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Abstract. The Loewner framework for model reduction is extended to the class of linear
switched systems. One advantage of this framework is that it introduces a trade-off between accuracy
and complexity. Moreover, through this procedure, one can derive state-space models directly from
data which is related to the input-output behavior of the original system. Hence, another advantage
of the framework is that it does not require the initial system matrices. More exactly, the data used
in this framework consists in frequency domain samples of input-output mappings of the original
system. The definition of generalized transfer functions for linear switched systems resembles the
one for bilinear systems. A key role is played by the coupling matrices, which ensure the transition
from one active mode to another.
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1. Introduction. Model order reduction (MOR) seeks to transform large, com-
plicated models of time dependent processes into smaller, simpler models that are
nonetheless capable of accurately representing the behavior of the original process
under a variety of operating conditions. The goal is an efficient, methodical strat-
egy that yields a dynamical system evolving in a substantially lower dimension space
(hence requiring far fewer computational resources for realization) yet retaining re-
sponse characteristics close to the original system. Such reduced order models could
be used as efficient surrogates for the original model, replacing it as a component in
larger simulations.

Hybrid systems are a class of nonlinear systems which result from the interaction
of continuous time dynamical subsystems with discrete events. More precisely, a
hybrid system is a collection of continuous time dynamical systems. The internal
variable of each dynamical system is governed by a set of differential equations. Each
of the separate continuous time systems is labeled as a discrete mode. The transitions
between the discrete states may result in a jump in the continuous internal variable.
Linear switched systems (LSSs) constitute a subclass of hybrid systems; the main
property is that these systems switch among a finite number of linear subsystems.
Also, the discrete events interacting with the subsystems are governed by a piecewise
continuous function called the switching signal.

Hybrid and switched systems are powerful models for distributed embedded sys-
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tems design where discrete controls are routinely applied to continuous processes.
However, the complexity of verifying and assessing general properties of these sys-
tems is very high so that the use of these models is limited in applications where the
size of the state-space is not too large. To cope with complexity, abstraction and
reduction are useful techniques. In this paper we mainly analyze the reduction part.

In the past years, hybrid and switched systems have received increasing attention
in the scientific community. For a detailed characterization of this relatively new class
of dynamical systems, we refer the reader to the books [25, 38, 39, 19]. Such systems
are used in modeling, analysis and design of supervisory control systems, mechanical
systems with impact, and circuits with relays or ideal diodes.

The study of the properties of hybrid systems in general and switched systems in
particular is still the subject of intense research, including the problems of stability
(see [15, 38]), realization including observability/controllability (see [31, 32]), and
analysis of switched differential-algebraic equations (DAEs) (see [27, 40]) and of their
numerical solutions (see [20]).

Recently, considerable research has been dedicated to the problem of MOR for
linear switched systems. The most prolific method that has been applied is balanced
truncation (or a Gramian-based derivation of it). Techniques that are based on bal-
ancing have been considered in [18, 13, 10, 37, 28, 34, 30]. Also, another class of
methods involves matching of generalized Markov parameters (known also as time
domain Krylov methods) such those in [8, 7]; \scrH \infty -type reduction methods were de-
veloped in [42, 11, 43]. Finally, we mention some publications that are focused on the
reduction of discrete LSSs, such as [41, 12].

An LSS involves switching between a number of linear systems (the modes of the
LSS). Hence, to apply balanced truncation techniques to a switched linear system,
one may seek a basis of the state-space such that the corresponding modes are all in
balanced form. It may happen that some state components of the LSS are difficult
to reach and observe in some of the modes yet easy to reach and observe in others.
In that case, deciding how to truncate the state variables and obtain a reduced order
model is not trivial. A solution to this problem is proposed in [28], where it is shown
that the average Gramian can be used to obtain a reduced order model. This method
will be used as a comparison tool for our new MOR method.

In this paper, we focus on extending the Loewner framework (see [6]) for reducing
LSSs. This method can be viewed as a special subclass of rational Krylov methods,
also referred to as moment matching or interpolatory methods. Roughly speaking, in
the linear case, interpolatory methods seek reduced models whose transfer function
(and possibly some of its derivatives) matches the transfer function (and possibly some
of its derivatives) of the original system at selected frequencies. For the nonlinear case,
these methods require appropriate definitions of transfer functions.

The paper is organized as follows. In section 2, the formal definition of continuous
time LSSs is provided. Furthermore, we introduce the generalized transfer functions
for LSSs as input-output mappings in frequency domain. Section 3 includes a brief
introduction of the Loewner framework for the class of linear systems with no switch-
ing. In section 4, we present the extension of the Loewner framework for LSSs with
two modes. This is done in order to familiarize the reader with basic ideas without
having to use heavy notation. Then, in section 5, we propose extensions of the results
introduced in the previous section to the general case of LSSs that switch amongst
D \geqslant 2 modes. Afterward, in section 6, we discuss the practical applicability of the
new introduced method by means of three numerical examples (one of which is large
scale). In those examples, we compare our algorithms with the balanced truncation
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B574 I. V. GOSEA, M. PETRECZKY, AND A. C. ANTOULAS

algorithm of [30] for illustration purposes. Finally, in section 7, we present a summary
of the findings and the conclusions.

2. Linear switched systems.

Definition 2.1. A continuous time linear switched system (LSS) is a dynamical
system described by the following equations:

\Sigma :

\Biggl\{ 
E\sigma (t) \.x(t) = A\sigma (t)x(t) +B\sigma (t)u(t), x(0) = x0,

y(t) = C\sigma (t)x(t),
(1)

where Q = \{ 1, 2, . . . , D\} , D > 1, is a set of discrete modes, \sigma (t) is the switching
signal, u is the input, x is the state, and y is the output.

The system matrices Eq,Aq \in \BbbR nq\times nq , Bq \in \BbbR nq\times m, Cq \in \BbbR p\times nq , where q \in Q,
correspond to the linear system active in mode q \in Q, and x0 \in \BbbR nqs is the initial
state. Here, n1, n2, . . . , nD,m and p are positive integers and qs \in Q is the mode in
which the system is initialized. We consider the Eq matrices to be invertible. Fur-
thermore, the transition from one mode to another is made via the so-called switching
or coupling matrices Kq,\~q \in \BbbR n\~q\times nq where q, \~q \in Q.

Remark 2.1. The case for which the coupling is made between identical modes
is excluded. Hence, when q = \~q, consider that the coupling matrices are identity
matrices, i.e., Kq,q = Inq .

The notation \Sigma = (n1, n2, . . . , nD, \{ (Eq,Aq,Bq,Cq)| q \in Q\} , \{ Kq,\~q| q, \~q \in Q\} ,x0)
is used as a shorthand representation for LSSs described by the equations in (1).
The vector n \in \BbbN D, where n =

\bigl[ 
n1 n2 \cdot \cdot \cdot nD

\bigr] 
is the dimension (order) of \Sigma .

The linear system which is active in the qth mode of \Sigma is denoted with \Sigma q and it is
described by (where 1 \leqslant q \leqslant D)

\Sigma k :

\Biggl\{ 
Eq \.xq(t) = Aqxq(t) +Bqu(t), x(tk) = xk,

y(t) = Cqxq(t).
(2)

The restriction of the switching signal \sigma (t) to a finite interval of time [0, T ] can
be interpreted as a finite sequence of elements of Q\times \BbbR + of the form

\nu (\sigma ) = (q1, t1)(q2, t2) . . . (qk, tk),

where q1, . . . , qk \in Q and 0 < t1 < t2 < \cdot \cdot \cdot < tk \in \BbbR +, t1 + \cdot \cdot \cdot + tk = T , such that
for all t \in [0, T ] we have

\sigma (t) =

\left\{                   

q1 if t \in [0, t1),
q2 if t \in [t1, t1 + t2),
...
qi if t \in [t1 + \cdot \cdot \cdot + ti - 1, t1 + \cdot \cdot \cdot + ti - 1 + ti),
...
qk if t \in [t1 + \cdot \cdot \cdot + tk - 1, t1 + \cdot \cdot \cdot + tk - 1 + tk).

In short, by denoting Ti := t1 + \cdot \cdot \cdot + ti - 1 + ti, T0 := 0, Tk := T , write

\sigma (t) =

\Biggl\{ 
q1 if t \in [0, T1),

qi if t \in [Ti - 1, Ti), i > 2.

Denote by \scrP C(\BbbR +,\BbbR n), \scrP c(\BbbR +,\BbbR n) the set of all piecewise-continuous and piecewise-
constant functions, respectively.
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Definition 2.2. A tuple (x,u, \sigma ,y), where x : \BbbR + \rightarrow 
\bigcup D

i=1 \BbbR ni , u \in \scrP C(\scrR +,\BbbR m),
\sigma \in \scrP c(\BbbR +,Q), y \in \scrP C(\BbbR +,\BbbR p), is called a solution if the following conditions si-
multaneously hold:

1. The restriction of x(t) to [Ti - 1, Ti) is differentiable and satisfies Eqi \.x(t) =
Aqix(t) +Bu(t).

2. Furthermore, when switching from mode qi to mode qi+1 at time Ti, the fol-
lowing holds:

Eqi+1
x(Ti) = Kqi,qi+1

lim
t\nearrow Ti

x(t).

3. Moreover, for all t \in \BbbR , y(t) = C\sigma (t)x(t) holds.

The switching matrices Kqi,qi+1
allow having different dimensions for the subsys-

tems active in different modes. For instance, the pencil (Aqi ,Eqi) \in \BbbR nqi
\times nqi , while

the pencil (Aqi+1
,Eqi+1

) \in \BbbR nqi+1
\times nqi+1 where the values nqi and nqi+1

need not be
the same.

If the Kqi,qi+1 matrices are not explicitly given, it is considered that they are
identity matrices.

The input-output behavior of an LSS can be formalized in the time domain as
a map f(u, \sigma )(t). This particular map can be written in generalized kernel represen-
tation (as suggested in [33]) using the unique family of analytic functions gq1,...,qk :
\BbbR k

+ \rightarrow \BbbR p and hq1,...,qk : \BbbR k
+ \rightarrow \BbbR p\times m with q1, . . . , qk \in Q, k \geqslant 1, such that for all

pairs (u, \sigma ) and for T = t1 + t2 + \cdot \cdot \cdot + tk we can write

\bff (u, \sigma )(t) = \bfg q1,q2,...,qk (t1, t2, . . . , tk)+

k\sum 
i=1

\int ti

0

\bfh qi,qi+1,...,qk (ti - \tau , ti+1, . . . , tk)u(\tau +Ti - 1)d\tau ,

where the functions g,h are defined for k \geqslant 1 as follows:

gq1,q2,...,qk(t1, t2, . . . , tk) = Cqke
\~\bfA qk

tk \~Kqk - 1,qke
\~\bfA qk - 1

tk - 1 \~Kqk - 2,qk - 1
\cdot \cdot \cdot \~Kq1,q2e

\~\bfA q1
t1x0,

(3)

hq1,q2,...,qk(t1, t2, . . . , tk) = Cqke
\~\bfA qk

tk \~Kqk - 1,qke
\~\bfA qk - 1

tk - 1 \~Kqk - 2,qk - 1
\cdot \cdot \cdot \~Kq1,q2e

\~\bfA q1 t1 \~B1.

(4)

Note that for the functions defined in (3) and (4) we consider the Eqi matrices to be in-

corporated into theAqi andBqi matrices (i.e., \~Aqi = E - 1
qi Aqi ,

\~Bqi = E - 1
qi Bqi). More-

over, the transformed coupling matrices are accordingly written \~Kqi,qi+1 = E - 1
qi+1

Kqi,qi+1 .

In the rest of the paper, the LSSs we are studying are assumed to have zero
initial conditions, i.e., x0 = 0. Hence, only the h functions in (4) are relevant for
characterizing the input-output mapping f .

The behavior of the input-output mappings in the frequency domain is in turn
characterized by a series of multivariate rational functions obtained by taking the
multivariable Laplace transform of the regular kernels in (4), as for

Hq1(s1) = Cq1\Phi q1(s1)Bq1 , Hq1,q2(s1, s2) = Cq1\Phi q1(s1)Kq2,q1\Phi q2(s2)Bq2 ,

Hq1,q2,q3(s1, s2, s3) = Cq1\Phi q1(s1)Kq2,q1\Phi q2(s2)Kq3,q2\Phi q3(s3)Bq3 , . . . .

In general, for k \geqslant 3, write the level k generalized transfer function associated to the
switching sequence (q1, q2, . . . , qk), and evaluated at the points (s1, s2, . . . , sk), as

(5) Hq1,q2,...,qk(s1, s2, . . . , sk) = Cq1\Phi q1(s1)Kq2,q1\Phi q2(s2) \cdot \cdot \cdot Kqk,qk - 1
\Phi qk(sk)Bqk ,
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where \Phi q(s) = (sEq  - Aq)
 - 1, qj \in \{ 1, 2, . . . , D\} , 1 \leqslant j \leqslant k. These functions are the

generalized transfer functions of the linear switched system \Sigma .
By using their samples, we are able to directly construct (reduced) switched mod-

els that interpolate the original model---a generalization of the Loewner framework
to LSSs.

We construct LSS reduced models by means of matching samples of input-output
mappings corresponding to the original LSS and evaluated at finite sampling points
(as opposed to other approaches; see [7, 8], where the behavior at infinity is studied in-
stead, i.e., by matching Markov parameters). For the explicit derivation of these types
of transfer functions, which is based on the so-called Volterra series representation,
we refer the reader to [35].

Remark 2.2. Conceptually, the initial state of an LSS is part of its definition,
since it is impossible to define the input-output map of an LSS without fixing such
a starting state. In this paper we consider only the case when the initial state is
zero. Note that the classical Loewner framework (as introduced in [26]) uses only the
input-output behavior from the zero initial state.

The proposed extension of the Loewner framework aims at finding a reduced
system whose generalized transfer functions match those of the original LSS. That
is, the proposed method takes into account only the input-output behavior from the
zero initial state.

For the case of LSSs, one could include nonzero initial states by including them as
an additional column into one of the matrices Bi, but the system theoretic interpre-
tation of the thus obtained generalized transfer functions and their moments remains
unclear.

Remark 2.3. Certain issues might arise when the matrices Eq are allowed to be
singular such as the existence of a solution of the LSS (Definition 2.2) or the formal
definition of time-domain kernels in (4). The case of descriptor LSS (with singular
Eq matrices) was treated in detail in [40]. In this paper we assume that the matrices
Eq are invertible to avoid further complications.

Remark 2.4. The structure of the transfer functions in (5) is similar to that of
the functions recently introduced in [4], for the class of bilinear systems. This is
because one can formulate an LSS as a bilinear system by introducing additional
input signals. Nevertheless, there are some restrictions; i.e., this works only for LSSs
with no coupling matrices and that have the same state dimension in each mode. For
the case D = 2, introduce the signal \^u(t) = q  - 1 if the system operates in mode
q \in \{ 1, 2\} . Then, write the dynamics of the LSS, by merging the individual dynamics
of the two modes, as

\.x(t) = A1x(t) + (A2  - A1)x(t)\^u(t) +B1u(t)(1 - \^u(t)) +B2u(t)\^u(t),

or equivalently, emphasize the bilinear multiple input format as

\.x(t) = Abilx(t) +Nbil
1 x(t)u(t) +Nbil

2 x(t)\^u(t) +Nbil
3 x(t)u(t)\^u(t) +Bbil

1 u(t)

+Bbil
2 \^u(t) +Bbil

3 u(t)\^u(t),

where Abil = A1, Nbil
2 = A2  - A1, Nbil

1 = Nbil
3 = 0, Bbil

1 = B1, B2 = 0, and
Bbil

3 = B2  - B1. Hence, rewrite the above differential equation equivalently as

\.x(t) = Abilx(t) +

3\sum 
i=1

Nbil
i x(t)ui(t) +

3\sum 
i=1

Bbil
i ui(t),
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where the three control inputs are u1 = u, u2 = \^u, and u3 = u\^u. That is, solutions of
LSSs are solutions of a bilinear system with a very specific structure and with specially
chosen inputs. In particular, the continuous input u and the switching signal have to
be merged into a new artificial input u3. Note that not all solutions of the bilinear
system correspond to solutions of an LSS: for the correspondence to hold, u2 should
take values 0, 1 and u3 should satisfy u3 = u2u1.

