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Quantum key distribution allows for the generation of a secret key between distant parties con-
nected by a quantum channel such as optical fibre or free space. Unfortunately, the rate of generation
of a secret key by direct transmission is fundamentally limited by the distance. This limit can be
overcome by the implementation of so-called quantum repeaters. Here, we assess the performance
of a specific but very natural setup called a single sequential repeater for quantum key distribu-
tion. We offer a fine-grained assessment of the repeater by introducing a series of benchmarks. The
benchmarks, which should be surpassed to claim a working repeater, are based on finite-energy
considerations, thermal noise and the losses in the setup. In order to boost the performance of
the studied repeaters we introduce two methods. The first one corresponds to the concept of a
cut-off, which reduces the effect of decoherence during storage of a quantum state by introducing
a maximum storage time. Secondly, we supplement the standard classical post-processing with an
advantage distillation procedure. Using these methods, we find realistic parameters for which it is
possible to achieve rates greater than each of the benchmarks, guiding the way towards implementing
quantum repeaters.

I. INTRODUCTION

Quantum communication enables the implementation of tasks with qualitative advantages with respect to classical
communication, including secret key distribution [1, 2], clock synchronization [3] and anonymous state transfer [4].
Unfortunately, the transmission of both classical and quantum information over optical fibres decreases exponentially
with the distance. While the problem of losses applies both to classical and quantum communication, classical
information can be amplified at intermediate nodes, preventing the signal from dying out and thus increasing the
rate of transmitted information. At the same time, the existence of a quantum analogue of a classical amplifier is
prohibited by the no-cloning theorem [5]. Fortunately, in principle it is possible to construct a quantum repeater to
increase the rate of transmission without having to amplify the signal [6, 7]. Hence, the construction of a quantum
repeater would represent a fundamental milestone towards long-distance quantum communications.

The basic idea of a quantum repeater protocol has undergone many changes since its original proposal [6]. The
authors of this scheme showed that by dividing the entire communication distance into smaller segments, generating
entanglement over those short links and performing entanglement swapping operation at each of the intermediate nodes
in a nested way, one can establish long-distance entanglement. It was also shown that by including the procedure
of entanglement distillation, one can furthermore overcome the problem of noise. Effectively, the authors proposed
a scheme that enables to generate a high-fidelity long-distance entangled link with an overhead in resources that
scales polynomially with distance. Unfortunately, this model does not go into detail of how the physical imperfections
of realistic devices, such as decoherence of the quantum memories with time or possibly the probabilistic nature of
entanglement swapping, affect the performance. These observations have led to the development of significantly more
detailed and accurate, but at the same time significantly more complex, repeater schemes [8–12]. Many quantum
repeater proposals require significant resources and are thus not within experimental reach. However, the recent
experimental progress in the development of quantum memories [13–15] has brought the realisation of a quantum
repeater closer than ever.

In this paper, we evaluate a realistic setup of a so-called single sequential quantum repeater on how it performs
for the specific task of quantum key distribution. Our interest in assessing the repeater with respect to this task is
motivated by the fact that quantum key distribution is, at the moment, the most mature quantum technology [16].
The setup considers two parties which we call Alice and Bob who are spatially separated, and want to generate a
shared secret key. The setup that we will investigate here was originally proposed in [17], where the authors were
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inspired by the memory-assisted measurement-device-independent QKD setup (MA-MDI QKD) [18]. Alice and Bob
use a single sequential quantum repeater located between them, where both of them are connected to the quantum
repeater by optical fibre. The repeater is composed of two quantum memories, both of which have the ability to
become entangled with a photon, see FIG. 1. However, the repeater has a single photonic interface, which means that
it can only address Alice and Bob in a sequential fashion. Examples where only one of the qubit memories has an
interface to the photonic channel include modular ion traps [19] and nitrogen-vacancy centres in diamond [13, 20, 21].
The situation is similar for atoms or ions trapped in a single cavity [22]. In this case, both memories can have a
photonic interface. However, typically only one of the interfaces can be active at a given moment.

The figure of merit that we have chosen to evaluate the repeater is the secret-key rate. That is, the ratio between
the number of generated secret bits and the number of uses of the quantum channel connecting the two parties. The
secret-key rate is a very natural quantifier of the performance of the studied scheme for the task of the secret key
generation. It depends both on the success rate of the protocol as well as on the quality of the transmission. We
compare the secret-key rate achievable with the repeater with a set of benchmarks that we introduce here. The most
strict of these benchmarks is the capacity of the channel [23]. That is, the optimal secret-key rate achievable over
optical fibre unassisted by a quantum repeater [24]. The other benchmarks correspond to the optimal rates achievable
with additional restrictions. In consequence, these benchmarks form a set of stepping stones towards the first quantum
repeater able to produce a secure key over large distances.

The idea of assessing quantum repeaters by comparing with the optimal unassisted rates [24–31] has spurred a
significant amount of research devoted to developing sophisticated repeater proposals. Analysis of practical systems
that utilise only parametric down-conversion sources and optical measurement setups [32] has shown that such systems
do not allow for overcoming the channel capacity, which hints at the importance of quantum memories in repeater
architectures. Specific architectures that utilise entangled-photon pair sources together with multimode quantum
memories have also been considered in this context [33, 34]. Their analysis suggests that the required efficiency
of those entangled-photon pair sources and number of storage modes might be experimentally very challenging for
implementation in the very near future. Finally, the so called all-optical repeaters that do not require quantum
memories but allow to overcome the channel capacity have been proposed [35]. However, they necessitate the ability
to create large photonic cluster states which are beyond current experimental capabilities.

A detailed analysis of a realistic, single-node proof of principle repeater that includes all the specific system im-
perfections has been recently performed [17]. In particular, the analysis identified parameter regimes where it would
be possible to surpass the optimal direct transmission rates with a repeater scheme that is close to experimental
implementation. We build upon the analysis of [17] by introducing two methods that allow us to achieve higher rates.
The first of these methods is the introduction of a maximum storage time for the memories in the quantum repeater.
This restriction effectively reduces the effect of decoherence. We derive tight analytical bounds for the secret-key
rate as a function of the maximum storage time. In this way we can perform efficient optimisation of the secret-key
rate over the maximum storage time. The second of these methods is advantage distillation [36], a two-way classical
post-processing technique that allows for distilling secret key at a higher rate than achievable with only one-way
post-processing.

The structure of the paper is as follows. In Section II we detail our key distribution protocol. The sources of
errors, such as losses in the apparatus and noisy operations and storage, are discussed in Section III. In Section IV, we
calculate the secret-key rate that the single sequential quantum repeater would achieve. We define the benchmarks
in Section V, and in Section VII we numerically explore the parameter regimes for which the quantum repeater
implementation overcomes each benchmark and determine how the secret-key rate of the proposed protocol scales as
a function of the distance. We end in Section VIII with some concluding remarks.

II. PROTOCOL FOR A SINGLE SEQUENTIAL QUANTUM REPEATER

A quantum key distribution protocol consists of two main parts. First, Alice and Bob exchange quantum signals
over a quantum channel and measure them to obtain a raw key that is post-processed in a second, purely classical
part into a secure key [16]. Here, we focus our interest on the entanglement-based version of the BB84 [1] and the
six-state [37] protocols. In this section, we describe the first part of both key distribution protocols.

The physical setup consists of two spatially separated parties Alice and Bob connected to an intermediate repeater
via optical fibre channels. We note that such a repeater does not need to be positioned exactly half-way between
Alice and Bob. The repeater is composed of two qubit quantum memories which we denote by QM1 and QM2. The
repeater is then able to generate memory-photon entanglement, where the photonic degree of freedom in which the
qubits are encoded is assumed to be time-bin. Alice and Bob each have an optical detector setup that performs a
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FIG. 1. The quantum repeater will send photons entangled with the QM1 to Alice through the optical fibre of transmissivity
ηA. After receiving one photon she will perform a BB84 or six-state measurement. After Alice has measured a photon and
communicated her success to the quantum repeater, the quantum repeater tries to send a photon entangled with the QM2 to
Bob through the optical fibre of transmissivity ηB . If Bob does not receive a photon within some pre-defined amount of trials
(i.e. the cut-off), Alice and Bob will abort the round. This is done to prevent the state in the QM1 from decohering excessively.
If Bob does succeed, the quantum repeater performs a Bell state measurement on the two quantum memories.

BB84 or a six-state measurement. For technical reasons (see Section III), we consider slightly different setups for
BB84 and six-state. More concretely, for BB84 we consider an active setup that switches randomly between the
two measurement bases, while in the six-state protocol we consider a passive setup that chooses between the three
measurement bases by a passive optical construction [38].

Let us now describe a first version of the protocol without a maximum storage time. First, the quantum repeater
attempts to generate an entangled qubit-qubit state between a photon and the first quantum memory QM1, after
which the photon is sent through a fibre to Alice. Such a trial is attempted repeatedly until a photon arrives at Alice’s
side, after which Alice performs either a BB84 or a six-state measurement. Second, the quantum repeater attempts to
do the same on Bob’s side with the second quantum memory QM2 while the state in QM1 is kept stored. We denote
the number of trials performed until a photon arrives at Alice’s and Bob’s sides nA and nB respectively. After Bob
has received and measured a photon, a Bell state measurement is performed on the two states in QM1 and QM2. We
denote by pbsm the probability that the measurement succeeds. The classical outcome of the Bell state measurement
is communicated to Bob. This concludes a single round of the protocol. We note that in this protocol every round
ends with a successful generation of one bit of raw key. Such a protocol is closely related to the memory-assisted
measurement-device-independent QKD setup (MA-MDI QKD) [18]. We discuss this connection in Appendix C.

