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ABSTRACT

An optimal linear filter (fingerprint) is derived for the detection of a given time-dependent, multivariate
climate change signal in the presence of natural climate variability noise. Application of the fingerprint to the
observed (or model simulated) climate data yields a climate change detection variable (detector) with maximal
signal-to-noise ratio. The optimal fingerprint is given by the product of the assumed signal pattern and the
inverse of the climate variability covariance matrix. The data can consist of any, not necessarily dynamically
complete, climate dataset for which estimates of the natural variability covariance matrix exist. The single-
pattem analysis readily generalizes to the multipattem case of a climate change signal lying in a prescribed (in
practice relatively low dimensional) signal pattern space: the single-pattern result is simply applied separately
to each individual base pattern spanning the signal pattern space. Multipattern detection methods can be applied
either to test the statistical significance of individual components ofa predicted multicomponent climate change
response, using separate single-pattem detection tests, or to determine the statistical significance of the complete
signal, using a multivariate test. Both detection modes make use of the same set of detectors. The difference in
direction of the assumed signal pattern and computed optimal fingerprint vector allows alternative interpretations
of the estimated signal associated with the set of optimal detectors. The present analysis yields an estimated
signal lying in the assumed signal space, whereas an earlier analysis of the time-independent detection problem
by Hasselmann yielded an estimated signal in the computed fingerprint space. The different interpretations can
be explained by different choices of the metric used to relate the signal space to the fingerprint space (inverse
covariance matrix versus standard Euclidean metric, respectively). Two simple natural variability models are
considered: a space—time separability model, and an expansion in terms ofPOPs (principal oscillation patterns).
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For each model the application of the optimal fingerprint method is illustrated by an example.

l. Introduction

The general public concern and ongoing scientific
debate on the anticipated global warming due to in-
creasing greenhouse gas concentrations and on the im-
pact of other activities of man on the earth’s climate
has generated a strong demand for the development of
improved techniques for the early detection of the pre-
dicted climate change signal. A clear identification of
the anthropogenic signal in climate observations would
reduce the present scientific uncertainties regarding the
magnitude and form of the anticipated climate change
and would provide a more reliable quantitative basis
for the development of rational political abatement and
adaptation strategies. _

At the core of the detection problem is the devel-
opment ofa suitable strategy for distinguishing between
the anticipated externally generated time-dependent
climate change signal and the natural internal vari-
ability of the climate system. The problem can be di-
vided into three parts: 1) identification of the climate
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change signal that one wishes to detect, 2) determi-
nation ofthe relevant statistical properties ofthe natural
climate variability background, and 3) development
of an optimal detection method. This paper addresses
the third problem. However, the question of the rep-
resentation (but not the estimation) of the second-mo-
ment statistics of the natural climate variability noise
needed for optimal detection, which relates to the sec-
ond problem, will also be considered briefly.

It will be assumed throughout that the first problem
has been resolved and the general structure ofthe space-
and time-dependent climate change signal that one is
seeking to detect has been determined, for example,
from model simulations. It is well known that in at-
tempting to detect signals in noisy multivariate data,
the number of degrees of freedom of the signal must
be severely curtailed in order to extract statistically sig-
nificant results. Specifically, it will be assumed that the
signal is defined to within the unknown coefficients of
a relatively small set of prescribed time-varying re-
sponse patterns (cf. Cubasch et al. 1992).

This should not gloss over the difficulties, however,
of defining the anticipated climate change signal. This
is generally a nontrivial problem requiring an inter-
comparison and detailed assessment ofdifferent climate
change simulations with different models. The problem
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is compounded by the fact that realistic time-dependent
climate change simulations can be carried out only with
coupled ocean—atmosphere general circulation models
(CGCMs), which generate their own natural climate
variability (Washington and Meehl 1989; Stouffer et
al. 1989; Manabe et al. 1991; Cubasch et al. 1992; San-
ter et a1. 1993; see also the stochastically forced ocean
experiment of Mikolajewicz and Maier-Reirner 1990).
Therefore, the signal detection problem already arises
in the attempt to define the climate response signal in
model simulations. This calls into question the basic
premise of the separability of the signal definition and
signal detection problems, that is, the assumption that
the signal to be detected in an observed or model—sim-
ulated dataset can be defined a priori in an independent
model experiment. This will nevertheless be assumed
in the following as a conceptual starting point.

In the same spirit, the estimation of the statistical
properties of the natural climate variability required
for optimal detection, which is at the core of the second
problem, will also be regarded as resolved. This is again
a nontrivial assumption, but is necessary in order to
pose a well-defined detection problem. In practice,
much of the ongoing debate on whether an anthro-
pogenic climate signal can already be detected today
revolves around uncertainties over the structure and
magnitude ofthe natural variability ofthe real climate.
Nevertheless, in order to develop a consistent concep-
tual framework it will be assumed, again as a starting
point, that estimates of the required natural climate
variability statistics are available. All fields are assumed
to be statistically stationary (indeed, if this is not the
case it is generally not possible to construct a statistical
ensemble ofrealizations, which is a prerequisite for the
development of a meaningful statistical theory of signal
detection).

The assumption of known statistics is not as severe
a restriction, however, as it may appear at first sight.
The detection strategy will be developed in the follow-
ing for an “observed climate state vector,” which refers
to any set of climate variables or indices for which
adequate statistical data are available. The observed
climate state need not be dynamically complete, as re-
quired, for example, for a climate model. Thus the
“observed climate state” can consist of time series of
varying length and for different climate variables, mea-
sured at inhomogeneously distributed stations. Time-
dependent signal detection is concerned only with the
kinematics (the description of the time-dependent
evolution), not the dynamics (the causes of the evo-
lution) of climate change. A dynamically incomplete
representation of the climate state therefore has no
consequences for the method of detection (apart, of
course, from the unavoidable loss of detection power
associated with a loss of information).

After an optimal detection strategy has been devel-
oped under these two working assumptions, the general
question of the interdependence of the three elements
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of the overall detection problem can be revisited in
further iterations. The discussion of some possible ap-
proaches to modeling the relevant second-moment
properties of the natural climate variability presented
at the end of this paper represents a first step in this
direction.

The detection problem, in the separable form dis-
cussed here, is often viewed as the task of identifying
the most sensitive climate index, from a large set of
potentially available indices, for which the anticipated
anthropogenic climate signal can be most readily dis-
tinguished from the natural climate noise. Global or
regional mean surface temperature, vertical tempera-
ture differences, sea ice extent, sea level change, and
integrated deep ocean temperatures are examples of
indices that have been discussed in this context (e.g.,
Wigley and Jones 1981; Barnett 1986; Barnett and
Schlesinger 1987; Karoly 1987, 1989; Munk and
Forbes 1989; Mikolajewicz et al. 1993). A more sys-
tematic approach, however, is the fingerprint method.
Here, all climate variables are regarded as containing
potentially useful information on climate change, and
the task is to extract from the full set of available ob-
served climate variables an optimal net climate change
detection index (cf. Madden and Ramanathan 1980;
MacCracken and Moses 1982). This approach will be
pursued in this paper. While it is theoretically con-
ceivable that a single climate variable will turn out to
be the most effective detector, in the general case all
variables will carry some signal information, although
with varying levels of noise contamination. The opti-
mal detector, defined as the variable that has a maximal
signal-to-noise ratio, will consist of a weighted linear
combination (the “fingerprint”) of all variables.