3. Interpolatory MOR methods and the Loewner framework. Consider
a linear system defined by matrices E \in \BbbR n\times n,A \in \BbbR n\times n, B \in \BbbR n\times m, C \in \BbbR p\times n, with
transfer function H(s) = C(sE - A) - 1B. Given left interpolation points \{ \mu j | 1 \leqslant j \leqslant 
q\} \subset \BbbC , with left tangential directions \{ \ell j | 1 \leqslant j \leqslant q\} \subset \BbbC p, and right interpolation
points \{ \lambda i| 1 \leqslant i \leqslant k\} \subset \BbbC , with right tangential directions \{ ri| 1 \leqslant i \leqslant k\} \subset \BbbC m, find

a reduced-order system \^E, \^A, \^B, \^C such that the resulting transfer function \^H(s) is a
tangential interpolant to H(s):

(6) \ell Tj
\^H(\mu j) = \ell Tj H(\mu j), j = 1, . . . , q, and \^H(\lambda i)ri = H(\lambda i)ri, i = 1, . . . , k.

Interpolation points and tangent directions are selected to realize appropriate MOR
goals. If, instead of state space data, we are given input/output data, the result-
ing problem is hence modified. Given a set of input-output response measurements
specified by left driving frequencies \{ \mu j | 1 \leqslant j \leqslant q\} \subset \BbbC , using left input directions
\{ \ell j | 1 \leqslant j \leqslant q\} \subset \BbbC p, producing left responses \{ vj | 1 \leqslant j \leqslant q\} \subset \BbbC m, and right driv-
ing frequencies \{ \lambda i| 1 \leqslant i \leqslant k\} \subset \BbbC , using right input directions \{ ri| 1 \leqslant i \leqslant k\} \subset \BbbC m,

producing right responses \{ wi| 1 \leqslant i \leqslant k\} \subset \BbbC p, find (low order) system matrices \^E,
\^A, \^B, \^C such that the resulting transfer function \^H(s), is an (approximate) tangential
interpolant to the data:

(7) \ell Tj
\^H(\mu j) = vT

j , j = 1, . . . , q, and \^H(\lambda i)ri = wi, i = 1, . . . , k.

For details on interpolatory or moment matching MOR methods, we refer the reader
to [17, 3].

3.1. Overview of the Loewner framework for linear systems. The ap-
proach we discuss in this section is data-driven. After collecting input/output (e.g.,
frequency response) measurements for some appropriate range of frequencies, we con-
struct models which fit (or approximately fit) the data and have reduced dimension.
The key is that larger amounts of data than necessary are collected and the essential
underlying system structure is extracted appropriately. Thus an advantage of this
approach is that it can provide the user with a trade-off between accuracy of fit and
complexity of the model.

The Loewner framework was developed in a series of papers; for details we refer
the reader to [1] as well as [26, 24, 23, 5, 21]. For a recent overview see [6].

3.2. The Loewner pencil. We will formulate the results for the more general
tangential interpolation problem. We are given the right data, (\lambda i; ri,wi), i = 1, . . . , k,
and the left data, (\mu j ; \ell 

T
j ,v

T
j ), j = 1, . . . , q; it is assumed for simplicity that all points

are distinct. The dimensions are as in (6), (7). The data can be organized as follows:
the right data are

\Lambda = diag [\lambda 1, . . . , \lambda k] \in \BbbC k\times k, R = [r1, . . . , rk] \in \BbbC m\times k, W = [w1, . . . ,wk] \in \BbbC p\times k,

and the left data are

M = diag [\mu 1, . . . , \mu q] \in \BbbC q\times q, LT = [\ell 1, . . . , \ell q] \in \BbbC q\times p, VT = [v1, . . . ,vq] \in \BbbC q\times m.
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Then, the associated Loewner pencil consists of the Loewner and shifted Loewner
matrices. The Loewner matrix \BbbL \in \BbbC q\times k is defined as

\BbbL =

\left[    
\bfv T
1 \bfr 1 - \ell T1 \bfw 1

\mu 1 - \lambda 1
\cdot \cdot \cdot \bfv T

1 \bfr k - \ell T1 \bfw k

\mu 1 - \lambda k

...
. . .

...
\bfv T
q \bfr 1 - \ell Tq \bfw 1

\mu q - \lambda 1
\cdot \cdot \cdot \bfv T

q \bfr k - \ell Tq \bfw k

\mu q - \lambda k

\right]    .

Note that the matrix \BbbL satisfies the Sylvester equation M\BbbL  - \BbbL \Lambda = VR  - LW.
Suppose that the underlying transfer function is H(s) = C(sE - A) - 1B, and define
the generalized observability/controllability matrices as

(8) \scrO =

\left[   C(\mu 1E - A) - 1

...
C(\mu qE - A) - 1

\right]   , \scrR =
\bigl[ 
(\lambda 1E - A) - 1B \cdot \cdot \cdot (\lambda kE - A) - 1B

\bigr] 
.

It readily follows that the Loewner matrix can be factored as \BbbL =  - \scrO E\scrR . The shifted
Loewner matrix \BbbL s \in \BbbC q\times k is defined as

\BbbL s =

\left[    
\mu 1\bfv 

T
1 \bfr 1 - \ell T1 \bfw 1\lambda 1

\mu 1 - \lambda 1
\cdot \cdot \cdot \mu 1\bfv 

T
1 \bfr k - \ell T1 \bfw k\lambda k

\mu 1 - \lambda k

...
. . .

...
\mu q\bfv 

T
q \bfr 1 - \ell Tq \bfw 1\lambda 1

\mu q - \lambda 1
\cdot \cdot \cdot \mu q\bfv 

T
q \bfr k - \ell Tq \bfw k\lambda k

\mu q - \lambda k

\right]    .

Note that the matrix \BbbL s satisfies the Sylvester equation M\BbbL s - \BbbL s\Lambda = MVR - LW\Lambda 
and can be factored in terms of the generalized controllability/observability matrices
as \BbbL s =  - \scrO A\scrR . Finally, notice that the following relations hold: V = C\scrR , W =
\scrO B.

3.3. Construction of reduced order models. We will distinguish two cases,
namely the right amount of data and the more realistic redundant amount of data
cases. The following lemma covers the first case.

Lemma 3.1. Assume that k = q, and let (\BbbL s, \BbbL ) be a regular pencil such that
none of the interpolation points \lambda i, \mu j are its eigenvalues. Then E =  - \BbbL , A =
 - \BbbL s, B = V, C = W is a minimal realization of an interpolant of the data; i.e.,
the rational function H(s) = W(\BbbL s  - s\BbbL ) - 1V interpolates the data (the conditions
in (7) are hence matched).

If the pencil (\BbbL s, \BbbL ) is singular, we are dealing with the case of redundant data.
In this case, if the assumption

(9) rank (\gamma \BbbL  - \BbbL s) = rank

\biggl[ 
\BbbL 
\BbbL s

\biggr] 
= rank [\BbbL \BbbL s] = r \leqslant k

is satisfied for all \gamma \in \{ \lambda i| 1 \leqslant i \leqslant k\} \cup \{ \mu j | 1 \leqslant j \leqslant q\} , we consider the following SVD
factorizations:

(10)
\bigl[ 
\BbbL \BbbL s

\bigr] 
= Y(1)S(1)(X(1))T ,

\biggl[ 
\BbbL 
\BbbL s

\biggr] 
= Y(2)S(2)(X(2))T ,

where Y(1), X(2) \in \BbbC k\times k. The projection matrices Y \in \BbbC k\times r and X \in \BbbC k\times r are
obtained by selecting the first r columns of the matrices Y(1) and X(2), respectively.
The following result is used in practical applications.
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Lemma 3.2. A realization (E,A,B,C) of an approximate interpolant is given by
the system matrices E =  - YT\BbbL X, A =  - YT\BbbL sX, B = YTV, C = WX. Hence,
the rational function H(s) = WX(YT\BbbL sX - sYT\BbbL X) - 1YTV approximately matches
the data (the conditions in (7) are approximately fulfilled; i.e., H(\lambda i)ri = wi+ \epsilon ri and
\ell Tj H(\mu j) = vT

j +(\epsilon \ell j)
T , where the residual errors are collected in the vectors \epsilon ri and \epsilon \ell j).

Thus, if we have more data than necessary, we can consider (\BbbL s, \BbbL , V, W) as a
singular model of the data. An appropriate projection then yields a reduced system
of order k (see [26, 2]).

A direct consequence is that the Loewner framework offers a trade-off between
accuracy and complexity of the reduced order system by means of the singular values
of \BbbL .

Remark 3.1. For an error bound that links the quality of approximation to the
singular values of the Loewner pencil (which is valid only at the interpolation points
\mu j and \lambda i), we refer the reader to [6].

Remark 3.2. For the classical Loewner framework applied to linear systems (see
[26]), it is not mandatory that the samples used in the modeling step come from
systems with an invertible E matrix. We believe that, similarly to the LTI case,
the Loewner framework can be extended to LSSs for which the matrices Ek are not
invertible. Indeed, since one needs to evaluate the multivariable transfer functions
on certain frequency grids, the only condition that is mandatory is that the pencils
(Ai,Ei) are regular for all i \in Q. This is because the resolvent of such pencils enters
the transfer functions for various interpolation points s, as described in (5).

4. The Loewner framework for LSS: The case \bfitD = 2. The characteriza-
tion of linear switched systems by means of rational functions suggests that reduction
of such systems can be performed by means of interpolatory methods. In the follow-
ing we propose a way to generalize the Loewner framework to LSSs by interpolating
appropriately defined transfer functions on a chosen grid of frequencies (interpolation
points).

As for the linear case, the given set of sampling (interpolation) points is first
partitioned into the two following categories: left interpolation points, \{ \mu j | 1 \leqslant j \leqslant 
\ell \} \subset \BbbC , and right interpolation points, \{ \lambda i| 1 \leqslant i \leqslant k\} \subset \BbbC .

In this paper we consider the case of SISO linear switched systems, and thus the
left and right tangential directions can be considered to be scalar (i.e., taking the
value 1). The transfer functions which will be matched are no longer single variable
functions (they depend on multiple variables as described in (5)). Hence, the structure
of the interpolation points used in the new framework will be modified. Instead of
having singleton values as in section 3, we will use n-tuples that include multiple
singleton values.

For simplicity of the exposition, we first consider the simplified case D = 2 (the
system switches between two modes only). This situation is encountered in many
numerical examples from the literature. Nevertheless, all the results presented in this
section can be generalized for a higher number of modes in a direct way (as presented
in section 5). Depending on the switching signal \sigma (t), we have either

\Sigma 1 :

\Biggl\{ 
E1 \.x1(t) = A1x1(t) +B1u(t),

y(t) = C1x1(t)
or \Sigma 2 :

\Biggl\{ 
E2 \.x2(t) = A2x2(t) +B2u(t),

y(t) = C2x2(t),

where dim(\Sigma 1) = n1 (i.e., x1 \in \BbbR n1 and E1,A1 \in \BbbR n1\times n1 ,B1,C
T
1 \in \BbbR n1) and also

dim(\Sigma 2) = n2 (i.e., x2 \in \BbbR n2 and E2,A2 \in \BbbR n2\times n2 ,B2,C
T
2 \in \BbbR n2).
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Denote, for simplicity, by K1 the coupling matrix when switching from mode 1 to
mode 2 (instead of K1,2) and by K2 the coupling matrix when switching from mode
2 to mode 1 (instead of K2,1) with K1 \in \BbbR n2\times n1 and K2 \in \BbbR n1\times n2 .

Let \Phi q(s) = (sEq  - Aq)
 - 1, for q \in \{ 1, 2\} , s \in \BbbC , so that det(sEq  - Aq) \not = 0. The

generalized transfer functions corresponding to the first three levels are written as

Level 1

H1(s1) = C1\Phi 1(s1)B1, H2(s2) = C2\Phi 2(s2)B2,

Level 2

H1,2(s1, s2) = C1\Phi 1(s1)K2\Phi 2(s2)B2, H2,1(s2, s1) = C2\Phi 2(s2)K1\Phi 1(s1)B1,

Level 3 \Biggl\{ 
H1,2,1(s1, s2, s3) = C1\Phi 1(s1)K2\Phi 2(s2)K1\Phi 1(s3)B1,

H2,1,2(s1, s2, s3) = C2\Phi 2(s1)K1\Phi 1(s2)K2\Phi 2(s3)B2.

Definition 4.1. Consider two LSSs \^\Sigma = (n1, n2, \{ (\^Ei, \^Ai, \^Bi, \^Ci)| i \in Q\} ,
\{ \^Ki,j | i, j \in Q\} ,0) and \=\Sigma = (n1, n2, \{ (\=Ei, \=Ai, \=Bi, \=Ci)| i \in Q\} , \{ \=Ki,j | i, j \in Q\} ,0) with
Q = \{ 1, 2\} . These systems are said to be equivalent if there exist nonsingular matrices
ZL

j ,Z
R
j \in \BbbR nj\times nj so that

\=Ej = ZL
j
\^EjZ

R
j ,

\=Aj = ZL
j
\^AjZ

R
j ,

\=Bj = ZL
j
\^Bj , \=Cj = \^CjZ

R
j , j \in \{ 1, 2\} ,

and also \=K1 = ZL
2
\^K1Z

R
1 ,

\=K2 = ZL
1
\^K2Z

R
2 . In this configuration, one can easily

show that the transfer functions defined above are the same for each LSS and for all
sampling points sk.

4.1. The generalized controllability and observability matrices. Let \Sigma 
be an LSS as described in (1) with dim(\Sigma k) = nk for k = 1, 2 and let K1 \in \BbbR n2\times n1

and K2 \in \BbbR n1\times n2 be the coupling matrices. Before stating the general definitions,
we first clarify how the newly introduced matrices are constructed through a simple
self-explanatory example.

Example 4.1. Let \scrU be a set with \ell = 12 elements, interpreted as left interpolation
points, where \scrU = \{ \mu 1, \mu 2, . . . , \mu 12\} . Partition \scrU as \scrU = \scrU 1 \cup \scrU 2, where \scrU 1 =

\{ \mu (1)
1 , \mu 

(1)
3 , \mu 

(2)
1 , \mu 

(2)
3 , \mu 

(2)
5 , \mu 

(3)
1 \} and \scrU 2 = \{ \mu (1)

2 , \mu 
(1)
4 , \mu 

(2)
2 , \mu 

(2)
4 , \mu 

(2)
6 , \mu 

(3)
2 \} . Here, \scrU i

contains points associated to mode i. Introduce the nested multi-tuples corresponding
to each mode of the LSS as

Mode 1 : \bfitmu 
(1)
1 =

\left\{   
\bigl( 
\mu 
(1)
1

\bigr) 
,\bigl( 

\mu 
(1)
2 , \mu 

(1)
3

\bigr) 
,

\bfitmu 
(2)
1 =

\left\{         
\bigl( 
\mu 
(2)
1

\bigr) 
,\bigl( 

\mu 
(2)
2 , \mu 

(2)
3

\bigr) 
,\bigl( 

\mu 
(2)
1 , \mu 

(2)
4 , \mu 

(2)
5

\bigr) 
,

\bfitmu 
(3)
1 =

\Bigl\{ \bigl( 
\mu 
(3)
1

\bigr) 
,

Mode 2 : \bfitmu 
(1)
2 =

\left\{   
\bigl( 
\mu 
(1)
2

\bigr) 
,\bigl( 

\mu 
(1)
1 , \mu 

(1)
4

\bigr) 
,

\bfitmu 
(2)
2 =

\left\{         
\bigl( 
\mu 
(2)
2

\bigr) 
,\bigl( 

\mu 
(2)
1 , \mu 

(2)
4

\bigr) 
,\bigl( 

\mu 
(2)
2 , \mu 

(2)
3 , \mu 

(2)
6

\bigr) 
,

\bfitmu 
(3)
2 =

\Bigl\{ \bigl( 
\mu 
(3)
2

\bigr) 
.D
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We explicitly write the generalized observability matrices \scrO 1 and \scrO 2 as follows:

\scrO 1 =

\left[          

C1 \Phi 1(\mu 
(1)
1 )

C2 \Phi 2(\mu 
(1)
2 )K1 \Phi 1(\mu 

(1)
3 )

C1 \Phi 1(\mu 
(2)
1 )

C2 \Phi 2(\mu 
(2)
2 )K1 \Phi 1(\mu 

(2)
3 )

C1 \Phi 1(\mu 
(2)
1 )K2 \Phi 2(\mu 

(2)
4 )K1 \Phi 1(\mu 

(2)
5 )

C1 \Phi 1(\mu 
(3)
1 )

\right]          
,

\scrO 2 =

\left[          

C2 \Phi 2(\mu 
(1)
2 )

C1 \Phi 1(\mu 
(1)
1 )K2 \Phi 2(\mu 

(1)
4 )

C2 \Phi 2(\mu 
(2)
2 )

C1 \Phi 1(\mu 
(2)
1 )K2 \Phi 2(\mu 

(2)
4 )

C2 \Phi 2(\mu 
(2)
2 )K1 \Phi 1(\mu 

(2)
3 )K2 \Phi 2(\mu 

(2)
6 )

C2 \Phi 2(\mu 
(3)
2 )

\right]          
.

