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Abstract
Wepresent the basic ingredients of continuumoptomechanics, i.e. the suitable extension of cavity-
optomechanical concepts to the interaction of photons and phonons in an extendedwaveguide.We
introduce a real-space picture and arguewhich coupling termsmay arise in leading order in the spatial
derivatives. This picture allows us to discuss quantumnoise, dissipation, and the correct boundary
conditions at thewaveguide entrance. The connections both to optomechanical arrays as well as to the
theory of Brillouin scattering inwaveguides are highlighted. Among other examples, we analyze the
‘strong coupling regime’ of continuumoptomechanics thatmay be accessible in future experiments.

1. Introduction

Cavity optomechanics [1] is a very active research area at the interface of nanophysics and quantumoptics. Its
aim is to exploit radiation forces to couple optical and vibrationalmodes in a confined geometry, with
applications ranging from sensitivemeasurements, wavelength conversion, and squeezing all theway to
fundamental quantumphysics. The paradigmatic cavity-optomechanical system is effectively zero-dimensional,
i.e. there is no essential notion of spatial distance or dimensionality.

However, even though the vastmajority of optomechanical systems rely on a cavity, there are a number of
implementations that evade this paradigm. In particular, optomechanical effects are observed inwaveguide-type
structures, where both the opticalfield and the vibrations propagate in 1D,with the potential to uncover new
classical and quantumphenomena. Examples includewaveguides fabricated on a chip [2, 3] and thin
membranes suspended in hollow-core fibres [4]. There have also been hybrid approaches, e.g., where the light
propagates along thewaveguide but couples to a localizedmechanicalmode [5], or with acoustic waves in
whispering-gallerymicroresonators [6–8].

Coupling light and sound inside awaveguide has long been the subject of studies onBrillouin andRaman
scattering in fibres [9–12]. This connection, betweenBrillouin physics and optomechanics, has recently been
recognized as potentially fertile, and during the past year,first theoretical studies emphasizing this connection
have emerged. The cavity-optomechanical coupling in a torus has been derived by starting from the known
description of Brillouin interactions in an infinitely extendedwaveguide [13]. Conversely, theHamiltonian
coupling light and sound in suchwaveguides has been derived starting from themicroscopic optomechanical
interaction [14–17], including both boundary and photoelastic terms and fully incorporate geometric and
material properties of the system. These works represent important bridges between the rapidly developing field
of optomechanics and the significantlymore advanced field of Brillouin scattering.

Independently, the role of dimensionality has also been emphasized for several years now in another area of
optomechanics: discrete optomechanical arrays, i.e. periodic lattices of coupled optical and vibrationalmodes.
These could be implemented in various settings, including photonic crystals [18], coupled optical disk
resonators [19], or stacks ofmembranes. Recent theoretical studies have predicted interesting features, like
photon–phonon polariton bandstructures [20–22], synchronization and nonlinear dynamics [23], long-range
coupling [24–26], quantummany-body physics [27], artificial gauge fields, and topological transport [28–30].
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In the presentmanuscript, our aim is to establish a simple framework for ‘continuumoptomechanics’, i.e.,
optomechanics in 1Dwaveguides without cavitymodes, and to phrase it in a language that is as close as possible
to thewell-known cavity optomechanics case [1]. (i)We introduce a real-space picture and discuss howone can
enumerate the possible coupling terms to leading order in spatial derivatives. (ii)We showhow the continuum
limit arises starting fromdiscrete optomechanical arrays, thereby connecting Brillouin physics and these lattice
structures. (iii)We include dissipation and quantumnoise, deriving the quantumLangevin equations and the
boundary conditions at the input of thewaveguide. (iv)Wediscuss the ‘strong coupling regime’ thatmay be
accessible in the future. (v)Weprovide an overview of experimentally achieved coupling parameters.

2. Continuumoptomechanics in a real-space formulation

The usual cavity-optomechanical interactionHamiltonian connects the photonfield â of a localized optical
mode and the phononfield b̂ of a localized vibrationalmode. It is of the parametric form [1]

- +ˆ ˆ ( ˆ ˆ ) ( )† †
g a a b b . 10

Our goal is to generalize this in themost straightforwardway to the case of 1D continuum fields.Wewill do so in
real-space, using phenomenological considerations.

To avoid confusion,wepoint out that our goal is specificallynot to provide amicroscopic derivationof
coupling constants. Rather, we stay close to the spirit of cavity optomechanics, where themicroscopic calculation
of g0 is left as a separate task,while the general formof the equations is universal. For an evaluation of the coupling
constants for particular geometries onewould resort tomicroscopic approaches, such as those presented recently
in [14–16, 31].While these approaches are powerful, andnecessary to design an experimental system, they are
involved and rather complex as an entry point into continuumoptomechanics. Therefore, a phenomenological
analysis can beuseful in its own right. Formanypurposes, the level of detail provided herewill be sufficient and
reveal the essential featuresmore easily.Moreover, a real-space picture is particularly useful in spatially
inhomogeneous situations, such as those brought about by disorder, design, ornonlinear structure formation.

We introducephotonandphononfields ˆ ( )a x and ˆ ( )b x , respectively, for thewaveguide geometry thatwehave
inmind (figure 1). In contrast to prior treatments, wedonot assume thefields to be sharply peaked around a
particularwavevector [14–17]. This keeps our approach general and simplifies the representationof the interacting
fields, especially for situationswith strongly nonlinear dynamics. For example, this approach avoids theneed to
treat cascaded forward-scatteringwith an infinite number of photonfields, similar to the approach taken in [32].
Thefields are normalized such that the total photonnumber in the entire systemwouldbe ò ˆ ( ) ˆ ( )†xa x a xd , and
likewise for thephonons. In addition, thefields obey the usual bosonic commutation relations for a 1Dfield, e.g.

d¢ = - ¢[ ˆ ( ) ˆ ( )] ( )†a x a x x x, . For a nearlymonochromaticwave packet of frequencyω, the energy density at
position x is wá ñˆ ( ) ˆ ( )†a x a x , and thepower can be obtained bymultiplying this by the group velocity. Theplane-

wavenormalmodeswouldbe ò p= -ˆ ( ) ( ) ˆ ( )a k x a xd 2 e kxi , with d¢ = - ¢[ ˆ ( ) ˆ ( )] ( )†a k a k k k, .
In theusual cavity-optomechanical situation, the displacementof themechanical resonatorwouldbe