Most investigations in the past have considered only
partial aspects of the full multivariate, space—time-de—
pendent problem. The detection of a time-independent
equilibrium change of a multivariate climate system
in response to a constant external forcing has been in-
vestigated by Hasselmann ( 1979, referred to in the fol-
lowing as H), Hannoschöck and Frankignoul ( 1985),
Hense ( 1986), Hense et al. ( 1990), Bell ( 1982, 1986),
and others. The complementary problem of detecting
a time-dependent climate change signal, while disre-
garding the spatial and multivariable nature of the cli-
mate signal, has been studied by Bloomfield and
Nychka (1992).‚These authors did not address, how-
ever, the question of the optimization of the detection
variable. Various other facets of the signal detection
problem have been investigated or reviewed by Pre-
isendorfer ( 1988), Wigley and Barnett (1990), Barnett
(1991 ), Barnett et al. ( 1991 )‚ Solow(1991_)‚and other
authors. Recently, however, North et al. (1993) and
North and Kim (1993) have independently investi-
gated the full space—time-dependent climate change
detection problem, also using pattern analysis tech-
niquesrather similar to the approach pursued here.

In comparing the theoretical signal predictions with
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observed data, many studies apply some form of fil-
tering or pattern correlation technique that in effect
projects the observed data onto the predicted signal
pattern. This essentially corresponds to the usual least-
squares fitting of a signal pattern to data such that the
variance of the residual is minimized. While this re-
moves much of the irrelevant noise in the data, it does
not represent the optimal signal detection solution. This
should maximize the signal-to-noise ratio rather than
the explained variance.

In this paper an optimal space—time-dependent filter
(fingerprint) is derived that maximizes the signal-to-
noise ratio for the associated detector for any prescribed
multivariable, space—time-dependent climate signal.
The single-pattem solution is then generalized to the
multipattern case to determine a set ofp optimal fin-
gerprints and associated detectors for any climate
change signal lying in a prescribed space spanned by
p given climate change patterns. To determine the sta-
tistical significance of the estimated climate signal it
must be assumed that the natural climate variability
is Gaussian (or is otherwise known). However, the def-
inition of the optimal fingerprints as such is not de-
pendent on the Gaussian hypothesis.

The detection problem is defined in section 2. As-
suming that the space—time-dependent structure ofthe
externally generated climate signal is prescribed to
within an unknown amplitude factor, the optimal
space—time-integrated detector is derived in section 3
as a linear combination (the optimal “fingerprint”) of
the complete set of time-dependent climate variables.
The result is generalized in section 4 to the case of a
signal defined only as an unknown linear combination
of a finite set of prescribed time-dependent patterns.
The analysis follows the basic ideas of H, extended in
a straightforward manner to include the time dimen-
sion, but is simplified by the introduction of the “fin-
gerprint” terminology. The problem of modeling the
complex space—time- (or space—frequency) dependent
second moments of the natural climate variability re-
quired for optimal detection is discussed in section 5.
Two simplifications are considered and illustrated by
examples: the assumption of space—time separability,
and the introduction of approximate POP (principal
oscillation pattern) representations. The results are
summarized and some open questions mentioned in
the concluding section 6.

2. The detection problem for a multicomponent
space—time-dependent signal

Consider the evolution of an “observed climate
state” <p„‚x(t) = q}; (t) in response to some time-depen-
dent external forcing over a time interval O S t S T.
The “observed climate state” can be represented as a
discretized composite vector (15 = ((15,) whose indices i
= (v, x) run through the climate variables 1) (temper-
ature, pressure, moisture, . . .) and the discrete spatial
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coordinates x, which can refer, for example, to a set
of observing stations or a model grid. The climate tra-
jectory ¢(t) can represent either a set of variables of
the real climate system or the simulated response in
some numerical model experiment. As has been
pointed out, it is not necessary that d>(t) provide a dy-
namically complete description of the climate system.
The “observed state vector” can (and, indeed, must)
be limited to variables for which sufiicient observational
information is available to adequately define the sta-
tistics ofthe ensemble oftrajectories ¢(t) characterizing
the natural variability of the system. The detection
problem is then to decide whether the climate time
history ¢(t) generated by the external forcing can be
distinguished, at some given level of significance,
from the statistical ensemble of natural variability tra-
jectories ¢(t).

For the time-independent problem, an optimal signal
detection strategy has been presented in H. In the fol-
lowing, the analysis of H is extended to the general
multivariate, time-dependent case and recast in a sim-
pler “fingerprint” terminology.

Formally, the approach of H can be immediately
generalized to the time-dependent case by simply dis-
cretizing the time variable and incorporating the time
index I in a combined index a = (i, t) running from
l to n. The extended climate vector (p = (wg) sum-
marizes then the complete climate trajectory: 304 = set
of all d>‚(t) in the discretized time interval 1 = l, 2,
- - - T(the time-discretization interval is set to unity).
The introduction ofa compact variable space—time in-
dex a = (v, x, t) not only simplifies the notation, but
also focuses on the essentially very simple linear algebra
geometry of the detection problem.

An important requirement for a successful detection
strategy is the reduction of the number of degrees of
freedom of the signal. This is achieved in H by con-
sidering a signal that is defined a priori only in a rel-
atively low—dimensional subspace of the full climate
system. Attempts to test whether the full climate re-
sponse vector 11/ can be distinguished from an element
J/ of the natural variability ensemble without a reduc-
tion in dimensionality of the signal will generally fail
for the following reasons (cf. H; Barnett and Hassel-
mann 1979).

The climate response to given external forcing can
be represented generally (ignoring nonlinear interac—
tions between the natural climate variability and the
externally forced response) as a superposition

4’ = Il/S + ‘l/ (1)
of the forced deterministic climate signal IV and a par-
ticular realization rl/ of the natural variability ensemble.
Let v be a unit—length vector denoting the direction of
the signal, W = slv. Assume now that the signal is
statistically significant in the sense that the signal am-
plitude lVI is large compared with the noise com-
ponent in the v direction,
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h’l‘l2 > ((vTiW}, (2)
where the cornered parentheses denote ensemble
means and matrix notation is used, a superscript T
denoting the transpose. The mean of the climate noise
is taken to be zero, (til) = 0. If the direction v is known
a priori, it is then possible to test for the statistical
significance of the net-square response (tP)2 in the v
direction, and the outcome under the inequality (2)
would be positive.