For an interpolation point \mu 
(i)
j , the subscript j is related to the mode with which

the point is associated. This mode is given by the residue \eta (j), where \eta (j) = 1 if j
is odd and \eta (j) = 2 if j is even. The superscript i stands for the block index. In
this particular example, we considered three such blocks for each of the two modes
with the following dimensions: p1 = 2, p2 = 3, and p3 = 1 (here pi represents the
dimension of the block index i for i \in \{ 1, 2, 3\} ).

Definition 4.2. Given a nonempty set X, denote by Xi the set of all ith tuples
with elements from X. Introduce the concatenation of two tuples composed of elements
(symbols) \alpha 1, . . . , \alpha i and \beta 1, . . . , \beta j from X as the mapping \circledcirc : Xi\times Xj \rightarrow Xi+j with
the following property:

\bigl( 
\alpha 1, \alpha 2, . . . , \alpha i

\bigr) 
\circledcirc 
\bigl( 
\beta 1, \beta 2, . . . , \beta j

\bigr) 
=

\bigl( 
\alpha 1, \alpha 2, . . . , \alpha i, \beta 1, \beta 2, . . . , \beta j

\bigr) 
.

In the following we denote the \ell th element of the ordered set \bfitmu 
(i)
j by \bfitmu 

(i)
j (\ell ) (where

j \in Q and i \geqslant 1). For instance, \bfitmu 
(2)
1 (3) :=

\bigl( 
\mu 
(2)
1 , \mu 

(2)
4 , \mu 

(2)
5

\bigr) 
. For convenience, use the

notation H1,2,1(\mu 
(2)
1 , \mu 

(2)
4 , \mu 

(2)
5 ) instead of H(1,2,1)

\bigl( 
(\mu 

(2)
1 , \mu 

(2)
4 , \mu 

(2)
5 )

\bigr) 
when referring to

the function evaluation:

H1,2,1(\mu 
(2)
1 , \mu 

(2)
4 , \mu 

(2)
5 ) = C1\Phi 1(\mu 

(2)
1 )K2\Phi 2(\mu 

(2)
4 )K1\Phi 1(\mu 

(2)
5 )B1.

Definition 4.3. Let \scrV = \{ \lambda 1, \lambda 2, . . . , \lambda k\} \subset \BbbC be a set composed of k right in-
terpolation points. Partition \scrV into two sets \scrV 1 and \scrV 2, as \scrV = \scrV 1 \cup \scrV 2, where

(11) \scrV 1 = \{ \lambda (i)
2g - 1| 1 \leqslant g \leqslant mi, 1 \leqslant i \leqslant K \} , \scrV 2 = \{ \lambda (i)

2g | 1 \leqslant g \leqslant mi, 1 \leqslant i \leqslant K \} .

Here, \scrV 1 and \scrV 2 correspond to interpolation points associated to the Ist mode and,
respectively, associated to the IInd mode. Let K \geqslant 1 be a positive integer. For each
i = 1, . . . ,K , introduce the blocks of right ith tuples in terms of the points from (11)
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as
(12)

\bfitlambda 
(i)
1 =

\left\{                           

\bigl( 
\lambda 
(i)
1

\bigr) 
,\bigl( 

\lambda 
(i)
3 , \lambda 

(i)
2

\bigr) 
,\bigl( 

\lambda 
(i)
5 , \lambda 

(i)
4 , \lambda 

(i)
1

\bigr) 
,

...\bigl( 
\lambda 
(i)
2mi - 3, . . . , \lambda 

(i)
4 , \lambda 

(i)
1

\bigr) 
,\bigl( 

\lambda 
(i)
2mi - 1, \lambda 

(i)
2mi - 2, . . . , \lambda 

(i)
3 , \lambda 

(i)
2

\bigr) 
,

\bfitlambda 
(i)
2 =

\left\{                           

\bigl( 
\lambda 
(i)
2

\bigr) 
,\bigl( 

\lambda 
(i)
4 , \lambda 

(i)
1

\bigr) 
,\bigl( 

\lambda 
(i)
6 , \lambda 

(i)
3 , \lambda 

(i)
2

\bigr) 
,

...\bigl( 
\lambda 
(i)
2mi - 2, . . . , \lambda 

(i)
3 , \lambda 

(i)
2

\bigr) 
,\bigl( 

\lambda 
(i)
2mi

, \lambda 
(i)
2mi - 3, . . . , \lambda 

(i)
4 , \lambda 

(i)
1

\bigr) 
,

where K is the number of blocks and mi is the dimension of the index i block so that
the equality m1 + \cdot \cdot \cdot +mK = k holds. Finally, define the nested right multi-tuples
as

(13) \bfitlambda 1 =
\Bigl\{ 
\bfitlambda 
(1)
1 ,\bfitlambda 

(2)
1 , . . . ,\bfitlambda 

(K )
1

\Bigr\} 
, \bfitlambda 2 =

\Bigl\{ 
\bfitlambda 
(1)
2 ,\bfitlambda 

(2)
2 , . . . ,\bfitlambda 

(K )
2

\Bigr\} 
.

Note that the right tuples in (12) are constructed based on the following recurrence

relations (where \bfitlambda 
(i)
1 (1) =

\bigl( 
\lambda 
(i)
1

\bigr) 
and \bfitlambda 

(i)
2 (1) =

\bigl( 
\lambda 
(i)
2

\bigr) 
):

(14) \bfitlambda 
(i)
1 (g) =

\bigl( 
\lambda 
(i)
2g - 1

\bigr) 
\circledcirc \bfitlambda 

(i)
2 (g  - 1), \bfitlambda 

(i)
2 (g) =

\bigl( 
\lambda 
(i)
2g

\bigr) 
\circledcirc \bfitlambda 

(i)
1 (g  - 1).

Definition 4.4. Let \scrU = \{ \mu 1, \mu 2, . . . , \mu k\} \subset \BbbC be a set composed of k left inter-
polation points. Partition \scrU into two sets \scrU 1 and \scrU 2, as \scrU = \scrU 1 \cup \scrU 2, where

(15) \scrU 1 = \{ \mu (i)
2h - 1| 1 \leqslant h \leqslant pj , 1 \leqslant j \leqslant L \} , \scrU 2 = \{ \mu (j)

2h | 1 \leqslant h \leqslant pj , 1 \leqslant j \leqslant L \} .

Here, \scrU 1 and \scrU 2 correspond to interpolation points associated to the Ist mode and,
respectively, associated to the IInd mode. Let L \geqslant 1 be a positive integer. For each
j = 1, . . . ,L , introduce the blocks of left jth tuples in terms of the points from (15)
as
(16)

\bfitmu 
(j)
1 =

\left\{                           

\bigl( 
\mu 
(j)
1

\bigr) 
,\bigl( 

\mu 
(j)
2 , \mu 

(j)
3

\bigr) 
,\bigl( 

\mu 
(j)
1 , \mu 

(j)
4 , \mu 

(j)
5

\bigr) 
,

...\bigl( 
\mu 
(j)
1 , \mu 

(j)
4 , . . . , \mu 

(j)
2pj - 3

\bigr) 
,\bigl( 

\mu 
(j)
2 , \mu 

(j)
3 , . . . , \mu 

(j)
2pj - 2, \mu 

(j)
2pj - 1

\bigr) 
,

\bfitmu 
(j)
2 =

\left\{                           

\bigl( 
\mu 
(j)
2

\bigr) 
,\bigl( 

\mu 
(j)
1 , \mu 

(j)
4

\bigr) 
,\bigl( 

\mu 
(j)
2 , \mu 

(j)
3 , \mu 

(j)
6

\bigr) 
,

...\bigl( 
\mu 
(j)
2 , \mu 

(j)
3 , . . . , \mu 

(j)
2pj - 2

\bigr) 
,\bigl( 

\mu 
(j)
1 , \mu 

(j)
4 , . . . , \mu 

(j)
2pj - 3, \mu 

(j)
2pj

\bigr) 
,

where L \geqslant 1 is the number of blocks and pj is the dimension of the index j block.
Additionally, note that the equality p1+ \cdot \cdot \cdot +pL = \ell , holds. Finally, define the nested
left multi-tuples as

(17) \bfitmu 1 =
\Bigl\{ 
\bfitmu 

(1)
1 ,\bfitmu 

(2)
1 , . . . ,\bfitmu 

(L )
1

\Bigr\} 
, \bfitmu 2 =

\Bigl\{ 
\bfitmu 

(1)
2 ,\bfitmu 

(2)
2 , . . . ,\bfitmu 

(L )
2

\Bigr\} 
.

Note that the left tuples are constructed based on the following recurrence rela-

tions (where \bfitmu 
(j)
1 (1) =

\bigl( 
\mu 
(j)
1

\bigr) 
and \bfitmu 

(j)
2 (1) =

\bigl( 
\mu 
(j)
2

\bigr) 
):

(18) \bfitmu 
(j)
1 (h) = \bfitmu 

(j)
2 (h - 1)\circledcirc 

\bigl( 
\mu 
(j)
2h - 1

\bigr) 
, \bfitmu 

(j)
2 (h) = \bfitmu 

(j)
1 (h - 1)\circledcirc 

\bigl( 
\mu 
(j)
2h

\bigr) 
.
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Condition 4.1. The right interpolation points \lambda u, u \in \{ 1, 2, . . . , k\} , are chosen
in such a way that they do not coincide with the poles of any of the subsystems \Sigma 1

or \Sigma 2. More exactly, the following conditions are imposed for all i = 1, . . . ,K and
g = 1, . . . ,mi:

(19) det(\lambda 
(i)
2g - 1E1  - A1) \not = 0, det(\lambda 

(i)
2gE2  - A2) \not = 0.

We associate the following matrices to the set of right tuples in (12):

\scrR (i)
1 =

\Bigl[ 
\bfPhi 1(\lambda 

(i)
1 )\bfB 1,\bfPhi 1(\lambda 

(i)
3 )\bfK 2 \bfPhi 2(\lambda 

(i)
2 )\bfB 2, . . . , \bfPhi 1(\lambda 

(i)
2mi - 1)\bfK 2 \cdot \cdot \cdot \bfK 1 \bfPhi 1(\lambda 

(i)
3 )\bfK 2 \bfPhi 2(\lambda 

(i)
2 )\bfB 2

\Bigr] 
,

\scrR (i)
2 =

\Bigl[ 
\bfPhi 2(\lambda 

(i)
2 )\bfB 2, \bfPhi 2(\lambda 

(i)
4 )\bfK 1 \bfPhi 1(\lambda 

(i)
1 )\bfB 1, . . . , \bfPhi 2(\lambda 

(i)
2mi

)\bfK 1 \cdot \cdot \cdot \bfK 2 \bfPhi 2(\lambda 
(i)
2 )\bfK 1 \bfPhi 1(\lambda 

(i)
1 )\bfB 1

\Bigr] 
,

where i = 1, . . . ,K and \scrR (i)
q \in \BbbC nq\times mi is attached to \Lambda (i)

q for q \in \{ 1, 2\} .
Definition 4.5. For the LSS \Sigma in (1), introduce the generalized controllability

matrices \scrR 1 and \scrR 2 associated to the right multi-tuples \bfitlambda 1 and \bfitlambda 2, respectively, as
follows:
(20)

\scrR 1 =
\Bigl[ 
\scrR (1)

1 , \scrR (2)
1 , . . . , \scrR (K )

1

\Bigr] 
\in \BbbC n1\times k, \scrR 2 =

\Bigl[ 
\scrR (1)

2 , \scrR (2)
2 , . . . , \scrR (K )

2

\Bigr] 
\in \BbbC n2\times k.

Condition 4.2. The left interpolation points \mu v, v \in \{ 1, 2, . . . , \ell \} , are chosen in
such a way so that they do not coincide with the poles of any of the subsystems \Sigma 1

or \Sigma 2. More exactly, the following conditions are imposed for all j = 1, . . . ,L and
h = 1, . . . , pj :

(21) det(\mu 
(j)
2h - 1E1  - A1) \not = 0, det(\mu 

(j)
2hE2  - A2) \not = 0.

Next, associate the following matrices to the set of right tuples in (16), as

\scrO (j)
1 =

\left[      
C1 \Phi 1(\mu 

(j)
1 )

C2 \Phi 2(\mu 
(j)
2 )K1 \Phi 1(\mu 

(j)
3 )

...

C2 \Phi 2(\mu 
(j)
2 )K1 \Phi 1(\mu 

(j)
3 )K2 \cdot \cdot \cdot K1 \Phi 1(\mu 

(j)
2pj - 1)

\right]      \in \BbbC pj\times n1 , j = 1, . . . ,L ,

\scrO (j)
2 =

\left[      
C2 \Phi 2(\mu 

(j)
1 )

C1 \Phi 1(\mu 
(j)
1 )K2 \Phi 2(\mu 

(j)
4 )

...

C1 \Phi 1(\mu 
(j)
1 )K2 \Phi 2(\mu 

(j)
2 )K1 \cdot \cdot \cdot K2 \Phi 2(\mu 

(j)
2pj

)

\right]      \in \BbbC pj\times n2 , j = 1, . . . ,L .

Definition 4.6. For the LSS \Sigma in (1), introduce the generalized observability
matrices \scrO 1 and \scrO 2 associated to the right multi-tuples \bfitmu 1 and \bfitmu 2, respectively, as
follows:

(22) \scrO 1 =

\left[    
\scrO (1)

1
...

\scrO (L )
1

\right]    \in \BbbC \ell \times n1 , \scrO 2 =

\left[    
\scrO (1)

2
...

\scrO (L )
2

\right]    \in \BbbC \ell \times n2 .

Definition 4.7. For \nu \in \{ 1, 2\} , let Q\nu ,+ and Q+,\nu be the ordered sets containing
all tuples that can be constructed with symbols from the Q = \{ 1, 2\} and that start (and,
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B584 I. V. GOSEA, M. PETRECZKY, AND A. C. ANTOULAS

respectively, end) with the symbol \nu . Also, no two consecutive characters are allowed
to be the same. Hence, explicitly write the new introduced sets as follows:

Q1,+ = \{ (1), (1, 2), (1, 2, 1), . . .\} , Q2,+ = \{ (2), (2, 1), (2, 1, 2), . . .\} ,(23)

Q+,1 = \{ (1), (2, 1), (1, 2, 1), . . .\} , Q+,2 = \{ (2), (1, 2), (2, 1, 2), . . .\} .(24)

Remark 4.1. In the following we denote the \ell th element of the ordered set Q\nu ,+

with Q\nu ,+(\ell ). For example, one writes Q1,+(4) := (1, 2, 1, 2). Moreover, we have
Q+,2(3)\circledcirc Q1,+(2) = (2, 1, 2, 1, 2).

The compact notationH\bfQ +,1(\bfitmu 1(2)) is used instead ofH2,1(\mu 2, \mu 3), where \bfitmu 1(2) :=\bigl( 
\mu 2, \mu 3

\bigr) 
.

Definition 4.8. Let the ith unit vector of length k be denoted by ei,k = [0 . . . , 1,
. . . , 0]T \in \BbbR k. Additionally, let 0k,\ell \in \BbbR k\times \ell be an all zero matrix.

In the following, use the notation \^H to emphasize that we are referring to the
generalized transfer functions corresponding to the LSS \^\Sigma .

