
 1 

Differentiation of Alzheimer’s disease based on local and global parameters 
in personalized Virtual Brain models 
*J Zimmermann1, A Perry3,4,5, M Breakspear4,6, M Schirner7,8, P Sachdev3, W 
Wen3, N.A. Kochan3, Mapstone, M. 2, P. Ritter7,8, A.R. McIntosh1, A Solodkin2  
1 Baycrest Health Sciences, Rotman Research Institute, 3560 Bathurst St, 
Toronto, Ontario, M6A 2E1, Canada 
2 UC Irvine Health School of Medicine, Irvine Hall, 1001 Health Sciences Road, 
Irvine, CA, 92697-3950, USA 
3Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of 
New South Wales, Sydney, NSW, Australia  
4Program of Mental Health Research, QIMR Berghofer Medical Research 
Institute, 300 Herston Road, Herston, QLD 4006, Australia 
5Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 
Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, 
Germany  
6Metro North Mental Health Service, Royal Brisbane and Women’s Hospital, 
Herston, QLD, 4029, Australia 
7 Charité – Universitätsmedizin Berlin, corporate member of Freie Universität 
Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of 
Neurology, Chariteplatz 1, Berlin 13353, Germany 
8 Bernstein Focus State Dependencies of Learning & Bernstein Center for 
Computational Neuroscience, Berlin, 7 Germany 
 
Abstract 
 

Alzheimer’s disease (AD) is marked by cognitive dysfunction emerging 
from neuropathological processes impacting on brain function. AD affects brain 
dynamics at the local level, such as changes in the balance of inhibitory and 
excitatory neuronal populations, as well as long-range changes to the global 
network. Individual differences in these changes as they relate to behaviour are 
poorly understood. Here, we use a multi-scale neurophysiological model, “The 
Virtual Brain (TVB)” based on empirical multi-modal neuroimaging data, to 
study how local and global dynamics correlate with individual differences in 
cognition. In particular, we modelled individual resting-state functional activity of 
124 individuals across the behavioral spectrum from healthy aging, to amnesic 
Mild Cognitive Impairment (MCI), to AD. The model parameters required to 
accurately simulate empirical functional brain imaging data correlated 
significantly with cognition, and exceeded the predictive capacity of empirical 
connectomes.  
 
 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/277624doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

1. Introduction 
 
The cognitive and anatomical changes that occur in dementia due to Alzheimer’s 
disease (AD) have been widely documented (H. Braak & Braak, 1991; H.  Braak, 
Braak, & Bohl, 1993; Hyman et al., 2012; G.W. Van Hoesen & Damasio, 1987; 
Weiner et al., 2012). Changes in structure and function occur across a range of 
spatial scales. Neurofibrillary tangles (NFT) disrupt axonal flow via tau 
phosphorylation, which in turn disrupt functional communication. The 
accumulation of tau protein results in the degeneration of axonal tracts, causing 
further damage in global functional connectedness, and finally, neuronal death.  
 
More recently, neuronal hyperactivity has been implicated in the degenerative 
cascade of AD. This hyperactivity, characterized by changes in local excitatory 
and inhibitory neuronal populations as well as global hyperexcitation have been 
documented in both Mild Cognitive Impairment (MCI) and AD (Busche & 
Konnerth, 2015; Celone et al., 2006; Dickerson et al., 2005; Jones et al., 2016; R. 
A. Sperling et al., 2010). The imbalance in excitatory and inhibitory neural 
circuits disrupts hippocampal functioning, which likely leads to cognitive decline 
(Goutagny & Krantic, 2013; Scott et al., 2012; Verret et al., 2012). The change in 
excitation/inhibition is particularly intriguing, as it may be causally linked to the 
amyloid buildup that is a regular characteristic of AD (Gleichmann, Chow, & 
Mattson, 2011; Gleichmann & Mattson, 2010; Palop & Mucke, 2010). 
Interestingly, the excitation that characterizes some subtypes of AD has actually 
been linked to an increased risk of seizure (Amatniek et al., 2006; Mark, Ashford, 
Goodman, & Mattson, 1995). Local excitation, integrated across the network via 
inter-area connections increases the coordinated activity of the network via 
heightened FC (Deco, Ponce-Alvarez, et al., 2014), a feature of seizure activity 
(Mishra et al., 2013).  
 
At the global level, Alzheimer’s disease (AD) has been described as a 
disconnection syndrome, characterized by the degeneration of the connectome 
and of network organization that is governed by these long-range connections 
(Delbeuck, Van der Linden, & Collette, 2003; He, Chen, & Evans, 2008; Sanz-
Arigita et al., 2010; Stam, Jones, Nolte, Breakspear, & Scheltens, 2007; Supekar, 
Menon, Rubin, Musen, & Greicius, 2008; K. Wang et al., 2007). Both structural 
and functional connectivity (SC, FC) are affected (Balachandar et al., 2015; 
Filippi & Agosta, 2011; Matthews, Filippini, & Douaud, 2013; Soldner et al., 
2012; Sun et al., 2014). Changes in global network organization have been 
reported as a result (Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 
2010; Stam et al., 2007; Supekar et al., 2008; K. Wang et al., 2007). 
 
To date, linking findings of AD pathology at these different scales of 
interrogation has proven elusive. Computational models are a promising strategy 
for combining network-level connectivity with neural mass models. These models 
allow for the systematic exploration of the optimal levels of neural parameters 
such as excitation, inhibition, and coupling as well as conduction delays between 
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distant regions. Computational models have already proven informative for 
understanding the link between structural and functional connectivity in the brain, 
for example via lesion studies (Alstott, Breakspear, Hagmann, Cammoun, & 
Sporns, 2009; Honey & Sporns, 2008). Several studies have focused on modeling 
changes in interconnected excitatory and inhibitory neural populations as they 
relate to network organization in clinical populations (de Haan, Mott, van 
Straaten, Scheltens, & Stam, 2012; de Haan, van Straaten, Gouw, & Stam, 2017; 
Yang et al., 2016). Two of these studies have documented such changes in 
Alzheimer’s disease. In the first study, De Haan et al. (2012) emphasized the 
pathological effects of hyperexcitability by showing that the vulnerability of hub 
regions in AD is related to their increased excitability. De Haan et al (2017) 
showed that, contrary to their hypothesis, selective stimulation of excitatory 
neurons resulted in the prolonged preservation of oscillations, connectivity and 
network topology. The results of the study emphasize the unpredictability of 
excitation/inhibition on the complex dynamics of the brain. However, neither of 
these studies linked these changes to observed differences in cognition, as they 
were more interested in the influence on network properties. 
 
The goal of the present work is to elucidate whether optimal functioning points of 
local (excitation, inhibition) and global (long-range coupling, conduction 
velocity) brain dynamics can be linked to individual differences in cognition from 
healthy aging, to MCI, to AD. Our objective is to understand whether variability 
in these parameters is informative for individual differences in AD. To this end, 
we use the novel neuroinformatics platform “The Virtual Brain” (TVB, 
thevirtualbrain.org), a large-scale simulator of brain dynamics based on 
connectivity metrics with the ability to target individual neural populations (Jirsa 
et al., 2017; Jirsa, Sporns, Breakspear, Deco, & McIntosh, 2010; Ritter, Schirner, 
McIntosh, & Jirsa, 2013; Roy et al., 2014; Sanz Leon et al., 2013; Sanz-Leon, 
Knock, Spiegler, & Jirsa, 2015; Woodman et al., 2014). Here, we model changes 
in interconnected excitatory and inhibitory neural populations that occur at the 
local level along with global connectivity changes. Each brain region is modelled 
as a local population comprising connected excitatory and inhibitory neurons 
linked with NMDA and GABA synapses (Deco, McIntosh, et al., 2014). Neural 
activity is generated as a function of the intra-areal local parameters - excitatory 
and inhibitory inputs, and the inter-regional long-distance individual diffusion-
derived SC that integrate these across the network (Deco, Ponce-Alvarez, et al., 
2014).  
 