= +ˆ ˆ ˆ†
u b b , ifwenormalize it via dividingby the zero-pointfluctuation amplitude. Likewise, in thepresent situation,
usingourdefinitionof the continuousphononfield ˆ ( )b x introducedabove, thenormalizedmechanical displacement

field canbewritten as = +ˆ ( ) ˆ ( ) ˆ ( )†
u x b x b x . In themost straightforward case, the physical displacement at any given

pointwill thenbeobtainedbymultiplyingwith a suitable (three-dimensional, vectorial)mode function. In someof
the simplest cases, discussed further below, ˆ ( )u x is directly equal to thephysical displacement, up to a constant

prefactor (this prefactor has thedimensionsof length3/2, since b̂ has thedimension length−1/2).
As is well-known from standard cavity optomechanics, any arbitrariness (e.g. in terms of the coupling)

arising from themode function normalization is avoided by formulating everything in terms of ˆ ( )a x and ˆ ( )b x

Figure 1.Continuumoptomechanics. (a)Dual nanoweb structure in photonic crystal fibres; displacement field ˆ ( )u x describing
deflection of themembranes. (b)Nanobeam; ˆ ( )u x describing longitudinal displacement. (c)Photon and phononfields in a 1D
waveguide geometry. (d) Situation at the input facet, relevant for the boundary conditions.
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(or equivalently ˆ ( )u x ), since their normalization is directly tied to the overall energy in the system. Therefore,
this is what wewill do in the following.

Themost obvious continuumoptomechanical interaction can bewritten down as a direct generalization of
the cavity case:

 ò= -ˆ ˜ ˆ ( ) ˆ ( ) ˆ ( ) ( )†H g x a x a x u xd . 2int 0

Here g̃0 defines the continuum optomechanical coupling constant, which replaces the usual single-photon
cavity-optomechanical coupling g0.We note that g̃0 has dimensions of frequency times the square root of length.

Itsmeaning can be understood best in the followingway: If there is amechanical deflection á ñ =b̂ l1 ,

corresponding to 1 phonon per length l, then the energy of any photon is shifted by - g̃ l20 .Wewill

commentmore on the l dependencewhenwemake the connection to discrete optomechanical arrays.
While equation (2) is a plausible ansatz, it turns out to be only a part of the full interaction. Specifically, in a

real-space formulation of the continuum case, derivative termsmay appear, whichwewill nowdiscuss.
Both boundary and bulk terms contribute to the optical frequency shift when a dielectric is deformed, as is

well-known for optomechanics and has also been discussed recently in the present context [15, 16]. The
boundary terms are proportional to the displacement û, and theirmost natural representation is in the formof
equation (2), if û represents the deflection of the boundary (but see below). The bulk terms (photoelastic
response), however, depend only on the spatial derivatives of the displacement field. In particular, this also
involves derivatives along the longitudinal (waveguide) direction, leading to an expression

 ò= - ¶
++- ++-ˆ ˆ ( ) ˆ ( ) ˆ ( ) ( )†H g x a x a x u xd . 3xint 0

Wehave introduced a superscript++− for the coupling constant, with− referring to the derivative, since ¶ ûx

changes sign if we set -ˆ ( ) ˆ ( )u x u x .
It is important tonote that the shapeof theHamiltoniandependson thephysicalmeaningof thedisplacement û,

which is to somedegree amatter of definition.Wehave to distinguish the full vectorfield
 ˆ ( )u r , which is defined

unambiguously, from the reducedone-dimensionalfield ˆ ( )u x that forms theobject of our analysis. As a concrete
example, consider longitudinalwaves on ananobeam.The1Dfield ˆ ( )u x could thenbedefined as the longitudinal
displacement, evaluated at the beamcenter (seefigure1(b),white arrow). In that case thedensity change (crucial for
photoelastic coupling) is proportional to ¶ ˆ ( )u xx . At the same time, afinite Poisson ratiowill lead to a lateral
expansionof the beam (relevant for themoving-boundary typeoptomechanical coupling). The surface deflectionwill
be proportional to thedensity change, and thus alsobe set by ¶ ˆ ( )u xx .However,we couldhavedefined ˆ ( )u x
differently, namely to represent directly the surfacedeflection (figure 1(b), black arrows). In that case, the density
changewould be givenby ˆ ( )u x . Twodifferent, equally valid definitions of ˆ ( )u x would thus lead todifferent
expressions in theHamiltonian.

Another typically encounteredphysical examplewouldbe transversewaves propagating along such a
nanobeamwaveguide. In that case, it ismost natural to choose ˆ ( )u x as the transverse displacement, and thiswould
directly couple to the lightfield (as it defines the local distortion of the structure from its equilibriumposition).
Similarly, the ‘dual-web’fibre structure of [33] (figure 1(a)) shows the samekindof coupling, since ˆ ( )u x controls
the separation between the twoparallelmembranes, which affects the local effective refractive index. In general, the
microscopic three-dimensional displacementfieldmaydependonboth ^( )u x and ¶ ˆ ( )u xx , as can be seen for
example in the textbook case of a surface-acousticwave, whose longitudinal component can bewritten as a
derivative of a 1Dwavefield, whereas its transverse component is directly proportional to the 1Dwavefield.

Besides derivatives ¶ ûx , wemay also encounter derivatives of the electric field. It is well-known that
electromagnetic waves insidematter can also have longitudinal components, which change sign upon inversion
of the propagation direction (in contrast to the transverse fields). Consequently, the electromagneticmode
functions depend on the direction of thewavevector, i.e. = ^

   ( ) ( ) ( )E r E r kxexp ik . Upon going to our reduced
1D real-space description, this dependence on the sign of k leads to terms that are the derivatives of the 1Dfield
(since for =ˆ ( ) ˆa x ae kxi wehave ¶ =ˆ ( ) ˆ ( )a x ka xix ).

Table 1 shows all the coupling terms that arise in a real-spacemodel of continuumoptomechanics, to
leading order in the derivatives. The simplest choice, of equation (2), would be identified as = +++g̃ g0 0

.
Note that even and odd terms cannot be present simultaneously, unless inversion symmetry is broken. As

long as inversion symmetry is intact, wemust be able to turn a solution u(z, t) into an equally valid solution
unew(z, t)=u(−z, t) obtained by spatial inversion (or, possibly, unew(z, t)=−u(−z, t), if u is odd under
reflection, as is the case if u represents longitudinal displacement along the propagation direction).Mixing even
and odd terms in the equations ofmotionwould violate this condition.