One of the main problems in a quantum repeater implementation is that a quantum state will decohere when it is
stored in a quantum memory. This means that if it takes Bob a large amount of trials to receive a photon, the state in
the quantum memory QM1 will have significantly decohered, preventing the generation of secret key. This motivates
the introduction of a cut-off. A cut-off is a limit on the amount of trials that Bob can attempt to receive a photon.
We denote this maximum number by n?.

The protocol that we consider here modifies the protocol above as follows: if in a given round Bob reaches the cut-off
without success, the round is interrupted and a new round starts from the beginning with the quantum repeater again
attempting to send a photon to Alice. In this scheme a large number of rounds might be required until a single bit
of raw key is successfully generated. See Algorithm 1 for a description of the modified protocol with the cut-off.
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FIG. 2. General model of all photon losses occurring in the repeater setup. pem is the probability of generating and capturing
a photon into the fibre. For experimental reasons a fraction (1− pps) of photons are additionally filtered out. The fibre has a
transmissivity ηf . After exiting the fibre, the photons produce a click in the detector with probability pdet. The total efficiency
of the apparatus is described by one parameter, papp = pempdet.

Algorithm 1 Generation of a bit of raw key with a single sequential quantum repeater
1: Initialize:

nA ← 0, nB ← 0, k ← 0
2: loop
3: k ← k + 1 . Increment the number of rounds
4: repeat
5: nA ← nA + 1 . Increment the number of Alice’s channel uses
6: Generate entangled photon-QM1 pair
7: Send entangled photon through fibre towards Alice
8: until Alice receives photon
9: Alice performs a BB84 or a six-state measurement, stores result

10: repeat
11: nB ← nB + 1 . Increment the number of Bob’s channel uses
12: Generate entangled photon-QM2 pair
13: Send entangled photon through fibre towards Bob
14: until Bob receives photon or nB = kn?

15: if Bob received photon then
16: Bob performs a BB84 or a six-state measurement, stores result
17: Perform the Bell state measurement on the memories, communicate result
18: Store max(nA, nB) . Store channel uses
19: return

III. SOURCES OF ERRORS

In this section, we model the different elements in the setup to identify the sources of losses and noise. The losses in
the system are not only due to the transmissivity of the fibre; depending on the implementation a significant amount
of photons is lost before they enter the fibre or due to the non-unit detector efficiency. The causes of noise are the
experimental imperfections of the operations, measurements and quantum memories.

Losses

We model the process of generating and sending an entangled photon through a fibre as follows (see FIG. 2). First,
the photon has to be generated at some photon source and be captured in the fibre. This process happens with
probability pem. Depending on the experimental implementation, only a fraction pps of the photons entering the fibre
can be used for secret key generation. This can occur for any number of reasons, for instance photons might be
filtered according to frequency or a certain time-window [21, 22]. The filtering can happen either before or after the
transmission through the fibre. The fibre losses are modelled as an exponential decay of the transmissivity ηf with
the distance L, i.e. ηf = exp

(
− L
L0

)
for some fibre attenuation length L0. We denote by ηA the fibre losses on Alice’s

side and by ηB the fibre losses on Bob’s side. Finally, the arriving photons will be captured by the detectors with an
efficiency pdet. This probability of detecting a photon will be increased by the presence of dark counts (which will
also inevitably add noise to the system), see the discussion of the dark counts at the bottom of this section and in
Appendix A. We define the quantity papp = pempdet describing the total efficiency of our apparatus.
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Noise

We model all noise processes either by the action of a dephasing channel

Dλ1
dephase(ρ) = λ1ρ+ (1− λ1)ZρZ (1)

or that of a depolarising channel

Dλ2
depol(ρ) = λ2ρ+ (1− λ2) I

2 (2)

where the parameters λ1 and λ2 quantify the noise, Z is the qubit gate
( 1 0

0 −1
)
and I/2 is the maximally mixed state.

The noise processes occur due to imperfect operations, decoherence of the state while stored in QM1 and dark counts
in the detectors.

The noise from imperfect quantum operations is captured by two parameters: Fprep and Fgm. Fprep is a dephasing
parameter which corresponds to the preparation fidelity of the memory-photon entangled state [39]. Fgm is a depolar-
ising parameter that describes the noise introduced by the imperfect gates and measurements performed on the two
quantum memories during the protocol [40, 41]. Hence, the noise can be modelled by a dephasing and a depolarising
channel with λ1 = Fprep and λ2 = Fgm.
The decoherence is modelled by a decay of the fidelity in the number of trials n. This decoherence is caused

by two distinct effects. Firstly, there is the decoherence due to the time that the quantum repeater has to wait
between sending photons. This time is the time it takes to confirm whether the photon got lost plus the time
it takes to generate a photon entangled with the memory. We model this effect through an exponential decay of
fidelity with time [42], which is expected whenever excess dephasing is suppressed (e.g. by dynamical decoupling [43]).
However, we note that this is not the only possible model of decay, in several experiments a Gaussian decay has
been observed [15, 19, 44, 45]. Secondly, attempting to generate an entangled photon-memory pair at QM2 might
also decohere the state stored in the QM1. For example, this effect is the most prominent decoherence mechanism in
nitrogen-vacancy implementations [13], where an exponential decay of fidelity with the number of trials was observed.
This is also how we model that effect here.

The quantum state ρ that is subjected to those effects undergoes an evolution given by the dephasing and depolar-
ising channels with λ1 = (1 + e−an)/2 and λ2 = e−bn. The two parameters a and b are given by

a = a0 + a1

(
2nriLB

c
+ tprep

)
, (3)

b = b0 + b1

(
2nriLB

c
+ tprep

)
, (4)

where nri is the refractive index of the fibre, c is the speed of light in vacuum, LB the distance from the quantum
repeater to Bob and tprep is the time it takes to prepare for the emission of an entangled photon. Here a0 and b0
quantify the noise due to a single attempt at generating an entangled state and a1 and b1 quantify the noise during
storage per second. Finally, the dark counts in the detectors introduce depolarising noise. This model is justified for
the two quantum key distribution protocols that we consider, see [38, 46]. We let αA/B denote the corresponding
depolarising parameter on Alice’s/Bob’s side. The details of this model are presented in Appendix A.

IV. SECRET-KEY RATE OF A SINGLE SEQUENTIAL QUANTUM REPEATER

The secret-key rate R is defined as the amount of secret-key bits generated by a protocol divided by the number
of channel uses and the number of optical modes. In the particular case of our sequential quantum repeater, the
secret-key rate is given by

R = Y

2 r . (5)

The yield Y of the protocol is defined as the rate of raw bits per channel use. The secret-key fraction r is defined as
the average amount of secret key that can be extracted from a single raw bit. The factor of a half is due to the fact
that the encoding uses two optical modes. Since we consider two possible quantum key distribution protocols we take

r = max{rBB84, rsix-state} . (6)



6

where rBB84 and rsix-state are the secret-key fractions of the BB84 and six-state protocols, respectively (see Eq. (12)
and Appendix D).

Yield

The yield can be calculated as pbsm (i.e. the success probability of the Bell state measurement) divided by the
(average) number of channel uses needed for the successful detection of a photon by both Alice and Bob in the same
round. With a single sequential quantum repeater it is not obvious how to count the number of channel uses. As
in [17], we count the maximum of the two channel uses on Alice’s and Bob’s sides respectively,

Y = pbsm

E [N ] = pbsm

E [max(NA, NB)] . (7)

where N , NA and NB are the random variables that model the number of channel uses, the number of channel uses
at Alice’s side and the number of channel uses at Bob’s side, respectively.

Without the cut-off, it is possible to obtain an analytical formula for the average number of channel uses [17, 18],

E [max(NA, NB)] = 1
pA

+ 1
pB
− 1
pA + pB − pApB

, (8)

where pA and pB depend on the quantum key distribution protocol and are given by the following equations (see
Appendix A),

pA/B,BB84 = 1− (1− pappppsηA/B)(1− pd)2 , (9)
pA/B,six-state = 1− (1− pappppsηA/B)(1− pd)6 . (10)

Here pd is the probability of measuring a dark count.
Every time that Bob reaches n? trials, Alice and Bob restart the round and start over again. The cut-off thus

increases the average number of channel uses. We have developed an analytic approximation of E [N ] which is
essentially tight (see Appendix E for the derivation and error bounds)

E [max(NA, NB)] ≈
{ 1

pA(1−(1−pB)n?)
1
pA

> n?

1
pA

+ 1
pB
− 1

pA+pB−pApB

1
pA
≤ n? .

(11)

Secret-key fraction

Here we consider the secret-key fraction of the BB84 and six-state protocols. As we discussed previously, we
consider the BB84 protocol with an active measuring scheme and the six-state protocol with a passive one. Moreover,
we consider a fully asymmetric version of BB84 and a fully symmetric version of six-state. Fully symmetric means
that all bases are used with equal probability while fully asymmetric means that the ratio at which one of the bases
is used is arbitrarily close to one. Finally, we consider a one-way key distillation scheme for BB84 [16] while for
the six-state protocol we consider the advantage distillation scheme in [47]. Advantage distillation [36] is a classical
post-processing technique that allows to increase the secret-key fraction at all levels of noise.

The reasons for not analysing the BB84 protocol with advantage distillation and the fully asymmetric six-state with
advantage distillation are technical. In the case of BB84, computing the rate with advantage distillation requires the
optimisation over a free parameter. The combination of the optimisation over the cut-off together with the extra free
parameter was computationally too intensive to consider here.

For the six-state protocol there is, to our knowledge, no security proof that can deal with the asymmetric six-state
protocol with photonic qubits without introducing extra noise [38, 48]. However, these protocol choices do not have
a strong impact on our analysis. Advantage distillation does not significantly increase the amount of distillable key
for low error rates. Hence, asymmetric BB84 without advantage distillation is only slightly suboptimal. For higher
error rates, where advantage distillation plays a role, the symmetric six-state protocol with advantage distillation is
a factor of three away from the asymmetric version.