Definition 4.9. We say that an LSS \^\Sigma = (n1, n2, \{ (\^Ei, \^Ai, \^Bi, \^Ci)| i \in Q\} ,
\{ \^Ki,j | i, j \in Q\} ,0) matches the data associated with the right tuples \{ \bfitlambda (1)

a , . . . ,\bfitlambda (K )
a \} 

as well as with the left tuples \{ \bfitmu (1)
b , . . . ,\bfitmu 

(L )
b \} , a, b \in Q, and corresponding to the

original LSS \Sigma = (n1, n2, \{ (Ei,Ai,Bi,Ci)| i \in Q\} , \{ Ki,j | i, j \in Q\} ,0), if the 2(k2+2k)
relations
(25)\left\{           

H\bfQ +,1(h)(\bfitmu 
(j)
1 (h)) = \^H\bfQ +,1(h)(\bfitmu 

(j)
1 (h)), H\bfQ +,2(h)(\bfitmu 

(j)
2 (h)) = \^H\bfQ +,2(h)(\bfitmu 

(j)
2 (h)),

H\bfQ 1,+(g)(\bfitlambda 
(i)
1 (g)) = \^H\bfQ 1,+(g)(\bfitlambda 

(i)
1 (g)), H\bfQ 2,+(g)(\bfitlambda 

(i)
2 (g)) = \^H\bfQ 2,+(g)(\bfitlambda 

(i)
2 (g)),

H\bfQ +,1(h)\circledcirc \bfQ 2,+(g)(\bfitmu 
(j)
1 (h)\circledcirc \bfitlambda 

(i)
2 (g)) = \^H\bfQ +,1(h)\circledcirc \bfQ 2,+(g)(\bfitmu 

(j)
1 (h)\circledcirc \bfitlambda 

(i)
2 (g)),

H\bfQ +,2(h)\circledcirc \bfQ 1,+(g)(\bfitmu 
(j)
2 (h)\circledcirc \bfitlambda 

(i)
1 (g)) = \^H\bfQ +,2(h)\circledcirc \bfQ 1,+(g)(\bfitmu 

(j)
2 (h)\circledcirc \bfitlambda 

(i)
1 (g)),

hold for j = 1, . . . ,K , h = 1, . . . , pj, and i = 1, . . . ,K , g = 1, . . . ,mi, where

p1 + p2 + \cdot \cdot \cdot + pK = m1 +m2 + \cdot \cdot \cdot +mK = k.

The following lemma extends the rational interpolation idea for linear systems
approximation to the linear switched system case.

Lemma 4.1 (interpolation of LSS). Let \Sigma = (n1, n2, \{ (Ei,Ai,Bi,Ci)| i \in Q\} ,
\{ Ki,j | i, j \in Q\} ,0) be an LSS of order (n1, n2). Consider that the number of left and
right interpolation points is the same for each mode, i.e., \ell = k. Additionally, assume
the matrices in (20) and (22) have full rank, i.e., rank(\scrR i) = rank(\scrO i) = k, i \in 
\{ 1, 2\} . An order k reduced LSS \^\Sigma = (n1, n2, \{ (\^Ei, \^Ai, \^Bi, \^Ci)| i \in Q\} , \{ \^Ki,j | i, j \in 
Q\} ,0) is constructed by projection, i.e., by using right and left projectors chosen as

X1 = \scrR 1, X2 = \scrR 2 and YT
1 = \scrO 1, YT

2 = \scrO 2.

The projected matrices corresponding to the Ist subsystem \^\Sigma 1 are computed as
(26)
\^E1 = YT

1 E1X1, \^A1 = YT
1 A1X1, \^B1 = YT

1 B1, \^C1 = C1X1, \^K1 = YT
2 K1X1,

while the projected matrices corresponding to the IInd subsystem \^\Sigma 2 can also be com-
puted as
(27)
\^E2 = YT

2 E2X2, \^A2 = YT
2 A2X2, \^B2 = YT

2 B2, \^C2 = C2X2, \^K2 = YT
1 K2X2.
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It follows that the reduced-order system \^\Sigma matches the data of the system \Sigma (as it
was previously introduced in Definition 4.9).

Proof of Lemma 4.1. For simplicity, assume that we have one set of right multi-
tuples and one set of left multi-tuples with k interpolation points for each mode. This
corresponds to the case L = K = 1 and m1 = p1 = k (using the notation introduced
in Definitions 4.3 and 4.4). For the first mode, write down the interpolation points as
follows:

(28)

\Biggl\{ 
\bfitlambda 1 =

\bigl\{ \bigl( 
\lambda 1

\bigr) 
,
\bigl( 
\lambda 3, \lambda 2

\bigr) 
, . . . ,

\bigl( 
\lambda 2k - 1, . . . , \lambda 3, \lambda 2

\bigr) \bigr\} 
,

\bfitmu 1 =
\bigl\{ \bigl( 

\mu 1

\bigr) 
,
\bigl( 
\mu 2, \mu 3

\bigr) 
, . . . ,

\bigl( 
\mu 2, \mu 3, . . . , \mu 2k - 1

\bigr) \bigr\} 
.

For the second mode, write down the interpolation points as follows:

(29)

\Biggl\{ 
\bfitlambda 2 =

\bigl\{ \bigl( 
\lambda 2

\bigr) 
,
\bigl( 
\lambda 4, \lambda 1

\bigr) 
, . . . ,

\bigl( 
\lambda 2k, . . . , \lambda 2, \lambda 1

\bigr) \bigr\} 
,

\bfitmu 2 =
\bigl\{ \bigl( 

\mu 2

\bigr) 
,
\bigl( 
\mu 1, \mu 4

\bigr) 
, . . . ,

\bigl( 
\mu 1, \mu 4, . . . , \mu 2k

\bigr) \bigr\} 
.

It follows that the interpolation conditions stated in Definition 4.9 can be rewritten
by taking into account the aforementioned simplification as

2k conditions:

\Biggl\{ 
H\bfQ +,1(j)(\bfitmu 1(j)) = \^H\bfQ +,1(j)(\bfitmu 1(j)),

H\bfQ +,2(j)(\bfitmu 2(j)) = \^H\bfQ +,2(j)(\bfitmu 2(j)),
j \in \{ 1, . . . , k\} ,(30)

2k conditions:

\Biggl\{ 
H\bfQ 1,+(i)(\bfitlambda 1(i)) = \^H\bfQ 1,+(i)(\bfitlambda 1(i)),

H\bfQ 2,+(i)(\bfitlambda 2(i)) = \^H\bfQ 2,+(i)(\bfitlambda 2(i)),
i \in \{ 1, . . . , k\} ,(31)

k2 conditions:
\Bigl\{ 
H\bfQ +,1(j)\circledcirc \bfQ 2,+(i)(\bfitmu 1(j)\circledcirc \bfitlambda 2(i)) = \^H\bfQ +,1(j)\circledcirc \bfQ 2,+(i)(\bfitmu 1(j)\circledcirc \bfitlambda 2(i)),

(32)

k2 conditions:
\Bigl\{ 
H\bfQ +,2(j)\circledcirc \bfQ 1,+(i)(\bfitmu 2(j)\circledcirc \bfitlambda 1(i)) = \^H\bfQ +,2(j)\circledcirc \bfQ 1,+(i)(\bfitmu 2(j)\circledcirc \bfitlambda 1(i)).

(33)

With the assumptions in (28) and (29), it follows that the associated general-
ized controllability and observability matrices defined previously in (20) and (22) are
rewritten as

\scrR 1 = [ \Phi 1(\lambda 1)B1, \Phi 1(\lambda 3)K2\Phi 2(\lambda 2)B2, . . . , \Phi 1(\lambda 2k - 1)K2 \cdot \cdot \cdot K2\Phi 2(\lambda 2)B2] \in \BbbC n\times k,

\scrR 2 = [ \Phi 2(\lambda 2)B2, \Phi 2(\lambda 4)K1\Phi 1(\lambda 1)B1, . . . , \Phi 2(\lambda 2k)K1 \cdot \cdot \cdot K1\Phi 1(\lambda 1)B1] \in \BbbC n\times k,

\scrO 1 =

\left[     
C1\Phi 1(\mu 1)
C2\Phi 2(\mu 2)K1\Phi 1(\mu 3)

...
C2\Phi 2(\mu 2)K1\Phi 1(\mu 3) \cdot \cdot \cdot K1\Phi 1(\mu 2k - 1)

\right]     ,

\scrO 2 =

\left[     
C2\Phi 2(\mu 2)
C1\Phi 1(\mu 1)K2\Phi 2(\mu 4)

...
C1\Phi 1(\mu 1)K2\Phi 2(\mu 4) \cdot \cdot \cdot K2\Phi 2(\mu 2k)

\right]     ,

with \scrO 1, \scrO 2 \in \BbbC k\times n. Additionally, introduce the notation \^\Phi i(s) = (s\^E - \^A) - 1.
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From (26) and (27), using that Xi = \scrR i for i = 1, 2, it readily follows that

(a) \^\Phi 1(\lambda 1) \^B1 = e1,k and (b) \^\Phi 1(\lambda 2i - 1) \^K2 ei - 1,k = ei,k, i = 2, . . . , k,

(c) \^\Phi 2(\lambda 2) \^B2 = e1 and (d) \^\Phi 2(\lambda 2i) \^K1 ei - 1,k = ei,k, i = 2, . . . , k.

These equalities imply the right-hand conditions in (31). Similarly, from (26) and
(27), using that YT

j = \scrO j for j = 1, 2, it follows that

(e) C1
\^\Phi 1(\mu 1) = eT1,k and (f) eTj - 1,kK2

\^\Phi 2(\mu 2j) = eTj,k, j = 2, . . . , k,

(g) C2
\^\Phi 2(\mu 2) = eT1,k and (h) eTj - 1K1

\^\Phi 1(\mu 2j - 1) = eTj,k, j = 2, . . . , k,

which imply the left-hand conditions in (30). Finally, with X = \scrR , YT = \scrO , and
combining (a)--(h), all interpolation conditions in (32) and (33) are hence satisfied.

Remark 4.2. For instance, in Example 4.2, the conditions stated in (48) are sat-
isfied.

4.1.1. Sylvester equations for \bfscrO and \bfscrR . The motivation behind this sub-
section is closely related to building parametrized reduced order models. The idea is
that one can use only one sided interpolation conditions, either left as in (30) or right
as in (31), to reduce the original LSS. Then, one can choose the free parameters to
impose additional conditions (not necessarily interpolatory).

Further development of this strategy was studied in [4] (in section 4.4) for the
case of generalized Sylvester equations for bilinear systems.

The generalized controllability and observability matrices satisfy Sylvester equa-
tions. To state the corresponding result we need to define particular quantities. First
introduce the vectors

(34) R =
\bigl[ 
eT1,m1

\cdot \cdot \cdot eT1,mK

\bigr] 
\in \BbbR 1\times k, LT =

\bigl[ 
eT1,p1

\cdot \cdot \cdot eT1,pL

\bigr] 
\in \BbbR 1\times \ell ,

where m1 + \cdot \cdot \cdot + mK = k and p1 + \cdot \cdot \cdot + pL = \ell . Next, introduce the block-shift
matrices
(35)\Biggl\{ 

S\bfR = blkdiag [Jm1
, . . . , JmK ] ,

S\bfL = blkdiag
\bigl[ 
JT
p1
, . . . , JT

pL

\bigr] 
,

where Ju =

\left[     
0 1 \cdot \cdot \cdot 0
...

...
. . .

...
0 0 \cdot \cdot \cdot 1
0 0 \cdot \cdot \cdot 0

\right]     \in \BbbR u\times u.

Finally, we arrange the left interpolation points in the diagonal matrices M1,M2 \in 
\BbbR \ell \times \ell as
(36)

M1 = blkdiag [M
(1)
1 , M

(2)
1 , . . . , M

(L )
1 ], M2 = blkdiag [M

(1)
2 , M

(2)
2 , . . . , M

(L )
2 ],

where M
(j)
1 = diag [\mu 

(j)
1 , \mu 

(j)
3 , . . . , \mu 

(j)
2pj - 1] and M

(j)
2 = diag [\mu 

(j)
2 , \mu 

(j)
4 , . . . , \mu 

(j)
2pj

];
we used the MATLAB notation ``blkdiag,"" which outputs a block diagonal matrix
with each input entry as a block. Also, arrange the right interpolation points in the
diagonal matrices \Lambda 1, \Lambda 1 \in \BbbR k\times k as

(37) \Lambda 1 = blkdiag [\Lambda 
(1)
1 , \Lambda 

(2)
1 , . . . , \Lambda 

(K )
1 ], \Lambda 2 = blkdiag [\Lambda 

(1)
2 , \Lambda 

(2)
2 , . . . , \Lambda 

(K )
2 ],

where \Lambda 
(i)
1 = diag [\lambda 

(i)
1 , \lambda 

(i)
3 , . . . , \lambda 

(i)
2mi - 1] and \Lambda 

(i)
2 = diag [\lambda 

(i)
2 , \lambda 

(i)
4 , . . . , \lambda 

(i)
2mi

].
The next results represent extensions of the linear case and hence follow naturally.
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Lemma 4.2. Consider that the assumption in Condition 4.1 holds; i.e., (19) is
valid. Then, the generalized controllability matrices \scrR 1,\scrR 2 defined in (20) are the
unique solutions of the following coupled Sylvester equations:

(38)

\Biggl\{ 
A1\scrR 1 +K2\scrR 2S\bfR +B1R = E1\scrR 1\Lambda 1,

A2\scrR 2 +K1\scrR 1S\bfR +B2R = E2\scrR 2\Lambda 2.

Proof of Lemma 4.2. Assume again, for simplicity of the proof, that the assump-
tions made in (28)--(29) are valid. Hence, we have one set of right multi-tuples for
each of the two modes with same number of interpolation points k (with k even).
Multiplying the first equation in (38) on the right with the unit vector e1,k, we obtain

(39) A1\scrR (1)
1 +B1 = \lambda 1E1\scrR (1)

1 \leftrightarrow \scrR (1)
1 = (\lambda 1E1  - A1)

 - 1B1 = \Phi 1(\lambda 1)B1,

where \scrR (j)
i is the jth column of \scrR i (with j \leqslant k and i \in \{ 1, 2\} ). Thus the first column

of the matrix which is the solution of the first equation in (38) is indeed equal to the
first column of the generalized controllability matrix \scrR 1. By multiplying the second
equation in (38) on the right with the unit vector e1,k, we obtain

(40) A2\scrR (1)
2 +B2 = \lambda 2E2\scrR (1)

2 \leftrightarrow \scrR (1)
2 = (\lambda 2E2  - A2)

 - 1B2 = \Phi 2(\lambda 2)B2.

Thus the first column of the matrix which is the solution of the second equation in
(38) is indeed equal to the first column of the generalized controllability matrix \scrR 2.
By multiplying first equation in (38) on the right with the jth unit vector ej,k, we
obtain

(41) A1\scrR (j)
1 +K2\scrR (j - 1)

2 = \lambda 2j - 1E1\scrR (j)
1 \leftrightarrow \scrR (j)

1 = (\lambda 2j - 1E1  - A1)
 - 1K2\scrR (j - 1)

2 .

By multiplying the second equation in (38) on the right with the jth unit vector ej,k,
write:

(42) A2\scrR (j)
2 +K1\scrR (j - 1)

1 = \lambda 2jE2\scrR (j)
2 \leftrightarrow \scrR (j)

2 = (\lambda 2jE2  - A2)
 - 1K1\scrR (j - 1)

1 .

From (41) and (42) we derive the following linear recursive system of equations:

(43)

\Biggl\{ 
\scrR (j)

1 = \Phi 1(\lambda 2j - 1)K2\scrR (j - 1)
2 ,

\scrR (j)
2 = \Phi 2(\lambda 2j)K1\scrR (j - 1)

1 ,

with initial conditions (39) and (40). Hence, by solving the recursive system of equa-
tions, we conclude that any solution of (38) is given by pairs of generalized con-
trollability matrices defined as in (20). Conversely, it automatically follows that the
matrices defined in (20) satisfy the relations in (38). In this case, the assumption
made in Condition 4.1 ensures that the equations are solvable.

This proof can be straightforwardly adapted from the simplified case in (28)--(29)
to the more general case of interpolation tuples considered in (12)--(16).

Lemma 4.3. Consider that the assumption in Condition 4.2 holds; i.e., (21) is
valid. Then, the generalized observability matrices \scrO 1 and \scrO 2 defined by (22) satisfy
the following coupled generalized Sylvester equations:

(44)

\Biggl\{ 
\scrO 1A1 + S\bfL \scrO 2K1 + LC1 = M1\scrO 1E1,

\scrO 2A2 + S\bfL \scrO 1K2 + LC2 = M2\scrO 2E2.

Proof of Lemma 4.3. Similar to the proof of Lemma 4.2.
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4.2. The generalized Loewner pencil.

Definition 4.10. Given a linear switched system \Sigma as defined in (1), let \{ \scrR 1,\scrR 2\} 
and \{ \scrO 1,\scrO 2\} be the controllability and observability matrices defined in (20), (22),
respectively, and associated with the multi-tuples in (13), (17), respectively. The
Loewner matrices \BbbL 1 and \BbbL 2 are defined as

(45) \BbbL 1 =  - \scrO 1 E1 \scrR 1, \BbbL 2 =  - \scrO 2 E2 \scrR 2 .

Additionally, the shifted Loewner matrices \BbbL s1 and \BbbL s2 are defined as

(46) \BbbL s1 =  - \scrO 1 A1 \scrR 1, \BbbL s2 =  - \scrO 2 A2 \scrR 2.

