthogonal, that is,
totally different patterns occupied at certain distinct
times. If all the patterns are of nearly equal intensity
we would interpret the mode as a traveling feature.
Note that, since all this happens in the state space, this
does not imply that the spatial appearance of m®(¢)
must be different.

In the opposite case, when the intensity undergoes
large changes this behavior would appear as a standing
feature, because the only thing that really happens is
the oscillation between one pronounced pattern and
its negative. In the extreme case, when the intensity
reaches zero, the evolution equation (1) tells the zero
state only to stay at zero since the linearity of the system
demands q(t + 1) = A-0 = 0. Thus, once it has
reached zero, a linear system can never leave zero. So
we conclude that a linear first-order system is unable
to model standing oscillations.

We can restate the above quantitatively. We consider
some mode M with the eigenvalue A = pe™. For sim-
plicity we let p = 1. The mode spiral becomes an ellipse,
as Fig. 1 shows, From this ellipse we learn that it is
possible to represent the mode evolution m®(¢) as the
sum of a pure standing and a pure traveling oscillation,

m®(7) = m¥(2) + m7(2). (5R)
As m'(z) = mR(¢ — P/4) the same is true for the imag-
inary part:

m'(z) = mL(s) + ml(2). 91)

We denote the amplitudes of m,(¢) and m,(¢) by a,
and a,, respectively (see Fig. 1). It is clear that a, equals
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FI1G. 1. The pure standing and traveling oscillations as part of an
undamped mode. M®(¢) [text: m®(¢)] is running through the ellipse,
obeying (5R). The main axes of the ellipse are shown by the dashed
thick arrows, together with a cycle that has as a radius the smaller
axis. The parallel of the larger axis through M®(¢) intersects the cycle
in a point M} (). While the process M®(¢) is running uniformly
through the cycle, thereby describing a traveling feature of constant
intensity a,, the process M® (1) = MR(¢) — MR (1) performs a stand-
ing oscillation with amplitude a,. The traveling rate 7a of M is defined
by the ratio of @, and the maximum intensity a, + a,. As the traveling
rate of M increases, the eccentricity of the ellipse decreases, and the
ellipse becomes more circular.

the minimum intensity of the mode, while a, + «,
equals its maximum intensity. We define:

. a,
the standing rate of M: oy = ,
a, + a,
. a,
the traveling rate of M: my = .
a, + a,

In the Appendix it is shown that the system matrix A
and the traveling rate 7, are linked through the fol-
lowing relation:

Isin(w)| < (IA]l + 7w,

where || A| denotes the matrix norm of A.

Mathematically, this is nothing more than a (crypti-
cally written ) tautology. But physically it expresses the
fact that the presence of standing oscillations is only
possible at the expense of a large A (in terms of its
norm). As a consequence we find that in the limit of
a pure standing mode (7, = 0) the mode frequency w
is forced to vanish, which means that this mode cannot
oscillate.

If one is working in an EQF-truncated space one
can give an explicit bound on each mode frequency
(see Appendix). It depends only on #n (the number of
retained EOFs), ¢ = 2, ¢;/n (their average deviation),
and o2, (the smallest EOF variance) via the following
relation:

(10)

on

sin(w)<( + I)TM. (1)

Omin
To get a rough idea of what (11) expresses, let us sup-
pose we are given a process that has a mean standard
deviation of ¢ = 1, and we project this process onto
the first four EOFs. Suppose further that the fourth
EOF component has a standard deviation of 0.7.
Hence, in that case we roughly would find sin(w)
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< 774. Consequently, a mode with a traveling rate of
5%, say, cannot have a frequency that is higher than
arcsin(0.35) = 0.35, which corresponds to a period of
18 time steps.

Presumably it is not hard to give sharper bounds on
the right-hand side of (10). But we wanted to empha-
size that a bound exists at all that depends only on the
relative variances of the EOFs. We did not mention
the impact of a noisy environment on the estimation
of the modes. If, for instance, a mode has such a strong
standing behavior that its minimum intensity, a,, is
comparable to the noise amplitude, then this mode is
hard to detect.

5. The conjugate process: Complex time series

In the former section, we have seen that the building
blocks of linear models are cycles (or ellipses) rather
than single oscillations. This fact is, or at least should
be, automatically satisfied for models that are inspired
by physical reasoning. But for the purpose of fitting a
model to data, as in the POP analysis, one will en-
counter trouble when this cycle condition is not taken
care of.

The physical meaning of this condition can be ex-
plained as follows. In the moment when one of the
two cyclic components passes equilibrium, the second
component becomes active; it serves as a drive or mo-
mentum for the first. A quarter-period later the com-
ponents have taken opposite roles: the second com-
ponent, which now is zero, is driven by the first, which
is at a maximum, and so on.

Hamiltonian mechanics has this dichotomy incor-
porated into its foundations since, for each degree of
freedom, one always considers two ‘“conjugate” com-
ponents, location and momentum, which build up a
2n-dimensional phase space. This is another way of
expressing that Hamiltonian mechanics is of second
order. This can be contrasted with fluid mechanical
theories, which are usually of first order and do not
show this predetermined splitting of variables. Hence,
such a system can only describe oscillations because
the role of the conjugates can be played by the variables
themselves.