The expression for the secret-key fraction of both protocols depends on the error rates in the X, Y and Z bases,
which we denote by eX , eY and eZ . In the case of the BB84 protocol, [16, 49] it is given by

rBB84 = 1− h(eZ)− h(eX) , (12)
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where h(p) = −p log2 p−(1−p) log2(1−p) is the binary entropy function. The expression for rsix-state is more complex;
we leave its discussion to Appendix D.

We can directly evaluate the error rates in each basis as a function of the general parameters of Section III. For the
single sequential quantum repeater these average errors are

eX = eY = eXY = 1
2 −

1
2FgmαAαB (2Fprep − 1)2

〈
e−(a+b)n

〉
, (13)

eZ = 1
2 −

1
2FgmαAαB〈e−bn〉 . (14)

where 〈e−cn〉 is the average of the exponential e−cn over a geometric distribution over the first n? trials. The detailed
derivation of the error expressions is presented in Appendix B.

V. BENCHMARKS FOR THE ASSESSMENT OF QUANTUM REPEATERS

We introduce a set of benchmarks to assess the performance of a quantum repeater implementation.
The first benchmark that we consider is the rate that would be achieved with the same parameters for the system

losses and dark counts and for the same protocol but without a quantum repeater. Overcoming this benchmark gives
the first indication that the repeater setup is useful; it means that the repeater setup outperforms the setup without
repeater. We call this benchmark the direct transmission benchmark.

The remaining benchmarks represent the optimal secret-key rate that Alice and Bob could achieve if they were to
communicate over the same quantum channel without a repeater under some constraints.

The optimal secret-key rate without a repeater highly depends on the channel model. The first modelling decision
is the placement of the boundary between Alice’s and Bob’s laboratories and the quantum channel. This is because
it is not a priori clear where the channel begins and ends. However, this decision has a strong impact on the optimal
achievable rate; if the channel includes most of Alice’s and Bob’s laboratories, then the channel is more lossy and
noisy and the benchmark is easier to overcome. If, on the other hand, the channel is just the optical fibre cable the
benchmark becomes more difficult to overcome.

We consider three cases in terms of the individual lossy components of our setup (see FIG. 1, FIG. 2 and their
captions):

Case 1: Fibre only, in this case the transmissivity is: η = ηf = ηAηB .

Case 2: Fibre and different filters, then the channel transmissivity becomes: η = ηfpps.

Case 3: Fibre, filters and Alice’s and Bob’s apparatus, then the transmissivity becomes: η = ηfppspapp.

Note that although in the experimental implementation of the repeater the terms pps and papp appear twice in the
expression of the transmissivity, they appear only once in the benchmarks which include them. The reason is that in
a scenario without a repeater the emission inefficiency and the filters only affect the transmissivity once.

The second design parameter for these benchmarks is the type of channel. Transmission of photons through fibres
is modelled as a pure-loss channel [50], where only a fraction η of the input photons reach the end of the channel.
The first type of channel that we consider is the pure-loss channel without any additional restriction. The optimal
achievable rate over one mode of the pure-loss channel is given by the secret-key capacity [24]

− log2 (1− η) . (15)

Note that for high losses the scaling of this capacity with distance is proportional to ηf = exp
(
− L
L0

)
. At the same

time with an ideal (noiseless) single quantum repeater placed half-way between Alice and Bob, the expected secret-key
rate would scale proportionally to √ηf = exp

(
− L

2L0

)
[17].

The second type of channel that we consider is the pure-loss channel when the transmitter has a limitation in the
energy that can be introduced into the channel. There has been some recent work studying the optimal rate per mode
of the finite-energy pure-loss channel [26, 27, 51]. However, the optimal rate remains unknown. The bound that we
consider here [51] is given by

g ((1 + η)P/2)− g ((1− η)P/2) , (16)
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where g(x) := (x+ 1) log2(x + 1) − x log2 x and P is the mean photon number. In our repeater setup, the finite
energy restriction arises from the fact that, on average, only a fraction of a photon enters the fibre in each trial. More
precisely, the average photon number satisfies P = pem in cases 1 and 2 above and P = 1 in case 3. Unfortunately,
since Eq. (16) is an upper bound, it is only strictly smaller than the capacity of the pure-loss channel for small mean
photon number. Expanding the bounds from equations Eq. (15) and Eq. (16) around η = 0 shows that the cross-over
between the two bounds occurs when pem log2

(
pem+2
pem

)
= 1

ln 2 . In other words, for high losses the finite-energy bound
is tighter when pem . 0.796. This implies that the finite-energy bound does not yield an interesting benchmark in
case 3.

The third type of channel that we consider is the thermal-loss channel. An upper bound on the capacity of the
thermal-loss channel is

− log2[(1− η) ηn]− g (n) , (17)

if n < η
1−η and zero otherwise [24]. Here, n is the average number of thermal photons per channel use [50]. This is

an interesting channel because the effect of dark counts can be seen as caused by the thermal photons. Hence this
type of channel becomes relevant for case 3, where detectors, and therefore also the dark counts, are regarded as part
of the channel. The details of the dark count model are presented in Appendix A. There we also show how to easily
convert the experimentally relevant dark count rate of the detector and the duration of the detection window tint into
n and pd, the probability of getting a dark count within the given time window.
The combinations of a channel boundary together with a channel type give us a set of benchmarks. Not all

combinations yield interesting benchmarks. In Table I, we summarise the benchmarks that we consider.

Infinite Finite Thermal Direct transmission
Case 1: ηf 1a 1b − −

Case 2: ηfpps 2a 2b − −
Case 3: ηfppspapp − − 3c 3d

TABLE I. Labels of the benchmarks that we use to assess the performance of a quantum repeater. These labels are frequently
referred to in the numerical results. Each row corresponds to a different channel boundary, which translates into an effective
channel transmissivity. Each column corresponds to a different type of channel: pure loss, pure loss with energy constraint and
thermal channel, and the final column corresponds to the direct transmission benchmark.

VI. IMPLEMENTATION BASED ON NITROGEN-VACANCY CENTRE SETUP

Our model is fully general and can be applied to a wide range of physical platforms. To illustrate its performance
we will now consider one of such potential near-term realisations of a single sequential quantum repeater. For this
particular example we choose to base our system on Nitrogen-Vacancy (NV) centres in diamond. NVs are a prime
candidate for this task due to their optical interface featuring high-fidelity single-shot readout [52] and their recently
demonstrated capabilities to distribute spin-photon entanglement while faithfully storing quantum states [41].

In the following we expand on the required experimental techniques (see Fig. 3). The NV centre itself can be readily
used as a generator of spin-photon entanglement at cryogenic temperatures. The NV is encapsulated in an optical
cavity of low-mode volume [53] to strongly enhance the emission into the zero phonon line (ZPL) via the Purcell effect.
As no particular low-loss cavity design has been implemented with NVs yet, we rely purely on the aforementioned ZPL
enhancement. More specific cavity configurations that allow for reflection based mechanisms rely on the realisation
of a low-loss overcoupled cavity to be efficient [54] and might become available in the future.

Firstly, we generate spin-photon entanglement [55] and send the emitted photon off to Alice who reports successful
detection events back to the repeater station. Note that electron spin decoherence during communication rounds
is negligible since second-long coherence times have been demonstrated by employing XY8 dynamical decoupling
sequences [56].

Upon success the optical interface of the NV is reused for communication with Bob. To this end, the NV spin state
that is correlated with Alice’s measurement outcome is stored on a 13C nuclear spin in the vicinity of the electron
spin, which itself is then reinitialised. We choose a configuration in which the always-on magnetic hyperfine coupling
between both spins is weak (on the order of a few kHz). This configuration has been experimentally shown to result in
a highly-addressable quantum memory which is resilient to optical excitation and reinitialisation of the NV spin [13].
Coherently swapping the NV state onto - and high-fidelity control over - such a weakly-coupled nuclear spin has been
demonstrated recently [41, 57].

The protocol then proceeds as described in Section II by communicating with Bob. Note that repeated communi-
cation attempts will eventually decohere the memory state due to the necessity for frequent electron spin resets and
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FIG. 3. Single sequential quantum repeater based on an electron spin associated with an NV (purple) and 13C nuclear spin
(orange) in diamond. The previous quantum memories QM1,2 are now represented by the electron and nuclear spin respectively.
The optical interface of the NV is strongly Purcell-enhanced by an optical cavity with low-mode volume and allows for efficient
photon transmission to Alice and Bob.

the always-on hyperfine interaction between the two spins. This constitutes the main source of error in this system
(parametrised by a0 and b0, see Sec. III).
After a successful state transmission to Bob, we conduct a sequential two-step Bell state measurement and read-out

the XX and ZZ parities of the combined nuclear-electron spin state, where X and Z denote the standard Pauli
matrices. This can be achieved by means of the earlier mentioned universal control over the system or by introducing
additional resource qubits such as the nitrogen nuclear spin associated with the NV [55].

VII. NUMERICAL RESULTS

In this section, we perform a numerical analysis of our model applied to the physical system based on NV centres
as described in Section VI. All numerical results have been obtained using a Mathematica notebook [58]. Unless
specified otherwise, we use the following parameters that we call “expected parameters”. These parameters represent
best-case scenarios from the chosen references. These experimental capabilities do not fundamentally contradict or
exclude each other and seem therefore achievable in a single experimental NV setup.