Also define the quantities

(47)

\Biggl\{ 
W1 = C1 \scrR 1,

W2 = C2 \scrR 2,

\Biggl\{ 
V1 = \scrO 1 B1,

V2 = \scrO 2 B2,
and

\Biggl\{ 
\Xi 1 = \scrO 2 K1 \scrR 1,

\Xi 2 = \scrO 1 K2 \scrR 2.

Remark 4.3. In general, the Loewner matrices defined above need not have only
real entries. For instance, it may happen that the samples points are purely imaginary
values (on the j\omega axis). In this case, we refer the reader to section 4.3.1 in [4]. We
propose a similar method to enforce that all system matrices have only real entries.
In short, the sampling points have to be chosen as complex conjugate pairs; after
the data is arranged into matrix format, use projection matrices as in (4.26) in [4] to
multiply the matrices in (45), (46), and (47) to the left and to the right. In this way,
the LSS does not change as pointed out in Definition 4.1.

Remark 4.4. Note that \BbbL k and \BbbL sk (where k \in \{ 1, 2\} ), as defined above, are
indeed Loewner matrices; that is, they can be expressed as divided differences of
appropriate transfer function values of the underlying LSS (see the following example).

Example 4.2. Given the LSS described by (Cj ,Ej ,Aj ,Bj) (D = 2 and j \in 
\{ 1, 2\} ), consider the ordered tuples of left interpolation points:

\bigl\{ 
(\mu 1), (\mu 2, \mu 3)

\bigr\} 
,\bigl\{ 

(\mu 2), (\mu 1, \mu 4)
\bigr\} 

and right interpolation points
\bigl\{ 
(\lambda 1), (\lambda 3, \lambda 2)

\bigr\} 
,
\bigl\{ 
(\lambda 2), (\lambda 4, \lambda 1)

\bigr\} 
.

The associated generalized observability and controllability matrices are computed as
follows:

\scrO 1 =

\biggl[ 
\bfC 1\bfPhi 1(\mu 1)

\bfC 2\bfPhi 2(\mu 2)\bfK 1\bfPhi 1(\mu 3)

\biggr] 
, \scrO 2 =

\biggl[ 
\bfC 2\bfPhi 2(\mu 2)

\bfC 1\bfPhi 3(\mu 1)\bfK 2\bfPhi 2(\mu 4)

\biggr] 
,

\scrR 1 =
\bigl[ 
\bfPhi 1(\lambda 1)\bfB 1 \bfPhi 1(\lambda 3)\bfK 2\bfPhi 2(\lambda 2)\bfB 2

\bigr] 
, \scrR 2 =

\bigl[ 
\bfPhi 2(\lambda 2)\bfB 2 \bfPhi 2(\lambda 4)\bfK 1\bfPhi 1(\lambda 1)\bfB 1

\bigr] 
.

The projected Loewner matrices can be written in terms of the samples in the following
way:

\BbbL 1 =

\left[  \bfH 1(\mu 1) - \bfH 1(\lambda 1)
\mu 1 - \lambda 1

\bfH 1,2(\mu 1,\lambda 2) - \bfH 1,2(\lambda 3,\lambda 2)
\mu 1 - \lambda 3

\bfH 2,1(\mu 2,\mu 3) - \bfH 2,1(\mu 2,\lambda 1)
\mu 3 - \lambda 1

\bfH 2,1,2(\mu 2,\mu 3,\lambda 2) - \bfH 2,1,2(\mu 2,\lambda 3,\lambda 2)
\mu 3 - \lambda 3

\right]  =  - \scrO 1E1\scrR 1,

\BbbL 2 =

\left[  \bfH 2(\mu 2) - \bfH 2(\lambda 2)
\mu 2 - \lambda 2

\bfH 2,1(\mu 2,\lambda 1) - \bfH 2,1(\lambda 4,\lambda 1)
\mu 2 - \lambda 4

\bfH 1,2(\mu 1,\mu 4) - \bfH 1,2(\mu 1,\lambda 2)
\mu 4 - \lambda 2

\bfH 1,2,1(\mu 1,\mu 4,\lambda 4) - \bfH 1,2,1(\mu 1,\lambda 4,\lambda 1)
\mu 4 - \lambda 4

\right]  =  - \scrO 2E2\scrR 2.

The projected shifted Loewner matrices can also be written in terms of the samples
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as

\BbbL s1 =

\left[  \mu 1\bfH 1(\mu 1) - \lambda 1\bfH 1(\lambda 1)
\mu 1 - \lambda 1

\mu 1\bfH 1,2(\mu 1,\lambda 2) - \lambda 3\bfH 1,2(\lambda 3,\lambda 2)
\mu 1 - \lambda 3

\mu 3\bfH 2,1(\mu 2,\mu 3) - \lambda 1\bfH 2,1(\mu 2,\lambda 1)
\mu 3 - \lambda 1

\mu 3\bfH 2,1,2(\mu 2,\mu 3,\lambda 2) - \lambda 3\bfH 2,1,2(\mu 2,\lambda 3,\lambda 2)
\mu 3 - \lambda 3

\right]  =  - \scrO 1A1\scrR 1,

\BbbL s2 =

\left[  \mu 2\bfH 2(\mu 2) - \lambda 2\bfH 2(\lambda 2)
\mu 2 - \lambda 2

\mu 2\bfH 2,1(\mu 2,\lambda 1) - \lambda 4\bfH 2,1(\lambda 4,\lambda 1)
\mu 2 - \lambda 4

\mu 4\bfH 1,2(\mu 1,\mu 4) - \lambda 2\bfH 1,2(\mu 1,\lambda 2)
\mu 4 - \lambda 2

\mu 4\bfH 1,2,1(\mu 1,\mu 4,\lambda 4) - \lambda 4\bfH 1,2,1(\mu 1,\lambda 4,\lambda 1)
\mu 4 - \lambda 4

\right]  =  - \scrO 2A2\scrR 2.

The same property applies for the Vi and Wj vectors and \Xi j matrices:

V1 =

\biggl[ 
H1(\mu 1)

H2,1(\mu 2, \mu 3)

\biggr] 
= \scrO 1B1, V2 =

\biggl[ 
H2(\mu 2)

H1,2(\mu 1, \mu 4)

\biggr] 
= \scrO 2B2,

W1 =
\bigl[ 
H1(\lambda 1) H1,2(\lambda 3, \lambda 2)

\bigr] 
= C1\scrR 1, W2 =

\bigl[ 
H2(\lambda 2) H2,1(\lambda 4, \lambda 1)

\bigr] 
= C2\scrR 2,

\Xi 1 =

\biggl[ 
H2,1(\mu 2, \lambda 1) H2,1,2(\mu 2, \lambda 3, \lambda 2)

H1,2,1(\mu 1, \mu 4, \lambda 1) H1,2,1,2(\mu 1, \mu 4, \lambda 3, \lambda 2)

\biggr] 
= \scrO 2K1\scrR 1,

\Xi 2 =

\biggl[ 
H1,2(\mu 1, \lambda 2) H1,2,1(\mu 1, \lambda 4, \lambda 1)

H2,1,2(\mu 2, \mu 3, \lambda 2) H2,1,2,1(\mu 2, \mu 3, \lambda 4, \lambda 1)

\biggr] 
= \scrO 1K2\scrR 2.

It readily follows that, given the original system \Sigma , a reduced LSS of order two
can be obtained without computation (matrix factorizations or solves) as

\^Ek = \scrO E\scrR , \^A = \scrO A\scrR , \^N = \scrO N\scrR , \^B = \scrO B, \^C = C\scrR .

This reduced system matches sixteen moments of the original system, namely

(48)

four of H1/H2 : H1(\mu 1), H2(\mu 2), H1(\lambda 1), H2(\lambda 2),
three of H1,2 : H1,2(\mu 1, \mu 4), H1,2(\mu 1, \lambda 2), H1,2(\lambda 3, \lambda 2),
three of H2,1 : H2,1(\mu 2, \mu 3), H2,1(\mu 2, \lambda 1), H2,1(\lambda 4, \lambda 1),

...
one of H1,2,1,2 : H1,2,1,2(\mu 1, \mu 4, \lambda 3, \lambda 2),
one of H2,1,2,1 : H2,1,2,1(\mu 2, \mu 3, \lambda 4, \lambda 1);

i.e., in total 2(2k + k2) = 16 moments are matched using this procedure.

4.2.1. Properties of the Loewner pencil. We will now show that the quan-
tities defined earlier satisfy various equations which generalize the ones in the linear
or bilinear case.

The equations that are presented in this section are used to automatically find
the Loewner and shifted Loewner matrices by means of solving Sylvester equations
(instead of building the divided difference matrices from the computed samples at the
sampling points).

Proposition 4.1. The Loewner matrix \BbbL 1 and the shifted Loewner matrix \BbbL s1

(corresponding to mode 1) satisfy the following relations (where L,R,\Lambda k,Mk,S\bfL ,S\bfR 

are given in (34), (35), and (36)):

\BbbL s1 = \BbbL 1\Lambda 1 +V1R+\Xi 2S\bfR ,(49)

\BbbL s1 = M1\BbbL 1 + LW1 + S\bfL \Xi 1.(50)
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The Loewner matrix \BbbL 2 and the shifted Loewner matrix \BbbL s2 (corresponding to mode
2) satisfy the following relations:

\BbbL s2 = \BbbL 2\Lambda 2 +V2R+\Xi 1S\bfR ,(51)

\BbbL s2 = M2\BbbL 2 + LW2 + S\bfL \Xi 2.(52)

Proof of Proposition 4.1. By multiplying the first equation in (38) with \scrO 1 to the
left, we obtain

\scrO 1A1\scrR 1+\scrO 1K2\scrR 2S\bfR +\scrO 1B1R = \scrO 1E1\scrR 1\Lambda 1 \Rightarrow  - \BbbL s1+\Xi 2S\bfR +V1R =  - \BbbL 1\Lambda 1,

and hence relation (49) is proven. Similarly we prove (51). By multiplying the first
equation in (44) with \scrR 1 to the right, we obtain

\scrO 1A1\scrR 1+S\bfL \scrO 2K1\scrR 1+LC1\scrR 1 = M1\scrO 1E1\scrR 1 \Rightarrow  - \BbbL s1+S\bfL \Xi 1+LW1 =  - M1\BbbL 1,

and hence relation (50) is proven. Similarly we prove (52).

Proposition 4.2. The Loewner matrices \BbbL 1 and \BbbL 2 satisfy the following Sylvester
equations:

M1\BbbL 1  - \BbbL 1\Lambda 1 = (V1R - LW1) + (\Xi 2S\bfR  - S\bfL \Xi 1),(53)

M2\BbbL 2  - \BbbL 2\Lambda 2 = (V2R - LW2) + (\Xi 1S\bfR  - S\bfL \Xi 2).(54)

Proof of Proposition 4.2. By subtracting (49) from (50) we directly obtain (53),
and also, by subtracting (51) from (52) we directly obtain (54).

Proposition 4.3. The shifted Loewner matrices \BbbL s1 and \BbbL s2 satisfy the following
Sylvester equations:

M1\BbbL s1  - \BbbL s1\Lambda 1 = (M1V1R - LW1\Lambda 1) + (M1\Xi 2S\bfR  - S\bfL \Xi 1\Lambda 1),(55)

M2\BbbL s2  - \BbbL s2\Lambda 2 = (M2V2R - LW2\Lambda 2) + (M2\Xi 1S\bfR  - S\bfL \Xi 2\Lambda 2).(56)

Proof of Proposition 4.3. By subtracting (49) after being multiplied with M1 to
the left from (50) after being multiplied with \Lambda 1 to the right, we directly obtain (55).
A similar procedure is applied to prove (56).

Remark 4.5. The right-hand side of (53)--(56) contains constant \{ 0, 1\} matrices
(i.e., R,L,S\bfR ,S\bfL ) as well as matrices (i.e., Vj ,Wj ,\Xi j , j \in \{ 1, 2\} ) which are directly
constructed by putting together the given sample values as pointed out in Example
4.2.

4.3. Construction of reduced order models. As we already noted, the in-
terpolation data for the LSS has a different format from the one used for the linear
case without switching, as higher order transfer function values are matched as shown
in the previous sections. However, the procedure itself is similar to the one previously
presented in section 3, i.e., in Lemma 3.1.

Lemma 4.4. Assume that k = \ell and that the interpolation points are chosen to
satisfy the conditions in (19) and (21). Moreover, assume that the Loewner matri-

ces \BbbL 1 and \BbbL 2 are invertible. Then, a realization of a reduced order LSS \^\Sigma that
matches the data of the original LSS \Sigma (as introduced in Definition 4.9) is given by
the following matrices:\Biggl\{ 

\^E1 =  - \BbbL 1, \^A1 =  - \BbbL s1, \^B1 = V1, \^C1 = W1,
\^E2 =  - \BbbL 2, \^A2 =  - \BbbL s2, \^B2 = V2, \^C2 = W2,

and \^K1 = \Xi 1, \^K2 = \Xi 2.

D
ow

nl
oa

de
d 

04
/2

6/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA-DRIVEN MOR OF LSS B591

If k = n, then the proposed realization is equivalent to the original one (as in Defini-
tion 4.1).

Proof of Lemma 4.4. This result directly follows from Lemma 4.1 by taking into
consideration the notation introduced in (45)--(47).

In the case of redundant data, at least one of the pencils (\BbbL sj , \BbbL j) is singular
(for j \in \{ 1, 2\} ), and hence we construct pairs of projectors (Xj ,Yj) (corresponding
to mode j) similar to (10). The MOR procedure for approximate data matching is
presented as follows.

Procedure 1. Consider the rank revealing singular value factorization of the fol-
lowing matrices composed of the Loewner and shifted Loewner matrices corresponding
to mode j \in \{ 1, 2\} as

\bigl[ 
\BbbL j \BbbL sj

\bigr] 
=

\Bigl[ 
Y

(1)
j

\~Y
(1)
j

\Bigr] \Biggl[ S
(1)
j O

O \~S
(1)
j

\Biggr] \Bigl[ 
X

(1)
j

\~X
(1)
j

\Bigr] T
= Y

(1)
j S

(1)
j (X

(1)
j )T + \~Y

(1)
j

\~S
(1)
j ( \~X

(1)
j )T ,\biggl[ 

\BbbL j

\BbbL sj

\biggr] 
=

\Bigl[ 
Y

(2)
j

\~Y
(2)
j

\Bigr] \Biggl[ S
(2)
j O

O \~S
(2)
j

\Biggr] \Bigl[ 
X

(2)
j

\~X
(2)
j

\Bigr] T
= Y

(2)
j S

(2)
j (X

(2)
j )T + \~Y

(2)
j

\~S
(2)
j ( \~X

(2)
j )T ,(57)

where Y
(i)
j ,X

(i)
j \in \BbbR k\times rj and S

(i)
j \in \BbbR rj\times rj for i \in \{ 1, 2\} . The projected system

matrices corresponding to subsystem \^\Sigma j are computed as

\^Ej =  - (Y
(1)
j )T\BbbL jX

(2)
j , \^Aj =  - (Y

(1)
j )T\BbbL sjX

(2)
j ,

\^Bj = (Y
(1)
j )TVj , \^Cj = WjX

(2)
j for j \in \{ 1, 2\} .

Moreover, the projected coupling matrices are computed in the following way:

\^K1 = (Y
(1)
2 )T\Xi 1X

(2)
1 , \^K2 = (Y

(1)
1 )T\Xi 2X

(2)
2 .

By choosing rj as the numerical rank of the Loewner matrix \BbbL j (i.e., the largest
neglected singular value corresponding to index rj + 1 is less than machine precision

\epsilon ), ensure that the \^Ej matrices are not singular. Hence, construct a reduced order

LSS denoted with \^\Sigma that approximately matches the data of the original LSS \Sigma . If
the truncated singular values are all 0 (the ones on the main diagonal of the matrices
\~S
(i)
j ), then the matching is exact.

We provide a qualitative rather than quantitative result for the projected Loewner
case. The quality of approximation is directly linked to the singular values of the
Loewner pencils which represent an indicator of the desired accuracy. For linear
systems with no switching, an error bound is provided in [6] as a quantitative measure.

The dimensions of the subsystems \^\Sigma 1 and \^\Sigma 2, corresponding to the reduced order
LSS, need not be the same (i.e., r1 \not = r2). In this case the coupling matrices are no
longer square.