As remarked above, one can choose the definitionof the 1Dfield ˆ ( )u x to select either the ‘even’or the ‘odd’
representation.Note that the constants have different physical dimensions (e.g. ++-g

0
is of dimensionsm3/2 Hz).
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Interaction termswith derivatives would also arise by starting from themicroscopic theory, translating from
k-space into real-space. In general, this could yield derivatives of any order.Here, our aimwas to keep the leading
terms, retaining qualitatively important features such as the difference between forward- and backward-
scattering amplitudes (section 7).

Is our list complete? To answer this, let us discuss the ‘even’ sector only, without loss of generality. In this sector,
wewent up to secondorder in the derivatives, keeping terms such as ¶ ¶( ˆ ) ˆ ( ˆ)†a a ux x .Why didwenot consider
secondderivatives of individualfields, like ¶ˆ ˆ ( ˆ)†a a ux

2 ? The answer is that these can indeed bepresent.However, a
simple integrationbypartswill transform those terms into a combination of the terms thatwe already listed.

Beyond the interaction, theHamiltonian contains the unperturbed energy of the photons,
ò w=ˆ ( ) ˆ ( ) ˆ ( )†H k k a k a kd ,a and likewise Ĥb for the phononswith their dispersionΩ(k). In real-space, the same

term could bewritten as  ò w= - ¶ˆ ˆ ( ) ( ) ˆ ( )†H x a x a xd i ,a x whereω(−i∂x) applied to e
ikxwill reproduceω(k).

The resulting coupled continuumoptomechanical Heisenberg equations ofmotion take the form:

w¶ = - - ¶ + +ˆ ( ) ˆ ˜ ˆ ( ˆ ˆ ) ( )†
a a g a b bi i i 4t x 0

¶ = - W - ¶ +ˆ ( ) ˆ ˜ ˆ ˆ ( )†b b g a ai i i . 5t x 0

Here, equations (4) and (5) are expressedwith the simple interaction.More generally, the interactionmaybe

comprisedof a linear combinationof terms in table 1. For example, the term +˜ ˆ ( ˆ ˆ )†
g a b bi 0 in equation (4)becomes

*

- ¶ ¶

- ¶ ¶ + ¶ ¶

+++ --+

-+- -+-

ˆ ˆ ( ˆ ˆ)

( ˆ ) ( ˆ)( ˆ) ( )

g au g u a

g a u g a u

i i

i i 6

x x

x x x x

0 0

0 0

when even couplings are considered. Likewise, term ˜ ˆ ˆ†g a ai 0 of equation (5) becomes

*

+ ¶ ¶

- ¶ ¶ - ¶ ¶

+++ --+

-+- -+-

ˆ ˆ ( ˆ )( ˆ)

(( ˆ ) ˆ) ( ˆ ( ˆ)) ( )

† †

† †

g a a g a a

g a a g a a

i i

i i . 7

x x

x x x x

0 0

0 0

The real-space formulation developed here, with the complete list of interactions derived above, will be
especially powerful for considering the effects of nonlinearities and of spatial inhomogeneities (due to disorder
or structure formation). No assumptions about thefields peaking around a certainwavevector have been
employed, nor arewe required to introduce amultitude of photonfields for cases like forward scattering. The
classical version of these nonlinear equations can readily be solved by using split-step Fourier techniques.

3.Dissipation and quantumnoise

So far, we have only discussed the terms that give rise to completely coherent dynamics.However, in a real
system, dissipation of both photons and phonons is present. In addition, there is necessarily vacuumnoise (and
possibly thermal noise) entering the system via these dissipation channels. Therefore, we are dealingwith an
(extended) open quantum system.

To discuss the dissipation and the associated quantumand thermal noise, we employ thewell-known input–
output formalism and adapt it suitably to the continuum case. If we assume the photon loss rate to beκ, then the
equation ofmotion contains additional terms

k
k¶ = ¼ - +ˆ ( ) ˆ ( ) ˆ ( ) ( )a x t a x t a x t,

2
, , , 8t in

where the vacuumnoisefield âin obeys the commutation relation d d¢ ¢ = - ¢ - ¢[ ˆ ( ) ˆ ( )] ( ) ( )†a x t a x t x x t t, , ,in in

and has the correlators d dá ¢ ¢ ñ = - ¢ - ¢ˆ ( ) ˆ ( ) ( ) ( )†a x t a x t x x t t, ,in in and á ¢ ¢ ñ =ˆ ( ) ˆ ( )†a x t a x t, , 0in in . These ensure
that the commutator of â is preserved, i.e. the vacuumnoise is constantly being replenished to offset the losses.

Themechanical field can be treated likewise, with a damping rateΓ in place ofκ, andwith the additional

contribution of thermal noise: d dá ¢ ¢ ñ = + - ¢ - ¢ˆ ( ) ˆ ( ) ( ¯ ) ( ) ( )
†

b x t b x t n x x t t, , 1in in th and

Table 1.Possible coupling terms (to leading order in the
derivatives) for continuumoptomechanics, formulated
in real-space. TheHamiltonian is of the form
 ò- ( )xd ... , with the integrand (K) containing one or

more terms displayed here.

Even coupling terms Odd coupling terms

+++ ˆ ˆ ˆ†g a au0
¶++-ˆ ˆ ( ˆ)†g a a ux0

¶ ¶--+( ˆ )( ˆ) ˆ†g a a ux x0 ¶ +-++( ˆ ) ˆ ˆ†g a au h.c.x0

¶ ¶ +-+-( ˆ ) ˆ ( ˆ)†g a a u h.c.x x0 ¶ ¶ ¶---( ˆ )( ˆ)( ˆ)†g a a ux x x0

4
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d dá ¢ ¢ ñ = - ¢ - ¢ˆ ( ) ˆ ( ) ¯ ( ) ( )
†

b x t b x t n x x t t, ,in in th . Here = W - -¯ ( ( ) )n k Texp 1Bth
1 is the occupation at

temperatureT. For simplicity, we assumed afixed frequencyΩ, since the phonon dispersionΩ(k) is usually
nearlyflat.

4. Boundary conditions

Besides the dissipation distributed along the extended 1D continuumoptomechanical system (analyzed in the
previous section), there are also the input and output ports at the ends of thewaveguide. These require a separate
treatment, which can bemodeled after input–output theory as it is known for cavity systems.

Wenow turn to the driving and boundary terms. A laser injecting light of amplitudeαin at point x yields an
additional term k a ( )x t,ex in in equation (8), with a a= w-( ) ( )x t x, e t

in in
i L . Hereκex is the coupling to the

fieldmode populated by the laser, and w a∣ ( )∣x t,L in
2 is the power per unit length impinging on thewaveguide

at position x. This description is appropriate for illumination from the side, which is feasible but atypical in
waveguide experiments.