The strength of TVB is that it is based on individual structural and functional data 
and thus the parameter values obtained reflect personalized Virtual Brains (Ritter 
et al., 2013; Sanz-Leon et al., 2015; Woodman et al., 2014). We can then compare 
these parameters across individuals and study their association with individual 
differences in cognition. Previous work has shown that biophysical parameters 
derived from TVB modeling can describe healthy neural dynamics (Jirsa et al., 
2010; Kunze, Hunold, Haueisen, Jirsa, & Spiegler, 2016; Roy et al., 2014), as 
well as disease. As a proof of concept, it has been shown that these biophysical 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/277624doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

parameters correlate with motor recovery from stroke (Adhikari et al., 2015; 
Falcon, Jirsa, & Solodkin, 2016; Falcon, Riley, et al., 2016; Falcon et al., 2015), 
and the generation of epileptic seizures (Jirsa, Stacey, Quilichini, Ivanov, & 
Bernard, 2014), along with seizure progression (Jirsa et al., 2017). The 
biophysical parameters derived form TVB modeling have been shown to be 
correlated with a variety of clinical phenotypes and as such offers a potential for 
translation to clinical applications.  
 
In the present study, we sought to identify biophysical model neural parameters 
that associated with cognition along the spectrum from healthy controls to Mild 
Cognitive Impairment (MCI) to AD. We include non-demented amnestic MCI 
(aMCI) subtypes within our investigation, given these individuals with memory-
based impairments demonstrate increased rates of progression to AD – and are 
assumed to be experiencing a transitory, pre-clinical stage (Fischer et al., 2007; R. 
C. Petersen et al., 2014; Ward, Tardiff, Dye, & Arrighi, 2013). aMCIs show 
widely variable rates of conversion to AD (Ward et al., 2013), and thus 
differences within this group are of interest to the present study. Importantly, we 
also create several models that reflect the progression of AD.  Neurodegeneration 
and functional changes occur first in limbic and temporal regions of the brain, and 
later in motor and sensory areas (H. Braak & Braak, 1991; H.  Braak et al., 1993). 
The pattern of destruction follows the clinical phenotype; memory is targeted 
first, followed only later by sensory and motor function. Accordingly, modeling is 
performed on a limbic subnetwork (Limbic SubNet model), as well as the full 
brain (Whole Network model). Any discrepancies between the Limbic SubNet 
model and the full brain model may be characterized along the spectrum of 
cognitive phenotypes from healthy, to aMCI and AD. 
 
2. Methods 
 
2.1 Subjects 
Comprehensive behavioral data were acquired for 124 participants from the fourth 
wave of the Sydney Memory and Ageing study (MAS) (Perminder S. Sachdev et 
al., 2010; Tsang et al., 2013). At study baseline (approximately six years prior to 
acquisition of the current data), these community-dwelling participants were 
initially between 70-90 years of age. Subjects were stratified based on cognitive 
performance into three groups: 73 healthy controls (HC), 35 with amnestic MCI 
(aMCI), and 16 Alzheimer’s Disease (AD).  
 
For all study participants, exclusion criteria at baseline included a Mini-Mental 
Statement Examination (Folstein, Folstein, & McHugh, 1975) adjusted score 
below 24, diagnosis of dementia, developmental disability, neurological or 
psychiatric diseases, or inadequate comprehension of English to complete a basic 
assessment. The study was approved by the Human Research Ethics Committee 
of the University of New South Wales and participants gave written, informed 
consent.  
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2.2 Neuropsychological measures 
Twelve individual neuropsychological tests were administered to cover a broad 
range of cognitive functions. These domains assessed included 
attention/processing speed, memory, language, visuospatial ability, and executive 
function.  These tests were grouped into cognitive domains as part of the boarder 
longitudinal study (MAS) (Kochan et al., 2010; P.S. Sachdev et al., 2010) – and 
selected accordingly to the primary cognitive function they assess. This was based 
upon the extant literature and the widespread practice used by neuropsychologists 
(Lezak, Howieson, & Loring, 2004; Strauss, Sherman, & Spreen, 2006; 
Weintraub et al., 2009). Further rationale for the cognitive groupings and their 
scale-items homogeneity estimates are outlined elsewhere  (A. Perry et al., 2017). 
 
Other measures such as the MMSE and the National Adult Reading Test (NART 
IQ) (Nelson & Willison, 1991) were also administered. The NART, which was 
administered to a subset of the current population at study baseline, estimates 
premorbid intelligence levels (Bright, Jaldow, & Kopelman, 2002). 
 
The neuropsychological assessments were used in two different ways: 
 
a) Diagnostic purposes  
The neuropsychological and clinical profiles of the study participants determined 
the individual’s classification into either of the three population groups 
(Perminder S. Sachdev et al., 2010; Tsang et al., 2013).  
 

• Healthy Controls (HC): Performance on all neuropsychological test 
measures higher than a threshold of 1.5 SDs below normative values 
(matched for age and education level). The criteria for selection, and the 
demographic matching that was used to establish a normative reference is 
described in full elsewhere (Tsang et al., 2013).  

 
• Mild Cognitive Impairment (MCI): If the following international 

consensus criteria (Winblad et al., 2004) of MCI were met: 
1. Subjective complaint of memory decline or other cognitive function 

(from either the participant or informant) 
2. The evidence of cognitive-decline, derived here by performance 1.5 

SD’s below the normative values on any of the neuropsychological 
tests 

3. Normal or  minimally impaired functional activities, determined by 
informant ratings on the Bayer-ADL scale (Hindmarch, Lehfeld, de 
Jongh, & Erzigkeit, 1998). 
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4. No current diagnosis of Dementia according to DSV-IV criteria (APA, 
2000) 

 
Only MCI individuals demonstrating memory-based impairments - hence 
meeting the criteria for the amnestic MCI (aMCI) (R.C. Petersen, 2004) 
subtype - were included in the current study. Fifteen of these aMCI 
individuals were further representative of the multi-domain aMCI subtype 
(md-aMCI) (R.C. Petersen, 2004), whom are characterized by additional 
impairments in non-memory domains . 

 
• Alzheimer’s Disease (AD) patients: A diagnosis of Alzheimer’s Disease 

according to DSM-IV criteria (APA, 2000) – according to a clinical expert 
panel comprising of  geriatric psychiatrists, neuropsychiatrists, clinical 
neuropsychologists and clinical psychologists. All clinical and structural 
MRI data (where available) were used in the diagnostic decision.   

 
b) Correlative metrics with model parameters 
Performance on the individual test scores were transformed into quasi Z-scores, 
based upon the mean and standard deviations for a healthy reference group (n = 
723), identified from all the study participants at baseline (approximately 6 years 
prior to acquisition of the current waves data). Domain scores were calculated as 
the average of the transformed test scores comprising each domain. The only 
exception was the visuospatial domain that was represented by a single measure. 
The memory domain composite was further subdivided into verbal memory after 
exclusion of a visual retention test (Benton, Sivan & Spreen, 1996). If necessary, 
the signs of the z-scores were reversed so that higher scores reflect better 
performance.  
 