The dichotomy that we just described must be taken
into account by POP analysis. Before approaching a
process via the linear system approach, (1), one must
ensure that the variables are closed with respect to con-
Jugacy. Otherwise it is possible that conjugate infor-
mation gets lost, for instance, when the system space
is truncated. This often takes place, nevertheless, since
the data are usually passed through a cascade of filtering
operations and projections. If, for instance, we had a
process that develops between two EOF patterns, one
of which has only a small amplitude, then the POP
analyst could overlook this oscillation simply because
of the EOF truncation. Or if one investigates, say, the
SST evolution at some region, one might erroneously
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leave out the atmospheric wind data or some other
region of the globe where the signal moves when the
original SST signal is small or zero.

It is clear that this is impossible for traveling features.
Here, each quarter-period, the process passes geomet-
rically orthogonal patterns with nearly the same inten-
sity, so the process is cyclic by definition. In such cases
a POP analysis should not encounter any problems.
But as a process tends toward a standing oscillation
(thereby losing conjugate information) POP analysis
runs into trouble. In these cases the analysis is bound
to resolve a real, nonoscillating POP, in accordance
with (10).

The most natural way of restonng approach (1) is
the following. Once we have lost the conjugate com-
ponents, why should we not reintroduce them? Given
a process q we must define a priori what we now call
the conjugate process p. The new vector of state will
be the pair (q, p) or, more appropriately to our context,
the complex state vector q + ip.

For continuous processes the notion of conjugacy is
well defined via the time derivative. For discrete pro-
cesses, however, which do not know a time derivative,
one faces a certain vagueness of the notion of conju-
gacy.

An ad hoc approximation of the time derivative
would be the term p(¢) = q(z + 1) — q(¢). This ap-
proach is equivalent to considering second-order, in-
stead of first-order, autoregressive processes in (7), and
it tends to overemphasize the high frequencies. In the
following we describe a very natural way of constructing
the conjugate process.

Given q, we switch into the frequency domain, shift
the phase of q by w/2, and switch back into the time
domain. This procedure is known as the Hilbert trans-
Jorm. Formally, for a process g(¢) the Fourier transform
Q(w) is given by

Q(w) = 1/27r-f00 q(t)e ™dr.

The tranformation

i-Q(w), w<0
Q" (w) =X 0, w=0 (12)
-1 Q(w), w>0

gives the Hilbert transform q"(¢) of q(¢) as the inverse
Fourier transform of Q*(w), that is, by letting

q’"(2) =f Q*(w)e“'dow. (13)
Since the complex process z = q + iq” essentially con-
sists of the Fourier components of q one might call it
the “complexification” of q.

We now define p = q”. The new vector of state be-
comes
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z(1) = q(2) + ip(2), (14)

and it is an element of an n-dimensional complex phase
space.

The Hilbert transform is a rather simple way of re-
ceiving conjugate information and appears as a kind
of a “deus ex machina.” However, the price we have
to pay for this rescue is the indeterminateness of p at
time t, since one needs future information to calculate
p(7) exactly [see Q”in (12) and (13)]. Not surprisingly,
for prediction purposes (see the last sectlon) this be-
comes a serious problem.

It is interesting to note that the Hllbert transform
has been introduced into the geophysical literature in
order to extend classical EOFs to complex EOFs
(CEOFs), which are capable of resolving traveling fea-
tures—see Barnett (1983 ) or earlier Wallace and Dick-
inson (1972). In just the opposite way complex POPs
(CPOPs), which are to be introduced now, extend
POPs in order to incorporate standing features.

6. Complex POP analysis and CPOPs

The CPOP analysis works like a full analog to POP
analysis but deals exclusively with complex processes.
Suppose we are given some process q(¢). At first we
form the conjugate process p(¢) and the complex pro-
cess z(t) = q(z) + ip(¢). We interpret z(#) as being the
output of an approximately linear system &, but now
& is no longer real but a complex linear system of first
order. We use the approach

z(t + 1) = €z(t) + noise, (15)

where €@ is now a complex matrix. Standard least-
squares fitting yields the system matrix estimate [cf.

(8)]
€ = ((z(t+ DNz; ()N Kz (2] (D)), (16)

which is now a complex matrix (the asterisk denoting
complex conjugation). The CPOPs are defined to be
the n eigenvectors Cy, ..., C, of @ supplied with ei-
genvalues A, ..., A\,. They are usually linearly inde-
pendent, thus we can uniquely expand the complex
state z(?) in terms of the CPOPs, yielding

z2(t) = vi()C + -+« + 7,(1)Cp (17)

v;() is called the CPOP coefficient of CPOP C;. It de-
termines the time evolution of the CPOP. For a given
CPOP C with elgenvalue A (droppmg the index) we
may write A = e/ ¢*_ which gives us the two char-
acteristic times for C: the period P = 27 /w and the e-
folding (decay) time r. The complex pattern C, its
time coefficient y(z), and the characteristic times P
and 7 determine the CPOP completely.