More commonly, light is injected at thewaveguide entrance. In that case, we consider a half-infinite system,
starting at x=0 and extending to the right (figure 1(d)). The boundary at x=0must be such that incoming
waves (including the quantum vacuumnoise) are perfectly launched into thewaveguide as right-goingwaves,
while left-movingwaves exit without reflection. For the simplest case of a constant photon velocity c, we need to
prescribe the right-going amplitude at x=0,

a¶ - ¶ = - ¶ +ˆ ( ) ˆ ( ) ( ( ) ˆ ( )) ( )a t c a t
c

t a t0, 0,
2

, 9t x t in in

where the ingoing quantumnoise has the correlator dá ñ =ˆ ( ) ˆ ( ) ( )†a t a t0in in , while á ñˆ ( ) ˆ ( )†a t a 0in in vanishes.
Equation (9) is valid also in the presence of dissipation. The solution of the freewave equation ¶ - ¶ =ˆ ˆa c a 0t x

2 2 2

with the boundary condition (9) is

= - + + ¬ˆ ( ) ˆ ( ) ˆ ( ) ( )a x t a x ct a x ct, , 10

where the right-moving field is set by ˆ ( )a tin :

=ˆ ( ) ˆ ( ) ( )a x a x c c2 . 11in

The left-moving field is an independent fluctuating field. The correlator of the right-movers is

d d

á ¢ ñ = á ¢ ñ

=
- ¢

= - ¢

 

⎛
⎝⎜

⎞
⎠⎟

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( )

† †a x a x
c

a x c a x c

c

x x

c
x x

1

2
1

2

1

2

in in

and the same result holds for the left-movers, such that the full equal-time correlator of the ˆ ( )a x field is set by
δ(x−x′).

5. Linearized description

So far, we have derived the full nonlinear quantumdissipative equations ofmotion for the coupled photon and
phononfields. However, inmany situations wemay simplify the analysis drastically by turning to a linearized
description. As usual, this assumes that the field consists of a strong classical amplitude and someweak quantum
fluctuations on top of it.

In a rotating frame, we have = w-ˆ ( ) ˆ ( ) · ( )a x t a x t, , e k x told new i L L , whereωL=ω(kL) is the laser frequency.
Fromnowon, we drop the ‘new’; all â are in the rotating frame.We get:

w¶ = - - ¶ + ¼ˆ ˜ ( ) ˆ ( )a ai i , 12t x

wherewe set w w w- ¶ = - ¶ -˜ ( ) ( )ki ix L x L. For fields with k≈kL, thismay be expanded, using the group
velocity v=dω(kL)/dk:

¶ = - ¶ + ¼ˆ ˆ ( )a v a . 13t x

The equation for the phononfield remains unaffected.
We linearize the equations (see appendix A) by setting b = á ñ( ) ˆ ( )x b x and a = á ñ( ) ˆ ( )x a x for the steady-

state solution, and d b= -ˆ ˆb b and d a= -ˆ ˆa a for thefluctuations. Thenwe obtain (for the simplest
interaction term):

d w d d d d¶ = - - ¶ + + + + ¼bˆ ˜ ( ) ˆ ˜( ˆ ˆ ) ˜ ˆ ( )†
a a g b b g ai i i i 14t x

5
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*d d d d¶ = - W - ¶ + + + ¼ˆ ( ) ˆ ( ˜ ˆ ˜ ˆ) ( )†b b g a g ai i i 15t x

Herewe introduced the linearized coupling aº˜( ) ˜ ( )g x g x0 , as well as the shift *b bº +b̃ ( ) ˜ ( ( ) ( ))g x g x x0 . The
omitted terms (K) in equations (14) and (15) contain the dissipation and fluctuations, in the same form as above
(onlywith dˆ ˆa a, and likewise for b̂). The boundary conditions for the fluctuations dâ do not contain any laser
driving anymore; i.e. wewould have equation (9) for dâ, but without the laser amplitudeαin.

6. Continuum limit for optomechanical arrays

In this section, our aim is to relate the framework presented above to thewell-developed theory of
optomechanical arrays [23, 27–29].Wewill show that the present system can be understood as the continuum
limit of a discrete optomechanical array, where the lattice constant tends to zero. This should help to transfer
insights between those twofields.

We consider an optomechanical arraywhere discrete localized optical and vibrationalmodes are coupled to

each other via the optomechanical interaction - +ˆ ˆ ( ˆ ˆ )† †
g a a b bj j j j0 , see figure 2. In addition, the photon and

phononmodes âj and b̂j are coupled by tunneling between neighboring sites. For the photons, in a 1D array, this

is described by the tight-bindingHamiltonian - å ++ˆ ˆ†J a a h.c.j l l j l j, . Here Jl is the tunnel coupling connecting
any two sites j and j+ l. The resulting dispersion relation for the optical tight-binding band is
w = -å d-( )k Jel

kl x
l

i , wherewe already introduced the lattice constant δx. For the phonons, an analogous
Hamiltonian holds, with a coupling constantKl and a resulting phononic bandΩ(k).

The continuum approximationwill be good if only longwavelengths (many lattice spacings) are excited. The
properly normalizedway to identify localizedmodeswith the continuum fields is

d d d d= =ˆ ˆ ( ) ˆ ˆ ( ) ( )a a j x x b b j x x, . 16j j

This ensures the validity of the commutator relations such as d¢ = - ¢[ ˆ ( ) ˆ ( )] ( )†a x a x x x, .We then obtain

 å= - + »ˆ ˆ ˆ ( ˆ ˆ ) ˆ ( )† †
H g a a b b H . 17

j
j j j jint

array
0 int

cont

Here Ĥint
cont

is the continuumversion, see equation (2). For this simple local interaction, none of the ‘derivative-
terms’ appears.We can now relate the coupling constants for the continuumand the discretemodel:

d=˜ ( )g g x . 180 0

In taking the proper continuum limit, g̃0 has to be keptfixed, i.e. d~g x10 as d x 0. This is the expected

physical behaviour, since g0∼xZPF, where = W( )x m2ZPF is the size of themechanical zero-point
fluctuations of a discretemechanicalmode. If thismode represents a piece of length δx in a continuous
waveguide, itsmass scales asm=δ x·ρ (with ρ themass density), such that g0 grows in themanner discussed
abovewhen δx is sent to zero. Note that the continuum limit alsomeans keepingω(k) andΩ(k)fixed in the
relevant wavelength range.