The correspondence between neuropsychological cognitive domain z-scores and 
clinical diagnosis classification (healthy control, MCI, AD) is reported in the 
Results.  
 
2.3 Imaging data  
Structural, diffusion (dMRI) and resting-functional MRI (rs-fMRI) data were 
acquired on a Phillips 3T Achieva Quasar Dual scanner. dMRI were acquired 
with a single-shot echo-planar imaging (EPI) sequence with the following 
parameters: TR = 13,586ms, TE = 79ms, 61 gradient directions (b = 2400 s/mm2), 
a non-diffusion weighted acquisition (b = 0 s/mm2), 96x96 matrix, FOV = 240 x 
240 mm2, slice thickness = 2.5mm, yielding 2.5mm isotropic voxels. For rs-fMRI, 
participants were instructed to lie quietly in the scanner and close their eyes. A 
T2* weighted EPI sequence with the following parameters was acquired: 
acquisition time = 7:02, TE = 30 ms, TR = 2000 ms, flip angle = 90º, FOV 250 
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mm, 136 x 136 mm matrix size in Fourier space. 208 volumes were acquired, 
each consisting of twenty-nine 4.5mm axial slices. A structural T1-weighted 
image was also acquired with the following parameters: TR = 6.39 ms, TE = 2.9 
ms, flip angle = 8°, matrix size = 256 × 256, FOV = 256 × 256 × 190, slice 
thickness = 1 mm, 1 mm × 1 mm × 1 mm isotropic voxels.  
 
Data from all imaging modalities was then inspected in FSL View (S. M. Smith et 
al., 2004) for quality checking purposes; Subjects were removed if any of their 
scans had artifact issues, including slice dropouts on the diffusion-images 
(defined by zebra-like blurring or complete dropout) (Kerstin Pannek, Andrea 
Guzzetta, Paul B Colditz, & Stephen E Rose, 2012), complete orbitofrontal EPI 
signal dropout (Weiskopf, Hutton, Josephs, Turner, & Deichmann, 2007), 
ringing on T1-images, or severe geometric warping.  
 
2.4 Preprocessing and tractography of diffusion data 
Steps involving the preprocessing and whole-brain tractography of dMRI data 
were similar to those performed for a subset of the current healthy control 
population (Alistair Perry et al., 2015; Roberts, Perry, Roberts, Mitchell, & 
Breakspear, 2017). In short, head motion correction was performed by rotation of 
the gradient directions (Leemans & Jones, 2009; Raffelt, Tournier, Crozier, 
Connelly, & Salvado, 2012), and spatial intensity inhomogeneities were reduced 
via bias field correction (Sled, Zijdenbos, & Evans, 1998).  
 
Estimates of fibre orientation and subsequent whole-brain tractography were 
performed within MRtrix3 (v0.3.12-515; https://github.com/MRtrix3) (Tournier, 
Calamante & Connelly, 2012), Fiber orientation distribution (FOD) functions 
were first estimated using constrained spherical deconvolution (CSD) (lmax = 8) 
(Tournier et al., 2008) of the diffusion signal in voxel-populations with 
coherently-organized (FA > 0.7) fiber bundles. We then performed iFOD2 
(Tournier, Calamante & Connelly, 2010) probabilistic tracking to propagate 5 
million fiber tracks from random seeds throughout the brain for each subject, with 
the following parameters: step size = 1.25mm, minimum track length = 12.5mm, 
maximum length = 250mm, FOD threshold = 0.1, curvature = 1mm radius.  
 
The sequences were acquired when reverse phase-encoding direction approaches 
were not the standard procedure within acquisition protocols. Given the alignment 
between the diffusion and anatomical priors will not be perfectly accurate, 
seeding of the tractograms was not performed upon the grey/white-matter 
interface (i.e. ACT) (R. E. Smith, Tournier, Calamante, & Connelly, 2012), nor 
were streamline-filtering approaches applied (i.e. SIFT/SIFT2) (R. E. Smith, 
Tournier, Calamante, & Connelly, 2013). 
 
2.5 fMRI processing 
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fMRI data processing was performed using the Data Processing Assistant for 
Resting-State fMRI (DPARSF, v 3.2) (Chao-Gan & Yu-Feng, 2010), which calls 
functions from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Slice-timing correction 
(realignment to mean functional image) was performed, followed by co-
registration to the structural image (via 6 DOF). We then conducted linear 
detrending, nuisance regression of 24 motion parameters (Friston, Williams, 
Howard, Frackowiak, & Turner, 1996) and segmented WM/CSF signals 
(Ashburner & Friston, 2005). An average structural brain template across all 
participants was generated (DARTEL) (Ashburner, 2007), and native functional 
images were then transferred to MNI space (3mm) via this template. Lastly, 
smoothing (8mm) and temporal band-pass filtering (0.01-0.08 Hz) was 
performed. Full description of the steps involved for the pre-processing of these 
data are provided elsewhere (Perry et al., 2017) 
 
2.6 Functional and structural brain networks   
Connectomes representing patterns of structural and functional connectivity were 
constructed for all subjects, estimated respectively from streamline-tractography 
maps and BOLD rs-fMRI signals. The widely-used AAL parcellation (within 
MNI space) was used here to derive the inter-areal connectivity estimates 
(Tzourio-Mazoyer et al., 2002). The choice of parcellation was motivated by 
previous work. The identification of atrophy patterns in Alzheimer’s using the 
standard AAL and a refined finer parcellation have been compared. The AAL 
parcellation actually demonstrated higher classification accuracy when using 
inter-cohort validation (Mesrob et al., 2008). The AAL template has also been 
widely used in AD studies (Savio, 2017; Tijms et al., 2018; L. Wang et al., 2006), 
and was recently used within a whole-brain computational modeling approach to 
elucidate AD-related characteristics such as amyloid beta and tau (Demirtas et al., 
2017). Lastly, the AAL template was further chosen in lieu of the FreeSurfer 
parcellation, because the noted acquisition procedure circumvents the perfect 
alignment between the diffusion and T1-weighted imaging modalities.  
 
For the structural connectomes, parcellations in subject-space were first achieved 
with FSL5 (S. M. Smith et al., 2004) by linearly co-registering each individual FA 
image into the FMRIB standard space template. By applying the inverse of this 
above transformation matrix, the AAL parcellation was subsequently transformed 
into subject-space. Given the functional images were already within MNI space, 
the parcellation template was not transformed to native-space for functional 
network construction. 
 
Functional connectivity was computed as the Pearson’s correlation coefficient of 
the mean BOLD signals (i.e. all region i voxels) between all ij region pairs. For 
the structural connectivity matrices, two matrices were computed: (1) a weights 
connection matrix, and (2) a distance matrix that will be used to assess conduction 
delays in the model. In the weights matrix, Wij represented the total number of 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/277624doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

streamlines that start/terminate within a 2mm radius of regions i and j. Note that 
the diffusion signal becomes noisier and weaker around the grey-white matter 
boundaries. By selecting a 2mm radius (default parameter within MRtrix 
tck2connectome), we ensure these erroneous fiber terminations are still identified 
as connectome edges. Whilst this streamline identification approach could 
potentially lead to over-sampling of the streamline weights, we otherwise 
circumvent the potential for false negatives and under-sampling within the 
connectome edges. Wij were corrected by the euclidean distance between i and j 
and also total volumetric size (summed number of voxels) of the two regions. A 
subset of the AAL regions was used in the Limbic SubNet model, which 
characterized our AD subnetwork (See Supplementary Table S4 for a region list).  
 