• a0 (dephasing due to interaction) = 1
2000 per attempt [13],

• a1 (dephasing with time) = 1
3 per second [59],

• b0 (depolarisation due to interaction) = 1
5000 per attempt [13],

• b1 (depolarisation with time) = 1
3 per second [59],

• tprep (memory-photon entanglement preparation time) = 6µs [60],

• Fgm (depolarising parameter for gates and measurements) = 0.9 [41],

• Fprep (dephasing parameter for the memory-photon state preparation) = 0.99 [60],

• pem (probability of emission) = 0.49 [60, 61],

• pps (post-selection) = 0.46 [53],

• pdet (detector efficiency) = 0.8 [60],

• pbsm (Bell state measurement success probability) = 1 [55],

• Dark count rate = 10 per second [60],

• tint (detection window) = 30 ns [60],

• L0 (attenuation length) = 0.542 km [60],

• nri (refractive index of the fibre) = 1.44 [62].

Before we present the results, we note that the emission frequency of the nitrogen-vacancy centres results in a
relatively low L0 which in turn does not allow to achieve large distances. In practical quantum key distribution
networks, assuming that dedicated fibres are used for which one can choose which frequency mode one wants to
transmit at, this problem might be overcome using the frequency conversion of the emitted photons into a telecom
frequency, which will yield an increased L0. Note that the benchmarks in Table I will scale accordingly. There is a
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FIG. 4. Upper- and lower bounds on the secret-key rate rate with a quantum repeater as a function of the distance in units
of L0 = 0.542 km. The repeater is positioned half-way between Alice and Bob. The curves correspond to the expected and
improved parameters with optimised cut-off. The improved parameters correspond to setting pps = pem = 0.6 and Fgm = 0.97.
For high losses, the upper- and lower bounds become essentially tight. For this reason, the upper bound on the achieved rate
forms a reliable estimate of the secret-key rate.

range of frequencies used in fibre-based communication and for each of those frequencies the attenuation length varies
greatly depending on the type of the fibre used. To give some examples, the best fibres at 1560 nm have losses of 0.1419
dB/km (L0 ≈ 30.6 km) [63], while at 1310 nm standard single-mode fibres exhibit losses of 0.4 dB/km (L0 ≈ 10.9
km) [64]. Clearly our model is general and can be applied to a channel with any value of L0. Here, throughout most
of this section, we consider the transmission through the channel at the same wavelength as the emission line of the
NV-centre setup, as such a channel for this specific physical system has been realised in an experiment [60] using fibre
with losses of 8 dB/km (L0 = 0.542 km as given in the list of parameters above). At the end we present an additional
plot describing the scenario in which a telecom channel with the commonly used in the quantum repeater community
attenuation length of L0 ≈ 22 km is available. In this case the frequency conversion of the emitted photons to telecom
is applied.
Tightness of the error bounds for the secret-key rate. We have derived upper and lower bounds on the yield, and

thus also on the secret-key rate, for the two studied protocols. In FIG. 4, we plot both the upper and the lower bound
on the achieved rate with the current and improved parameters (pps = pem = 0.6 and Fgm = 0.97) and optimised
cut-off as a function of the distance in units of L0. There are two regimes visible on the plot. This is a consequence
of the fact that our bounds have a different analytical form in the two regimes (see Appendix E). Since for practical
purposes our bounds are essentially tight, from now on we will refer to the upper bound as the expected secret-key
rate, and will omit the lower bound for the legibility of the plots.
The impact of the cut-off on the secret-key rate. In FIG. 5 we plot the secret-key rate versus the cut-off for different

sets of parameters. The repeater is assumed to be positioned half-way between Alice and Bob. We observe a strong
dependency of the secret-key rate on the cut-off. In particular, for large cut-off the secret-key rate drops to zero. This
is due to the inclusion of rounds where the state has significantly decohered. This implies that the cut-off is essential
for generating a key at large distances. Moreover, we observe that the optimal cut-off highly depends on the explored
parameter regime.
Optimal positioning of the repeater. The asymmetry of the studied sequential protocol raises the question of whether

it is best to position the repeater half-way between Alice and Bob. In fact, in the absence of a cut-off this is not
the case [17]. For sufficiently large distances, shifting the repeater towards Bob can increase both the secret-key rate
and the distance over which the secret-key rate is non-zero in the presence of dark counts. Specifically, the optimal
positioning remains a fixed distance away from Bob independently of the actual total distance. Here, we find that
with the cut-off and for the parameters considered this phenomenon disappears. We see in FIG. 6 that the optimal
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FIG. 5. Secret-key rate as a function of the cut-off for the expected parameters with the repeater positioned half-way between
Alice and Bob. The reduced losses are for p′app = (papp)0.9 and p′ps = (pps)0.9, the reduced SPAM (state preparation and
measurement) and gate errors are for F ′gm = (Fgm)0.7 and F ′prep = (Fprep)0.7 and the reduced decoherence is for a′ = a/2
and b′ = b/2. The optimal n? shifts depending on the parameters. The kinks arise due to the fact that we optimise over
two protocols: fully asymmetric BB84 and symmetric six-state protocol with advantage distillation which itself consists of two
subprotocols. The optimal protocol depends on the bit error rates. The data have been plotted for the distance of 15L0, where
L0 = 0.542 km.

position with the cut-off optimisation appears to be exactly in the middle of Alice and Bob. Nevertheless, we note
that the bounds for the yield derived in Appendix E are valid under the condition ηB ≥ ηA. This means that we
can only study the effect of moving the repeater towards Bob. However, we do not expect any benefit in shifting the
repeater towards Alice as this could only increase the noise due to decoherence. From now on for the scenarios with
the cut-off optimisation, we always consider the repeater to be placed half-way between Alice and Bob. Interestingly,
in FIG. 6 we also see that the rates for the two scenarios with and without the cut-off start to coincide after the
quantum repeater is shifted within a certain distance of Bob. Intuitively this happens when the probability of Bob
getting a photon is large enough so that the significance of the cut-off becomes marginal.
Cut-off versus no cut-off. Having established the optimal positioning of the repeater, we can now compare the two

scenarios: optimised cut-off with middle positioning of the repeater and no cut-off with optimised positioning. We find
that in the absence of dark counts the scaling with distance of both schemes is the same, with a small advantage of
the cut-off scheme. However, the cut-off is more robust against dark counts. Hence, for imperfect detectors the cut-off
allows distributing keys at larger distances. These results can be seen in FIG. 7 and FIG. 8, which show the secret-key
rate as a function of distance for detectors without and with dark counts, together with the channel capacity of the
optical fibre (i.e. benchmark 1a). We plot the data for the expected and improved parameters (pps = pem = 0.6 and
Fgm = 0.97).

In FIG. 7 where we assume no dark counts, we see that for small distances the rate scales approximately with the
square root of the transmissivity for both scenarios. That is, they are proportional to the theoretical optimum [17] of√
ηf = e−L/2L0 . For sufficiently large distances time-dependent decoherence of the memory QM1 becomes a problem.

Both schemes overcome it at the expense of reducing the yield. As a result, the scaling becomes proportional to
ηf = e−L/L0 for both schemes. In FIG. 8 however we see that the presence of dark counts affects the two schemes
quite differently. While for both schemes the effect of dark counts becomes the dominant source of noise after a certain
distance, this distance is shorter for the no cut-off scheme than for the scheme with the cut-off. In other words, we
see that the cut-off is more robust towards dark counts than the repositioning method. This fact can be explained
by noting that shifting the repeater towards Bob increases the losses on Alice’s side and as a result makes the Alice-
repeater link vulnerable to dark counts. With the cut-off however, the repeater remains in the middle making both
of the individual links Alice-repeater and repeater-Bob shorter than the Alice-repeater link in the no cut-off scheme.
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FIG. 6. Secret-key rate with and without the cut-off as a function of the distance in units of L0 = 0.542 km between Alice
and quantum repeater. The total distance between Alice and Bob is fixed to 11L0. We see that with the cut-off optimisation,
positioning the repeater half-way between Alice and Bob is optimal. This behaviour was also observed for other parameter
regimes. This result contrasts with the optimal positioning for the no cut-off scenario, for which we see that shifting the repeater
towards Bob is beneficial. We also note that the two rates overlap when the repeater is shifted towards Bob.

As a result the setup with the cut-off and with the improved parameters allows us to overcome the channel capacity
(1a) more confidently and over larger range of distances, than without the cut-off.

Comparison with the proposed benchmarks. Let us now investigate the secret-key rate achievable with the expected
parameters and how it compares with the proposed benchmarks. The comparison is depicted in FIG. 9. The bench-
marks corresponding to direct transmission (3d), the thermal-loss channel (3c) and the pure-loss channel with energy
constraint and inclusion of post-selection (2b) are outperformed. The achievable secret-key rate is also very close to
the pure-loss channel benchmark with post-selection (2a). The other benchmarks are not overcome but are within
experimental reach.