Note that as for POPs, the state of a CPOP is not
given by a simple projection. Since CPOPs usually do
not form an orthonormal system, the state depends on
all other CPOPs. '
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The CPOP process is given by the multivariate com-
plex time series ¢(¢) = y(¢)C. It reads in the location
q space

cR() = yR(CR ~ ~(n)C, (18R)
and in the momentum p space:
c'(2) = yR()C' + 4" (¢)CR. (18I)

The amount of explained variance of a (C)POP can
be measured by the term 1 — ¢2/v?, where €2 and v?
denote the variance of the error ¢®(¢) — q(¢) and pro-
cess q(¢). It is normally given in percentages.

If there were no noise in the system the evolutions
(18) would describe a pure mode of the form (5). In
the presence of a noisy energy input, however, the sys-
tem’s modes are constantly excited to perform their
genuine oscillations. These motions are recognized as
the CPOPs of the system.

Now there are two cycles that belong to a CPOP, the
q cycle and the p cycle, which run through the same
patterns but with a lag of a quarter-period:

CR"__’—CI ___}_(:R_> CI *—)CR
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Because an n-dimensional process has n degrees of
freedom the CPOP model is able to resolve # indepen-
dent oscillations. This is in contrast to the POP ap-
proach, which prescribes the number of oscillatory de-
grees of freedom to be at most n/2. We will come back
to this point in the next section.

7. Testing the CPOPs
a. With synthetic data

In order to test whether CPOP analysis works cor-
rectly, we produced a series of low-dimensional com-
plex autoregressive processes of first order with pre-
scribed modes. This can be achieved by forming the
diagonal matrix A, the entries being the prescribed ei-
genvalues, and the matrix M = (M;), with M; denoting
the sequence of the prescribed eigenvectors. Forming
the complex matrix @ := MAM ™', we can create the
complex autoregressive process of first order [see (15)]

z(t + 1) = @z(¢) + noise,

where “noise” denotes some complex white noise pro-
cess. This z will then have the desired modes. Note

\ ’ ‘ \ ‘ (19) that such a process without any damping or noise
would be equivalent to a superposition of waves of the
p ¢! —> CR—> -C' — -C*—CL form (5) with p = 1.
INPUT MODES
P= 40; T=10 P= 50; T=0.0 P= 70; T=0.8

200 200

TN 200

TIME

150

100

50

0

1234568
SPACE
052GEB(b)

P=110; T7=0.2
0 3 200

123456
SPACE

FIG. 2. The six independent synthetic input modes in a Hovmoeller diagram. They were used as the undamped modes of a six-dimensional
complex linear process. Shaded areas indicate negative values. Note the varying traveling rates of the modes.
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We used a set of six independent modes in a six-
dimensional complex space. The real part, q(¢), of the
complex process z(?) = q(t) + ip(¢) was then subjected
to a CPOP analysis. Figure 2 shows a case without any
damping and noise, and with traveling rates 7 = 0, 0.2,
0.4,0.6,0.8, and 1.

In order to avoid similar harmonics of the modes
we chose the periods to be relatively rationally inde-
pendent (i.e., they have no large common divisors).
This has the consequence that each single wave be-
comes more invisible in a superposition of the six.

The CPOPs that were resolved are shown in Fig. 3.
There is obviously no significant difference between
the six modes and the CPOPs.

We already mentioned that a POP analysis can re-
solve at most half of the maximum number of oscil-
lations. Hence, in this case there can only be three
complex POPs, the number that we actually found.
They are shown in Fig. 4. One sees that the three POPs
are only of minor descriptive value. The first two POPs
show a traveling feature with a certain regularity, but
there is no significant resemblance to any of the input
modes.

From this analysis we can learn two things: first, that
a real process of dimension # is, in fact, able to comprise
n independent waves of the form (SR) as modes. These
modes, however, are not modes of an n-dimensional
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real linear system but of an enlarged linear system that
incorporates and models the momentum of the system.
CPOP analysis proves that it is possible to recover these
modes from the system’s (real) state evolution alone.
Second, if there is such a process with a maximal num-
ber of waves then a usual POP analysis would resolve
at most half as many complex POPs. Hence, the pro-
cedure is bound to mix two (or more) modes into one
POP, with the consequence that this POP cannot evolve
as regularly as it should.

Of course, in addition to being rather academic these
conclusions are grounded in only one (or one type of)
example, so they must be taken with some caution.

b. With an ENSO process

To test the CPOP model further and to compare the
results with the POP model, we analyzed a time series
of equatorial monthly SST anomalies. This time series
is a composition of two independent series that span
the Indian and Pacific oceans between 45°W and 85°E
in 24 locations, The first series, which ranges from 1951
to 1986, is an updated form of the dataset described
in Barnett (1983) and has already been used in Storch
et al. (1990). The second series ranges from 1982 to
1991 and is an updated form of the dataset described
in Reynolds (1988). In the overlapping period from

CPOPS

TIME

ll.1
123456
SPACE

0

052GEB(b)

1 200 g 200 -

150

100

50 A 50 A

123456
SPACE

FIG. 3. The six independent CPOPs of the synthetic process shown in a Hovmoeller diagram.
They reproduce the given input modes of Fig. 2 very convincingly.
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POPS
1
200 200
TIME
150 A 150
100 100
50 50 -
0 | o
12345686
SPACE
052GEB(c)

FIG. 4. The three resolved POPs of the synthetical six-dimensional
process. The input modes are not detected. POP 1 could be a merging
of modes 1 and 3.