2.7 Quality control of SC 
We implemented stringent diffusion quality control procedures, which have been 
standard protocol for our other published works (A. Perry et al., 2015; Roberts et 
al., 2016). In particular, each raw (i.e. unprocessed) diffusion volume of every 
subject was visualized. Any participant with notable motion effects and/or severe 
spatial distortions was removed from the study, operationalized by either 
complete signal dropout and “zebra-like” blurring of slices (Andersson & 
Sotiropoulos, 2016; K. Pannek, A. Guzzetta, P. B. Colditz, & S. E. Rose, 2012). 
Furthermore, each subject’s Fractional Anisotropy image was visualised, as was 
the accuracy of the co-registration between the FA image and AAL parcellation 
(that was originally within FMRIB FA space). The FMRIB FA template was 
chosen for an improved registration with each subjects FA image. The FMRIB 
FA template is based upon normalization of independent FA images, and relative 
to the MNI T1 brain provided with FSL, provides a more similar anatomical 
shape to the subject FA images – an example of the alignment accuracy between 
the FMRIB and subject’s FA image are provided in Figure S1D. 
 

The steps involved in the estimates of fibre trajectories and the subsequent 
construction of each subject’s structural network are summarized within Figure 
S1. Note that SC weights were exponentially distributed (See Figure S2), and that 
SC networks were not disconnected as we have used a dense-seeding approach 
with the tractography, and a relatively coarse parcellation scheme. Moreover, 
thresholding was not performed. To identify this did not potentially influence our 
results, we 1) checked that raw connectome density distributions were consistent 
across clinical groups  (ANOVA: F(2,121) = 0.41, p = 0.66) and 2) that density 
did not correlate with cognitive performance (r = -0.039, p = 0.67).  
 
The parcellation and affine co-registration (to the diffusion images) algorithm 
were identified to yield an acceptable standard of alignment accuracy across the 
population groups (Figure S1 F). 
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2.8 Computational modeling with TVB 
The Virtual Brain is a multi-scale modeling approach that combines local 
parameters (ie population excitation, inhibition) with global long-range 
parameters that take into account the connectivity structure (ie global coupling) 
and dynamical interactions between regions (ie conduction velocity). The TVB 
modeling process is as follows: 1) incorporation of subject SC matrices (weights 
and track distances); 2) selection of a local model and parameters (See Model 
section below for details); 3) selection of global parameters (ie conduction 
velocity, global coupling); 4) simulation of rsfMRI time series based on an 
integration of global and local dynamics; 5) computation of the simulated rsFC 
and fitting to the empirical rsFC; 6) iterative optimization by re-running steps 1-5 
until an optimal fit is achieved; and 7) correlating optimal model parameters with 
patient phenotype (ie cognitive scores). See Figure 1 for a summary. This process 
is described in detail elsewhere (Ritter et al., 2013; Sanz-Leon et al., 2015; 
Woodman et al., 2014).  
 
2.8.1 Model 
We used the reduced Wong Wang model (Deco, Ponce-Alvarez, et al., 2014), a 
mean field model that simulates local regional activity via interconnected 
populations of excitatory pyramidal and inhibitory neurons, with NMDA 
(excitatory) and GABA-A (inhibitory) synaptic receptors (Deco & Jirsa, 2012; 
Deco, Ponce-Alvarez, et al., 2014; Wong & Wang, 2006). The model is based on 
firing rates and synaptic gating activity. The model was chosen as it is one of the 
more refined local models with an ability to model the balance between excitation 
and inhibition, which is disrupted in AD (Busche & Konnerth, 2015; de Haan et 
al., 2012; de Haan et al., 2017; Palop et al., 2007; Verret et al., 2012).  As with all 
populations models of large-scale neuronal activity, the model rests upon a 
combination of abstraction and mean-field dimension reduction (Breakspear, 
2017). This is required to render it tractable, to improve parameter identifiability 
and to speed up computation time, hence facilitating parameter exploration and 
optimization. The Wong Wang model retains local within compartment excitatory 
and inhibitory connectivity, mediated by local synaptic currents (Wong & Wang, 
2006). These form part of our central hypothesis. The model is of comparable 
complexity to other models used in computational assays of healthy and 
compromised brain dynamics (de Haan et al., 2017), being more complex than 
reduced oscillator models that have also been employed (Breakspear, Heitmann, 
& Daffertshofer, 2010), whilst slightly less complex than population models that 
retain multi-layer connectivity (Bastos et al., 2012). Note however, that we do not 
test layer-specific hypotheses. All population models are by definition more 
abstract than multi-compartment spiking neural models: while these play an 
important role in dissecting microscopic models of disease, their high 
dimensionality and myriad of parameters challenges attempts to scale then to 
understand network and whole brain dynamics (Breakspear, 2017).      
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Each local population forms a node, which are then coupled together through 
subject-specific connectomes to model the corresponding whole brain network 
dynamics. The behaviour at each node, i, is defined according to a set of 
stochastic differential equations (Deco, Ponce-Alvarez, et al., 2014) describing 
synaptic currents I, synaptic gating variables, S and firing rates r. Currents in 
excitatory (Ii

(E)) and inhibitory populations (Ii
(I)) at node i are modelled as a 

combination of local recurrent feedback arising from the local fraction of 
activated synapses (Si

(E) and Si
(E))), plus input from excitatory neurons in distant 

nodes Sj
(E)

. These are given as, 
 

 

 
where WE and WI scale the effect of a fixed external current IO (= 0.382). LEE 
scales the local excitatory recurrence (excitatory influences on excitatory 
populations, E-E) and LIE scales the local inhibitory synaptic coupling (inhibitory 
influences on excitatory populations). LEI scales the local excitatory synaptic 
coupling (excitatory influences on inhibitory populations, E-I). External input 
from other nodes is conveyed through the subject-specific connectome C. G is the 
global coupling scaling factor for Cij , the structural connection matrix weights of 
tracks between regions i and j. Note that LEE, LIE, and LEI correspond to the 
combined influence of w+ and Ji or JNMDA from (Deco, Ponce-Alvarez, et al., 
2014). The firing rates of the neural populations in node I are then described by 
passing the corresponding input currents through a sigmoid-shaped activation 
function H, 

 

 
where Ii

(EI) is the input current to the (excitatory or inhibitory) population i. The 
synaptic gating constants are aE = 310 (nC-1),  aI = 615 (nC-1), bE = 125 (Hz), bI = 
177 (Hz), dE = 0.16 (s), dI = 0.087 (s). The set of equations are then closed by 
expressing the temporal evolution of the simulated excitatory and inhibitory 
synaptic gating variables S as a function of the corresponding firing rates,  

 

 
Note that in the absence of input, these variables relax back to zero with time 
constants for the decay of synaptic gating variables of NMDA and GABA 
receptors given by τE  = τNMDA = 100 (ms) and τI = τGABA= 10 (ms). The constant γ 
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= 0.000641 scales the self-feedback of local firing.  
Stochastic influences are introduced to these self-consistent equations via νi , an 

uncorrelated Gaussian noise source with unit standard deviation scaled in 
amplitude by σ = 0.01 (nA). The model parameter values are provided in Table 
S2.  
 