Parameter trade-off. Let us now give a general overview of how good the improved parameters need to be in order
to overcome individual benchmarks. This information is presented on two contour plots. In FIG. 10, we study the
parameter regions for which it is possible to beat the benchmarks in Table I as a function of pps and pem. A similar
plot as a function of Fgm and pem can be seen in FIG. 11. We omit here the direct transmission benchmark which,
as we have already seen, can be easily surpassed with the expected parameters. Moreover, we note that the capacity
of the thermal channel in the benchmark (3c) goes to zero for very low pps and pem for which it is still possible to
generate key with the quantum repeater. Hence it is trivially easy to beat this benchmark for low pps and pem. In
that sense this benchmark is not so interesting in that regime. It is for this reason that this regime is not depicted
on the contour plots. In both FIG. 10 and FIG. 11 we observe a crossing between the finite energy benchmarks (1b)
and (2b) and their infinite energy counterparts (1a) and (2a) at pem ≈ 0.796, as discussed in Section V.
Comparison with the proposed benchmarks for a commonly used telecom channel. Let us now again investigate the

secret-key rate achievable with the expected parameters and how it compares with the proposed benchmarks, but
this time assuming that we have an available channel at the commonly used telecom wavelength with attenuation
length L0 = 22 km. Hence in this case the frequency conversion of the emitted light into telecom would be applied.
We consider such a conversion process with efficiency of 30% [65]. This parameter can be added to pem so that
we define p′em = 0.3 pem. We note here that the assumed value of this parameter is a choice based on the specific
experimental implementation. However, higher conversion efficiencies are in principle achievable. The comparison is
depicted in FIG. 12. We see that for this choice of the direct channel, the benchmarks are more difficult to overcome.
In particular only the benchmarks corresponding to direct transmission (3d) and the thermal-loss channel (3c) can
be outperformed. The other benchmarks seem to be far from near-term experimental reach.
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FIG. 7. Secret-key rate as a function of the distance in units of L0 = 0.542 km, assuming detectors without dark counts. The
black lines correspond to the protocol with cut-off and the blue lines to the protocol without the cut-off but with optimised
positioning of the repeater. We plot the data for both the expected and improved parameters. The improved parameters
correspond to setting pps = pem = 0.6 and Fgm = 0.97. Finally, the channel capacity (1a) is also included for comparison. It
can be seen that both the cut-off and repositioning of the repeater allows to generate key for all distances.
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FIG. 8. Secret-key rate as a function of the distance in units of L0 = 0.542 km with dark counts. The black lines correspond to
the protocol with cut-off and the blue lines to the protocol without the cut-off but with optimised positioning of the repeater. We
plot the data for both the expected and improved parameters. The improved parameters correspond to setting pps = pem = 0.6
and Fgm = 0.97. Finally, the channel capacity (1a) is also included for comparison. It can be seen that the protocol with the
cut-off is more robust against dark counts than the protocol without the cut-off.
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FIG. 9. Secret-key rate with the quantum repeater implementation for the expected parameters with optimised cut-off as a
function of the distance in units of L0 = 0.542 km. The rate is compared to all the benchmarks defined in Table I.
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FIG. 10. Contour plot of regions of pem versus pps with the expected parameters where the benchmarks listed in Table I can
be surpassed. The contour lines correspond to the parameters that achieve the corresponding benchmarks while the parameter
regimes above the curves allow us to surpass them. The data is plotted for the distance of 9.6L0, where L0 = 0.542 km.

VIII. CONCLUSIONS

In this work, we have analysed numerically a realistic quantum repeater implementation for quantum key distri-
bution. We have introduced two methods for improving the rates of the repeater with respect to previous proposals:
advantage distillation and the cut-off. Advantage distillation is a classical post-processing method that increases the
secret-key rate at all levels of noise. The cut-off on the other hand allows for a trade-off between the channel uses
required and the secret-key fraction. Utilising the cut-off results in three benefits with respect to the previous scheme



15

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.2

0.4

0.6

0.8

1.0

Fgm

p e
m 1a

1b

2a

2b

3c

FIG. 11. Contour plot of regions of Fgm versus pem with the expected parameters where the benchmarks listed in Table I can
be surpassed. The contour lines correspond to the parameters that achieve the corresponding benchmarks while the parameter
regimes above the curves allow us to surpass them. The data is plotted for the distance of 9.6L0, where L0 = 0.542 km.

0 100 200 300 400

10- 10

10- 8

10- 6

10- 4

0.01

1

Distance (km)

R
at
e

1a

1b

2a

2b

3c

3d

With cut-off, expected parameters

FIG. 12. Secret-key rate for the telecom channel with L0 = 22 km with the quantum repeater implementation for the expected
parameters with optimised cut-off as a function of the distance in units of km. The rate is compared to all the benchmarks
defined in Table I.

for the single sequential quantum repeater [17]. Firstly, the cut-off method achieves a higher rate for all distances.
Secondly, the protocol is more robust against dark counts, in the sense that non-zero secret key can be generated over
larger distances. Finally, the cut-off can be adjusted on the fly, unlike the repositioning of the repeater [17]. This is
especially convenient in the scenario where the experimental setup might be modified. With the previous scheme for
example, improving the coherence times of the memories would lead to a new optimal position. The repositioning
of the repeater node would be both costly and time-inefficient, while modifying the cut-off corresponds to a simple
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change in the programming of the devices.
We note here that one could also use the secret-key rate per unit time to assess the performance of a quantum

repeater. The secret-key rate per unit time can be calculated by multiplying the secret-key fraction with the inverse
of the (average) time it takes to generate a single raw bit between Alice and Bob. This time will depend on the travel
time of the photons from the quantum repeater to Alice and Bob, the generation time of the entangled photon-memory
pairs and the time it takes to perform the required operations such as the Bell state measurement. To compare the
secret-key rate per unit time to the benchmarks, the benchmarks too must then be re-expressed in the secret-key
rate per unit time. This can be achieved by multiplying the benchmarks with a fixed emission rate of a photon
source [66]. Note that there is now an ambiguity in the benchmarks, as they depend on the fixed emission rate. Since
the emission rate is limited by engineering constraints, the benchmarks are dependent on current technologies and
cannot be claimed to be fundamental.

By optimising over the cut-off, we have found realistic parameter regions where it is possible to surpass several
different benchmarks including the secret-key capacity. These benchmarks are relevant milestones towards claiming
a quantum repeater, and thus form an important step in the creation of the first large-scale quantum networks. To
make our arguments concrete, we have chosen a specific parameter set induced by some recent experimental results.
However, other platforms or technological advances might allow to improve upon our results and predict particularly
simple setups for performing the first quantum repeater experiment. For example, our work could be extended by
including other types of encoding, such as polarisation encoding, in which case additional depolarising noise in the
fibre could become relevant. We leave the investigation of other parameter regimes open. In this respect our model
has a very broad functionality, as it allows us to perform efficient optimisation of the secret-key rate over the cut-off
for any set of parameters. We achieve this functionality by finding tight analytical bounds for the number of channel
uses needed to generate one bit of raw key as a function of the cut-off. Our numerical package is freely available for
further exploration [58].
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Appendix A: Dark counts

In this section we detail the effect of dark counts in the detectors of Alice and Bob on our protocol. In particular,
we briefly go over the concept of so-called squashing models [38, 46], after which we will be able to calculate the
induced depolarising noise. We conclude with explaining how dark counts increase the yield.

Quantum states of light are naturally described by operators on an infinite-dimensional Hilbert space. However, a
significant number of optical experiments have been performed where the infinite-dimensional states and operations
are approximated by a lower dimensional description. An example of this is where the state of light is assumed
to lie within a two-dimensional subspace spanned by the vacuum state and a single-photon excitation. Such an
approximation is valid in the sense that the theoretical predictions of measurement statistics correspond accurately
to those that are observed experimentally.

However, in cryptographic contexts one usually has to make unconditional statements about the information
held by a third party. This third party might be malicious and all-powerful, and her measurement statistics are,
by definition, unknown. This implies that there is not necessarily a bound on the information held by a malicious
third party, despite the fact that the truncation of the Hilbert space is a good approximation for experimental statistics.

Since the theoretical analysis in an infinite-dimensional Hilbert space is difficult, one would prefer to be able to
bound the information held by a third party, while at the same time applying a truncation to the finite-dimensional
Hilbert space. This can be done if a so-called squashing model exists, which is a way of relating measurements
performed on a high-dimensional state to a truncated space. As an approximation we consider here the squashing
models for measurements of qubits encoded in the polarisation of photons. In this case squashing models exist for
both the fully asymmetric BB84 protocol and the symmetric six-state protocol (with only passive measurements),
implying that one can, without loss of generality, perform the fully asymmetric BB84 and symmetric (passive)
six-state protocol with photons [38, 46]. The squashing model also dictates how multiple clicks in different detectors
give rise to noise in the truncated space. In the next section, we discuss how to map the dark counts in the detectors
to depolarising noise according to the corresponding squashing model.

The parameters typically used to quantify detectors are the dark counts per second and the detection window
tint, which is the duration of the integration period of the detectors. The number of thermal photons n relevant for
the thermal benchmark is given by tint times the dark counts per second. Assuming a Poisson distribution of the
dark counts, it follows that the probability pd of getting at least a single dark count click within the time window of
awaiting the signal photon is given by pd = 1− exp(−n) ≈ n for small n.
The noise caused by the dark counts at Alice’s or Bob’s detector can then be modelled by a depolarising channel,

where the depolarising parameter αA/B depends on the implemented protocol,

αA/B, BB84 =
pappppsηA/B(1− pd)

1− (1− pappppsηA/B)(1− pd)2 , (A1)

αA/B, six-state =
pappppsηA/B(1− pd)5

1− (1− pappppsηA/B)(1− pd)6 . (A2)
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That is, conditioned on a click in at least one of the detectors, Alice or Bob receive the desired state if they receive
the signal photon and no other detector was triggered. Due to the squashing map all other events can be mapped
onto a maximally mixed state [38, 46]. To explain the exponents, we note that the active BB84 protocol requires an
optical measurement setup with two detectors, while for the six-state protocol such a measurement setup will consist
of six detectors.

Furthermore, independent of the existence of a squashing map, the dark counts increase the total probability that
Alice or Bob gets a click. This probability depends on whether the BB84 or six-state protocol is implemented, and is
given by

pA/B, BB84 = 1− (1− pappppsηA/B)(1− pd)2 , (A3)
pA/B, six-state = 1− (1− pappppsηA/B)(1− pd)6 . (A4)

Appendix B: Quantum bit error rate

In this Appendix we derive the expressions for the average quantum bit error rate in the X, Y and Z basis as a
function of the experimental parameters. It is given by

〈eX〉 = 〈eY 〉 = 1
2 −

1
2FgmαAαB (2Fprep − 1)2

〈
e−(a+b)n

〉
, (B1)

〈eZ〉 = 1
2 −

1
2FgmαAαB〈e−b·n〉 , (B2)

where the average is performed over the geometric distribution with only the first n? trials. That is, the average of
the exponential e−cn is given by

〈e−cn〉 =
∑n?

n=1 pB (1− pB)n−1
e−cn∑n?

n=1 pB (1− pB)n−1 (B3)

= pBe
−c

1− (1− pB)n?