1982 to 1986 a simple interpolation has been used to
merge both series together.

It is well known that the dominant signal in the in-
terannual time scale is the periodically occuring El
Nifio-Southern Oscillation (ENSO) phenomenon.
One main feature of ENSO consists of a nearly standing
oscillation in the SST anomaly field over the whole
oceanic region, with centers in the mid- and eastern
Pacific [see Xu and Storch (1990)]. Its period is usually
estimated to 30-40 months, and there are hints that
there exists a connection to the annual cycle. For the
details of ENSO we refer the reader to McCreary and
Anderson (1991).

Truncating the 24-dimensional SST process to the
first ten EOFs retains about 90% of the variance, and
there is one dominant EOF that accounts for nearly
45%. We subjected the ten-dimensional principal
component time series to a POP and a CPOP analysis.
The only POP that explained a substantial amount of
variance (12% of the whole SST field) was complex
but its coefficient did not develop very coherently, with
a vague spectral peak near 30 months. The POP period
was unrealistically long (86 months), which might also
have been influenced by the fact that in this case the
minimal resolvable period was 26 months, according
to (11). CPOP analysis resolved a 36-month standing
oscillation, which explains about 26% of the variance
with a complex coefficient that develops coherently at
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that period (99% significance level). Figure 5 shows
the POP and CPOP patterns (real and imaginary part)
together with the dominant EOF pattern. The large
amount of explained variance of this EOF (Fig. 5a)
indicates that, in fact, the SST shows a nearly standing
behavior. POP analysis, however, reveals a pattern pair
(Fig. 5b) with a fairly large traveling rate of 7 = 0.46.
The traveling mostly occurs between 90°E and 160°E.

180
LATITUDE

60E 120E

FIG. 5. The resolved ENSO pattern. (a) Dominant EOF, which
explains 45% of the SST anomaly variance. It is characterized by a
large SST anomaly over the whole Pacific. (b) Dominant POP. The
imaginary part resembles the EOF, but has large negative values at
150°E (near Indonesia). The real part shows larger deviations from
zero. (c) Dominant CPOP. Its real part has a marked similarity to
the EOF, and its imaginary part is small nearly everywhere. (d) Ex-
plained variances of all patterns. For the EOF this is largest (by def-
inition), especially over the Pacific. The CPOP explains much vari-
ance over the Pacific and is worse over the Indian Ocean. The negative
values of the POP at 150°E are striking.
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This is a rather poor data region since it is essentially
over Indonesia. The standing SST oscillation can be
seen very clearly in the CPOP process, which has a
traveling rate of 7 = 0.19 (Fig. 5¢). Its imaginary part
is very similar to the first EOF, and the real part is
nearly zero everywhere. By definition, the explained
variance is highest for the EOF (Fig. 5d). Over the
Pacific, where the oscillation is strongest, it shows val-
ues of up to 80% followed by the CPOP with values of
around 60%. The explained variance of the POP merely
reaches values of 40% over the Pacific, but becomes
strongly negative (—80%) over Indonesia, indicating
the poor results of the analysis there.

The complex POP and CPOP coefficients are shown
in Fig. 6. In order to avoid the 27 jumps we depict the
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F1G. 6. Amplitude and phase plot of the (C)POP coefficient. The
phase is plotted in the integrated form, that is, the 27 jumps are
eliminated. Especially from the CPOP coefficient (upper panel) one
sees that the various events are events of the amplitude. All important
events(e.g., 1958, 1966, 1976, 1983, 1987, 1989 ) are well represented
in the amplitude. During the events the phase is not affected at all.
It shows a generic phase speed of 490/ 11 = 45 months cycle™'. POP
amplitude and phase evolution show a lot of noise. Various events
(1966, 1973, 1983, 1989) appear like overshooting spikes in the am-
plitude. There is no clear, generic, recognizable phase speed.
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phase evolution in an integrated form. In other words,
we substitute the original phase evolution ¢(¢) by the
recursively defined new value ¢'(t) = ¢'(z — 1) + ¢(1).
We see that the CPOP’s amplitude as well as its phase
are obviously more undisturbed by noise than the re-
spective parts of the POP. For instance, the various
ENSO events appear more clearly in the CPOP am-
plitude. The POP amplitude shows a lot of high-fre-
quency noise, and it is erroneously large in the sixties.
Similarly, whereas the POP phase speed shows large
disturbances on long as well as short time scales, the
phase speed is nearly constant for the CPOP. Note that
even the strongest ENSO events do not affect the phase
speed. Altogether POP and CPOP perform nearly 11
cycles during the whole period, which results in a period
of 45 months, a bit longer than the CPOP period.