2.8.2 Model fitting 
Parameter space exploration was performed so that local and global parameters 
were adjusted iteratively to optimize model fit to the empirical data. Parameter 
fitting is done across the whole network, so that parameters are consistent across 
all nodes in the modeled network.  
 
Global parameters: Model fits were maximized by varying conduction velocity 
and global coupling. Conduction velocity reflects the speed of signal transfer 
across white-matter fibers (in m/s). It is derived from the Euclidean distances. 
Previous studies have suggested the importance of conduction delays for resting-
state BOLD (Deco, Jirsa, McIntosh, Sporns, & Kotter, 2009; Ghosh, Rho, 
McIntosh, Kotter, & Jirsa, 2008). Global coupling (G, arbitrary units) is a scaling 
factor for the anatomical weights. It determines the balance between global long-
range input from distal regions, and the local recurrent input from the local neural 
populations within regions. High global coupling denotes greater weighting of the 
global over the local input, such that activity in node i is driven more by activity 
propagated over the long-range connections from other nodes j.  
 
Local parameters: The most salient group of parameters at the local level 
determine the coupling between excitatory and inhibitory neuronal populations. 
This is modeled via 3 local parameters: via excitation from recurrent excitatory-
excitatory populations (LEE), via excitatory input to inhibitory populations (LEI), 
and dampening of activity via recurrent inhibition from inhibitory to excitatory 
populations (LIE).  
 
A progressive parameter space exploration was performed, with parameters varied 
one at a time in the following order: conduction speed, global coupling (G), 
inhibition-excitation (LEI), excitation-inhibition (LEI), excitation-excitation (LEE), 
in a manner similar to Falcon et al., 2015, 2016. The following parameter ranges 
were used ([min, max, step size]: global coupling ([0.5, 2.0, 0.1]), inhibition-
excitation ([0.4, 2.6, 0.1]), excitation-inhibition ([0.025, 0.5, 0.025]), excitation-
excitation ([0.5, 2.0, 0.1]). Note that parameter ranges were chosen based on 
parameters in Deco et al., 2014.  
 
Parameter exploration was performed according to the following heuristic: For 
each set of parameter combinations, individual resting state blood oxygen 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/277624doi: bioRxiv preprint first posted online Mar. 8, 2018; 

http://dx.doi.org/10.1101/277624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

dependent (BOLD) time series of duration 3 minutes was simulated using a 
Balloon-windkessel hemodynamic model (Buxton, Wong, & Frank, 1998; 
Friston, Mechelli, Turner, & Price, 2000). Functional connectivity (rs BOLD FC) 
was then derived from each of the simulated time series. Specifically, model 
fitting was achieved by iterative optimization of the biophysical parameters until 
the maximum correlation to our subject-specific empirical FC across the range of 
input parameters was obtained.  Pearson’s correlations between the lower triangle 
of the empirical and the simulated FC matrices were used as the fitting criterion. 
Optimal biophysical parameters for each subject were those that achieved the best 
fit to the empirical FC.  
 
2.8.3 Whole network, Limbic SubNet, Embeddedness of Limbic SubNet 
As not all brain regions are affected simultaneously in AD, model parameters 
were estimated via three different approaches: 

1) Whole Network modeling: Model input is the full network SC derived 
from the AAL parcellation. Simulated BOLD FC was derived for all 
regions.  

2) Limbic SubNetwork: As certain limbic and temporal regions show the 
greatest neuropathological changes and degeneration early in the disease 
(H. Braak & Braak, 1991; H.  Braak et al., 1993; G. W. Van Hoesen & 
Solodkin, 1994), associated with memory declines (H. Braak & Braak, 
1991; H.  Braak et al., 1993), we did additional modeling in a subnetwork 
that included the following regions in both hemispheres: cingulum 
(anterior, middle, posterior), hippocampus proper, parahippocampus, 
amygdala, temporal pole (superior, middle) (See Table S4). Model input 
was an SC of this subnetwork, derived as a subset of the AAL 
parcellation. Simulated BOLD FC of these regions was derived.  

3) Embeddedness of Limbic SubNet: In order to characterize the 
discrepancies of brain dynamics in the Limbic SubNet and the larger 
network, we quantify the discrepancy between Limbic SubNet and the 
Whole Network model parameters (Limbic SubNet – Whole Network 
optimal parameters).  

 
2.9 Statistical analysis 
Analyses were done by comparing individuals’ optimal model parameters: (1) 
with neuropsychological cognitive z-scores in a continuous scale and (2) between 
groups (healthy, aMCI, AD - based on clinical diagnosis). See Figure S3 for 
correspondence between cognitive scores and clinical diagnosis groups. 
 
(1) Model correlates of cognition  
To investigate the relationship between individual z-scores on the 6 cognitive 
domain measures (attention, language, executive functioning, visuospatial, 
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memory, verbal memory), and the optimal biophysical parameters across subjects, 
we conducted a set of Partial Least Squares (PLS) correlation analyses (Krishnan, 
Williams, McIntosh, & Abdi, 2011; McIntosh & Lobaugh, 2004) Behavioural 
PLS is comparable to a Canonical Correlation Analysis, such that it decomposes 
the correlation between two variables into latent variables (LVs), or components, 
which identify the maximum least squares relationship between the variables. 
PLS is more robust than canonical correlation when there is potential for 
colinearity amongst the measures which often the case in neuroimaging data. The 
LVs in PLS are comparable to LVs in canonical correlation.  
 
All the biophysical model parameters were inputted as X and all 6 cognitive 
performance domains are inputted as Y, and the correlation between the two is 
computed. The cross-block correlation matrix is decomposed with SVD, yielding 
mutual orthogonal LVs, which have weights for X and Y variables and the 
singular value (i.e., covariance) that conveys the magnitude of the relation 
between X and Y for that LV. Within each LV, the reliability of the contributions 
of each measure in X and Y were captured via the bootstrap estimation of 
confidence intervals for the weights converted to correlations.  Permutations tests 
were used to assess the statistical significance of each LV, where its covariance 
(singular value) is compared to a distribution of random permutation of data 
pairings (McIntosh & Lobaugh, 2004). 
 
(2) Group differences in biophysical model parameters 
 
Differences in model parameters across clinical groups (healthy controls, MCI, 
AD) and network model (Limbic SubNet, Whole Network) were assessed using a 
non-rotated task PLS with two factors. Non-rotated task PLS is comparable to a 
MANOVA in that it tests for differences between groups with several dependent 
variables. Non-rotated PLS is more robust than a MANOVA however when there 
is a potential for colinearity amongst the measures. 
 
As large variations in prognosis rates have been reported among MCIs (Ward et 
al., 2013), we conducted a post-hoc analysis of variances in model parameters 
across and within groups.  A Levene’s test with two factors – group (healthy, 
MCI, AD), and condition (Limbic SubNet, Whole Network) was used to assess 
homogeneity of variance of biophysical parameters. 
 