1− (1− pB)n
?

e−cn
?

1− (1− pB) e−c .

To derive these quantum bit error rates, let us firstly define the two-qubit Bell states as

|ψ(x, z)〉 = 1√
2

(|0〉 |0 + x〉+ (−1)z |1〉 |1 + x (mod 2)〉), (B4)

for x, z ∈ {0, 1}. The noise in the preparation can be modelled as dephasing noise [39]. The initially generated
entangled state between the quantum memory and the state of the photon flying to Alice is then

ρAR = Fprep|ψ(1, 0)〉〈ψ(1, 0)|+ (1− Fprep)|ψ(1, 1)〉〈ψ(1, 1)| , (B5)

where Fprep is the preparation fidelity of this state. The state in the first quantum memory is now kept stored there.
During this time, a second entangled photon-memory is attempted to be generated at the second quantum memory.
During these attempts, the state stored in the first quantum memory decoheres through time-dependent dephasing
and depolarising noise acting on it. This means that at the time when the second copy is generated, the first copy
will have decohered. This second copy will be of the same form as the first one. The decohered first copy is of the
form

ρ′AR = FT1 [Fprep(FT2 |ψ(1, 0)〉〈ψ(1, 0)|+ (1− FT2)|ψ(1, 1)〉〈ψ(1, 1)|) (B6)

+ (1− Fprep) (FT2 |ψ(1, 1)〉〈ψ(1, 1)|+ (1− FT2)|ψ(1, 0)〉〈ψ(1, 0)|)] + (1− FT1) I4 ,

where FT1 , FT2 are respectively the depolarising and dephasing parameters due to the decoherence processes on the
stored state in the first memory. The fidelity decays exponentially with the number of attempts [13] and hence these
parameters can be written as

FT1 = e−b·n , (B7)

FT2 = 1 + e−a·n

2 . (B8)
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Here n is the number of attempts that have been performed on the second memory to successfully generate the
repeater-Bob entanglement and the decay rates a and b are defined in the main text. Hence we can rewrite the state
of ρ′AR as

ρ′AR = FT1(Fdeph,AR|ψ(1, 0)〉〈ψ(1, 0)|+ (1− Fdeph,AR)|ψ(1, 1)〉〈ψ(1, 1)|) + (1− FT1) I4 . (B9)

where

Fdeph,AR = 1 + (2Fprep − 1)e−an
2 . (B10)

The entanglement swapping is performed at the two memories at the repeater node. Since the situation is symmetric
for all the four measurement outcomes, without loss of generality we can consider the resulting state on AB as if the
repeater measured |ψ(1, 0)〉. If a different Bell state was measured, a Pauli rotation could be used to bring the state
to this form. The state that we obtain is

ρ′′AB = FT1

(
[Fdeph,ARFprep + (1− Fdeph,AR)(1− Fprep)] |ψ(1, 0)〉〈ψ(1, 0)| (B11)

+ [Fdeph,AR(1− Fprep) + (1− Fdeph,AR)Fprep] |ψ(1, 1)〉〈ψ(1, 1)|
)

+ (1− FT1) I
4 .

Finally we note that the operations such as Bell state measurements or any other required gates performed on the
memories are also noisy. We will model them by the depolarising channel here [40]. The depolarising channel commutes
with the dephasing channel. For the two copies of the Bell-diagonal state, it also commutes with the entanglement
swapping, in the sense that applying it to one of our memory qubits is mathematically equivalent to applying the
same channel to one of the photons flying to Alice or Bob. Hence independently of when exactly in the protocol those
gates or measurements on the memories are applied, we can add the resulting depolarisation to the final state shared
between Alice and Bob, so that we obtain

ρ′′AB = FgmαAαBFT1

(
[Fdeph,ARFprep + (1− Fdeph,AR)(1− Fprep)] |ψ(1, 0)〉〈ψ(1, 0)| (B12)

+ [Fdeph,AR(1− Fprep) + (1− Fdeph,AR)Fprep] |ψ(1, 1)〉〈ψ(1, 1)|
)

+ (1− FgmαAαBFT1) I
4 .

Here by Fgm we denote the product of all the depolarising parameters corresponding to all noisy gates and measure-
ments and αA/B corresponds to the noise caused by the dark counts on Alice’s/Bob’s side. From the final state it
follows that

〈eX〉 = 〈eY 〉 = 1
2 −

1
2FgmαAαB (2Fprep − 1)2

〈
e−(a+b)n

〉
, (B13)

〈eZ〉 = 1
2 −

1
2FgmαAαB〈e−b·n〉 . (B14)

where the average is over the geometric distribution with only the first n? trials. This is due to the fact that, by
construction, the state is never allowed to decohere more than n? trials.

Appendix C: Comparison with memory-assisted measurement-device-independent QKD schemes

The setup of the proof-of-principle repeater analysed in this paper bears close resemblance to the memory-assisted
measurement-device-independent QKD (MA-MDI QKD) setups proposed in [18], which were analysed in more detail
in the particular context of NV centres in [67]. However, in contrast to our focus on key per channel use, these
schemes were mostly assessed on their performance of generating key per unit time. In this section, we will briefly
discuss these schemes and their advantages and disadvantages in comparison to the scheme analysed in this paper. In
particular, we will focus both on their relevance in the context of secret-key generation per channel use, and on the
complexity of their experimental implementation.

The three schemes that we compare with can be found in Figure 13. These schemes have the advantage of high
expected rate per unit time, since heralding of the successful events now takes place at the repeater. Thus, after a
failed attempt the repeater can immediately prepare for receiving another photon, without the need for waiting on
any classical communication from Alice and Bob. Furthermore, these schemes are secure against detector side-channel
attacks [68], since in each scheme there is no quantum information sent from the repeater to Alice or Bob.
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QM2QM1 BSM
a)

QM2QM1 BSM BSMBSM
b)

Ψ ΨQM2QM1 BSM BSMBSM

c)
Alice Bob

FIG. 13. Three different setups for the memory-assisted measurement-device-independent quantum key distribution (MA-MDI
QKD). Here, BSM stands for Bell state measurement. The first setup a) corresponds to the scheme of MA-MDI QKD with
direct heralding. Specifically, the implementation of this setup requires that a photonic state can be transferred into a quantum
memory QM1 and QM2 in a heralded fashion. That is, following the transfer attempt, one obtains the information whether
the state of the photon emitted at Alice or Bob has been successfully transferred to the desired quantum memory. The second
setup b) with indirect heralding is a modification of the first one. Here the requirement of the heralded state transfer has been
dropped, at the cost of probabilistic Bell state measurements between two photonic qubits at the outer BSM stations. Finally,
the setup in c) is a modification of b), which uses sources of entangled photons (Ψ). In this way, the attempt to transfer the
quantum state of the photon into the memory is performed only after a successful Bell state measurement. This can increase
the rate per unit time, since writing unto and resetting the memory is a time-consuming process.

However, these advantages, while relevant in practical QKD setups, might not necessarily translate directly in
higher secret-key rate per channel use for proof-of-principle repeaters. Moreover, there are experimental challenges
that make these MA-MDI QKD schemes more difficult to implement than the sequential quantum repeater that we
consider. This is particularly important, since the goal of this paper is to analyse a protocol that would be simple
from the implementation perspective, and would have the capability to exceed the benchmarks in Section V.

Let us now go over each of these schemes. Firstly, let us consider the first scheme a). This scheme seems to require a
similar number of components as our proposed scheme, with the exception that the two detector setups have now been
replaced with the sources of BB84 states. The main difficulty with implementing such a scheme lies in the requirement
of heralded quantum state transfer from a single photon into the quantum memory. This is a great challenge from
the experimental perspective and is not expected to be realised with high fidelity on a significant number of physical
platforms in the near future. In systems that utilise cavities this task can be performed, provided that one can realise
a low-loss overcoupled cavity with high cooperativity. While such a scenario has been demonstrated experimentally
in trapped atoms by achieving the strong coupling regime [69], demonstrating high cooperativity is very challenging
in general.

Due to the reasons explained above, scheme b) seems more realistic than scheme a) with the current state-of-
the-art technology. However, a larger number of components is needed and the two additional optical Bell state
measurements will reduce the rate by a factor of four. In particular, photonic states need to be emitted both from
the quantum memories and the BB84 sources. These need to be synchronised such that the Bell state measurements
can be performed on both of them. While there is nothing fundamentally challenging with this scheme, it requires
larger number of components and is more complicated than the scheme analysed in this paper. Similar conclusions
apply to the more complex scheme proposed in c), which adds sources of entangled photons (denoted here by Ψ) into
the scheme of b). A comparison of the achieved secret-key rate with the secret-key capacity, for a variant of scheme
c), has been performed in [70].