The projectors are computed via singular value factorization of the Loewner ma-
trices. The use of the Drazin or Moore--Penrose pseudo inverses also holds (as shown
in [2]).
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5. The Loewner framework for linear switched systems: The general
case. In this section we are mainly concerned with generalizing some of the results
presented in section 4. Most of the findings can be smoothly extended to the cases with
more complex switching patterns (more modes). By enforcing a prefix/suffix closure
structure in the proposed framework, we can show that all interpolation conditions
can be written in matrix equation format.

Definition 5.1. Let \Gamma and \Theta be finite sets of tuples so that \Gamma ,\Theta \subseteq 
\bigcup \infty 

k=1 Q
k\times \BbbC k

so that \Gamma has the prefix closure property, i.e.,

(q1, q2, . . . , qi, \lambda 1, . . . , \lambda i) \in \Gamma \Rightarrow (q2, . . . , qi, \lambda 2, . . . , \lambda i) \in \Gamma \forall i \geqslant 2,

and \Theta has the suffix closure property, i.e.,

(q1, q2, . . . , qj , \mu 1, . . . , \mu j) \in \Theta \Rightarrow (q1, . . . , qj - 1, \mu 1, . . . , \mu j - 1) \in \Theta \forall j \geqslant 2.

Now consider the specific subset \Gamma q (for any q \in Q) of the set \Gamma , defined in the
following way:

\Gamma q = \{ (q1, q2, . . . , qi, \lambda 1, . . . , \lambda i) \in \Gamma | q1 = q, i \leqslant \delta \Gamma \} , \delta \Gamma = max(| w| )
w\in \Gamma 

/2.

Denote the cardinality of \Gamma q by kq = card(\Gamma q) and explicitly enumerate the elements

of this set as follows: \Gamma q = \{ w(1)
q , w

(2)
q , . . . , w

(kq)
q \} . Consider the following function

(mapping) r : \Gamma q \rightarrow \BbbC nq\times 1 that maps a word form \Gamma q into a column vector of size nq:

r((q, q2, . . . , qi, \lambda 1, . . . , \lambda i)) = \Phi q(\lambda 1)Kq2,q\Phi q2(\lambda 2) \cdot \cdot \cdot Kqi,qi - 1
\Phi qi(\lambda i)Bqi .

Next, construct the controllability matrix \scrR q corresponding to the mode q of the
system \Sigma as follows:

(58) \scrR q =
\Bigl[ 
r(w

(1)
q ) r(w

(2)
q ) \cdot \cdot \cdot r(w

(kq)
q )

\Bigr] 
\in \BbbC nq\times kq .

Similarly, define the specific subset \Theta q (for any q \in Q) of the set \Theta in the following
way:

\Theta q = \{ (q1, q2, . . . , qj , \mu 1, . . . , \mu j) \in \Gamma | qj = q, j \leqslant \delta \Theta \} , \delta \Theta = max(| w| )
w\in \Theta 

/2.

Consider the cardinality of \Theta q to be the same as the one of \Gamma q, i.e., kq = card(\Theta q).
Although this additional constraint is not necessarily needed, we would like to en-
force the construction of reduced systems with square matrices Ak and Ek. Next we

explicitly enumerate the elements of this set as follows: \Theta q = \{ v(1)q , v
(2)
q , . . . , v

(kq)
q \} .

Consider the following mapping o : \Theta q \rightarrow \BbbC 1\times nq that maps a word form \Theta q into a
row vector of size nq:

o((q1, q2, . . . , qj - 1, q, \mu 1, . . . , \mu j)) = Cq1\Phi q1(\mu 1)Kq2,q1\Phi q2(\mu 2) \cdot \cdot \cdot Kq,qj - 1\Phi q(\mu j).

Next, construct the observability matrix \scrO q \in \BbbC kq\times nq corresponding to the mode q
of the system \Sigma as follows:

(59) \scrO q =
\Bigl[ 
o(v

(1)
q )

T
o(v

(2)
q )

T
\cdot \cdot \cdot o(v

(kq)
q )

T
\Bigr] T

\in \BbbC kq\times nq .

Consider the following example to show how the general procedure is extended from
the linear case (no switching) to the case when switching occurs.
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Example 5.1. Take D = 3 (three active modes) and hence Q = \{ 1, 2, 3\} . The
following interpolation points are given: \{ s1, s2, . . . , s18\} \subset \BbbC . The first step is to
partition this set into two disjoint subsets (each having 9 points):

left interpolation points : \{ \mu 1, \mu 2, . . . , \mu 9\} , right interpolation points : \{ \lambda 1, \lambda 2, . . . , \lambda 9\} .

The set \Gamma is composed of three subsets \Gamma = \Gamma 1

\bigcup 
\Gamma 2

\bigcup 
\Gamma 3 which are defined by imposing

the previously defined suffix closure property as\left\{     
\Gamma 1 = \{ (1, \lambda 1), (1, 3, \lambda 4, \lambda 3), (1, 3, 2, \lambda 7, \lambda 6, \lambda 2)\} ,
\Gamma 2 = \{ (2, \lambda 2), (2, 1, \lambda 5, \lambda 1), (2, 1, 3, \lambda 8, \lambda 4, \lambda 3)\} ,
\Gamma 3 = \{ (3, \lambda 3), (3, 2, \lambda 6, \lambda 2), (3, 2, 1, \lambda 9, \lambda 5, \lambda 1)\} .

To the sets \Gamma j we attach the following controllability matrices \scrR j :

\scrR 1 =
\bigl[ 
\Phi 1(\lambda 1) \Phi 1(\lambda 4)K3,1\Phi 3(\lambda 3)B3 \Phi 1(\lambda 7)K3,1\Phi 3(\lambda 6)K2,3\Phi 2(\lambda 2)B2

\bigr] 
,

\scrR 2 =
\bigl[ 
\Phi 2(\lambda 2) \Phi 2(\lambda 5)K1,2\Phi 1(\lambda 1)B1 \Phi 2(\lambda 8)K1,2\Phi 1(\lambda 4)K3,1\Phi 3(\lambda 3)B3

\bigr] 
,

\scrR 3 =
\bigl[ 
\Phi 3(\lambda 3) \Phi 3(\lambda 6)K2,3\Phi 2(\lambda 2)B2 \Phi 3(\lambda 9)K2,3\Phi 2(\lambda 5)K1,2\Phi 1(\lambda 1)B1

\bigr] 
.

In the same manner, the set \Theta is composed of three subsets \Theta = \Theta 1

\bigcup 
\Theta 2

\bigcup 
\Theta 3. These

are defined by means of imposing the previously defined prefix closure property as
follows: \left\{     

\Theta 1 = \{ (1, \mu 1), (3, 1, \mu 3, \mu 4), (1, 2, 1, \mu 1, \mu 5, \mu 7)\} ,
\Theta 2 = \{ (2, \mu 2), (1, 2, \mu 1, \mu 5), (2, 3, 2, \mu 2, \mu 6, \mu 8)\} ,
\Theta 3 = \{ (3, \mu 3), (2, 3, \mu 2, \mu 6), (3, 1, 3, \mu 3, \mu 4, \mu 9)\} .

To the sets \Theta i we attach the observability matrices \scrO i defined as follows:

\scrO 1 =

\left[  C1\Phi 1(\mu 1)
C3\Phi 3(\mu 3)K1,3\Phi 1(\mu 4)

C1\Phi 1(\mu 1)K2,1\Phi 2(\mu 5)K1,2\Phi 1(\mu 7)

\right]  , \scrO 2 =

\left[  C2\Phi 2(\mu 2)
C1\Phi 1(\mu 1)K2,1\Phi 2(\mu 5)

C2\Phi 2(\mu 2)K3,2\Phi 3(\mu 6)K2,3\Phi 2(\mu 8)

\right]  ,

\scrO 3 =

\left[  C3\Phi 3(\mu 3)
C2\Phi 2(\mu 2)K3,2\Phi 3(\mu 6)

C3\Phi 3(\mu 3)K1,3\Phi 1(\mu 4)K3,1\Phi 3(\mu 9)

\right]  .

5.1. Sylvester equations for \bfscrR \bfitq and \bfscrO \bfitq . In this section we would like to gen-
eralize the results presented in Lemmas 4.2 and 4.3 and hence extend the framework
to a general number of operational modes denoted with D.

Definition 5.2. Introduce the special concatenation of tuples composed of mixed
elements (symbols) from the sets Q and \BbbC , as the mapping with the following property:\bigl( 

\alpha 1 \circledcirc \beta 1

\bigr) 
\odot 
\bigl( 
\alpha 2 \circledcirc \beta 2

\bigr) 
=

\Bigl( \bigl( 
\alpha 1 \circledcirc \alpha 2

\bigr) 
\circledcirc (\beta 1 \circledcirc \beta 2

\bigr) \Bigr) 
,

where \alpha k \in Qik and \beta k \in \BbbC jk for ik, jk \geqslant 1 and k = 1, 2.

Definition 5.3. For g, i = 1, . . . , D, let S
(g)
i = [ S

(g)
i (1) . . . S

(g)
i (kg) ] \in 

\BbbR ki\times kg be constant matrices that contain only 0/1 entries constructed so that S
(g)
i (1) =

0ki,1 and for u = 2, . . . , kg we write

(60) S
(g)
i (u) =

\Biggl\{ 
eu - 1,ki if \exists \~\lambda \in \BbbC , s.t. w

(u)
g = (g, \~\lambda )\odot w

(u - 1)
i ,

0ki,1 else.
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Also, introduce the matrices R(i) and \Lambda i which are defined similarly as in (34)
and (37),
(61)

R(i) =
\bigl[ 
eT1,m1

\cdot \cdot \cdot eT1,mK

\bigr] 
\in \BbbR 1\times ki , \Lambda i = blkdiag [\Lambda 

(1)
i , \Lambda 

(2)
i , . . . , \Lambda 

(L )
i ] \in \BbbR ki\times ki ,

where the diagonal matrices \Lambda 
(a)
i , a = 1, . . . ,K , contain the right interpolation points

associated to mode i. For a set \Gamma with general structure (as in Definition 5.1), it follows
that the controllability matrices \scrR i \in \BbbR ni\times ki , 1 \leqslant i \leqslant D, satisfy the following system
of generalized Sylvester equations:

(62)

\left\{                           

A1\scrR 1 +

D\sum 
i=1

Ki,1\scrR iS
(1)
i +B1R

(1) = E1\scrR 1\Lambda 1,

A2\scrR 2 +

D\sum 
i=1

Ki,2\scrR iS
(2)
i +B2R

(2) = E2\scrR 2\Lambda 2,

...

AD\scrR D +

D\sum 
i=1

Ki,D\scrR iS
(D)
i +BDR(D) = ED\scrR D\Lambda D.

Note that S
(i)
i = 0ki,ki , and if k1 = k2 = \cdot \cdot \cdot = kD = k, the above-defined matrices

S
(g)
i satisfy the following equality \forall g \in Q:

(63)

D\sum 
i=1

S
(g)
i = blkdiag [Jm1 , . . . ,JmK ] ,

where Jl is the Jordan block of size l defined in (35).
To directly find \scrR g, g = 1, 2, 3, for the case presented in Example 5.1, we have

to solve the following system of coupled generalized Sylvester equations:\left\{     
A1\scrR 1 +K3,1\scrR 3S

(1)
3 +B1R = E1\scrR 1\Lambda 1,

A2\scrR 2 +K1,2\scrR 1S
(2)
1 +B2R = E2\scrR 2\Lambda 2,

A3\scrR 3 +K2,3\scrR 2S
(3)
2 +B3R = E3\scrR 3\Lambda 3,

where

\Lambda 1 =

\left[  \lambda 1 0 0
0 \lambda 4 0
0 0 \lambda 7

\right]  , \Lambda 2 =

\left[  \lambda 2 0 0
0 \lambda 5 0
0 0 \lambda 8

\right]  , \Lambda 3 =

\left[  \lambda 3 0 0
0 \lambda 6 0
0 0 \lambda 9

\right]  ,

R =
\bigl[ 
1 0 0

\bigr] 
, S

(1)
3 = S

(2)
1 = S

(3)
2 =

\left[  0 1 0
0 0 1
0 0 0

\right]  .

This corresponds to the case k1 = k2 = k3 = 3, K = 1, and m1 = 3.

Definition 5.4. For h, j = 1, . . . , D, let T
(h)
j = [

\bigl( 
T

(h)
j

\bigr) T
(1) . . .

\bigl( 
T

(h)
j

\bigr) T
(kh) ]T \in 

\BbbR \ell h\times \ell j be constant matrices that contain only 0/1 entries constructed so that
\bigl( 
T

(h)
j

\bigr) T
(1)

= 0\ell j ,1 and for v = 2, . . . , kg we write

(64)
\bigl( 
T

(h)
j

\bigr) T
(v) =

\Biggl\{ 
ev - 1,kj

if \exists \~\mu \in \BbbC , s.t. w
(v)
h = w

(v - 1)
j \odot (h, \~\mu ),

0\ell j ,1 else.
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Also, introduce the following matrices:
(65)\bigl( 
L(j)

\bigr) T
=

\bigl[ 
eT1,p1

\cdot \cdot \cdot eT1,pL

\bigr] 
\in \BbbR 1\times \ell j , Mj = blkdiag [M

(1)
j , M

(2)
j , . . . , M

(L )
j ] \in \BbbR \ell j\times \ell j ,

where the diagonal matricesM
(v)
j for v = 1, . . . , \ell j contain the left interpolation points

associated to mode j. For a set \Theta with general structure (as in Definition 5.1), one
can conclude that the observability matrices \scrO j \in \BbbR \ell j\times nj , 1 \leqslant j \leqslant D, satisfy the
following system of generalized Sylvester equations:

(66)

\left\{                             

\scrO 1A1 +

D\sum 
j=1

T
(1)
j \scrO jK1,j + L(1)C1 = M1\scrO 1E1,

\scrO 2A2 +

D\sum 
j=1

T
(2)
j \scrO jK2,j + L(2)C2 = M2\scrO 2E2,

...

\scrO DAD +

D\sum 
j=1

T
(D)
j \scrO jKD,j + L(D)CD = MD\scrO DED.

Note that T
(j)
j = 0\ell j ,\ell j , and if \ell 1 = \ell 2 = \cdot \cdot \cdot = \ell D = \ell , the square matrices T

(h)
j \in 

\BbbR \ell \times \ell satisfy the following equality \forall h \in Q:

(67)

D\sum 
j=1

T
(h)
j = blkdiag [Jp1

, . . . ,JpL ]
T
.

Again to find the matrices \scrO h, h = 1, 2, 3, in Example 5.1, it is required to solve
the following system of coupled generalized Sylvester equations:\left\{     

\scrO 1A1 +T
(1)
3 \scrO 3K1,3 +T

(1)
2 \scrO 2K1,2 + LC1 = M1\scrO 1E1,

\scrO 2A2 +T
(2)
1 \scrO 1K2,1 +T

(2)
3 \scrO 3K2,3 + LC2 = M2\scrO 2E2,

\scrO 3A3 +T
(3)
2 \scrO 2K3,2 +T

(3)
1 \scrO 1K3,1 + LC3 = M3\scrO 3E3,

where

M1 =

\left[  \mu 1 0 0
0 \mu 4 0
0 0 \mu 7

\right]  , M2 =

\left[  \mu 2 0 0
0 \mu 5 0
0 0 \mu 8

\right]  , M3 =

\left[  \mu 3 0 0
0 \mu 6 0
0 0 \mu 9

\right]  ,

T
(1)
3 = T

(2)
1 = T

(3)
2 =

\left[  0 0 0
1 0 0
0 0 0

\right]  , T
(1)
2 = T

(2)
3 = T

(3)
1 =

\left[  0 0 0
0 0 0
0 1 0

\right]  , L = e1,3.

This corresponds to the case \ell 1 = \ell 2 = \ell 3 = 3, L = 1, and p1 = 3. Note that the

relation in (67) holds, i.e., T
(1)
2 +T

(1)
3 = T

(2)
1 +T

(2)
3 = T

(3)
1 +T

(3)
2 = JT

3 .
Throughout this section, we chose cycling switching to make the exposition more

comprehensible and to directly relate it to the case D = 2. The cyclic property of the
switching scenarios comes naturally in many applications (for example in the boost
power converter model in [9, section 5.2]) but does not necessarily need to be enforced
in our framework (Definition 5.1 is not constrained to only such types of switching).
Consequently, in Example 5.1, the construction of the sets \Gamma k is indeed cyclic, while
the sets \Theta k do not possess this property.
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5.2. The Loewner matrices. For the case of linear switched systems with D
active modes, the generalization of the Loewner framework includes one important
feature. Instead of only one pair of Loewner matrices (as in the linear case without
switching, which is covered in section 3), we define a pair of Loewner matrices for
each individual active mode, and hence in total D pairs of Loewner matrices.