The classical measure of the ENSO phenomenon is
the Southern Oscillation index (SOI), which is essen-
tially gained as an averaged value of the SST anomalies
over the so-called Nifio3 area in the eastern Pacific,
(see Wright 1985). To compare our analysis results to
the SOI we therefore averaged both, the POP and CPOP
process, and also the dominant EOF process, over the
corresponding equatorial section. We call the results
EOF-SOI, POP-SOI, and CPOP-SOI. The result is
shown in Fig. 7. With a correlation of 94% the EOF-
SOI (bottom panel) resembles the SOI nearly com-
pletely. This is just another proof that the SST part of
ENSO is a standing feature, describable by a single
pattern and one real time series. The POP-SOI (middle
panel) shares a correlation of 61% with the SOI. Es-
pecially in the fifties and sixties it is highly out of sync
with the SOI. The events of 1963 and 1965 are largely
overestimated, and in 1968 POP analysis even suggests
a big warm event where a slight cold event was pre-
vailing. On the other hand, the 1972 El Nifio is only
very poor in the POP-SOI. The performance in the
1970s and 1980s is much better, with a good represen-
tation of the large 1983 and 1987 El Nifio, as well as
the 1989 La Niiia.

The 82% correlation of the CPOP-SOI (top panel)
is mostly due to the fact that during the whole period,
even in the fifties and sixties, it evolves very synchro-
neously to the SOI. This is natural since from the pat-
tern one sees that the real part of the CPOP mostly
resembles the dominant EOF while the imaginary part
is zero. Moreover, the various warm and cold events
are well represented without the large overestimates.
As for the POP-SOI, only the 1957 warm event is too
strong in the CPOP-SOL.

¢. With the Madden-Julian Oscillation

For the last application of the CPOP model we chose
the Madden-Julian Oscillation (MJO), see Madden
and Julian (1972). The MJO is the most dominant
atmospheric signal in the tropics in the intraseasonal
time scale. It is a disturbance traveling eastward around
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FIG. 7. SOI and reproduction of SOI by EOF, POP, and CPOP. There is no significant difference between EOF-SOI and SOI (lower
panel, 91% correlation ). The POP-SOI (middle panel, 61%) is uncorrelated especially in the fifties and late sixties, whereas it well represents
the events of the 1960s and the 1980s. Note the large overshootings at various events. The CPOP-SOI (top panel, 81%) is generally closer
to the SOI and does not have the high-frequency noise like the POP-SOIL.

the globe. The MJO can be observed in the geopotential
height or zonal wind of the lower troposphere and
shows, in the 20°S-20°N belt, a large-scale pattern of
wavenumber 1 with a pronounced structure over the
Pacific. The phase speed of the MJO has considerable
variability, moving relatively slowly over the Indian
Ocean and much faster over other parts. The MJO
shows a pronounced modulation by the annual cycle.
It is much stronger during the northern winter season
than in the summer.

We analyzed daily values of 850-mb zonal winds in
the tropical belt between 20°S and 20°N, from 1 Jan-
uary 1984 to 31 December 1987. The data come from
the European Centre for Medium-Range Weather
Forecasts in a 10- by 5-degree resolution. To remove
the annual and semiannual cycle as well as the main

noise components, we processed the data in the fol-
lowing manner: we first calculated the 36 meridional
averages and projected them onto the first ten EOFs.
The principal components were then high-pass filtered
with a cut period of 120 days tapered off to 180 days.
The resulting ten-dimensional time series was then
(C)POP analyzed.

Figure 8 shows the main resolved patterns. The two
dominant EOFs explain 18% and 12%, respectively, of
the whole variance of the time-filtered data (Figs. 8a
and 8d). The first EOF has a small minimum near
60°E and a maximum near the date line. The second
EOF has a minimum at 90°E and another smaller
maximum in the east Pacific. Their principal compo-
nent time series are correlated with 47%, where the
first leads the second by around 11 days. This means
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FIG. 8. Resolved pattern for the MJO. (a) First two EOFs explaining
18% and 12% of the overall variance. Cross-correlation analysis in-
dicates that the first EOF propagates toward the second. (b) POP-
wave; global wave of wavenumber 1. The wave is amplified at 60°E-
90°E; its speed is considerably small there. This leads to irregularities
in the POP phase evolution. (c¢) CPOP-wave; besides a slightly smaller
amplitude, the patterns nearly completely resemble the EOF wave.
From the CPOP cycle, one knows that the consecutive order is EOF
1, EOF 2, —EOFI1, —EOF 2, EOF 1, etc., which determines a full
global cycle. (d) Explained variance of the patterns. Note the large
local values of both EOFs. Remarkable are the large negative values
of the POP beyond the date line. The combination of EOF 1 and
EOF 2 in the CPOP is reflected in its explained variance.

that, on average, EOF 1 travels eastward toward
EOF 2.

Evoking the cycle (19), we can see in Fig. 8c that
the propagation from EOF 1 to EOF 2 is part of the
CPOP cycle, and is actually a global wave. Since the
real and imaginary parts of the CPOP essentially re-
semble EOF 2 and EOF 1, respectively, we see that the
complete history of this phenomenon can be described
by the series

EOF 1 = EOF 2 - —EOF 1 - —EOF 2 — EOF 1.
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Note that the transition from EOF 1 to EOF 2 means
a large amplification of the signal between 60°E and
90°E, that is, in the Indian Ocean. Also, in this area
the wave speed is about 2.3 m s™!, which is consider-
ably slower than the speed over the Pacific Ocean
(about 10 m s™!). The signal remains rather strong
over the Pacific and then almost fades out.