If, on the other hand, the signal pattern is unknown,
one can test only the statistical significance ofthe com-
plete n-dimensional response vector ill. This requires
considering the magnitude and orientation of the re-
sponse vector in relation to the joint probability density
of the ensemble of vectors \I/ in the full n-dimensional
climate trajectory space. If the probability density de-
creases monotonically with distance from the origin,
as is normally the case, each (n — 1)-dimensional hy-
persurface of constant probability density will divide
the n—dimensional space into an internal closed region
of some probability measure P around the origin and
an external open region of probability measure (1
— P), in which the probability density is everywhere
smaller than in the internal region. The response vector
4/ is then normally termed statistically significant at the
significance level P if the end point of the response
vector, drawn from the origin, lies in the external re-
gion. Without entering here into the details ofthe anal-
ysis, it is qualitatively apparent that the larger the
number of irrelevant noise dimensions, the smaller the
relative contribution ofthe signal to the total magnitude
of the response vector, and the more diflicult it will be
to detect the signal in the full n-dimensional space—
even when the signal component is significantly larger
than the noise component in the one (unknown) di-
rection v.

Fortunately, this second “needle in a haystack” sit-
uation will normally not apply in practice: the direction
of the hypothesized climate signal can be assumed to
be known from model simulations, or at least to lie
within a known subspace of relatively small dimension.

The case that the climate change signal is known
exactly applies for the simplest yes—no question of cli-
mate change detection: one wishes to determine
whether a specific time-dependent global climate signal
that has been predicted by a model can be detected in
the data (or at what future time it should become de-
tectable in the data). The more general case that the
response signal is assumed to lie only within some pre-
scribed low-dimensional subspace of the full climate
trajectory space arises if the predicted climate change
signal is only imperfectly known (for example, because
different models have predicted different climate
change patterns) or ifone wishes to distinguish between
different climate change signals produced by different
anthropogenic or natural external forcing mechanisms.

A multipattem analysis is necessary also ifone wishes
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to test the statistical significance not only of the com-
plete global climate change signal, but also ofparticular
subcomponents of the global signal. It can be antici-
pated, for example, that the most effective single global
climate change detector will be based primarily on the
large-scale features of the climate fields. But for policy-
makers, the regional climate changes (which at present
are not predicted very reliably by climate models) will
presumably be of greater concern than globally inte-
grated quantities. They will therefore wish to know not
only whether the global climate change predicted by
models has been detected, but also whether the model
predictions ofclimate change on the regional scale can
be confirmed by observations.

The analysis of this paper can be extended to the
case of statistically rather than deterministically pre-
scribed climate signals. This could be appropriate, for
example, if the predicted signal is inferred from an en-
semble of different model simulations with different
levels of credibility, or from a mixture of model sim-
ulations and general theoretical considerations (sug-
gesting, for example, a land—sea contrast signal). How-
ever, this Bayesian generalization will not-be pursued
further here.

3. The optimal fingerprint for a prescribed signal
pattern

If the pattern g of the space—time signal trajectory
V is known to within an unknown constant amplitude
factor (2,

‘=cg, (3)
the signal detection problem reduces (if one limits
oneself to linear techniques) to the task ofderiving an
optimal detection variable or “detector,”

d: (tp), (4)
computed from \l/ by application of a linear “filter
function” or “fingerprint” f = (ß), for which the
square signal-to-noise ratio

(615)2R2 = —~ , 5

is maximized. Here

d3 = (fTV) (6)
and

ä = (t?) (7)
represent, respectively, the signal and climate-vari-
ability noise components of the net detector d = a”
+ d.

The fingerprint vector f is determined through the
condition R2 = max only to within a factor. Similarly,
the signal pattern g need be defined only to within an
arbitrary factor since the amplitude of the signal will
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be estimated by the detection procedure. Although f
and g could therefore be normalized to unit vectors, it
is notationally more convenient to leave the vectors
unnormalized at this point.

The maximization of R2 with respect to the arbi-
trarily normalized vector f is equivalent to the mini-
mization of ((12) under the side condition (d5)2
= const. This yields as determining equation for the
fingerprint f,

Cf+)\(n)g=0, (8)
where C = Cab = <11a> is the covariance matrix of
the natural climate variability and A is a Lagrange mul-
tiplier whose value depends on the normalization cho-
sen for f. The solution is

f= C"g‚
with Ä = ~(gTC"g)".

The optimal fingerprint direction is in general not
parallel to the assumed signal direction, as may perhaps
have been expected intuitively (and is often assumed
in detection studies). This is best understood by trans-
forming to statistically orthogonal coordinates (denoted
in the following by primes),

ya = 2 Meta,
b

(9)

(10)

which are defined with respect to an orthonormal base
em, = eb consisting of the eigenvectors (empirical or—
thogonal functions, EOFs) eb of C,

Ceb = trier», (11)
with

(eZeb) = Öab- (12)
In EOF coordinates, the covariance matrix of the nat—
ural climate variability takes the diagonal form

<Mz> = cam, (13)
where 03, is the variance associated with the EOF ea.
Equation (9) thus becomes

fiz=g2022- (14)
The multiplication of the signal with the inverse of the
covariance matrix is seen to weight the fingerprint
components f Q, in the EOF frame relative to the signal
components g; by the inverse 0,72 of the EOF vari-
ances, thereby slewing the fingerprint vector away from
the EOF directions with high noise levels toward the
low-noise directions. [In practice, the EOF spectrum,
ifestimated from data, should be truncated after a finite
number of terms, since the higher-index eigenvalues
tend to be underestimated, leading to a spurious am-
plification of the higher-index fingerprint components
(cf. v. Storch and Hannoschöck 1985; Preisendorfer
1988).]

For the special case of a single time-dependent vari-
able, the result ( 13) is well known from classical signal
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processing theory (cf. Wainstein and Zubakov 1962).
The EOFs for a statistically statidnary time series are
simply the harmonic functions of the Fourier series
representation, so that Eq. ( l4) reproduces in this case
the basic theorem that the optimal signal detection filter
for a stationary time series is given by the Fourier
transform of the signal divided by the noise variance
spectrum.

Implicit in the definition of the optimal detector as
the linear variable that maximizes the square signal-
to-noise ratio is the assumption that the statistical sig-
nificance of the detector increases monotonically with
the signal-to-noise ratio. For most climate variability
distributions, this will be the case. It has also been as-
sumed that the only source of statistical noise in the
detector is the natural climate variability. In practice,
data errors will also contribute to the detector noise.
However, these are generally small compared with the
climate variability, and, to avoid complicating the
analysis, will be ignored.

The statistical significance of the optimally detected
signal d can be computed from the probability distri-
bution of the noise variable d for the null hypothesis
that there is no signal. For this purpose it is normally
assumed that the natural climate variability is Gauss-
ian, so that all distributions may be derived from the
covariance matrix C.