Definition 5.5. Given a linear switched system \Sigma , let \{ \scrR i| i \in Q\} and \{ \scrO j | j \in 
Q\} be the controllability and observability matrices associated with the multi-tuples \Gamma i

and \Theta j. The Loewner matrices \{ \BbbL i| i \in Q\} are defined as

(68) \BbbL 1 =  - \scrO 1 E1 \scrR 1, \BbbL 2 =  - \scrO 2 E2 \scrR 2, . . . , \BbbL D =  - \scrO D ED \scrR D.

Additionally, the shifted Loewner matrices \{ \BbbL si| i \in Q\} are defined as

(69) \BbbL s1 =  - \scrO 1 A1 \scrR 1, \BbbL s2 =  - \scrO 2 A2 \scrR 2, . . . , \BbbL sD =  - \scrO D AD \scrR D.

Also introduce the matrices \forall i, j \in Q

Wi = Ci \scrR i, Vj = \scrO j Bj , and \Xi i,j = \scrO j Ki,j \scrR i.

Remark 5.1. The number of Loewner matrices, shifted Loewner matrices, Wi row
vectors, and Vj column vectors is the same as the number of active modes (i.e., D).
On the other hand, the number of matrices \Xi i,j increases quadratically with D (i.e.,
in total D2 matrices).

Remark 5.2. Note that the matrices \BbbL i and \BbbL si as defined in (68) and (69) (for
i \in \{ 1, 2, . . . , D\} ) are indeed Loewner matrices; that is, they can be expressed as
divided differences of generalized transfer function values of the underlying LSS.

Proposition 5.1. The Loewner matrices \BbbL h satisfy the following Sylvester equa-
tions:

(70) Mh\BbbL h  - \BbbL h\Lambda h = (VhR - LWh) +

D\sum 
j=1

\Bigl( 
\Xi j,hS

(h)
j  - T

(h)
j \Xi h,j

\Bigr) 
, h \in Q.

Proposition 5.2. The shifted Loewner matrices \BbbL sh satisfy the following Sylvester
equations:
(71)

Mh\BbbL sh  - \BbbL sh\Lambda h = (MhVhR - LWh\Lambda h)+

D\sum 
j=1

\Bigl( 
Mh\Xi j,hS

(h)
j  - T

(h)
j \Xi h,j\Lambda h

\Bigr) 
, h \in Q.

Remark 5.3. The proof of the results stated in (70)--(71) is performed in a similar
manner as for the results obtained for the special case D = 2 in section 4 (i.e., for
(53)--(56)).

5.3. Construction of reduced order models. The general procedure for the
case with D switching modes is more or less similar to the one covered in section 4.3
(where D = 2).

Lemma 5.1. Let \BbbL j be invertible matrices for 1 \leqslant j \leqslant D, such that none of the
interpolation points \lambda i, \mu k are eigenvalues of any of the Loewner pencils (\BbbL sj , \BbbL j).
Then, the matrices

\{ \^Ej =  - \BbbL j , \^A1 =  - \BbbL sj , \^Bj = Vj , \^Cj = Wj , \^Ki,j = \Xi i,j\} , i, j \in \{ 1, . . . , D\} ,
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form a realization of a reduced order LSS \^\Sigma that matches the data of the original LSS
\Sigma . If kj = nj for 1 \leqslant j \leqslant D, the proposed realization is equivalent to the original
one.

The concept of an LSS matching the data of another LSS in the case D > 2 is
formulated in a similar manner to the case D = 2, which is covered in Definition 4.9.
Also, the definition of equivalent LSSs for the case D > 2 is formulated similarly as
to Definition 4.1.

In the case of redundant data, at least one of the pencils (\BbbL sj , \BbbL j) is singular (for
j \in \{ 1, . . . , D\} ). The main procedure is presented as follows.

Procedure 2. Consider the rank revealing singular value factorization of the ma-
trices composed of the Loewner matrices \BbbL j and of the shifted Loewner matrices \BbbL sj

as in (57), this time for j \in \{ 1, . . . , D\} . Again, X
(\ell )
j ,Y

(\ell )
j \in \BbbR kj\times rj , S

(\ell )
j \in \BbbR rj\times rj ,

j = \{ 1, . . . , D\} , and \ell = \{ 1, 2\} . Here, choose rj as the numerical rank of the Loewner
matrix \BbbL j (i.e., the largest neglected singular value corresponding to index rj + 1 is
less than machine precision \epsilon ). The projected system matrices computed as

\^Ej =  - (Y
(1)
j )T\BbbL jX

(2)
j , \^Aj =  - (Y

(1)
j )T\BbbL sjX

(2)
j ,

\^Bj = (Y
(1)
j )TVj , \^Cj = WjX

(2)
j for j \in \{ 1, . . . , D\} 

and the projected coupling matrices computed as

\^Ki,j = (Y
(1)
j )T\Xi i,jX

(2)
i \forall i, j \in \{ 1, . . . , D\} 

form a realization of a reduced order LSS denoted by \^\Sigma that approximately matches
the data of the original LSS \Sigma . Each reduced subsystem \^\Sigma j has dimension rj , j \in 
\{ 1, . . . , D\} .

Remark 5.4. If the truncated singular values are all 0 (the ones on the main
diagonal of the matrices \~Sj), then the interpolation is exact.

6. Numerical experiments. In this section we illustrate the new method by
means of three numerical examples. We use a certain generalization of the balanced
truncation (BT) method for LSS (as presented in [28]) to compare the performance of
our new introduced method. The main ingredient of the BT method is to compute the
the controllability and observability Gramians Pi and \scrQ i (where i \in \{ 1, 2, . . . , D\} ) as
the solutions of the following Lyapunov equations:

AiPiE
T
i +EiPiA

T
i +BiB

T
i = 0,(72)

AT
i \scrQ iEi +ET

i PiAi +CT
i Ci = 0.(73)

6.1. Balanced truncation. In [28] it was shown that, if certain conditions are
satisfied, the technique of simultaneous balanced truncation can be applied to switched
linear systems. In some special cases, the existence of a global transformation matrix
Vbal is guaranteed, provided that (Corollary IV.3 in [28])

1. The matrices \scrP i\scrQ i and \scrP j\scrQ j commute for all i, j \in \{ 1, 2, . . . , D\} .
2. The conditions \scrP i\scrQ j = \scrP j\scrQ i are satisfied for all i, j \in \{ 1, 2, . . . , D\} .

Hence, it follows that

(74) Vbal\scrP iV
T
bal = V - T

bal \scrQ iV
 - 1
bal = Ui,

where Ui are diagonal matrices. Although conceptually attractive as a MOR method,
in general the conditions are rather restrictive in practice. This motivates the search
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for a more general MOR approach for the case where simultaneous balancing cannot
be achieved.

The problem of finding a balancing transformation for a single linear system can
be formulated as finding a nonsingular matrix such that the following cost function
is minimized (see [1]):

(75) f(V) = trace[V\scrP VT +V - T\scrQ V - 1].

For the class of LSSs with distinct operational modes, we hence have to minimize not
one but a number of D cost functions:

(76) fi(V) = trace[V\scrP iV
T +V - T\scrQ iV

 - 1], i \in \{ 1, 2, . . . , D\} .

If the conditions of Corollary IV.3 from [28] hold, simultaneous balancing is possible,
and there exists a transformation V which simultaneously minimizes fi for all i =
1, 2, . . . , D. Instead of having D functions as in (76), one can introduce a single overall
cost function (i.e., the average of the cost functions of the individual modes). Define
the function fav as in [28]:
(77)

fav(V) =
1

D

D\sum 
i=1

trace[V\scrP iV
T +V - T\scrQ iV

 - 1] = trace[V\scrP avV
T +V - T\scrQ avV

 - 1],

where

(78) \scrP av =
1

D

D\sum 
i=1

\scrP i, \scrQ av =
1

D

D\sum 
i=1

\scrQ i.

In the case of LSSs, the BT method computes a basis where the sum of the eigenvalues
of \scrP i and \scrQ i over all modes is minimal. Hence, minimizing the proposed overall cost
function provides a natural extension of classical BT to the case of LSS.

It follows that the transformation \~V that minimizes the cost function in (77) is
precisely the one which balances the pair (\scrP av,\scrQ av) of average Gramians.

By applying \~V to the individual modes and truncating, a reduced order model is
obtained. After applying the transformation \~V, the new state-space representations
of the individual modes need not be balanced. Nevertheless, as stated in [28], it
is expected to be relatively close to being balanced. Moreover, a downside of this
method is given by the fact that it does not allow different state-space dimensionality
for different modes.

6.2. First example. As a first example we consider the simple model of an
evaporator vessel from [29] (see Figure 1). There is a constant inflow of liquid into a
tank as well as an outflow that depends on the pressure in the tank and the Bernoulli
resistance Rb. To keep the level of fluid in the evaporator vessel at or below a pre-
specified maximum, an overflow mechanism is activated when the level of fluid L in
the evaporator exceeds the threshold value Lth. This causes a flow through a narrow
pipe with resistance Rp and inertia I that builds up flow momentum p. The system
is modeled in two distinct operation modes: mode 1, where there is no overflow (the
fluid level is below the overflow level), and mode 2, where the overflow mechanism is
active. The ordinary differential equations describing the system in the two operation
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modes are given by\biggl[ 
I 0
0 C

\biggr] \biggl[ 
\.p
\.L

\biggr] 
=

\biggl[ 
 - Rp 0
0  - 1/Rb

\biggr] \biggl[ 
p
L

\biggr] 
+

\biggl[ 
0
fin

\biggr] 
(mode 1),\biggl[ 

I 0
0 C

\biggr] \biggl[ 
\.p
\.L

\biggr] 
=

\biggl[ 
 - Rp 1
 - 1  - 1/Rb

\biggr] \biggl[ 
p
L

\biggr] 
+

\biggl[ 
0
fin

\biggr] 
(mode 2).

Additionally, note that the observed output y is chosen to be the average of the two
system variables p and L, i.e., y = (p+L)/2 (for both modes). Assuming the system
is initially in mode 1, the inflow then causes the tank to start filling, which causes an
outflow through resistance Rb. In this mode the outflow through the narrow pipe is
zero. If L exceeds the level Lth, a switch from mode 1 to mode 2 occurs at the point
in time when L = Lth.

Fig. 1. Schematic of the evaporator vessel [29].

In the following, use the parameters Rb = 1, Rp = 0.5, I = 1, C = 1, fin =
1, Lth = 0.08 and compute the following system matrices:

Mode 1 : E1 =

\Biggl[ 
1 0

0 1

\Biggr] 
, A1 =

\Biggl[ 
 - 1

2 0

0  - 1

\Biggr] 
, B1 =

\biggl[ 
0
1

\biggr] 
, C1 =

\bigl[ 
1
2

1
2

\bigr] 
,

Mode 2 : E2 =

\Biggl[ 
1 0

0 1

\Biggr] 
, A2 =

\Biggl[ 
 - 1

2 1

 - 1  - 1

\Biggr] 
, B2 =

\biggl[ 
0
1

\biggr] 
, C2 =

\bigl[ 
1
2

1
2

\bigr] 
.

The coupling matrices are chosen to be identity matrices, i.e. K1 = K2 = I2. Next,
consider the following tuples of left and right interpolation points corresponding to
each mode, as\Biggl\{ 

\bfitlambda 1 = \{ ( - 1.5), ( - 2, 1)\} ,
\bfitmu 1 = \{ (2), (0, 0.5)\} .

\Biggl\{ 
\bfitlambda 2 = \{ (1), (1.5, - 1.5)\} ,
\bfitmu 2 = \{ (0), (2, - 0.5)\} .

Hence, following the procedure described in section 4, we recover the following system
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matrices:

Mode 1 : \^\bfE 1 =

\Biggl[ 
 - 1

3
 - 23

240

 - 2
3

 - 1
8

\Biggr] 
, \^\bfA 1 =

\Biggl[ 
1
3

19
240

2
3

1
8

\Biggr] 
, \^\bfB 1 =

\Biggl[ 
1
6
1
3

\Biggr] 
, \^\bfC 1 =

\bigl[ 
 - 1  - 13

48

\bigr] 
,

Mode 2 : \^\bfE 2 =

\Biggl[ 
3
16

 - 1
3

7
120

 - 1
9

\Biggr] 
, \^\bfA 2 =

\Biggl[ 
 - 5

16
1
2

 - 17
120

7
30

\Biggr] 
, \^\bfB 2 =

\Biggl[ 
1
2
1
5

\Biggr] 
, \^\bfC 2 =

\bigl[ 
5
16

 - 1
2

\bigr] 
.

Note that the recovered realization is equivalent to the original one (no reduction has
been enforced since the task was to recover the initial system only). The coupling
matrices are also computed:

\^K1 =

\Biggl[ 
 - 1  - 3

16

 - 2
5  - 23

360

\Biggr] 
, \^K2 =

\Biggl[ 
9
80  - 8

45
1
8  - 2

9

\Biggr] 
.

6.3. Second example. For the next experiment, consider the CD player system
from the SLICOT benchmark examples for MOR (see [14]). This linear system of
order 120 has two inputs and two outputs. We consider that, at any given instance
of time, only one input and one output are active (the others are not functional due
to mechanical failure). More precisely, consider mode j to be activated whenever the
jth input and the jth output are simultaneously failing (where j \in \{ 1, 2\} ).

In this way, we construct an LSS with two operational modes (henceD = 2). Both
subsystems are stable SISO linear systems of order 120. This initial linear switched
system \Sigma will be reduced by means of the Loewner framework to obtain \^\Sigma L and by
means of the balanced truncation method proposed in [28] to obtain \^\Sigma B . Denote

with \^\Sigma Lj and \^\Sigma Bj the jth linear subsystem corresponding to \^\Sigma L, and respectively,

to \^\Sigma B .
The frequency response of each original subsystem is depicted in Figure 2. Note

that an amplitude scaling of the original system was performed in order to enforce a
similar gain for each of the two subsystems.

100 101 102 103 104 105 106

Frequency(ω)

10-10

10-5

100

Frequency response of the original LSS

Ist subsystem

IInd subsystem

Fig. 2. Frequency response of the original subsystems.

For the Loewner method, we choose 120 logarithmically distributed interpolation
points in the interval [101, 105]j. In Figure 3(a), we depict the singular value decay of
the appended Loewner matrices, i.e., [\BbbL j \BbbL sj ], j \in \{ 1, 2\} . These matrices are used in
Procedure 1, i.e., in (57). Note that the Loewner matrices \BbbL j and the shifted Loewner
matrices \BbbL sj are defined as in section 4.2. Additionally, Figure 3(a) depicts the decay
of the Hankel singular values of the averaged Gramians corresponding to \Sigma , as defined

D
ow

nl
oa

de
d 

04
/2

6/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA-DRIVEN MOR OF LSS B601

in (78). We observe that the 80th value attains machine precision (\epsilon \approx 10 - 16) in the
case of the Loewner matrices, while in the case of the balancing procedure, the same
truncation order provides a 10 - 9 decay. The decay presented in Figure 3 is a good
indicator for choosing the desired truncation order.

10 20 30 40 50 60 70 80 90 100 110 120

10-15

10-10

10-5

100
Singular value decay

Mode 1 (LSS)
Mode 2 (LSS)
Averaged Gramians

(a) Appended Loewner matrices + averaged
Gramians.

0 10 20 30 40 50 60 70 80

10-15

10-10

10-5

100

Singular value decay

Mode 1 (LSS)
Mode 2 (LSS)
Mode 1 (no switch)
Mode 2 (no switch)

(b) Appended Loewner matrices.

Fig. 3. Decay of the singular values for different matrices.

For both reduced order systems, \^\Sigma L and \^\Sigma B , we decide to truncate at order
k1 = k2 = 27 for the two subsystems. This choice was made so that the neglected
singular values corresponding to all three curves in Figure 3(a) are less than the chosen
tolerance value, i.e., \epsilon 1 = 10 - 6. More specifically, this corresponds to the following

values for the 27th singular value: \sigma 
(1)
27 = 1.5498 \cdot 10 - 7 for the first Loewner subsystem

and \sigma 
(2)
27 = 8.5741 \cdot 10 - 8 for the second Loewner subsystem. The last kept singular

value corresponding to the averaged balanced model is higher, i.e., \sigma 
(3)
27 = 1.5516\cdot 10 - 6.

Hence, we would like to emphasize that the singular value decay is faster for Loewner
compared to BT and thus certain errors can be achieved with lower order models.