2.9.1 Estimation of model advantage over empirical FC and SC  
To assess if there was any quantitative advantage in associating model parameters 
with cognition, compared to associating SC/FC with cognition, we performed the 
following: we conduct 100 bootstraps across subjects, for each iteration we 
perform 2 PLS analyses 1) biophysical parameters with cognition, 2) 
connectomes (SC and FC) with cognition. The 2 resulting distributions of 
obtained the total covariances are saved.  
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The expected values for the covariances will differ between analyses because of 
scale differences. We corrected for this by conducted 100 permutations across 
subjects, each time summing covariances across all latent variables to take into 
account the whole spectrum of the covariance/relationship, to build a null 
distribution for each analysis. The obtained total covariances are then corrected 
by the mean of its permuted null distribution.  
 
The 2 resulting distributions of corrected covariances are compared by subtracting 
connectomes with cognition covariances from the biophysical parameters with 
cognition covariances. A difference distribution above zero would affirm that 
biophysical parameters correlate with cognition above and beyond SC and FC.  
 

 
 
Figure 1. Workflow in TVB Modeling: Graphical representation of the sequential 
steps taken in this study: a) Input to the model: individual patient imaging -  
empirical dMRI, and rsfMRI for model fitting, b) Personalized model: 
integration of global and local dynamics; c) Output: simulated rsfMRI timeseries, 
FC is then computed, d) Optimization: model is optimized by iterative 
adjustment of parameters to achieve best fit of the simulated FC to the empirical 
FC. e) Phenotype: individual patient demographics, cognitive domain scores etc, 
these are used to make, f) Phenotype + model: elucidate how individual 
phenotype is linked to optimal model parameters for each patient. 
 
3. Results 
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3.1 Subject demographics, cognition, clinical grouping 
Mean demographics, MMSE and IQ scores by group are shown in Table S3. 
Neuropsychological cognitive domain scores corresponded tightly with clinical 
diagnosis groupings; scores decrease consistently and significantly across the 
three clinical diagnosis groups (HC>MCI>AD; See Figure S5). Internal 
consistency scores of cognitive domain scores are shown in Table S5. 
 
3.2 Model fitting and parameter estimation 
Both the Limbic SubNet model and the Whole Network model generated for each 
subject good fits between the individual empirical and the simulated FC (Limbic 
SubNet: r = 0.57, SD = 0.075, 95% CI = [0.48, 0.65], Whole Network: r = 0.31, 
SD = 0.0453, 95% CI = [0.29, 0.33], mean r, SD, CI across subjects) for FCs 
generated with the optimal parameter values. The parameter search space showed 
a slow gradation towards a single optimal solution rather than multiple local 
maxima (See Figure S4). Thus, there is unlikely to be any appreciable interaction 
between any of the parameters. A systematic exploration of this using the same 
Deco et al. (2014) model has previously been shown (Schirner, McIntosh, Jirsa, 
Deco, & Ritter, 2018) and in a similar model (Sanz-Leon et al., 2015). 
Model fit did not differ significantly across groups, but was significantly higher 
for the Limbic SubNet than Whole Network model (2 factor ANOVA: group 
F(2,121) = 2.27, p = .15, model F(1,121) = 5817.77, p < 0.0001, group*model 
interaction: F(2,121) = 2.21, p = .11). We found that the 3 local parameters as 
well as global coupling correlated with model fit across subjects (See 
Supplementary Table S6). However, conduction velocity did influence model 
results in initial parameter explorations, thus time delays were not included in the 
model. Note that the effects we have reported are robust to using the SC weights 
normalized by tract length. The optimal model parameters remained consistent 
when re-running the model with tract length on two sample subjects.  
 
3.3 Model correlates of cognition  
We correlated model biophysical parameters with cognitive z-scores within the 
Limbic SubNet model, Whole Network model and the embedded Limbic SubNet 
(Figure 2). 
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Figure 2 A) Correlation between biophysical model parameters and cognitive 
domain scores across all subjects for the LimbicSubNet, Whole Network model 
and the embedded LimbicSubNet. Model parameters are the optimal global 
coupling, inhibition-excitation, excitation-inhibition, excitation-excitation. 
Cognition is defined as the 6 cognitive domain scores: attention (Att), language 
(Lan), executive function (Exe), visuospatial (Vis), memory (Mem), verbal 
memory (Ver). B) The contributions of the cognitive domain scores to the 
cognition-parameter relationship. Confidence intervals on these correlations were 
obtained by bootstrap estimation.. C) Individual subject cognitive domain scores 
and biophysical parameter scores, color coded across groups. Cognitive scores 
and biophysical param scores are the weighted sum of cognitive domain 
performance and biophysical model parameters respectively for each subject, and 
are similar to factor scores from factor analysis. The embedded model is 
characterized as the model parameter discrepancy between the LimbicSubNet 
parameters and the Whole Network parameters.  
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We identified a single significant latent variable that characterizes the relationship 
between the biophysical parameters and cognitive domain z-scores for each of the 
models. Model parameters derived from the Limbic SubNet, the Whole Network, 
and the discrepancy between these two (the embedded model) correlated with 
cognition on this LV (Limbic SubNet: p = 0.018, Whole Network: p = 0.01, 
embedded Limbic SubNet: p < 0.001). The contributions of cognitive 
performance domains are shown in Figure 2B.  
 
Within the Whole Network model, cognitive domain z-scores correlate negatively 
with inhibition, and positively with excitation (excitation-inhibition and 
excitation-excitation). In comparison, within the Limbic SubNet, cognitive 
domain z-scores correlate negatively with global coupling, and excitation (both 
excitation-inhibition, and excitation-excitation), and positively with inhibition.  
 
We observed that the discrepancy between model parameters of the Limbic 
SubNet and the Whole Network correlates with cognitive performance (See 
Embedded LimbicSubNet model, Figure 2). Individuals with higher cognitive 
scores (ie healthy) have a greater discrepancy in inhibition, and lower discrepancy 
in excitatory and global coupling parameters.  
Note that these results hold when correcting for subject demographics (age, non-
English speaking background, sex, and education) via regression and using 
residuals for analysis.  
 
3.4 Group differences in biophysical model parameters  
Thus far we had compared biophysical model parameters with cognitive 
performance as a surrogate measure of disease severity. In order to examine 
whether parameters could also be used to differentiate between clinical diagnosis 
groups, we compared model parameters across clinical groups (healthy, aMCI, 
AD) and network (Limbic SubNet, Whole Network). Here, we did not observe 
group differences between parameters, nor an effect of network, but we did 
observe a significant group*network interaction (p = 0.004). See Table 1, and the 
same data in Figure 3, for optimal parameters and details by group. 
 