In this case, if C is known exactly (as opposed to
being estimated from a finite dataset), d is also Gauss-
ian with variance

<32) = 2 are}. (15)
a

If the covariance matrix is estimated from a finite da-
taset, d has statistics generally similar to a Student’s 1
variable (Morrison 1990). However, d difl‘ers from a
Student’s distribution in that the direction for which
the variance ofd is estimated is not prescribed a priori,
but is modified relative to the prescribed signal direc-
tion by multiplication with the inverse ofthe estimated
covariance matrix. The resultant variable does not cor-
respond to a standard tabulated statistical variable, and
its distribution must therefore be estimated by ap-
proximate analytical techniques or Monte Carlo sim-
ulations.

In principle, the significance level can also, ofcourse,
be computed for an arbitrary non-Gaussian, but
known, statistical distribution. However, it will nor—
mally be difficult in the general time-dependent case
to obtain reliable direct estimates of statistical distri—
bution using, for example, permutation methods. This
requires creating an ensemble of realizations, for which
time series are needed that are significantly longer than
the analysis time interval T (the same problem arises
also in the estimation of the covariance matrix C).
The only recourse in this case may be to augment the
observational or model—simulated data with still longer
model simulations of the natural climate variability.
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The analysis so far has addressed only the problem
of detecting a signal with known direction g. How can
the optimal detector d and associated fingerprint f be
translated now into an estimate of the signal? This re-
quires defining the direction and magnitude of the es-
timated signal as a function of g, f, and d. The answer
is not unique and depends on how the fact that f and
g are not parallel is interpreted.

In H, the optimal detection problem was formulated
as the task of finding an optimal unit—length signal de-
tection vector b, given the signal direction g, which
maximizes the signal—to-noise ratio for the coefficient
cl of the estimated signal

the = clb. (16)

The coefficient c1 itself was determined in the standard
manner by minimizing the mean square of the residual
V of the net response

¢=¢e+lfl (17)
which yielded

c1=<tß>. (18)
The optimal detection direction was found to lie in the
direction of the optimal fingerprint, as given by Eq.
(9),

' f
b = — ,

If l
so that the best signal estimate was given by

4:? = _2< f“: .
If I f

Alternatively, one can adopt the view that since the
direction of the signal is assumed to be g, the estimated
signal should also be taken to lie in this direction,

¢e= 62g. (21)
The coefficient 02 should then be determined by the
condition that in the absence of noise one should re-
cover the true signal (or, equivalently, that in the pres-
ence of noise the mean-square deviation from the true
signal should be minimized). This yields

62 = d(gTC“g)_‘-
Thus the estimated signal is given in this case by

the = <fT¢>(gTC“g)“g- (23)
This interpretation will be adopted in the following
discussion.

One can argue either viewpoint. The suppression in
the fingerprint pattern of the signal components as-
sociated with high noise levels can be interpreted with
H to imply that one has actually tested the climate
change pattern only in the low-noise fingerprint direc-
tion, and that the existence of climate change signal
components in the suppressed noise-contaminated di-

(19)

(20)

(22)
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rections cannot be supported by the data. On the other
hand, one can adopt the present view that the climate
change signal, if it exists, is specified a priori as a com-
plete vector, and one is at liberty to test any linear
projection of the signal onto some chosen direction as
evidence of the existence of the complete signal.

4. The multipattern problem

The single-pattern analysis can be readily generalized
to the case in which the direction of the signal vector
is no longer prescribed but is postulated to he only in
a space spanned by p given guess vectors g„, u = 1,

c 0 up,

P

4/5 = Z c„g„.
v=l

(24)

The set of pattems is nonhierarchical and the base used
to represent the prescribed signal space can be chosen
arbitrarily. The guess vectors will not be orthonor-
malized, however, in order to preserve their original
physical meaning. The guess vectors may represent,
for example, different possible time-dependent climate
change patterns induced by a C02 increase or enhanced
aerosol concentrations, or the climate change asso-
ciated with variations in the solar constant, or some
regional climate change pattern. In general, these
space—time patterns will not be orthogonal.

In most applications, the coeflicients c, are estimated
from the net response if, Eq. (1), by minimizing the
mean-square residual 1p, yielding the standard least-
squares solution

ct = 2 HIÄGN), (25)

where

Hut = (331g). (26)
However, in the present application the goal is not to
maximize the explained variance but to maximize the
signal-to-noise ratio for the estimated signal. This yields
a different solution. The following derivation is based
on H, but is simplified through the application of the
single-pattern fingerprint concept.

As before, the problem is solved in two steps. First,
a set of p detectors (1', is derived for which the p-di-
mensional statistical significance (assuming a Gaussian
distribution) is maximized. It will be shown that these
are just the single-pattem detectors of the individual
patterns g„,

d„ = (W), (27)
where

f. = c-1g„. (28)
In a second step, the coefficients d, are then assigned
to p base vectors by to construct an estimate of the
signal.
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Consider first the case that the signal direction is
known. Thus, although the signal can in principle lie
anywhere in the signal pattern space g„‚ the coefficients
c, are in fact given. The detection problem reduces
then to the previous single signal pattern detection
problem, the only difference being that the signal is
now represented in the form (24) with respect to the
vector base g„. From Eqs. (4) and (9) it follows then
that the optimal fingerprint and associated optimal de-
tector are given by, respectively,

f= Z cyf» (29)

and

d = (t10 = Z c,,d,, (30)

where f, and d, are given by Eqs. (28) and (27), re-
spectively. Thus the set of fingerprints f, and detectors
d, represent a straightforward generalization ofthe sin-
gle—pattern solution to the multipattern case in a first
simple sense that they yield the optimal fingerprint,
Eq. (29), 'and maximal signal-to-noise detector, Eq.
(30), for any signal, Eq. (24), with a prescribed direc-
tion in the space spanned by the set of patterns g„.

This result is relevant if one wishes to test the sta-
tistical significance of individual a priori defined com-
ponents ofa multipattern signal. For example, one may
wish to decide whether the global mean temperature
trend or the change in precipitation over a limited
specified region are statistically significant. Although
this is important for many applications, the more gen-
eral situation in multipattern signal detection is that
the direction of the signal is unknown, except that it
is assumed to lie in the p-dimensional signal pattern
space spanned by the set ofp prescribed guess patterns
g„. The task is then to decide whether the climate
change signal found within this space is statistically
significant, without specifying the direction ofthe signal
a priori.

One needs in this case to find a set ofp detectors d„,
given by the general form (27) with suitably defined,
but as yet unknown, fingerprints fi, such that the rel-
evant p-dimensional statistical significance measure of
the vector g’ = (d„) is maximized for any signal lying
in the p-dimensional guess pattern space g, (underlined
symbols denote vectors or matrices in the p—dimen-
sional space with component indices u, V . . . , in con-
trast to the vectors considered hitherto in the n-di-
mensional observed climate-trajectory space with
component indices a, b, . . .). It will be shown that the
solution to this problem is again given by the finger-
prints f, defined by Eq. (28).