Additionally, in Figure 3(b) we present the singular value decay of appended
Loewner matrices [\BbbL j \BbbL sj ], j \in \{ 1, 2\} , defined as in section 4.2 (the LSS case for
which samples of higher order transfer functions are used in the process). The first
and second curves correspond to these quantities. In the same figure, we present
the singular value decay of appended Loewner matrices defined as in section 3.2 (the
classical linear case with no switching and in which only samples of first order linear
transfer functions are used in the process). The third and fourth curves correspond to
these quantities. Note that the singular value decay of the latter matrices is slightly
slower than that of the first matrices.

100 101 102 103 104 105 106

Frequency(ω)

10-8

10-6

10-4

Error in frequency domain - mode 1

Loewner
BT

100 102 104 106

Frequency(ω)

10-7

10-5

Error in frequency domain - mode 2
Loewner
BT

Fig. 4. Frequency domain approximation error.
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We assess the performance the two MOR methods mentioned above in the fol-
lowing ways: depicting the frequency domain simulation error, computing the \scrH 2 and
\scrH \infty norms of the error subsystems, and depicting the time domain simulation error.

First, start by comparing the quality of approximation of the frequency response.
In Figure 4 the frequency domain error is depicted for both MOR methods (Loewner
and BT).

Observe that the error curve corresponding to the Loewner method is lower than
that of the BT method for most of the frequency points considered in this experiment.
This behavior is especially noticeable in the low frequency range. If one compares the
maximum of the error, i.e., the \scrH \infty norm, then one can notice that for mode 1 the
Loewner method produces a higher peak error, while for mode 2, the Loewner method
produces a lower peak error.

Next, we explicitly compute the relative approximation errors for each mode indi-
vidually, for both reduction methods, with respect to the \scrH 2 norm. More specifically,
\| \^\Sigma Lj

 - \Sigma j\| \scrH 2
/\| \Sigma j\| \scrH 2

for the Loewner method, and \| \Sigma Bj
 - \Sigma j\| \scrH 2

/\| \Sigma j\| \scrH 2
where

j \in \{ 1, 2\} for the BT method. Additionally, we compute the \scrH \infty norm relative errors,

i.e., \| \^\Sigma Lj
 - \Sigma j\| \scrH \infty /\| \Sigma j\| \scrH \infty for the Loewner method, and \| \Sigma Bj

 - \Sigma j\| \scrH \infty /\| \Sigma j\| \scrH \infty 

where j \in \{ 1, 2\} for the BT method. The results are presented in Table 1. Note that,
for mode 1, the balanced truncation method produces slightly lower errors, while for
mode 2, the errors corresponding to the Loewner method are lower.

Table 1
Relative approximation error for the two modes in the \scrH 2 and \scrH \infty norms.

\scrH 2 Loewner Bal trunc
Mode 1 3.9210 \cdot 10 - 5 2.0303 \cdot 10 - 5

Mode 2 9.9040 \cdot 10 - 6 2.2922 \cdot 10 - 5

\scrH \infty Loewner Bal trunc
Mode 1 3.3888 \cdot 10 - 5 5.5266 \cdot 10 - 6

Mode 2 2.6036 \cdot 10 - 7 6.3798 \cdot 10 - 7

Finally, we compare the time domain response of the original linear switched
system against the ones corresponding to the two reduced models. We first use a
simple sinusoidal signal, i.e., u(t) = cos(t)/10, as the control input. The piecewise-
constant signal in the upper part of Figure 5(a) represents the switching signal. The
switching times are chosen within the interval [0,10] seconds so that fast switching
is also exhibited. More precisely, note that in the range [5.5,7]s, this signal switches
between modes 1 and 2 much more frequently than in the rest of the time axis.

As can be seen in the lower part of Figure 5(a), the output of the LSS is well
approximated for both MOR methods (all three curves are indistinguishable from one
another). The blue circles located on the observed output curve in the lower part of
Figure 5(a) are used to mark the switching times.

Finally, by inspecting the time domain error between the original response and the
responses coming from the two reduced models (depicted in Figure 5(b)), we notice
that the error curve corresponding to the Loewner method is two orders of magnitude
below the error curve corresponding to the BT method for most of the points on the
time axis.

Additionally, we repeat the time domain simulation experiment depicted in Fig-
ure 5 by considering another control input signal. Let u(t) = (

\sum 10
k=1 sin(\omega kt))/10 be

a richer frequency spectrum signal, where the frequency points \omega k are logarithmically
spaced in the interval [1, 50]. We also choose another switching signal \sigma (t), with ran-
dom switching times (and with no particular imposed conditions to the frequency of
switching). In Figure 6 we depict the switching signal, the observed output, and the
approximation error. Similar conclusions to the ones mentioned above for the results
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0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

Switching signal σ(t)

0 1 2 3 4 5 6 7 8 9 10
Time(t)

-2

0

2
Time domain simulation - Output

Original LSS
Reduced LSS - Loewner
Reduced LSS - BT

(a) The switching signal and the output.

0 1 2 3 4 5 6 7 8 9 10
Time(t)

10-12

10-10

10-8

10-6

10-4

E
rr
o
r

Output error in time domain

Loewner
BT

(b) Approximation error of the output signal.

Fig. 5. Time domain simulation---first choice of input.

in Figure 5 can be drawn by inspecting Figure 6.

0 1 2 3 4 5 6 7 8 9 10

1

1.5

2

Switching signal σ(t)

0 1 2 3 4 5 6 7 8 9 10
Times(t)

-5

0

5

Time domain simulation - OutputOriginal LSS
Reduced LSS - Loewner
Reduced LSS - BT

(a) The switching signal and the output.

0 1 2 3 4 5 6 7 8 9 10
Time(t)

10-10

10-8

10-6

10-4

M
a
g
n
it
u
d
e

Output error in time domain Loewner
BT

(b) Approximation error of the output signal.

Fig. 6. Time domain simulation---second choice of input.

6.4. Third example. For the last experiment, consider a large scale LSS con-
structed as in [22] from the original machine stand example given in [16]. In this
example, the system variability is induced by a moving tool slide on the guide rails of
the stand (see Figure 7). The aim is to determine the thermally driven displacement
of the machine stand structure. Following the model setting in [16], consider the heat
equation with Robin boundary conditions. Using a finite element (FE) discretization
and denoting the external influences as the system input z, we obtain the dynamical
heat model

(79) Eth \.x(t) = Ath(t)x(t) +Bth(t)z(t),

describing the deformation independent evolution of the temperature field x with the
system matrices Eth,Ath(t) and Bth(t). The variability of the model is described
by time dependent matrices Ath(t) and Bth(t). This leads directly to the linear
time varying system described by (79). Since model reduction for LTV systems is
a highly storage consuming procedure, the authors of [22] exploit properties of the
spatially semidiscretized model to set up an LSS consisting of LTI subsystems only.
As described in [16], the guide rails of the machine stand are modeled as 15 equally
distributed horizontal segments (see Figure 7). Any of these segments is said to be
completely covered by the tool slide if its midpoint lies within the height of the slide.
On the other hand, each segment whose midpoint is not covered is treated as not in
contact, and therefore the slide always covers exactly five segments at each time. This
in fact allows the stand to reach 11 distinct, discrete positions given by the model
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Fig. 7. Schematic of the tool slide on the guide rails of the stand [22].

restrictions. In this way, one can define the subsystems of the LSS as follows:

(80) \Sigma \ell :

\Biggl\{ 
Eth \.x = A\ell 

thx+B\ell 
thz

\ell ,

y = Cx,

where \ell \in \{ 1, . . . , 11\} . Note that the change of the input operator Bth(t) is hidden
in the input itself, since it is sufficient to activate the correct boundary parts by
choosing the corresponding columns in Bth via the input z\ell . Therefore, the input
operator Bth(t) := Bth becomes constant and the input variability is represented by
the input z\ell :

(81) z\ell i :=

\Biggl\{ 
zi, segment i is in contact,

0 otherwise
for i \in \{ 1, . . . , 15\} .

Here, zi \in \BbbR is the thermal input as described in [22]. The only varying part influ-
encing the model reduction process left in the dynamical system is the system matrix
Ath(t) := A\ell 

th.
Since the application of this example is to study the thermally driven deformation

at particular points, the output equation y = Cz is used to explicitly select these
points (such as the ones located around the tool center point or around the connections
to neighboring assembly groups). The rows of the matrix C are unit vectors with
only 0 and 1 values, and hence the output y contains selected entries of the internal
variable x.

After the finite element discretization was performed, obtain an LSS with 11
active modes (denote it by \Sigma ). Each subsystem has dimension n = 16626. The E and
C matrices are the same for all modes of the LSS. The B matrices have 6 columns
(corresponding to different inputs), and the C matrix has 9 rows (corresponding to
different outputs). All the aforementioned matrices are saved in sparse format.

The proposed extension of the Loewner method to LSSs (described in sections 4
and 5) can be generalized in a straightforward manner to the MIMO case similarly to
the linear case (see [6]) by introducing left and right tangential direction vectors.

In the following experiments, we take into consideration three active modes (the
first, the third, and the fifth). This corresponds to the particular case of D = 3
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(treated in section 5). Furthermore, consider only the pairs of the first and third
inputs as well as the first and third outputs to be activated at any time, for each of
the three modes. Hence, the measurements used in the Loewner framework are 2\times 2
matrices.

We analyze a simplified model composed of three modes and certain input/output
pairs in order to ensure that the numerical results can be depicted in a clear and
distinguishable manner (without overcrowding the figures).

All subsystems are stable linear systems of order 16626 in sparse format. The
large scale LSS \Sigma will again be reduced, as in the second example, by means of the
Loewner method and the balanced truncation method proposed in [28].

We perform a time domain simulation to investigate the approximation quality
of the observed output, which in this case has two components. More exactly, the
choice of outputs is as follows: the first output represents the 9163rd entry of the
deformation vector x, while the second output is the 9814th entry of x.

The singular values of the frequency response of each original subsystem are
depicted in Figure 8, More exactly, for all three modes and for each frequency point
j\omega , compute the two singular values corresponding to Hk(j\omega ) \in \BbbC 2\times 2.

10-6 10-4 10-2 100

Frequency(ω)

10-6

10-4

10-2

Frequency response of the original LSS

Ist subsystem

IInd subsystem

IIIrd subsystem

Fig. 8. Frequency response of the original subsystems.

For the Loewner method, we choose 200 logarithmically spaced interpolation
points in the interval [10 - 6, 5 \cdot 100]j. The decay of the singular values of the appended
Loewner matrices [\BbbL j \BbbL sj ] corresponding to mode j for j \in \{ 1, 2, 3\} is presented in
Figure 9. We notice that all three curves are close to each other and already the 100th
singular values attain machine precision. Additionally, in the same figure one can ob-
serve the decay of the approximate averaged Hankel singular values corresponding to
\Sigma . Of course, one cannot compute exact Gramians for the large order system but
only approximate low rank factors by using, for instance, such software tools as in
[36].

For the Loewner reduced order LSS (i.e., \Sigma 1), we decide to truncate at order k =
66 for all three subsystems. This corresponds to eliminating the singular values that
are smaller than 10 - 13 (for each of the three appended Loewner matrices). The same
truncation order is chosen for the reduced order model computed via BT for which
the last kept singular value (before the balancing truncation procedure is applied) is
\sigma avg
66 = 8.0693 \cdot 10 - 11.

In the upper part of Figure 10, the control input signals u1 and u2 are depicted:

(82) u1(t) =
1

2
sin(t/20)e - t/500 +

1

20
e - t/500, u2(t) =

1

10
.
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50 100 150 200 250

10-15

10-10

10-5

100
Singular value decay

Mode 1 (LSS)
Mode 2 (LSS)
Mode 3 (LSS)
Averaged Gramians

Fig. 9. Decay of the singular values of the different matrices.

As can be observed in the x axis of this figure, the running time of the performed
experiment is 1 hour (the control is active from time ts = 0s to time te = 3600s). In
the lower part of Figure 10, the switching signal \sigma : \BbbR \rightarrow \{ 1, 2, 3\} is presented. Note
that the time axis is restricted from 380 to 440 seconds. The switching signal follows
a simple periodical rule by repeating the sequence of modes (1, 2, 3, 2, 1).

0 500 1000 1500 2000 2500 3000 3500
-0.4
-0.2

0
0.2
0.4
0.6

The control input signals
Input 1
Input 2

380 390 400 410 420 430 440
Time(t)

1

2

3
Switching signal σ(t)

Fig. 10. The control and switched input signals.

Next, compare the time domain response of the original LSS against the ones
corresponding to the two reduced models. Notice that the two outputs of the LSS are
well approximated for both MOR methods, as can be seen in Figure 11 (the upper
part depicts the first observed output, while in the lower part, the second output is
shown). As for Figure 5 in section 6.3, the blue circles included on the output curves
are used to mark the exact time instances when switching occurs. Again, the time
axis is restricted from 380 to 440 seconds.

Finally, we inspect the time domain error between the original response and the
responses of the two reduced models (depicted in Figure 12). Note that the time axis
is again restricted to one minute, in between [380, 440] seconds. We observe that the
error curve corresponding to our proposed method is always below the error curve
corresponding to the BT method in the considered time range.

7. Summary and conclusions. In this paper we address the problem of model
reduction of linear switched systems from data consisting of values of high order
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Time domain simulation - Output 1
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Fig. 11. Time domain simulation.
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Time domain simulation error - Output 1

Loewner
BT

380 390 400 410 420 430 440
Time(t)

10-6
10-4
10-2

Time domain simulation error - Output 2

Fig. 12. Time domain approximation error.

transfer functions. More specifically, we have extended the Loewner framework to
the reduction of LSS. The Loewner approach to model reduction, first developed
for linear time-invariant systems (see [6] for a survey), was later extended to linear
parametrized systems [5, 21] and to bilinear systems [4].

The underlying philosophy of the Loewner framework is to collect data and then
extract the desired information. For the case of linear switched systems, the data must
be computed a priori rather than measured (as for linear systems with no switching
where one can use vector network analyzers (VNAs), for instance). Having the re-
quired data, the next step would be to arrange it into matrix format. We have shown
that the Loewner matrices (which represent the recovered E and A matrices of the
underlying LSS) can be automatically calculated as solutions of Sylvester equations.
In the proposed framework, the transition/coupling matrices can be recovered from
the given computed data as well. Since these matrices need not be square, they allow
having different dimensions of the reduced state-space in different modes.

Three numerical examples demonstrate the effectiveness of the proposed ap-
proach. The quality of approximation for the reduced models was determined by
performing both frequency and time domain tests. We have chosen a generalization
of the classical balanced truncation method to LSS for comparison purposes. As op-
posed to most of the balancing methods we encountered in the literature (see [13],
[10], [37], and [34]), the method we choose (i.e., [28]) does not require solving systems
of LMIs (linear matrix inequalities) which might be difficult for very large systems
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such as the one in section 6.4. The results of the new proposed method turned out to
be overall better than the ones obtained when using the BT method. More precisely,
we would like to emphasize that the Loewner method seems to be able to achieve
approximation accuracy similar to that of the BT method, but with lower dimension
of the reduced order models constructed. This observation is confirmed by the faster
decay of the singular values computed for our method as compared to the decay of
the (averaged) Hankel singular values corresponding to the BT method (presented in
Figures 3 and 9).

In section 6.3, we also investigated switching signals \sigma (t) that exhibit a fast switch-
ing behavior (hence smaller dwell times) in a particular time interval (Figure 5(b)).
We conclude that there are no reasons to suspect that our method will fail for such
cases.

In general, stability preservation of the reduced order model is still an open issue
for moment matching MOR methods, even for linear systems. In fact, even for linear
systems, the Loewner framework does not guarantee preservation of stability. Since
the model order reduction method presented in this paper is a direct extension of
the Loewner framework for linear systems, in general, it will not preserve stability.
However, although it is likely that under suitable assumptions the proposed method
could be modified to preserve stability, this remains a topic of future research.

The Loewner framework is conceptually a data driven MOR method that builds
reduced order models that interpolate the frequency response of the large scale orig-
inal system. In principle, this method requires only data and not solving any type
of equations. In the linear case, the data can be measured using VNAs (vector net-
work analyzers). In the nonlinear case (as for bilinear, quadratic-bilinear, or linear
switched), the data is obtained by direct numerical simulation (DNS). In the LSS case,
no equation needs to be solved (the data is gathered and put together in the fashion
described in the paper). The computational complexity of our proposed method is
related to the DNS process. Hence, one needs to compute samples of the generalized
transfer functions (in the case for which these values are not provided via real time
measurements). This can be performed in a fast way by avoiding the explicit inversion
of the matrices \omega jEk  - Ak and using, for example, Gaussian elimination instead.
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