One can now also confirm that our treatment of quantumnoise and dissipation corresponds to the input–
output formalism applied to the discretemodes. For suchmodes, wewould have k= ¼- +kˆ̇ ˆ ˆ ( )a a a tj j j2 ,in ,

with d dá ñ =¢ ¢ˆ ( ) ˆ ( ) ( )†a t a t0j j j j,in ,in , and d=¢ ¢[ ˆ ˆ ]†a a,j j j j,in ,in , . Setting d d=ˆ ( ) ˆ ( )a t x a j x t,j,in in , this turns into the
continuumexpressions given above.

So far, we had assumed a local interaction of the type - +ˆ ˆ ( ˆ ˆ )† †
g a a b bj j j j0 . However, it is equally possible to

have an interaction that creates phononic excitations during the photon tunneling process:

Figure 2. (a) Schematic of a 1Doptomechanical array, with discrete localized optical and vibrationalmodes that are coupled locally.
(b)An alternative situation, where phonons couple to photon tunneling between sites. (c)Bare bandstructure for phonons (red) and
photons (blue; shifted by an offset that is determined by the pump laser frequency, using a rotating frame). The plot is shown for zero
optomechanical coupling.
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- ++( ˆ ˆ ) ˆ†g a a uh.c.j j j0 1 , where º +ˆ ˆ ˆ†
u b bj j j describes the displacement of amode attached to the link between

the sites j and j+1; see figure 2(b). It turns out that such a coupling gives rise to ‘derivative’ terms in the
continuummodel (see appendix B).

7. Elementary processes for a single optical branch

In this section, we now showhow the various terms in the couplingHamiltonianwill appear in the simplest
situation, where the scattering can be treated perturbatively and the system is translationally invariant (such that
a k-space picture applies). This is useful tomake the connection to standard perturbative treatments e.g. in
nonlinear optics.

Translating the couplings in table 1 to k-space, we arrive at the substitutions ˆ ( ) ˆa x ak, +ˆ ( ) ˆ† †a x ak q and

ˆ ( ) ˆu x uq, with = + -ˆ ˆ ˆ †
u b bq q q. In addition, ¶ ˆ ˆa kaix k, ¶ - + +ˆ ( ) ˆ† †a k q aix k q, and ¶ ˆ ˆu quix q. This

yields the following amplitude (for the example of the ‘even’ sector) in front of the resulting term +ˆ ˆ ˆ†a a uk q k q in the
Hamiltonian:

*- + + + + -+++ --+ -+- -+-{ ( ) ( ) } ( )g g k q k g k q q g kq . 19
0 0 0 0

Wecannow specifically distinguish the amplitudes for forward-scattering (q≈0):

= ++++ --+ ( )g g g k 20F0 0 0
2

and backward-scattering (q≈−2k):

*= - + ++++ --+ -+- -+-( ) ( )g g k g k g g2 . 21B0 0
2

0
2

0 0

Clearly it was important to keepmore than the simplest interaction term +++g
0

in real-space to allow that these
amplitudes are different.

The situation differs significantly from standard cavity optomechanics, if only forward-scattering is
considered. The crucial asymmetry between Stokes and anti-Stokes processes is absent here in forward-
scattering, where phonons of wavenumber q can be emitted and absorbed equally likely, scattering laser photons
into a comb [4, 32, 34, 35] of sidebandsωL±nΩwithΩ=Ω(q). As a consequence, basic phenomena in cavity
optomechanics, like cooling or state transfer, do not translate to forward scatteringwith a single optical branch.
The optical dispersion is rarely sufficient to introduce symmetry breaking, as typical propagation lengths are too
small.More precisely, the slight remaining asymmetry due to the optical dispersion d2ω/dk2 over the frequency
rangeΩ is typically insufficient: the difference between Stokes and anti-Stokes wavenumbers,
d w w= W ( ) ( )q k kd d d d2 2 2 3, is too small to be resolved in typical waveguide lengths (or decay/absorption
lengths).

In backward scattering, the situation is entirely different, since either phonons of wavenumber @q k2 L are
emitted (Stokes) or those of wavenumber @ -q k2 L are absorbed (anti-Stokes). This can result in cooling of
−2kL phonons and amplification of+2kL phonons. The latter process amounts to stimulated backward
Brillouin scattering, amplifying any counterpropagating beam.

8.Multiple optical branches

In a cavity-optomechanical system, interesting novel phenomena occurwhen one considersmultiple optical
modes. The same is true for continuum systems, where different transverse opticalmodes (possibly different
polarization patterns) correspond to different optical branches of the dispersion relation. Analyzing them is
particularly important in order to come closer to the physics known from cavities.

In particular, the useful Stokes/anti-Stokes asymmetry (useful for cooling, state transfer, and amplification)
can be re-introduced into forward scattering by consideringmultiple optical branches. In that case, the
(simplest) interaction is

 òå- +˜ ( ) ˆ ( ) ˆ ( )( ˆ ( ) ˆ ( )) ( )† †
x g j l a x a x b x b xd , . 22

j l
j l

,
0

Here ˜ ( )g j l,0 describes the bare coupling for scattering frombranch l to j, with * =˜ ( ) ˜ ( )g l j g j l, ,
0 0 , and

d d¢ = - ¢[ ˆ ( ) ˆ ( )] ( )†a x a x x x,j l jl . Analogous expressions can bewritten down for the other interactions of table 1.
For the case of two branches, therewill be forward-scattering of photons +k k qL L between the

branches, by either absorbing a phonon ofwavenumber q or emitting one of wavenumber−q. In the linearized
Hamiltonian, the inter-branch scattering process is described by
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 ò d d d- + +( ˜ ( ) ˆ ( ) )( ˆ ( ) ˆ ( )) ( )† †
x g x a x b x b xd h.c. , 2321 2

with =˜ ( ) ˜g x g e k x
21 21

i L , where a=˜ ˜ ( )g g 2, 121 0 1. Inmomentum space, this turns into

 ò d d d- + + - +˜ ˆ [ ] ( ˆ [ ] ˆ [ ] ) ( )† †q g a k q b q b qd h.c. 24L21 2

9. Interband scattering: weak coupling

In the present section, we review theweak coupling limit for interband scattering, to connect our formalism to
the standard literature on this topic. In the case of forward scattering, this is known as stimulated intermodal
Brillouin scattering (SIMS). In the case of backward scattering, one speaks of backward stimulated Brillouin
scattering (see appendix C for naming conventions). This is a widely studied regime in the context of nonlinear
optics [9, 11, 12, 36]. The phonon decay lengths are assumed to be far shorter than those for the photons, which
is frequently satisfied experimentally. Then the effective nonlinear optical susceptibility is approximately local,
greatly simplifying the spatio-temporal dynamics. For clarity, we term this regime the ‘Brillouin limit’.