The standard measure of the statistical significance
of the p-dimensional vector z_1 = (d„) in the presence
of a Gaussian background noise field is the p2 statistic
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102(61) = 4244, (31)
where

(32)“b || Eb ll /\ Sk
i 3.1 v 1 W I

O. 2°—

and

a7. = (W) (33)
represent the covariance matrix and individual com-
ponents, respectively, of the detector vector g’ associated
with the natural variability noise in the absence of a
signal.

If the climate yariability, and thus the probability
distribution, of d, is indeed Gaussian, the (p - 1)-
dimensional hypersurfaces p2(c_1) = constant represent
surfaces of constant probability density. Thus p2(¢_1')
provides a measure of the statistical significance of the
coefficient vector, as discussed above. If the joint prob-
ability distribution is non-Gaussian, a rigorous com-
putation of the statistical significance will generally be
fraught with still greater sampling uncertainties than
in the one-dimensional case, so that p2 will remain a
useful statistic also in this case, providing at least a
lowest-order (second moment) estimate of the statis-
tical significance.

For a Gaussian distribution and known covariance
matrix C (and therefore Q ), p 2( g’) is a X 2 variable with
p degrees of freedom. If C is estimated from data,
p2(c_z’) is a Hotelling—type variable (cf. Morrison 1990).
However, in analogy with the single-pattern case, the
p2 distribution is not strictly Hotelling, as the set of
estimated coefficients d, is modified by the multipli-
cation with the inverse C‘1 of the estimated covariance
matrix. Therefore, the p2 distribution must also be es-
timated in this case by approximate analytical or Monte
Carlo techniques.

The problem of the optimal detection of an arbitrary
unknown signal lying in the space spanned by the set
ofp guess signals g, can be defined now as the problem
of determining a set of fingerprints 1', that maximizes
‚o2 for any signal lying in the prescribed signal space.
The condition ‚o2 = max clearly defines only the space
spanned by the fingerprints, not the fingerprints them-
selves, since the scalar form ,02 is invariant with respect
to any linear transformation to a new signal pattern
base. This property will be used now to require that
the optimal set of fingerprints forms an orthonormal
base. Similarly, the set of signal patterns will also be
redefined to represent an orthonormal base. (It was
stated at the beginning of this section that orthonor-
mality would not be presumed for the signal base g„.
The resultant fingerprint solutions (28) were then sim-
ilarly nonorthonorrnal. Orthonormality is invoked here
only as an interim convenience and will be dropped
again in the final result.)

Finally, the climate state space will be transformed,

‘P->W’=A1l/‚ (34)
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to a new coordinate system in which the covariance
matrix C becomes the unit matrix,

C”=ACAT= I. (35)
The transformation A can be obtained, for example,
by first transforming to EOF coordinates tlx’ and then
normalizing the EOF coordinates to unit variance,

(,1, = ‘l/Z/ 0a-
In order that the signal and detectors c„, d, remain

invariant under this transformation, the signal patterns
must transform in the same way as the climate state
vector,

32’ = Ag», (36)
while the fingerprints transform as adjoint vectors,

fL' = (AT)"f„. (37)
After these transformations, the statistic p2 reduces to
the Euclidean form

p2: Z (d,)2 = Z (”Til/)2. (38)

It follows immediately that the optimal set of finger-
prints that maximizes p2 for any signal V lying in the
space spanned by the set of signal patterns g, is given
by

(39)
(or any equivalent rotated orthonormal base that spans
the same space as the base g’„’). For this solution, p2
= NIX | 2, while for any other fingerprint space, part of
the signal will be lost in the projection onto the fin-
gerprint space, so that p2 s IWI 2.

Transforming back to the original coordinates, Eq.
(39) becomes, applying Eqs. (36) and (37),

f, = ATAg,
or, invoking Eq. (35),

f, = C"g„.

_ Ifz—g;

(40)

(41)[=(28)l
The orthonormality conditions imposed on the guess
patterns g’; and fingerprints f ’,’ in the transformed cli-
mate state space transform into similar conditions in
the original climate state coordinate system, but with
the scalar products defined now with respect to the
non-Euclidean metrics C‘l and C, respectively. How-
ever, these orthonormality conditions can now be
dropped, since only the signal and fingerprint spaces
as such are of interest, the choice of base for either
space being arbitrary. The signal base vectors can
therefore be identified with the original guess patterns,
without normalization and orthogonality restrictions,
and the fingerprints can be similarly defined, without
orthonormality considerations, by the relation (41 ).
Thus the optimal p-dimensional detector vector c_1 is
identical to the detector vector found previously for
the prescribed-pattern case.
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It can be shown for the optimal fingerprint solution
[using Eqs. (4)-—(7) and (27)—-(33)] that the multi-
variate significance measure p2 for any signal W = g
lying in the signal space g, is identical to the single-
pattern square signal-to-noise ratio R2:

ds 2

= 232) = R2"
The result (42) holds only for the optimal fingerprints
and for the signal 11/5 itself, not for the net response (0
consisting of the signal plus noise. (For the case that
w coqtains no signal, for example, 11/ = w, one finds
(122(4)) = p, while R2 =1.)

There remains now the second step of attributing
an estimated signal we to the detection vector d.
Adopting again the view that the estimated signal
should reproduce the true signal when the noise con-
tamination ofthe observed response ll! is negligible (or,
equivalently, should exhibit the smallest mean-square
deviation from the true signal in the presence of noise)
one finds, in analogy with the single-pattern case,

V = Z dub», (43)

p201”) = 42’121 = gTC‘lg (42)

where the base vectors b, of the estimated signal are
given by

by = z (g—l)vugu
u

(44)

with

g,” = (dc—‘93.). (45)
Thus the estimated signal associated with the set of
maximally significant detectors d, is given by

W = Z (gIC'ltPXQ'ILugu- (46)

In H, an alternative derivation of the maximally sig-
nificant signal estimate was given, which yielded the
same set of optimal detectors d„‚ but a diflerent set of
base vectors by, and thus a different optimally estimated
signal pattern. Starting from the general form (43)
(with b, replaced by b,), the detectors d, were first de-
termined byaa least-squares fit to each realization 1P for
a fixed base b„. Subsequently, the base was determined
by applying a maximal-significance condition to the
set ofdetectors. This yielded (as already mentioned for
the single-pattern case) the solution b, = f, = C“g,.
In contrast to the base b, found in the present analysis
[Eq. (44)], which defines the same space as the signal
space g„‚ the space spanned by the fingerprint base b,
is generally different from the signal space.

The present result (46) can also be derived as a least-
squares error solution using an alternative definition
of the square error based on the “significance metric”
C’l rather than the usual Euclidean metric I. This cor-
responds to finding an estimated signal in the prescribed
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signal space for which the probability is maximized
that the residual error represents a realization of the
natural variability ensemble.