Appendix D: Secret-key fraction and advantage distillation

In this section the secret-key fraction formula for the six-state protocol with advantage distillation of [47] is briefly
reviewed. We note here that while the analysis in Appendix B has the state |ψ(1, 0)〉 as the target state, here we
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follow the analysis of [47] for which |ψ(0, 0)〉 is the target state. This doesn’t affect the overall analysis as the final
state from Appendix B can be rotated locally such that |ψ(0, 0)〉 could be made the target state. The secret key
fraction can be expressed in terms of the Bell coefficients of the Bell diagonal state

ρAB =
∑

x,z∈{0,1}

PXZ(x, z) |ψ(x, z)〉 〈ψ(x, z)| . (D1)

Here PXZ is a probability distribution and we will abbreviate PXZ(x, z) as pxz. For the description of the advantage
distillation protocol we refer the reader to [47]. It is shown there that the secret-key fraction can be written as

rsix-state = 1
3 max

[
1−H(PXZ) + PX̄(1)

2 h

(
p00p10 + p01p11

(p00 + p01)(p10 + p11)

)
,
PX̄(0)

2 (1−H(P ′XZ))
]
, (D2)

where

PX̄(0) = (p00 + p01)2 + (p10 + p11)2 , (D3)
PX̄(1) = 2(p00 + p01)(p10 + p11) , (D4)

P ′XZ(0, 0) = p2
00 + p2

01
(p00 + p01)2 + (p10 + p11)2 , (D5)

P ′XZ(1, 0) = 2p00p01

(p00 + p01)2 + (p10 + p11)2 , (D6)

P ′XZ(0, 1) = p2
10 + p2

11
(p00 + p01)2 + (p10 + p11)2 , (D7)

P ′XZ(1, 1) = 2p10p11

(p00 + p01)2 + (p10 + p11)2 , (D8)

and H(PXZ) is the Shannon entropy of the distribution PXZ. The factor of a third arises from the fact that for a
symmetric six-state protocol only a third of the measurements will be performed in the same basis by Alice and Bob.

In our model we only consider depolarising noise and dephasing noise in standard basis. Hence for the six-state
protocol the error rates in X and Y basis will be the same. Therefore

p10 + p11 = eZ , (D9)
p01 + p11 = eXY , (D10)
p01 + p10 = eXY , (D11)

p00 + p01 + p10 + p11 = 1 . (D12)

Hence

p00 = 1− eZ
2 − eXY , (D13)

p01 = eXY −
eZ
2 , (D14)

p10 = p11 = eZ
2 . (D15)

And so

PX̄(0) = 1− 2eZ + 2e2
Z , (D16)

PX̄(1) = 2(1− eZ)eZ . (D17)

Appendix E: Yield

In this Appendix we derive the analytical approximation for the yield with the cut-off n?. The yield Y is given by

Y = pbsm

E [N ] = pbsm

E [max(NA, NB)] . (E1)
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The approximation used for E [max(NA, NB)] is

E [max(NA, NB)] ≈
{ 1

pA(1−(1−pB)n?)
1
pA
≥ n?

1
pA

+ 1
pB
− 1

pA+pB−pApB

1
pA

< n?,
(E2)

where pA and pB are defined in Eq. (A3) for BB84 and in Eq. (A4) for the six-state protocol. In the rest of this
Appendix, we will motivate this approximation by finding tight analytical lower and upper bounds on E [N ].

We note that we consider separately two parameter regimes. One of them is the regime where on average the
dominant number of channel uses per round is on Alice’s side

(
1
pA

> n?
)
. This corresponds to the high-loss regime

since the number of channel uses per round on Bob’s side is upper bounded by the cut-off. The other regime is the
low-loss regime

(
1
pA
≤ n?

)
. In this regime we will show that the cut-off does not play any significant role, so that in

this regime the formula for the yield with no cut-off [17, 18] can be used. Moreover, for our derivation to be valid we
require an additional constraint to be satisfied, namely pB ≥ pA. This means that we cannot consider scenarios when
the repeater is positioned closer to Alice than to Bob. Such a constraint is well-justified since the time-dependent
decoherence in quantum memory QM1 would only increase by shifting the repeater towards Alice.

High-loss regime

The high-loss regime is the regime where the losses on Alice’s side together with the cut-off on Bob’s side ensure
that the predominant number of channel uses is almost always on Alice’s side, i.e. E [N ] = E [max(NA, NB)] ≈ E [NA].
This regime is described by the condition pAn? < 1. More specifically, as we will show in this section, if

1
pA

:= µ = βn?, β > 1 , (E3)

then

E[NA] ≤ E [N ] ≤ (gerr(pA, pB , n?) + 1)E[NA] , (E4)

where E[NA] = 1
pA(1−(1−pB)n? ) (see Eq. (E12)) and gerr(pA, pB , n?) = O

(
1
β2

)
is a function defined in Eq. (E31). This

implies that for β large enough, E [N ] can be accurately approximated by 1
pA(1−(1−pB)n? ) .

We start the proof of Eq. (E4) by first noticing that E [NA] ≤ E [N ]. It is, thus, only necessary to find an upper
bound for E [N ]. Now, let p(K = k) = (1 − pr)k−1pr be the probability that Bob succeeds in round k. Here
pr = 1− (1− pB)n? is the probability that Bob succeeds in a given round. Then

E [N ] = E [max(NA, NB)] =
∞∑
k=1

p(K = k)

 ∞∑
nA=k

 kn?∑
nB=(k−1)n?+1

p(NA = nA ∧NB = nB |K = k) max(nA, nB)

 .

(E5)

One can split the sum over nA in two, depending on whether nA is greater than nB or vice versa. We get

E [N ] =
∞∑
k=1

p(k)

 kn?∑
nB=(k−1)n?+1

(
nB∑
nA=k

p(nA ∧ nB |k)nB

)
+

kn?∑
nB=(k−1)n?+1

( ∞∑
nA=nB+1

p(nA ∧ nB |k)nA

) , (E6)

where p(k) = p(K = k), and p(nA ∧nB |k) = p(NA = nA ∧NB = nB |K = k). The first term of Eq. (E6) can be upper
bounded noticing that nB ≤ kn?, i.e.

∞∑
k=1

p(k)

 kn?∑
nB=(k−1)n?+1

(
nB∑
nA=k

p(nA ∧ nB |k)nB

) ≤ ∞∑
k=1

p(k)p (NA ≤ NB |K = k) kn?. (E7)
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The second term of Eq. (E6) can be upper bounded in the following way

∞∑
k=1

p(k)

 kn?∑
nB=(k−1)n?+1

( ∞∑
nA=nB+1

p(nA ∧ nB |k)nA

) ≤ ∞∑
k=1

p(k)
( ∞∑
nA=k

p(nA|k)nA

)
(E8)

=
∞∑
k=1

p(k)
∞∑

nA=1
p(nA|k)nA (E9)

=
∞∑

nA=1
p(nA)nA = E [NA] . (E10)

Inputting Eq. (E7) and Eq. (E10) back into Eq. (E6), we obtain

E[N ] ≤
(

n?

E[NA]

∞∑
k=1

p(k)p (NA ≤ NB |k) k + 1
)
E[NA] . (E11)

Let N i
A be the random variable describing the number of trials on Alice’s side in round i. Since p(N i

A = niA) =
(1− pA)ni

A−1pA, we clearly have that E[N i
A] = 1

pA
= µ. Then we note that

E[NA] =
∞∑
k=1

p(k)
k∑
i=1

∞∑
ni

A
=1

p(niA)niA =
∞∑
k=1

p(k)
k∑
i=1

E[N i
A] = µ

∞∑
k=1

p(k)k = E[K]µ = 1
pApr

= 1
pA(1− (1− pB)n?) .

(E12)

Here, we first express E[NA] by calculating the average number of trials in each of the k rounds. Then, we sum the
k averages together, and finally, we average over the total number of rounds k. Since all the rounds are independent,
we replace each E[N i

A] by µ as stated above. By inputting Eq. (E12) into Eq. (E11), we get

E [NA] ≤ E [N ] ≤
(

1
E[K]β

∞∑
k=1

p(k)p (NA ≤ NB |k) k + 1
)
E[NA] . (E13)

We now upper bound the p (NA ≤ NB |k) term. Note that

p (NA ≤ NB |k) = p

(
k∑
i=1

N i
A ≤

k∑
i=1

N i
B

∣∣∣k) . (E14)

We note that conditioned on K = k, we have that
∑k
i=1N

i
B = (k − 1)n? +Nk

B . It then follows that

p (NA ≤ NB |k) = p

(
k∑
i=1

N i
A ≤ (k − 1)n? +Nk

B

∣∣∣k) ≤ p( k∑
i=1

N i
A ≤ kn?

∣∣∣k) . (E15)

Condition Eq. (E3) and −
∑k
i=1N

i
A ≥ −kn? is equivalent to kµ−

∑k
i=1N

i
A ≥ k(β − 1)n?. Hence,

p

(
k∑
i=1

N i
A ≤ kn?

∣∣∣k) = p

(
kµ−

k∑
i=1

N i
A ≥ k(β − 1)n?

∣∣∣k) . (E16)

We can use the Chernoff bound to upper bound this probability. The Chernoff bound for a random variable X is

p(X ≥ a) ≤ E[etX ]
eta

, t > 0 . (E17)

Let X be the sum of k random variables X1, X2, . . . , Xk, where

Xi = µ−N i
A , (E18)
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i.e. X =
∑k
i=1Xi = kµ −

∑k
i=1N

i
A. From this we can now bound the desired probability. Using (E17) and

a = k(β − 1)n?, we obtain the inequality

p

(
kµ−

k∑
i=1

N i
A ≥ k(β − 1)n?

∣∣∣k) ≤ E
[
exp

(
t
(
kµ−

∑k
i=1N

i
A

)) ∣∣∣k]
etk(β−1)n? (E19)

= exp [tk (µ− (β − 1)n?)]E
[
Πk
i=1e

−tNi
A |k
]
. (E20)

Let us now focus on E
[∏k

i=1 e
−tNi

A |k
]
,

E

[
k∏
i=1

e−tN
i
A |k

]
=

k∏
i=1

E
[
e−tN

i
A |k
]

=
k∏
i=1

 ∞∑
ni

A
=1

pA(1− pA)n
i
A−1 e−tn

i
A

 =
(

pAe
−t

1− (1− pA)e−t

)k
. (E21)

Here, after the first equality sign we have used the fact that the random variables N i
A are independent for different i’s.