The POP cycle (see Fig. 8b) essentially describes
nearly the same course of events, only that the real part
of the POP has a much smaller scale than EOF 2. Also,
the whole POP, especially the imaginary part, is shifted
toward the east by about 20°. Moreover, over Africa
(~20°E) there is no signal at all, such that the wave
travel is actually interrupted there. The signal reappears
over the Indian Ocean and continues its travel like the
CPOP wave. Note that, apart from the interruption of
the POP wave over Africa, the POP as well as the CPOP
wave describes a full global cycle. )

The lower panel of Figure 8 shows the explained
variances of the different patterns. The shape of the
curves of both EOFs is very similar to the EOFs them-
selves. Both locally and on average, the two EOFs to-
gether show higher values than POP and CPOP, which
is understandable from the definition of EOFs. The
POP shows only a good performance west of the date
line. Toward the east, the explained variance drops
down to large negative values (up to —30%). The
CPOP, however, explains a considerable amount of
variance over the whole section between 60°E and
120°W, with maximum values of about 40%. The
lower values of explained variance, for the POP as well
as for the CPOP, compared to the EOFs is reasonable
since the EOFs are optimized structures that explain a
maximum amount of variance, whereas the former are
optimized with the side condition to perform a full
cycle.

The main difference between POP and CPOP anal-
ysis can be seen in their time evolution. Figure 9 shows
the POP and CPOP coefficients again in an amplitude-
phase diagram, from day 1 to day 500. We see that the
POP amplitude is superimposed by a lot of high-fre-
quency noise, similar to the ENSO example. The phase
evolution does not show any regularity at all; it even
shows the tendency to decrease, contrary to the POP
model that tells the phase to increase. This behavior is
difficult to interpret. But it might be explained by the
fact that the two POP minima are relatively close to-
gether in an area that is dominating the POP (in terms
of explained variance). Since the wave propagation
there is fairly slow, this can result in a transient reversal
of the phase speed. When the amplitude is strong, for
instance between time steps 330 and 430, the phase
speed is consistent.

Contrary to this, the CPOP phase evolution behaves
much more regularly. It is constantly increasing to a
final value of 49 cycles in 1461 days, which gives an
average phase speed of one cycle per 30 days, in ac-
cordance with the CPOP period of 28 days. These val-



OCTOBER 1993

PHASE

,_/”’H//v )

31

2 AMPLITUDE

]

0

100 200 00 400 500
YEAR
POP
2

6
AMPLITUDE N
4 i I
y NN
I 5 | 1 iV
) \ y !
27 auﬂf'i‘ [l
ii"‘-v iR W U i ‘
0 :
100 200 300 400 500
© YEAR

FIG. 9. Amplitude-phase diagram of POP and CPOP coefficient,
from day 1 to day 500 (compare with Fig. 6). The POP amplitude
(lower panel) is superimposed by a Iot of high-frequency noise, similar
to the ENSO example. Note the striking irregularity of the phase
evolution. Only at large amplitudes (e.g., time steps 330-430) is the
phase speed consistently positive. The CPOP phase evolution (upper
panel) behaves much more regularly. From it one can derive an
average phase speed of one cycle per 30 days. The CPOP amplitude
is much more undisturbed by high-frequency noise than the POP
amplitude, but it is also smaller by a factor of two.

ues lie on the lower limit of the values estimated so far
(see, e.g., Madden and Julian 1972). The CPOP am-
plitude is much more undisturbed by high-frequency
noise than the the POP amplitude, but it is also smaller
by a factor of two.

After all it can be said that the analyzed data show
a clear traveling feature that can be identified with the
30-60 day wave, or Madden-Julian oscillation. Both
POP and CPOP analysis are able to recover the patterns
of this wave, which are practically identical to the first
two EOFs. However, whereas CPOP analysis is able to
resolve a time behavior that is both regular on the one
hand, and consistent with the findings so far on the
other hand, POP analysis has greater trouble in this
example. We have no explanation for why POP analysis

BURGER

1983

performs so badly in this example. Perhaps the reason
is related to the experience that POP analysis often
needs a crude low-pass filtering to show satisfactory
results. Another reason might be that the statistics of
the MJO are very sensitive to the annual cycle, and
this perhaps is only traced by POP analysis.

Now that CPOPs seem to evolve, at least as oscil-
lations are considered, more regularly and more closely
to the physical signals, can we hope to make better
predictions with CPOPs? The serious problems we en-
counter here are discussed in the last section.

8. Predicting the CPOPs

We describe the CPOP prediction by applying it to
the case of predicting the state of ENSO, that is, by
forecasting the SOI. This scheme can never approach
the skill of fully-coupled model predictions that are
curréntly in use, since we are dealing merely with a
small linear model that incorporates no physics at all.