Representing the observed climate response as the
superposition

w = W + w
of an estimated signal

V = 2 €„g„

(47)

(48)

in the signal space g, and a residual error W, mini-
mization of the square error norm

INI’II2 = (¢’TC“¢’),
one obtains in this case the solution

63 = Z (Q_‘)„„(gIC’1\l/).
u

(49)

(50)

Equations (48) and (50) yield the estimated signal (46)
derived previously but expressed now in terms of the
original set of base functions g" instead of the trans-
formed base b".

It should be emphasized again that the statistical
significance of the detectors d, = (fHz) or 6„ is maxi-
mized and is identical for all three derivations, inde-
pendent of the definition of the associated estimated
signal.

In practice, multipattern signal detection will nor—
mally be carried out in a hierachical mode: first, a single
pattern is tested; if this is detected as significant, 3 sec-
ond pattern is added, and so forth until the p2 statistic
is no longer accepted as statistically significant. The
success of the method depends critically, as always in
signal detection problems, on the realistic choice ofthe
prescribed signal patterns g”.

5. Natural variability models

The EOFs eab characterizing the space—time covari-
ance matrix Cab represent familiar functions. For a fixed
subindex i (suppressed in the following relations), the
vector 1003:) = 11/, can first be decomposed into EOFs
efl with respect to the time index. As pointed out in
section 3, for a statistically stationary process, the time-
domain EOFs are simply the harmonic functions of
the Fourier representation (this follows from the sta-
tistical orthogonality of the Fourier components, al-
though these are not normally ordered with respect to
variance, as in other applications).

Diagonalization of the covariance spectra with re-
spect to the remaining index i characterizing the climate
variables and spatial coordinates (referred to for brevity
in the following as the “spatial” index) then yields the
standard complex EOF representation of the covari-
ance spectrum of a multivariate process (Wallace and
Dickinson 1972; Barnett 1983).

The complete space—time set of EOFs eab is generally
very large: it consists ofa different set ofcomplex EOFs
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with respect to the spatial index i for each frequency
band fof the spectrum. In practice, it will be difficult
both to estimate such a large set of functions from a
finite dataset and to work with the complete represen-
tation in numerical computations. One will therefore
need to resort to some form of approximation or sim-
plified model based on a reduced set of functions. Two
such models are considered in the following. The first
assumes statistical separability of the time and spatial
dimensions, while the second uses a reduced POP rep-
resentation (Hasselmann 1988; v. Storch et a1. 1988 ).

a. Space—time separability

Separability of the space and time coordinates i and
t, respectively, is defined here as the property that the
eigenvector eba can be factored into a spatial eigenvector
e},- and a temporal eigenvector e’fl,

(51)
where a = (i, t), b = (j, f), and the upper indices s
and t will be used generally to distinguish between spa-
tial and temporal quantities, respectively.

This property holds if the time-dependent coeffi-
cients of the standard spatial EOFs are completely un-
correlated, that is, if the coefficients are uncorrelated
not only for the same time arguments, as implicit in
the definition of the spatial EOFs, but also for nonzero
time lags.

Under these conditions the spatial eigenvectors sat-
isfy the eigenvalue equations

2 C(i,z)(j,u)ei<j = (Uiu,k)2eici
J

in which the time indices t, it appear as parameters.
Only the eigenvalues (af„‚k)2 depend on these param-
eters, not the eigenvectors themselves.

The temporal eigenvectors satisfy the eigenvalue
equation

_ teba — ei-reft,

(52)

2 (Ufu‚k)2€'fu = (0(k,f))2etfta (53)
u

which then yields for the full system the eigenvalue
equation

2 C(i,t)(j,u)eicjelfu = (0(k,f))zeicietfz- (54)
j,“

The eigenvalue («rug/”2 represents the variance of the
f’th spectral band of the autovariance spectrum of the
k’th spatial EOF. Thus, for a separable system, the full
space—time climate covariance matrix Cab is completely
characterized by the spatial EOFs eki and their auto—
variance spectra 0%,“).

Transforming to EOF coordinates (g‘fkn)’ (denoted
by primes, and writing the signal pattern index u now
as a superscript to relieve index congestion) the expres-
sions for the guess signal patterns take the form

gin) = 2 (gik,f))'€’iaelfz, (55)
k‚f
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which yields for the fingerprints

fir.» = Z (g?k‚f>)’0?Iä/)€ii€’ft- (56)
k‚/

The basic advantage of a separable system is that the
spatial EOFs can first be determined in the standard
manner without filtering in the time domain. The
analysis in the time frequency domain can then be
carried out for each EOF separately as a second step.

Example 1
To illustrate, consider a single pattern signal con-

sisting of a superposition of a number of spatial EOFs
eii a

80,1) = E ’teii, (57)
k

where each of the time-dependent spatial EOF coeffi-
cients 'yk, can be represented as a linear trend,

’YkzkU— 1), (58)
with mk = const.

Taking the Fourier transform of7;“, one obtains for
the coeflicient of the signal in EOF coordinates,

. exp(-1rif/T)
"FT 2 sin(7rf/T)
Tag for f=0

for fseo'
g'rkJ) = mk (59)

The fingerprint can then be obtained from Eq. (56).
Figure 1 shows the spectra and typical fingerprints

f (”L9 computed for red power-law spectra, 0%“)
= ak(f + T‘l )“’ for various values of q > 0 (the fre-
quency is offset by one discrete frequency unit T“1 to
avoid the singularity at f = 0). The enhancement of
the square signal-to-noise ratio R2 computed with the
optimal fingerprint relative to the reference nonoptim-
ized case in which the fingerprint is simply set equal
to the signal pattern is shown in Table 1. The com-
putations were carried out for T = 100 discrete time
steps.

The curves demonstrate that the optimal detection
fingerprint generally differs significantly from the non-
optimized fingerprint, which is given by a straight line.
The nonoptimized solution reduces in the present case
to the estimation of a linearly increasing signal by the
standard method of constructing a regression line
through the data. However, this represents the optimal
analysis method only for a white-noise natural vari-
ability spectrum. For red spectra, the optimal weighting
is distributed more toward the end points of the time
series. For power-law spectra steeper thanf" ‚ the op-
timal detection strategy is to use the end points of the
time series only. The enhancement of the statistical
significance through optimization ofthe fingerprint can
be quite large for steep spectra (cf. Table 1).
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FIG. 1. (a) Noise spectra a} and (b) optimal fingerprints for the
detection of a linear time-dependent signal in presence of power-law
noise. Definitions of cases a—i and values of the associated signal-to-
noise enhancement factors are given in Table l. The length of the
time series is 100 (0 s t s 99; —50 s fT s 49; only the positive-
frequency branches of the spectra are shown.)
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TABLE 1. Signal-to—noise enhancement factors E = [R2 (optimal fingerprint)/R2 (signal pattern)]
for linear signal and various power law spectra.