To connect our frameworkwith known results, we start from equation (23), for two optical branches. Just as
in equations (12) and (13), we introduce rotating frames and linearize the dispersion.Wenow assume steady-
state, i.e. the time-derivatives vanish. Thenwe obtain:

d d g d¶ á ñ = á ñ - á ñˆ ( ˜ ) ˆ ( ) ˆ ( )†
a g v b ai 2 , 25x 2 21 2 2 2

d d g d¶ á ñ = á ñ - á ñˆ ( ˜ ) ˆ ( ) ˆ ( )†b g v a bi 2 . 26x b b21 2

Note that we are dealingwith the averages, since this is sufficient for the present analysis. Therefore the noise
terms vanish. In addition, we introduced the notation γ2≡κ2/v2 and γb≡Γ/vb, representing the spatial power
decay rate of the photon (phonon)fields, i.e. the inverse decay length. Note that in treating g̃21 as a constant, we
are neglecting pumpdepletion. This is valid as long as the power carried by the generated field dâ2 remainsmuch
smaller than the incoming pumppower.

Sincewe are assuming γb?γ2, the phonon field is generated locally: d¶ á ñ »b̂ 0x . This allows to eliminate

dá ñb̂ , which yields:

d d g d¶ á ñ =
G

á ñ - á ñˆ
∣ ˜ ∣

ˆ ( ) ˆ ( )a
g

v
a a2 . 27x 2

21
2

1
2 2 2

Wenow cast this result in terms of traveling-wave optical powers P1 andP2, with w a= ∣ ∣P v1 1 1 1
2,

w d@ á ñ∣ ˆ ∣P v a2 2 2 2
2, and  d@ W á ñ∣ ˆ ∣P v bb b

2. Herewe assumed the small signal limit, i.e.α2=0,β=0, and
α1 is large.We see that P2 is exponentially amplified according to∂P2/∂ x=GBP1P2−γ2P2, where

wº G∣ ˜ ( )∣ ( ) ( )G g v v4 2, 1 28oB
2

1 2 1

is the Brillouin gain coefficient [2, 12]. For alternative derivations in the context of nonlinear optics and Brillouin
photonics, see [11, 12] (for the induced nonlinear optical susceptibility, see appendixD). This relationship
betweenGB and ˜ ( )g 2, 1o permits us to leverage establishedmethods for calculation of the optomechanical
coupling in both translationally invariant [2, 15, 37, 38] and periodic [39]nano-optomechanical systems. In the
Brillouin limit, a range of complex spatio-temporal phenomena have been studied [11, 12].

10. Strong coupling

The case opposite to the ‘Brillouin limit’, that we just discussed, is the situation of a large phonon coherence
length, as can be achieved at low temperatures (e.g. see [40]). In thismuch less explored limit, a large variety of
interesting classical and quantumphenomena can be expected to appear, as the system acquires amuch higher
degree of coherence and nonlocality. Quantum states can then be swapped between the light field and the
phononfield, which can lead to applications like opto-acoustic data storage in afibre [41].

We now consider the situationwhere creation of a photon in the second branch is accompanied by
absorption of a phonon (nowω2>ω1), instead of the emission that would lead to amplification. This leads to a
modified version of equations (25) and (26). In contrast to (25), now the optical amplitude dá ñâ2 couples directly

to themechanical amplitude dá ñb̂ , instead of its Hermitian conjugate.We obtain:

d d g d¶ á ñ = á ñ - á ñˆ ( ˜ ) ˆ ( ) ˆ ( )a g v b ai 2 , 29x 2 21 2 2 2

*d d g d¶ á ñ = á ñ - á ñˆ ( ˜ ) ˆ ( ) ˆ ( )b g v a bi 2 . 30x b b21 2
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That can be recast as amatrix equation

f f¶ = ( )M , 31x

where the vectorf contains thefields, f d d= á ñ á ñ( ˆ ˆ )a b, T
2 , and

*

g

g
=

-

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜
˜

( )M
g v

g v

2 i

i 2
. 32

b b

2 21 2

21

This is a non-Hermitianmatrix that can be diagonalized to obtain the spatial evolution f ~ le x.Wefind the
eigenvalues

l g= -  [ ¯ ] ( )D
1

2
, 33

where g g g= +¯ ( ) 2b2 is the average spatial decay rate, and g g= - -[( ) ] ∣ ˜ ∣D g v v2 4b b2
2

21
2

2 . A distinct
oscillatory regime is reachedwhenD<0, i.e.

g g
>

-∣ ˜ ∣ ∣ ∣ ( )g v v
4

. 34b
b

21 2
2

In that case, the eigenvalues attain an imaginary part, and the spatial evolution becomes oscillatory. This
oscillatory evolution has recently also been pointed out in the context of a detailed discussion of Brillouin
cooling in a linear waveguide [42]. Interestingly, this sharp threshold only depends on the difference of spatial
decay rates. In principle, therefore, in an unconventional systemwhere γ2 and γb are of the same order, this
condition ismuch easier to fulfill thanwhen having to compare ∣ ˜ ∣g12 against the total decay rate. Nevertheless, in
order for the oscillations to be observed in practice, in addition the decay length should be larger than the period
of oscillations. This will be truewhen l l∣ ∣ ∣ ∣Re Im , which can be approximated as

g∣ ˜ ∣ ¯ ( )g v v 2. 35b21 2

Onemay call this the ‘strong coupling regime’ for continuumoptomechanics. This strong coupling regime of
continuumoptomechanics has also been discussed recently in [13], in terms of amapping between a cavity-
optomechanical system (afinite waveguide resonator forming a cavity) and the continuum situation. It is in
spirit similar to the strong coupling regime of cavity optomechanics [1], although the dependence on the
velocities introduces a new element. If thismore demanding condition (35) is fulfilled, then the coupling is also
automatically larger than the threshold (34) given above. To interpret this condition, note that usually ḡ is
dominated by the phonon decay γb=Γ/vb. In that case, we could alsowrite G∣ ˜ ∣g v v 4b21 2 . This shows
that, at afixed phonon decay rateΓ, smaller phonon velocitiesmake the strong coupling regime harder to reach.