Table 1. Mean (SD) biophysical model parameters per group and network 
Cohort Average across 

subjects 
Healthy MCI 

 
AD 
 

 Limbic 
SubNet 

Whole 
Brain 

Limbic 
SubNet 

Whole 
Brain 

Limbic 
SubNet 

Whole 
Brain 

Limbic 
SubNet 

Whole 
Brain 

Global 
Coupling 

1.03 
(0.44) 

0.98 
(0.21) 

0.9151 
(0.26) 

0.9315 
(0.21) 

1.1914 
(0.64) 

0.9343 
(0.21) 

1.0000 
(0.32) 

0.9500 
(0.23) 

Inh-Exc 
 

1.49 
(0.26) 

1.46 
(0.16) 

1.5082 
(0.20) 

1.4082 
(0.13) 

1.4029 
(0.36) 

1.4629 
(0.21) 

1.4812 
(0.28) 

1.4687 
(0.14) 

Exc-Inh 
 

0.1593 
(0.0359) 

0.1621 
(0.0238) 

0.1541 
(0.028) 

0.1716 
(0.0226) 

0.1721 
(0.0488) 

0.1507 
(0.0205) 

1.1594 
(0.0315) 

0.1656 
(0.0239) 

Exc-Exc 
 

1.35 
(0.3135) 

1.41 
(0.1751) 

1.3589 
(0.25) 

1.5219 
(0.15) 

1.4714 
(0.41) 

1.3571 
(0.17) 

1.4125 
(0.33) 

1.4938 
(0.17) 
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Of note here (Table 1, Figure 3) was the large variance among the MCIs in the 
Limbic SubNet compared to healthy controls and ADs. Levene’s test of 
homogeneity of variance.was significant for group, network, and their interaction 
for all parameters (except group*network interaction of inh-exc parameter). 
(Table 2) 
 

 
Figure 3.  Variance of biophysical parameters across clinical groups for: (A) the 
Limbic SubNet, where the greatest variance was observed among the MCI cohort, 
and (B) the Whole Network. Here, the biophysical parameter variances were 
equal across groups.  
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Table 2. Levenes test of variance in model parameters for group (healthy, MCI, 
AD) and network (Limbic SubNet, whole), and their interaction 

 
 
We hypothesized that the lack of differences between groups was due to the large 
variability in the aMCI group and also due to stark differences in sample size 
between groups. In order to account for the variable sample sizes, which led to 
unequal weighing of groups, we conducted a secondary analysis comparing the 
healthy and AD group, matching for age and sample size (N = 16 per group). 
Here, we report a significant effect of clinical group (healthy, AD) (p = 0.003, d = 
0.45) and network (Limbic SubNet, whole) (p = 0.003, d = 0.73), as well as a 
group*network interaction (p = 0.02, d = 0.29).  
 
3.5 Model advantage over empirical connectomes  
We next compared our individualized patient models to empirical imaging data in 
predicting clinical phenotype, for both the Limbic SubNet and Whole Network. 
We observed that:  
(1) the covariance between model parameters and cognition exceeded (2) the 
covariance between empirical connectomes and cognition (See Figure 4, Results 
shown here are for Limbic SubNet model).  
 

 

0 1 2 3 40

10

20

30

covariance

co
un

t

 

 

model with cognition
SC/FC and cognition

Parameter Group  
(Healthy, MCI, AD) 

Network  
(Limbic SubNet, 
whole) 

Group x Network 

Global Coupling F(2,242) = 14.56  
p < 0.0001 *** 
 

F(1,242) = 31.24 
p < 0.0001 *** 

F(2,242) = 16.28 
 p < 0.0001 *** 

Inh-Exc F(2,242) = 17.54 
p < 0.001 *** 

F(1,242) = 32.82 
p < 0.001 *** 

F(2,242) = 2.71 
p = 0.0688 

Exc-Inh F(2,242) = 4.03 
p < 0.05 *** 

F(1,242) = 26.84 
p < 0.0001 *** 

F(2,242) = 7.61 
p < 0.0001 *** 

Exc-Exc 
 

F(2,242) = 11.66 
p < 0.0001 *** 
 

F(1,242) = 55.93 
p < 0.0001 *** 
 

F(2,242) = 7.35 
p < 0.0001 *** 
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Figure 4. Covariance of biophysical model parameters with cognition 
outperforms covariance of connectomes (SC combined with FC) with cognition. 
Distributions shown are covariances from bootstrap resampling. 
 
We bootstrapped covariances of (1) and (2) (See Methods), and subtracted the 
two to assert that model parameters with cognition significantly exceed 
connectomes (SC combined with FC) with cognition (See Methods). The mean of 
the difference distribution (connectomes with covariance subtracted from model 
with cognition covariance) = 0.95, 95% CIs: [0.17, 1.70]. Thus, the difference 
distribution was reliably > 0.  
 
See Supplementary materials for more details on reductions in empirical SC and 
FC weights (Figure S5), as well as graph measures across clinical groups. We also 
checked for SC-FC differences between groups, which was non-significant 
F(2,123) = 1.09, p = 0.338. 
 
3.6 Subject motion 
An ANOVA was conducted to compare framewise displacement between healthy 
controls, MCIs, and ADs to check whether subject motion (framewise 
displacement) was driving any differences between groups (Power, Barnes, 
Snyder, Schlaggar, & Petersen, 2012). The result was non-significant  (F(2,123) = 
0.38, p = 0.68). 
 
4. Discussion 
We used a neurophysiological multi-scale brain network model (The Virtual 
Brain) to examine how individual optimal functioning points of local 
(inhibition/excitation) and global (long-range coupling) dynamics correlate with 
variability in cognition across healthy controls, amnesic Mild Cognitively 
Impaired (aMCI), and Alzheimer’s patients. The study is a compelling proof of 
concept that the modeling platform can be used to characterize an individual’s 
own network and local dynamics and has a clinical utility that can inform about 
the disease. We modeled, 1) the Limbic SubNet, which includes the regions of 
primary onset of the pathology (G. W. Van Hoesen & Solodkin, 1994), and 2) the 
Whole Network, which encompassed also the Limbic SubNet. We also 
characterized the embeddedness of the Limbic SubNet within the full network, 
which describes the influence of the larger network to the subnetwork.  
We were interested in global long-range network changes (Delbeuck et al., 2003; 
He et al., 2008; Sanz-Arigita et al., 2010; Stam et al., 2007) as well as local 
excitatory/inhibitory dynamics on neural activity (Palop et al., 2007; Paula-Lima, 
Brito-Moreira, & Ferreira, 2013), as these changes have consistently been 
observed in AD. Quantitative metrics in our model reflect optimal levels of local 
excitation, inhibition, and global coupling for each individual. Such parameters 
have been linked to the emergence of important network features in health (Deco 
et al., 2009; Deco & Jirsa, 2012; Deco, Ponce-Alvarez, et al., 2014), and 
performance in clinical conditions (Falcon, Riley, et al., 2016; Falcon et al., 
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2015). A link between model measures (e.g. excitation/inhibition) and function 
has been ascertained in computational models of AD in the past (de Haan et al., 
2012; de Haan et al., 2017). Here, we showed these model parameters allow for 
the characterization of an individual’s own network and local dynamic changes in 
MCI and dementia that reflect cognitive performance. 
Specifically, we found that optimal levels of excitation, inhibition and global 
coupling in the individual subject’s model were associated with cognitive 
performance scores across six cognitive domains (attention, language, executive 
function, visuospatial, memory, and verbal memory). When disease severity was 
characterized by cognitive performance alone, there was a clear association 
between severity and biophysical model parameters (Figure 2). However, 
biophysical parameters did not differ when compared strictly across clinical 
diagnosis groups. This was likely due to the large variation in biophysical model 
parameters in the aMCI group (See Figure 3). The large variance in the optimal 
values of excitation/inhibition as well as global dynamics in the aMCI group was 
an important finding in our study, particularly in light of the heterogenic nature of 
this group in terms of phenotype and conversion. We conducted a secondary 
analysis in order to ascertain that biophysical parameters are nonetheless 
informative for clinical group. When matched for sample size and age, healthy 
controls’ biophysical parameters differed significantly from ADs’. 
Particularly intriguing was that the Limbic SubNet and Whole Network model 
showed opposing brain-behavioural patterns. We describe each below, and follow 
with an embeddedness explanation of this discrepancy.  
 