Case (cf. Fig. 1) a b c

Spectral power q 0 0.2 0.4
Enhancement factor E 1 1.01 1.05

b. POP representation

An alternative method of reducing the complexity
of the full covariance matrix Cab without introducing
the rather stringent assumption of space—time sepa-
rability is to represent the natural climate variability
as a superposition of a finite number of principal os-
cillation patterns (POPS, cf. Hasselmann 1988; v.
Storch et al. 1988). The basic idea of the POP method
is to combine an EOF-type pattern expansion in the
spatial domain with an ARMA-type dynamical mod-
eling approach in the time domain. In the original pa-
pers of Hasselmann and v. Storch et a1. [and in a num-
ber of subsequent applications, cf. Xu (1992, 1993),
Latif et a1. (1993a, 1993b)], the POP method was re-
garded primarily as a technique for constructing simple
dynamical models, usually for forecasting or diagnostic
purposes. However, the POP method is equally useful
as an approximate multivariate spectral compression
technique.

The POP ~method approximates the natural vari-
ability ¢a = (In-(t) (returning here to the usual decom-
posed index notation) as a superposition of a number
of damped oscillations a,

(bi-"(1) = p?‘a"(t) + complex conjugate, (60)

where p? is a constant complex pattern,

122’ =10?” + an“) (61)
and the complex amplitude

a°‘(l) = a““) + iaa‘z) (62)
satisfies the damped oscillator equation

(d/dl — 21rif“ + WM“ = n“(t) (63)

with eigenfrequency f°‘ (>0) and damping factor A“
(>0); n“(t) is a complex white—noise forcing function,

n“(t) = n““) + in“). (64)
Decomposed into spectral components ¢>§"(f) (to
avoid notational proliferation the same symbols will
be used for time- and frequency-domain functions)
the solution of (63) is given by

a“(f) = T“(f)n“(f), (65)
where

T°‘(f) = {21ri(f-f")+>\"}_l (66)
is the POP transfer function, yielding for the POP os-
cillation (60)

0.6 0.8
1.14

d e f g h i

1.27 ‚_
.‚_

.

¢2~‘(t) = Z T“(f)n“(f)P§~’ exp(27rift)
f

+ complex conjugate = Z { T“( f)n“( f)P?‘
f

+ T“(—f)*n“(~f)*P?* } exp(21rifl) (67)
(note that T“(f) 9E T"(—f)*‚ n“(f) % n“(—f)* since
both the POPS and the noise forcing are complex).

While the free POP solution consists of a single
damped oscillation rotating clockwise in the complex
plane, characterized by the pattern sequence pf“) ->
——p;’“” -> —p;"( l) —> m“) —> p?‘ 1) , the forced solution
consists generally ofa superposition oftwo oscillations
rotating in opposite directions. These arise from the
positive and negative frequencies in the spectral rep-
resentation of n(t), which force both the basic POP
pair and the complex conjugate pattern pair.

Assuming that the forcing components n“, n5 for
different POPS a and ß are uncorrelated, the complex
cross-Spectrum of the process <1); is then given by

Fij(f)
= <{ä>‚-(f)}*<i>‚-(f)> = 2 {N“1|T“(f)|2(p?)*p}’

+ IT“(—f)|2p?‘(pf)*l
+ 2 Re[M“T“(f)T“(-f)p;~’p;"]}, (68)

where _
N“ = <n“(f)*n“(f)> = const, (69)

M“ = <n“(f)n°‘(—-f)> = const. (70)

The general expression (68) can be simplified by as—
suming that the excitation of the conjugate POP pair,
which occurs at negative frequencies far removed from
the resonant POP eigenfrequencies, is negligible. In this
case the second and third terms in (68) are small for
positive f (and similarly the first and third terms for
negative f), so that for f> O, (68) reduces to

Fij(f) = <{&i(f)}*q~5j(f)>

= Z N“|T“(f)|2(p?')*1)i’- (71)

The corresponding expression for f< 0 follows from
(71) and the symmetry relation Fij(f) = F‚-‚-(—f)*.
(In applications, such as the numerical example con-
sidered below, it will generally be more convenient to
drop only the third term in ‘(68 ), as this avoids a dis-
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continuous change in the expression for the covariance
spectrum which otherwise occurs at zero frequency.)

The simplified POP representation of the cross-
spectrum is seen to have the same form as the standard
complex EOF representation
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FIG. 2. (a) Noise spectra, (b) real, and (c) imaginary components
of optimal fingerprints for a POP spectrum with damping factor Ä
= 20 and frequencies fi)T = 0, 10, 20 (the imaginary fingerprint
component vanishes forßT = 0 and is the same forßT = 10 as for
ßT = 20 to within a factor). Signal-to—noise enhancement factors
for various values of A and fi,T are given in Table 2. The length of
the time series is 100 (0 S t S 99; —50 ss 49).

Fu(f) = Z F”(f)(e?)*ej”- (72)

of the cross-spectrum in terms of complex EOFs e”.
The variance spectrum F”( f) = < I c"( f) l 2 > ofthe coef-
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ficients c"( f) of the complex EOF expansion corre-
spond to the spectrum N“I T“( f)|2 of the POP rep-
resentation while the complex EOF e? itself corre-
sponds to the principal oscillation pattern pi".
However, in contrast to the standard representation,
the cross-spectrum is now no longer decomposed into
a different set of EOFs for each spectral band, but into
a single set ofcomplex POP patterns applicable for the
entire spectrum.

The contribution of individual POPS to different
spectral bands is determined by the weighting factor
IT“( f)|2 in (71). As pointed out, individual POPs
will contribute mainly to spectral bands in the neigh-
borhood of the POP eigenfrequenciesfa, the effective
spectral bandwidth being proportional to the damping
factor A“.

In contrast to the true EOFs e,"- ‚ the complex POPs
do not represent the eigenvectors ofa Hermitian matrix
and will therefore generally not be (spatially) orthog-
onal. They can be readily orthogonalized, however,
through a suitable (frequency dependent) complex ro-
tation p? —> p?’ = 25 Saß 3-9, where Sa” is a unitary
matrix: 2, (S"“’)"‘S’97 = 6"”. The transformation pre-
serves the essential statistical orthogonality of the POP
coefficients.

The determination of the approximate form (72) is
normally carried out in the time domain by fitting a
first-order vector Markov process to the data time series
(cf. v. Storch et al. 1988 ). However, a direct fit of the
model covariance spectrum to the observed covariance
spectrum in the frequency domain, using methods ap-
plied by Frankignoul and Hasselmann ( 1977 ), Lemke
et al. (1980), Herterich and Hasselmann ( 1987), and
Dobrovolski ( 1992) in similar problems of stochastic
model fitting, should also be feasible in the POP model
case. Model fitting in the spectral domain generally has
the advantage ofproviding better quantitative estimates
of error bounds.