11. Experimental overview

Wenowdiscuss the experimental state-of-the-art in continuumoptomechanics. Coupling between continuous
optical and phonon fields has been realized in systems (figure 3) that include step-index andmicro-structured
opticalfibers [33, 34, 43, 44–47], gas- and superfluid-filled photonic bandgap fibers [48–51], and chip-scale
integrated optomechanical waveguides [3, 52, 53, 54–56]. These studies have overwhelmingly focused on
Brillouin related nonlinear optical phenomena [3, 33, 34, 43, 44, 52, 45, 49, 50, 53, 46, 54–56, 47, 51], as well as
noise processes [10, 48, 57]. However, it is interesting to examine these systems through the lens of continuum
optomechanics. Figure 4(a) shows the estimated continuum-optomechanical couplings, extracted using the
Brillouin gainGB (see previous section). Couplings of 10

2
–104 Hz m1/2 have been realized using radiation

pressure and/or photoelastic coupling. The phonon frequencies range from10MHz to 16 GHz, depending on
the type of interaction (intra-band or inter-band) and the elastic wavemediating the coupling.

The strength of the nonlinear optical susceptibility increases linearly with phononicQ-factor. This is seen by
comparing the effective phononicQ-factors (defined as the ratio ofmechanical frequency and linewidth),
plotted infigure 4(b), with the peak Brillouin gain offigure 4(c). The effectiveQ-factor is always smaller than the
intrinsicQ-factor due to inhomogeneous broadening from spatial variations inwaveguide dimension [59].

A variety of single-band (intra-modal) andmulti-band (inter-modal) interactions have been demonstrated.
The single-band processes include intra-modal forward-SBS processes (also termed stimulated Raman-like
scattering, SRLS) and backward-SBS processes; each process is denotedwith circular and squaremarkers,
respectively, infigure 4.Multi-band processes, generically termed inter-modal Brillouin processes, are denoted
by triangles (see appendixD for their classification).

The phonon coherence length can vary dramatically. For instance, since intra-modal coupling ismediated
by phononswith vanishing group velocities (∼1m s−1) [55], coherence lengths are often less than 100 nm.
Conversely, in the cases of backward- or inter-modal (inter-band) coupling, the phonon group velocities can
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approach thematerial’s sound velocity (e.g., 104 m s−1). This leads to 10–50 mmcoherence lengths at room
temperatures, but can be extended tomilimeter length-scales at cryogenic temperatures [44].

Numerous proposed nano-optomechanical devices have the potential to yield increased coupling strengths
[39, 60, 61]. Figure 5 indicates the prospects for exploring the strong coupling regime introduced above. In this
table, we list the achievable coupling strengths for current and future continuumoptomechanics experiments.
We also take into account the phonon damping rate to estimate the threshold for the strong coupling regime in
these structures. Both the ‘nanoweb’ photonic fibre structures and SIMS in silicon at cryogenic temperatures
should enable observation of this regime.

Figure 3.Overview of experimental systems: (a)nanowebfibre [33]; (b) step-index fibre [43, 44]; (c) ridgewaveguide [52]; (d) crystal
fibre [34, 45, 48]; (e) hollow-core photonic crystal fiber [48–51]; (f)nanowire siliconwaveguide [3, 53]; (g) silica nanowirefiber [46];
(h)membrane suspended phononic crystal waveguide [54]; (i)membrane suspended siliconwaveguide [55, 56].

Figure 4.Experimental parameters. (a)–(c) show estimated continuum-optomechanical coupling constant, effectivemechanicalQ
factor, and Brillouin gain, versus phonon frequency. 1: Photonic crystalfibre [34]; 2,3: ‘Nanoweb’fibre [4, 33]; 4: Chalcogenide ridge
waveguide [52]; 5,7:Membrane suspended siliconwaveguide [55, 56]; 6,8: Silicon photonic nanowire [3, 53]; 9: Single-mode fibre
[44]; 10:He-filled hollow-core photonic crystalfiber [49]; 11: Photonic crystalfibre [47]; 12: Silica nanowire fibre [46]; 13:
Chalcogenide fibre [43]; 14: ‘Nanoweb’ fibre [35]; 15:Membrane-suspended siliconwaveguide [58].
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12. Conclusions

Wehave established a connection between the continuum limit of optomechanical arrays and Brillouin physics.
Especially studies of (classical and quantum)nonlinear dynamics will profit fromour approach, wherewe
categorized the simplest coupling terms and derived the quantumLangevin equations, including the noise terms
and the correct boundary conditions. Applications such as wavelength conversion, phonon-induced coherent
photon interactions (as discussed recently in [62]) and extensions to two-dimensional situations [63, 64] can
nowbe analyzed on the basis of this framework. As an example, we have discussed the strong coupling regime in
continuum-optomechanical systems and prospects for reaching it in the context of state-of-the-art
experimental systems.
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AppendixA. Linearized interaction

Webriefly review the (straightforward) route from the fully nonlinear interaction to the linearized version, i.e. a
quadraticHamiltonian.Assumea steady-state solutionhas been found,with b = á ñ( ) ˆ ( )x b x and a = á ñ( ) ˆ ( )x a x . As
is known for standard cavity optomechanics, theremight bemore thanone steady-state solution, and formally there
couldbe an infinity of solutions for the continuumcase.Wehavenot explored this possibility further.

The deviations from this solutionwill nowbe denoted d b= -ˆ ˆb b and d a= -ˆ ˆa a . These are stillfields.
In contrast to the standard single-mode case, wewill keep the possibility thatβ(x)depends on position.

On theHamiltonian level, we nowobtain a new ‘linearized’ (i.e. quadratic) interaction term:

* ò d d d d- + +[ ˜( ) ˆ ( ) ˜ ( ) ˆ ( )][ ˆ ( ) ˆ ( )] ( )† †
x g x a x g x a x b x b xd 36

aswell as a term

 ò d d- b˜ ( ) ˆ ( ) ˆ ( ) ( )†x g x a x a xd , 37

which is a (possibly position-dependent) shift of the optical frequency. Its counterpart in the cavity
optomechanics case is often dropped by an effective redefinition of the laser detuning.

Inwriting down equation (36), we have defined

aº˜( ) ˜ ( ) ( )g x g x 380

*b bº +b˜ ( ) ˜ ( ( ) ( )) ( )g x g x x . 390

The photon-enhanced continuum coupling strength ˜( )g x is the direct analogue of the enhanced coupling
g=g0α in the standard linearized cavity-optomechanical case. In contrast to g̃0, g̃ has the dimensions of a
frequency. Likewise, b̃g is the staticmechanical displacement, expressed as a resulting optical frequency shift.