Each prediction scheme tries, at a certain time ¢z, to
determine the value x(¢ + 7) of the predictand x from
the value &(¢) of the predictor &, with 7 being the pre-
diction lag. In our case, the predictor £ is given by the
coefficient of the dominant CPOP C, and the predic-
tand x is the SOI. As our prediction scheme does not
differ from the conventional POP scheme we do not
go into the details, which have been described com-
prehensively by Xu and Storch (1990). The main step
of the prediction is to forecast the CPOP coefficient by
means of the eigenvalue A, according to Eq. (4),

i+ 1) = NE2).

From &(¢ + 7) we form the Nifio3 average of ¢(t + 7)
= {(t + 7)C and compare the result to the SOI. Doing
this for each time ¢ we can calculate the corresponding
correlation skill of the forecast. So far, there is no dif-
ference between the POP and the CPOP prediction
scheme. It is at the very beginning of the prediction
procedure that the CPOP scheme is much more in-
volved. ' ,

Once a system of POPs is given, the state of a POP
(its coefficient) is determined via (2) and is only de-
pendent on the state of the process g(¢). The state y(¢)
of a CPOP, however, is determined via (17) by z(¢),
which is composed of the original ¢(¢) and the con-
jugate p(¢). But the value p(t), which is given by (13),
depends on the whole process ¢g. For (¢) to be the
State at time t this is reasonable only if p(r) is approx-
imately determined within at least some neighborhood
of t. Realizations of the Hilbert transform by linear
numerical filters (see Brillinger 1975) show that this is
in fact the case, but only if the filter coefficients are
antisymmetric about each time ¢. In other words, the
concrete determination of p at some given time depends
on future information which, of course, undermines
any sort of prediction.

(20) .
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The time-antisymmetry condition is directly cou-
pled to the frequency-antisymmetry of the Hilbert
transform in (12), and one cannot violate the first
condition without violating the second. Hence, there
is no linear numerical filter that is both causal, that is,
needs no future information, and is also a good ap-
proximate to the Hilbert transform.

Nevertheless, there is a causal procedure that grows
directly out of the CPOP analysis. The only thing that
is needed is a complex linear model @ of the form
(15). The transformation is done in the following way:
given a process ¢ we want to find a causal approxi-
mation of the Hilbert transform p = ¢”*, which we de-
note p.. So suppose we are given g(t) where ¢ ranges
from ¢t = 1 until ¢t = tfoday. What is p.(today)? We
already know that (15) controls the evolution of the
complex time series z = g + ip. Writing ( 15) explicitly
we have

gt + 1)+ ip(t + 1) = C(q(t) + ip(t)) + noise.

m ] * B |

(21a)

The box indicates the known parameters and the star
the unknown variables of the minimization procedure
for CPOP analysis. Now we interchange the roles of
€@ and p,

g(t+ 1)+ ip(t + 1) = C(q(t) + ip(t)) + noise.

] * A *

(21b5

This is the configuration in CPOP prediction: @ has
become a known parameter and p an unknown vari-
able. Like g, p ranges from ¢ = 1 up to t = today, and
this can be a huge number of variables. Nevertheless,
the new variables p occur linearly in (21); hence the
noise-minimizing solution 1s uniquely determined, as
it was in the analysis approach for the matrix € with
the expression (16). We find a value p(foday) and we
let p.(today) = p(today), calling p. the causal conjugate
process. .

It may be a bit confusing that for the p above one
does not necessarily have p.(today — 1) = p(today
— 1). This is because each “today” has its own mini-
mization procedure for the determination of p.(today).
Among other things, this means that the transformation
p > p. is nonlinear. The causal conjugate process is,
therefore, a very involved notion and, from an esthetic
or physical point of view, not very satisfying. On the
other hand, thinking of the conjugate process as bearing
tendency information of the system it appears natural
that its determination is not simple in the absence of
future information. However, in our example the
causal and the noncausal CPOP coefficient showed a
complex correlation of 91%, a satisfactory affirmation
that the approximation was quite good.

Since the CPOP model (pattern and eigenvalue) was
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estimated from the predictand time series, we actually
make hindcast experiments. Real forecast experiments
become reasonable only if the time series under con-
sideration is significantly longer.

Let us now summarize the procedure. At first we
calculate the causal conjugate process p. From this we
determine, via (14) and (17), the complex process z
and the coefficient £ of the CPOP in question. Then
we apply the prediction scheme (20). The correspond-
ing lag statistic is shown in Fig. 10.

One sees that CPOP prediction is better than per-
sistence for lags = 3, and with respect to the 40% level
it leads persistence by about four to five months. As a
reference, we also plotted the POP forecast skill. It is
not of great value since the rather poor initial corre-
lation of 61% to the SOI is already much too low.

A final remark; to predict ENSO we relied only on
the equatorial SST, which showed a standing oscillatory
pattern. For the linear model to work correctly we had
to add conjugate information, and we did so by intro-
ducing the Hilbert transform as the conjugate process.