Example 2
To illustrate the impact of optimal filtering for a

POP noise spectrum, consider the case ofa signal lying
in the pattern space spanned by the POPS. Since the
different POP pairs are assumed to be statistically or-
thogonal, one can consider each POP signal component

g,-(t) = y(t)p, + complex conjugate (73)

separately [7(t) denotes a complex time-dependent
coefficient, and the POP index a has been dropped].

The optimal fingerprint

fi(t) = ¢(l)p,- + complex conjugate (74)

can be represented in this case in closed form. In the
Fourier domain, the complex fingerprint coefficient is
given by [Eqs. (14), (71)]

{[27r(f—fo)]2 + x2}f) N¢(f)=7( ‚ (75)
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which yields in the time domain

W) = const{l(27rfii)2 + A2170)
— dz'y(t)/dt2 + i47rfi,d7(z)/dz}. (76)

The fingerprint is seen to have the right structure to
reduce the POP noise contributions. For a modulation
factor 7(1) ~ exp(21rifi)t — At) corresponding to a pure
POP oscillation, Eq. (76) yields ¢(t) = O, that is, pure
POP oscillations are rejected by the fingerprint. (This
result appears paradoxical, since the fingerprint is de-
fined in the Fourier domain as the product of the signal
and the inverse noise spectrum, which cannot vanish
identically. The explanation is that a pure POP oscil-
lation is not a permitted signal form, since it becomes
infinite for t —> — oo , so that its Fourier transform does
not exist. A signal that is zero fort < O and represents
a POP oscillation only for t > 0 is not completely re-
moved by the fingerprint.)

Figure 2 shows the POP spectra | T“( f)|2 and fin-
gerprint modulation factors ¢( t) for the case ofa linear
signal modulation factor 7(t) [Eq. (58)], taking again
T = 100 time increments, for the frequency values f0
= 0, 10, and 20 and the damping factor Ä = 20 (mea-
sured in frequency increment units T‘l ). For a linear
signal (which appears as a periodic sawtooth in the
Fourier sum representation) the first derivative in Eq.
(76) consists of the sum of a constant term and a neg-
ative ö-function (negative spike) at each end of the
time interval. The second derivative is given by the
derivative of a ö function, which in the discrete rep-
resentation takes the form of a positive and negative
spike at the beginning and end, respectively, of the time
interval.

The real part of the fingerprint modulation factor
consists then of the linear signal modulation factor itself
plus a term representing the difference in the response
at the end points of the time interval, the latter term
gaining more weight the more the spectrum differs from
a uniform white spectrum. This is qualitatively similar
to the result found for red power-law spectra in the
previous example of a space—time separability model.

The imaginary component of the fingerprint mod-
ulation factor consists of two equal negative contri-
butions from the end points of the time interval and
an equally weighted constant positive contribution
acting over the full time interval.

The enhancement ofthe square signal-to-noise ratio
R2 achieved using the optimal fingerprint solution rel-
ative to the reference case without optimization is
shown in Table 2. As in the previous example, the
largest enhancement is achieved for noise spectra con-
taining large variance contributions at low frequencies.

6. Summary

The signal pattern detection method developed by
H for the time-independent problem can be readily
extended to the time-dependent case. The introduction
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TABLE 2. Signal-to-noise enhancement factors E = [R2 (optimal
fingerprint)/R2 (signal pattern)] for linear signal and POP variance
spectra for various eigenfrequencies j?) and damping factors Ä.

ßT

Ä 0 10 20

10 3.5 1.21
20 1.63 1.12
40 1.14 1.06

1.16
1.08
1.04

of the fingerprint concept leads to a significant simpli-
fication of the theory both conceptually and analyti-
cally. For a given space—time—dependent signal g, the
optimal filter f for the detection of the signal g in the
presence of natural climate variability noise is given
by f = C‘lg, where C is the space—time covariance
matrix of the natural variability. Application of the
optimal fingerprint to an observed climate trajectory
il/ yields a detector d = (t/x) with maximal signal-to-
noise ratio.

This result generalizes immediately to the multi-
pattem case: the set of fingerprints fy = C‘Igu associated
with a set ofp guess patterns g, yields a set of detectors
d, = (f 3111‘) for which the relevant p-dimensional sta-
tistical-significance statistic ‚o2 = EM a’„D„‘„l d, is max-
imized for any signal 311’ lying in the space spanned by
the set ofguess patterns g„. Here, D”, = (gIC_'g,,) rep:
resents the covariance matrix of the detector noise d,
= (f „T11/) induced by the climate variability w.

The fingerprint emphasizes those components of the
signal that are least contaminated by noise. The direc-
tion of the fingerprint vector therefore normally differs
from the direction of the associated signal. This permits
alternative interpretations of the estimated signal in-
ferred from the set of detectors. In H, the detection
and estimation problems were regarded as coupled
parts of a single problem, and the estimated signal was
defined to lie in the space spanned by the set of fin-
gerprint vectors. In the present analysis, the detection
problem was solved first and the attribution of an es-
timated signal to the set of detectors was addressed
subsequently as an independent problem. From this
viewpoint it appears more consistent to regard the es-
timated signal as lying in the space spanned by the
prescribed signal patterns. Arguments can be given for
either interpretation. The statistical significance of the
estimated signal is determined in both cases by identical
sets of detectors and is thus independent of the inter-
pretation. ..

The detection technique can be applied to any set
ofobserved or model-simulated data for which the sec-
ond moments can be adequately estimated, indepen-
dent of the completeness of the dataset with regard to
the dynamical description of the climate system.

Two practical difficulties are encountered in applying
the technique. First, a complete description of the
space—time—dependent covariance matrix ofthe natural
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climate variability noise involves large quantities of
information that cannot normally be effectively han-
dled—and also cannot be inferred from a finite amount
ofobserved or simulated data. Thus some form ofsim-
plified statistical model must be introduced. An ex-
pansion in POPs (principal oscillation patterns) pro-
vides an effective general reduction technique. In some
cases a still simpler space—time separability model may
be applicable. Examples given for both types of model
demonstrate that the optimal fingerprints can deviate
significantly from the original signal pattern and yield
considerably enhanced signal—to-noise ratios compared
with a straightforward projection onto the signal pat-
tern. The strongest enhancement is obtained for red
spectra with high-variance contributions at very low
frequencies.

Secondly, the optimally estimated detectors d, have
a known Gaussian distribution only if the natural cli-
mate variability is Gaussian with known (rather than
estimated) covariance matrix. In the normal case that
the climate variability is non-Gaussian or the covari-
ance matrix is estimated from a limited dataset, the
statistical significance of the computed detectdrs must
be estimated by Monte Carlo simulations or other ap-
proximate techniques.

Not addressed in the present paper were problems
ofdata errors (uncertainties were associated solely with
the natural climate variability) or questions related to
the definition of the signal pattern, including extensions
of the theory to allow for a priori probabilities of the
anticipated signal distribution within a prescribed signal
space. The author intends to pursue these questions
later in applications of the theory.
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