At this point, we have only started from the simplest kind of interaction, equation (2) of themain text, to
obtain equation (36). Analogous (but lengthy) calculations can be provided starting from the other possible
interaction terms of table 1 in themain text.

Figure 5.Possible experimental access to the strong coupling regime: the coupling ∣ ˜ ∣g21 needs to bemuch larger than the ‘threshold’

Gv v 4b2 . Estimated values for (a) [35], (b) [44], (c) stimulated intermodal scattering (SIMS) in silicon (room temp.) [58], (d)
considers same system [58] at 1 Kwherein Brillouin active phononmode at 1 GHz is used andQ factors increase by a factor of 100 at
low temperatures.
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Appendix B.Optomechanical arrays: derivative terms in the continuumversion of the
interaction

In an optomechanical array, it is possible to have an interaction that creates phononic excitations during the

photon tunneling process: - ++( ˆ ˆ ) ˆ†g a a uh.c.j j j0 1 , where º +ˆ ˆ ˆ†
u b bj j j describes the phonon displacement of a

mode attached to the link between the sites j and j+1.Herewe describe how this can give rise to the canonical
derivative termswhen switching to a continuumdescription.

Switching from the discrete latticemodel to the continuummodel, we replace

d d d+ -+ ˆ ˆ ˆ ˆ ( ) ˆ ( ) ˆ ( ) ( )† †a a u x a x x a x x u x2 2 , 40j j j1
3 2

wherewe chose coordinates so as to indicate that the phononmode û is located halfway between the photon
modes at x±δx/2. ATaylor expansion of

d d+ - +ˆ ( ) ˆ ( ) ( )†a x x a x x2 2 h.c. 41

yields

d
+ ¶ + ¶ - ¶ ¶⎜ ⎟⎛

⎝
⎞
⎠ˆ ˆ {( ˆ ) ˆ ˆ ( ˆ) ( ˆ )( ˆ)} ( )† † † †a a

x
a a a a a a2

2
2 , 42x x x x

2
2 2

where allfields are taken at position x. Two things areworth noting here: first, all thefirst-order derivatives have
disappeared (theywouldhave violated inversion symmetry!). Second,we have obtained second-order derivatives
of the photonfield. If wewant to turn this into our ‘canonical’ choice of coupling terms (table 1 of themain text),
we have to integrate by parts, inwhich case derivativesmay also act on ˆ ( )u x . This turns ¶ + ¶{( ˆ ) ˆ ˆ ( ˆ)} ˆ† †a a a a ux x

2 2

into:

- ¶ ¶ - ¶ + ¶ ¶( ˆ )( ˆ) ˆ [( ˆ ) ˆ ˆ ( ˆ)]( ˆ) ( )† † †a a u a a a a u2 . 43x x x x x

Combining this with the other terms resulting from equation (42), one arrives at the interaction expressed
completely in the canonical way.

AppendixC.Nonlinear susceptibility

Webriefly discuss how, starting from the linearized equation (25) of themain text, we can obtain the effective
third-order nonlinear photon susceptibility induced by the interactionwith the phonons.We slightly generalize
this equation, by adding a possible detuning between themechanical frequencyΩ and the transition frequency
Ωo between the two optical branches:

d d d g d¶ á ñ = W - W á ñ + á ñ - á ñˆ [( ) ] ˆ ( ˜ ) ˆ ( ) ˆ ( )†b v b g v a bi i 2 . 44x o b b b21 2

Solving for the steady-state d¶ á ñb̂x and inserting into the photon equation ofmotion, equation (25) of themain
text, we obtain:

d
a d g

d¶ á ñ = -
á ñ

W - W -
- á ñG

ˆ
∣ ˜ ( )∣ ∣ ∣ ˆ

ˆ ( )a
v

g a
a

i 2,1

i 2
. 45x 2

2

0
2

1
2

2

0 2

2
2

Wecan express this as

d g a d
g

d¶ á ñ = á ñ - á ñˆ ∣ ∣ ˆ ˆ ( )( )a a ai
2

, 46x 2 nonlin
3

1
2

2
2

2

with the effective nonlinear susceptibility

g W = -
W - W - G( )

∣ ˜ ( )∣
( )( )

v

g1 2,1

i
. 47nonlin

3

2

0
2

0 2

Using w a= ∣ ∣P v1 1 1 1
2 and w d@ á ñ∣ ˆ ∣P v a2 2 2 2

2 to cast equation (47) in the formof equation (28) of themain
text, onefinds that the frequency dependent gain is related to the nonlinear susceptibility
as g wW = - W -( ) · { ( )}( )( )G v2 ImB nonlin

3
1 1

1 .

AppendixD. Types of Brillouin interactions

Here, we elucidate some naming conventions used in the Brillouin literature, andwe explain how these names
relate to the classifications that we use in this paper. These include (i) forward intra-band scattering processes,
where incident and scattered light-fields co-propagate in the same opticalmode, (ii) backward intra-band
scattering processes, where the incident and scattered light-fields counter-propagate, as well as (iii) inter-band
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scattering processes, which generically describe processes that involve coupling between guided opticalmodes
with distinct dispersion curves. Note that withinfigure 4 of themain text processes (i), (ii), and (iii) are identified
by circular, square, and triangularmarkers, respectively.

Backward intra-band scattering processes, which is themost widely studied of Brillouin interactions, is
commonly termed backward stimulated Brillouin scattering [11, 12]; [43, 44, 52, 45, 46] are examples of this
process. However, for historical reasons, the terminology for forward intra-band and forward inter-band
scattering processes is somewhatmore diverse. Thermally driven (or spontaneous) forward intra-band
scatteringwas first observed in optical fibers, and identified as a noise process, under the name guided acoustic
wave Brillouin scattering (GAWBS) [10]; [48, 57] are examples of this spontaneous process. Stimulated forward
intra-band scattering processes have been described using the term (intra-modal) forward stimulated Brillouin
scattering [3, 49, 50, 53, 54–56, 51], as well as using themore descriptive term SRLS [33, 47].

Inter-band processes have also been observed through both spontaneous and stimulated interactions under
different names. Stimulated inter-band coupling between co-propagating guided opticalmodes with different
polarization states has been termed stimulated inter-polarization scattering [47]. In the context of noise
processes, the spontaneous version process has also been described using the termde-polarizedGAWBS or
depolarization scattering [48, 57]. Stimulated scattering between co-propagating guided opticalmodeswith
distinct spatial distribution has also been described using the term SIMS [35] and stimulated inter-modal
Brillouin scattering [37].
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