HINDCAST SKILL OF (C)POP MODEL
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FI1G. 10. The skill for the (C)POP forecast scheme compared with
the SOI persistence forecast. At the 40% level, the POP forecast beats
persistence by one month, and the CPOP beats the POP by nearly
3.5 months. The main reason lies in the big difference in the initial
correlation.
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But, of course, the enlarged complex process (14) con-
tains the same amount of information as the original
one. If important parts of ENSO truly act linearly, then
to complete the cycle, there should exist such a con-
jugate process of the SST in nature, a process that fur-
thermore would bear additional information and that
could improve the predictions. In fact, this conjugate
quantity exists as the heat content of the equatorial
ocean, and its predictive skill has been described by
Latif et al. (1993).

9. Conclusions

As a new tool for the resolution of regular evolving
patterns from a field process with many degrees of free-
dom we have introduced the complex principal oscil-
lation pattern analysis. It is a direct extension of the
real POP analysis into the complex domain. We have
shown that this extension is necessary in order to handle
oscillations adequately. Physically, this results in an a
priori introduction of the system’s momentum anal-
ogous to Hamiltonian mechanics. The CPOPs, which
are the modes of the complex linear model as estimated
from the data, turn out to be more regular and pre-
dictable than POPs, at least in our three examples.
Theoretically, the extension to CPOPs is redundant for
traveling features or if the system is not truncated. In
these cases the momentum is hidden in the process
itself. But in our example of the MJO, CPOP analysis
resolved a wave that looked much more regular than
the corresponding POP wave.

CPOP analysis is capable of resolving any kind of
oscillation, whether traveling or standing. At dominant
frequencies it extracts a generic pattern pair and de-
scribes the damped cyclic evolution between these two
patterns, excited by noise. In this way CPOP analysis
is a very concise method of representing the informa-
tion that is held in the complete cross-spectral matrix
of a process.

We cannot exclude that some of the regularity of a
CPORP process is artificial. Of course, we can represent
any process as a superposition of arbritrary regular
“modes” if there were no limit on their number, like
in the Fourier theorem. But this would certainly de-
crease the amount of explained variance of each of
them. Hence, as long as there is no clear definition of
something like “subprocess” we are free to choose any-
thing that behaves regular and explains a certain
amount of variance. Both conditions are satisfied for
CPOPs, at least as far as our experiments show. More-
over, they inherit the dynamical flavor from the POP
model. Thus, if we want to emphasize the dynamical
aspects of a process we would prefer POPs or CPOPs.
If we are only interested in an optimal representation
of a dataset at one time (such that, for instance, any
permutation of time steps would lead to samé result)
then EOFs (or SVDs or CCAs) are recommended.

The many other complex and extended EOF analysis
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techniques take an intermediate position in this respect.
We might call these approaches kinematical, since on
the one hand one must depend on the ordering of time,
but on the other hand there is no dynamical model.
The relationship between these techniques and CPOPs
should be analyzed more closely. Perhaps in that way
one may even find an analysis technique that shares
the elegance and simplicity of EOFs, the dynamical
flavor of POPs, and the ability to resolve oscillations
of any kind.
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APPENDIX
The Bounded Mode Frequency

Suppose we are given a linear system matrix A, one
of its modes M with eigenvalue A = p - e*. We know
that the mode evolution m(t) can be decomposed into
a pure standing and a pure traveling part. At a certain
time, t, the standing oscillation passes its maximum.
Since for each ¢, m(¢) is also an eigenvector of A, we
can apply the eigenequation to m(). It reads for the
imaginary part:

[A — cos(w)]m' (1) = sin(w)mR(4,). (A1)

Let || A || be the induced matrix norm for which | A x|
< ||All| x| holds. That is, abstractly, can be de-
fined as the supreme of | A x||x|™", with x running
over the unit ball. Thus, we may write
. | M'(20)]
[sin(w)] < [|A — cos(w)| —x—=- (A2)
| MR (20)]
The denominator in the above expression equals a,
+ a,. Evoking the relation m'(#y) = m® (to — P/4) and
(9R), we find that the numerator equals a,; hence, we
end up with

[sin(w)] < [|A — cos(w)l7a < ([ Al + 1) 7.
(A.3)
Equation (3) expresses the fact that if we know that
the norm | A| does not exceed a certain fixed value,
then the frequency w tends to O if the traveling rate 7,

does so. For the extreme case of a pure standing feature
(7a = 0) we see that there cannot be any oscillation.




1986

Now let us suppose that we work in an n-dimen-
sional EOF space. If we use, for a vector x
=(X;* * * X,), the norm | x| = 2; | x;|, the induced
matrix norm is given by | A| = max; Z; |a;|, with a;
being the entries of A. By the Cauchy-Schwarz in-
equality we find for the entries of the lag 1 covariance
matrix

<q,~(t + l)qj(l)> < g0}, (A4)

where o; denotes the standard deviation for the ith
EOF component. In the EOF space the lag O covariance
matrix is diagonal, and it is easy to compute its inverse.
Thus, denoting the smallest o; by o, and the average
deviation 3; ¢;/n by &, we find that the norm || A is
bounded by 7 / ominn. Inserting this value into (3) we
conclude:

on

sin(w) < ( + I)TM. (A.5)

Omin
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