4.1 Limbic SubNet  
Within the Limbic SubNet, we observed that: global inter-regional inputs and 
excitation negatively correlated with cognition, while inhibition positively 
correlated with cognition. The excitation/inhibition findings are consistent with 
the view that over-excitation is damaging to the system, leading to synapse 
debilitation, excitotoxicity, and subsequent cell death in AD (Palop et al., 2007; 
Paula-Lima et al., 2013), while inhibition serves to counteract its effects as a sort 
of compensatory mechanism to reduce vulnerability to excitotoxicity (Lapchak, 
Chapman, Nunez, & Zivin, 2000; Palop et al., 2007; Schwartz-Bloom, Miller, 
Evenson, Crain, & Nadler, 2000; Velasco & Tapia, 2002; Zhang et al., 2007). On 
the other hand, the finding that global inter-regional coupling correlated 
negatively with cognition within the Limbic SubNet suggests that a limbic system 
where neuronal dynamics are driven by neuronal activity from other regions is 
maladaptive. This is consistent with shifts that have been observed in global 
dynamics in healthy aging (McIntosh et al., 2014), as well as maturation (Fair et 
al., 2009). Disease-related alteration in global coupling is in line with reports of 
connectome degeneration and of network reorganization that is governed by these 
long-range connections (Delbeuck et al., 2003; He et al., 2008; Sanz-Arigita et al., 
2010; Stam et al., 2007; Supekar et al., 2008; K. Wang et al., 2007).  
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4.2 Whole Brain  
The brain-behavioural relationships we observed in the Whole Brain model were 
quite different than in the Limbic SubNet. In the Whole Brain model, we found 
that excitation and inhibition were positively and negatively correlated with 
cognition, respectively. This suggests that the effects of excitation and inhibition 
are not straightforward and often unpredictable in a complex system like the 
brain. The positive cognition correlate of excitation that we found is in contrast 
with our findings in the Limbic SubNet (where cognition correlated negatively 
with excitation), as well as with the damaging effects of over-excitation that have 
consistently been reported (Busche & Konnerth, 2015; Celone et al., 2006; 
Dickerson et al., 2005; Gleichmann et al., 2011; Gleichmann & Mattson, 2010; 
Jones et al., 2016; R. A. Sperling et al., 2010). Interestingly, similar 
unpredictability of excitation on function in AD has been reported before (de 
Haan et al., 2017). In a whole-brain computational model of AD, de Haan et al 
(2017) found that contrary to their hypothesis, selective stimulation of excitatory 
neurons was actually beneficial for preserving network function. In the present 
study, excitation in the whole brain model was also positively linked to preserved 
cognition.  
 
4.3 Embeddedness 
Although the notion of embeddedness was first introduced within social-
economic network sciences (Granovetter, 1985), it has more recently been used to 
characterize neural networks and to describe how the network exerts influence 
onto a subnetwork that lies within it (Misic, Vakorin, Paus, & McIntosh, 2011; 
Vlachos, Aertsen, & Kumar, 2012). A subnetwork is embedded within a larger 
network if its behaviour or properties are affected by the outside system. 
Embeddedness can be characterized by the difference in dynamics between the 
network and the subnetwork. That is, the more different the dynamics, the greater 
the influence of the larger network on the subnetwork.  
Here, we studied embeddedness in order to better understand the disparity in the 
cognition-parameter associations in the Limbic SubNet and the Whole Network 
model. We characterized the difference in optimal levels of functioning in the 
Limbic SubNet nodes and Whole Network, and therefore the dependency between 
the two (i.e. embeddedness), as a function of cognition. We showed that the 
dependency of these two sets of model parameters differ across severity, 
suggesting that the influence of the larger network on the Limbic SubNet varies in 
disease.  
 
4.4 Variation in aMCI group 
Of note was the striking variability in excitation, inhibition as well as long-range 
global dynamics in the aMCI group. This is particularly interesting in light of the 
variability that exists in phenotype and conversion rates among aMCI patients. 
With an annual conversion rate of about 20% (Ward et al., 2013), only a certain 
portion of aMCIs will convert to AD within the next few years. We suggest that 
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the high variability may reflect disparities in the classification of MCI and its 
subtypes. We propose that those aMCIs individuals that will be converters will 
have a biophysical parameter fingerprint closer to that of the AD group, while 
those that will not convert will have biophysical parameters closer to that of the 
healthy group. A follow-up study with MAS longitudinal multi-wave data will 
test the use of biophysical model parameters in the individual prediction of 
conversion.  
 
4.5 Model parameters above empirical connectomes 
Individual subjects’ model parameters were better predictors of cognition 
compared to empirical structural and functional connectivity. This is important, as 
our model adds value above and beyond SC and FC for making predictions about 
disease-related cognitive decline. The model identifies the key features of the SC 
and FC that reflect the unique biophysical properties of the subject, thereby 
reducing the irrelevant noise inherent in the connectomes and capturing the most 
predictive representation of the empirical data. A related observation was made in 
a modeling study of stroke outcome (Falcon et al., 2016), whereby biophysical 
parameters at pre-therapy conditions were more strongly associated with long-
term motor recovery than the patient’s physical features of stroke or their 
demographics.  
 
4.6 Caveats and considerations 
We note several possible limitations of our study. One concern is that the 
cognition-related differences in biophysical model parameters could be driven by 
non-biological factors. To reduce or correct for the influence of non-biological 
factors, a number of precautions were taken. 1) Quality control of our SCs (See 
Methods) 2) Analysis of model fits across disease severity, 3) Analysis of SC-FC 
across disease severity. We conclude that neither model fit nor SC-FC 
relationships varied with severity and are thus unlikely to contribute to 
biophysical model differences in our study. 
 
As the simulations are based on SCs, we conducted rigorous quality control of our 
matrices. Nonetheless, the validity of our structural connectomes could be 
improved by using filtering methods that ensure the streamline weights more 
accurately resemble the underlying densities (R. E. Smith et al., 2013; R. E. 
Smith, Tournier, Calamante, & Connelly, 2015). In addition, the validity could 
also be enhanced by tracking performed upon the grey/white-matter interface (R. 
E. Smith et al., 2012). Whilst these methods were not employed, and we 
acknowledge the limitations of our widely-adopted normalization approach (Yeh 
et al., 2016), the current diffusion data do still benefit from being processed with 
the most advanced options currently available for the present acquisitions. These 
approaches have been shown to distinguish between normal ageing and 
neurodegenerative groups; Of note, a recent study which also employed fibre-
orientation based estimations of structural connectivity, identified striking voxel-
wise microstructural differences in MCI and AD patients (relative to controls) 
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(Mito et al., 2018). Similarly, fMRI is a helpful tool for identification of AD-
related dysfunction at early stages of the disease (R. Sperling, 2011) in view of 
the synaptic changes that occur early in the course of the pathology, often before 
measurable clinical symptoms (Coleman, Federoff, & Kurlan, 2004; Selkoe, 
2002), Although, it is important to take into consideration that changes in rsfMRI 
in AD may be an effect of neurovascular differences in the BOLD signal in the 
pathology, as well as the hemodynamic response (R. Sperling, 2011), studying 
AD-related changes using a neural model circumvents some of these issues.  
 
 
We also choose a local neuronal population study that was sufficiently complex to 
capture the key features of interest (excitatory and inhibitory synaptic currents) 
but, as with all population models, embodying other abstractions. Future models 
could address more nuanced aspects of synaptic and circuit pathophysiology 
through the employment of more detailed multi-layer cortical models. 
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