After the second equality we note that all of them have exactly the same geometric distribution over the k rounds.
Specifically, it is now important to note that this holds provided that k is the value of K on which we have conditioned,
i.e., the success on Bob’s side occurs exactly in the k’th round. Furthermore, the common ratio (1− pA)e−t satisfies
the convergence condition |(1− pA)e−t| < 1 for all t > 0. This yields

p (NA ≤ NB |K = k) ≤
(

exp
[
t

(
1
pA
− (β − 1)n?

)]
pAe

−t

1− (1− pA)e−t

)k
. (E22)

Let’s define the function f(t) as

f(t) := exp
[
t

(
1
pA
− (β − 1)n?

)]
pAe

−t

1− (1− pA)e−t . (E23)

This function should be minimised subject to t > 0 to obtain the tightest bound. A single stationary point is
analytically found at

t0 = ln
(

(1− pA)(pA(β − 1)n? − 1)
pA(β − 1)n? + pA − 1

)
. (E24)

We now want to make sure that t0 always satisfies the condition t > 0, necessary for applying the Chernoff bound.
By condition Eq. (E3), the denominator of the above expression inside the logarithm is pA(β − 1)n? + pA − 1 =
1− pAn? + pA − 1 = pA(1− n?) < 0 as long as n? > 1. From this it follows that t0 > 0 if and only if

(1− pA)(pA(β − 1)n? − 1) < pA(β − 1)n? + pA − 1 . (E25)

Clearly this condition is equivalent to −p2
A(β−1)n? < 0 which is satisfied for β > 1. This means that t0 > 0 is always

satisfied. Now note that f(t = 0) = 1. Moreover, one can also easily verify that f ′(t = 0) = n?(1− β) < 0 for β > 1,
and that limt→∞ f(t) → ∞ as long as n? > 1. These properties of f(t), together with the continuity of f(t), prove
that t = t0 corresponds to the global minimum of this function in the regime t > 0 and that f(t0) < 1. Hence, we can
now calculate f(t0) which gives

f(t0) =
(

(pA(β − 1)n? − 1)(1− pA)
pA(β − 1)n? + pA − 1

) 1
pA
−(β−1)n?−1

(1− pA(β − 1)n?) . (E26)

This formula can be simplified by substituting the condition Eq. (E3) to eliminate β

f(t0) = pAn
?

(
n?(1− pA)
n? − 1

)n?−1
. (E27)

E [N ] can now be upper bounded by an expression that depends on f(t0), that is

E [N ] ≤
(

1
E[K]β

∞∑
k=1

p(K = k)f(t0)kk + 1
)
E[NA] . (E28)
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We can now average over the number of rounds k,
∞∑
k=1

pr
(1− pr)

[(1− pr)f(t0)]k k = prf(t0)
[1− (1− pr)f(t0)]2

. (E29)

Moreover, E[K] = 1
pr

and again removing β through condition Eq. (E3) yields

E [N ] ≤
(

p2
rpAn

?f(t0)
[1− (1− pr)f(t0)]2

+ 1
)
E[NA] =

(
(1− (1− pB)n?)2pAn

?f(t0)
[1− (1− pB)n?f(t0)]2

+ 1
)
E[NA] . (E30)

Now by taking the number of channel uses to be E [NA], we can define the relative error gerr(pA, pB , n?),

gerr(pA, pB , n?) := (1− (1− pB)n?)2pAn
?f(t0)

[1− (1− pB)n?f(t0)]2
, (E31)

with f(t0) given in Eq. (E27), so that

E[NA] ≤ E [N ] ≤ (gerr(pA, pB , n?) + 1)E[NA] , (E32)

where the conditions required to satisfy the above formula are n? > 1 and pAn? < 1. Finally, we can now show how
gerr(pA, pB , n?) scales with β. Note that

f(t0) ≤ pAn?
(

1 + 1
n? − 1

)n?−1
≤ pAn?e . (E33)

This together with f(t0) < 1 gives

gerr(pA, pB , n?) <
p2
r(pAn?)2e

p2
r

= e

β2 . (E34)

Therefore gerr(pA, pB , n?) = O
(

1
β2

)
, implying that the bounds in the high-loss regime are good enough to tightly

bound the achieved yield.

Low-loss regime

Now we consider the complementary low-loss regime characterised by the condition pAn? ≥ 1. Firstly, since in our
protocol there is never any benefit in placing the repeater closer to Alice than to Bob, we also have that pB ≥ pA.
This implies that 1

pB
≤ 1

pA
= E[N i

A] ≤ n?. This is the regime where the cut-off is large in comparison with the average
number of channel uses required to detect a single photon on Bob’s side. That is,

β′

pB
= n?, n? ≥ β′ ≥ 1 . (E35)

As we will show in this section, in this region we can approximate E [N ] = E [max(NA, NB)] by NNC , where

NNC = 1
pA

+ 1
pB
− 1
pA + pB − pApB

, (E36)

is the average number of channel uses in the no cut-off (NC) scenario [17, 18]. Intuitively, this is because Alice and
Bob almost never have to restart due to Bob reaching the cut-off. More specifically, we show that

NNC ≤ E [N ] ≤ (g̃err(pA, pB , n?) + 1)NNC , (E37)

where g̃err(pA, pB , n?) is defined in Eq. (E48). Since g̃err(pA, pB , n?) = O
(
β′e−β

′
)
, for sufficiently large β′ the

expectation value E [N ] can be accurately approximated by NNC .
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Here we detail a proof of Eq. (E37). We note that the presence of the cut-off increases the number of needed channel
uses with respect to the no cut-off scenario, i.e. NNC ≤ E[N ]. For the upper bound we can write now

E [N ] = E [max(NA, NB)] =
∞∑
k=1

p(K = k)

 ∞∑
nA=k

 kn?∑
nB=(k−1)n?+1

p(nA ∧ nB |K = k) max(nA, nB)

 (E38)

= p(K = 1)
n?∑

nB=1

∞∑
nA=1

p(nA|K = 1)p(nB |K = 1) max(nA, nB)

+
∞∑
k=2

p(K = k)

 kn?∑
nB=(k−1)n?+1

( ∞∑
nA=k

p(nA ∧ nB |k) max(nA, nB)
) . (E39)

In Eq. (E39) we split the sum over k into two terms, one with k = 1 and the other with k > 1. Since the first term has
fixed k = 1, the variables NA and NB are independent here (there is only one round in which Bob for sure succeeds,
so the value of nB doesn’t affect the value of nA). Moreover, the geometric distribution of NB is normalised over the
interval [1, . . . , n?].

E [N ] ≤ p(K = 1)NNC +
∞∑
k=2

p(K = k)

 kn?∑
nB=(k−1)n?+1

( ∞∑
nA=k

p(nA ∧ nB |k) max(nA, kn?)
) . (E40)

We have upper bounded the first term of Eq. (E39) by upper bounding the sum
∑n?

nB=1 with
∑∞
nB=1 . In this case

the expression after p(K = 1) in the first term becomes NNC . In the second term we upper bound nB by kn?. Since
the second term does not depend on nB anymore we upper bound it by removing the constraints on NB completely
from the probabilities p(nA ∧ nB |K = k), i.e.

E [N ] ≤ p(K = 1)NNC +
∞∑
k=2

p(K = k)
∞∑

nA=k
p(nA|K = k) max(nA, kn?) (E41)

= p(K = 1)NNC +
∞∑
k=2

p(K = k)

 kn?∑
nA=k

p(nA|K = k)kn? +
∞∑

nA=kn?+1

p(nA|K = k)nA

 , (E42)

where in the last line of Eq. (E42) we split the second term into two terms corresponding to the regime where kn?
is larger than nA and vice versa. Since kn? does not depend on nA, we upper bound this term by removing the
constraints on nA,

E [N ] ≤ p(K = 1)NNC +
∞∑
k=2

p(K = k)kn? +
∞∑
k=2

p(K = k)
∞∑

nA=k
p(nA|K = k)nA . (E43)

Eq. (E43) can be greatly simplified. We can perform the sum over nA in the third term obtaining kµ. Then the sums
over k can also be easily evaluated so that the right hand side of Eq. (E43) can be rewritten as

p(K = 1)NNC +
∞∑
k=2

p(K = k)kn? +
∞∑
k=2

p(K = k)kµ = p(K = 1)NNC + (n? + µ)(E(K)− p(K = 1)) (E44)

=
(
pr + n? + µ

NNC

(
1
pr
− pr

))
NNC (E45)

=
(
pr +

(
n? + µ

NNC

)(
1− p2

r

pr

))
NNC . (E46)

Hence we have that

NNC ≤ E [N ] ≤ (g̃err(pA, pB , n?) + 1)NNC , (E47)

where g̃err(pA, pB , n?) is defined as

g̃err(pA, pB , n?) := (1− pB)n
?

[(
n? + µ

NNC

)(
2− (1− pB)n?

1− (1− pB)n?

)
− 1
]
. (E48)
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We now show that g̃err(pA, pB , n?) is small compared to the other quantities in Eq. (E47). Observe that

(1− pB)n
?

=
(

1− β′

n?

)n?

≤ e−β
′
. (E49)

From Eq. (E48) it follows that

g̃err(pA, pB , n?) ≤ e−β
′

[
n? + 1

pA

NNC

(
2

1− e−β′

)
− 1
]
. (E50)

To upper bound the relative error, we start by upper bounding the first term inside the brackets, namely

n? + 1
pA

NNC
=

n? + 1
pA

1
pA

+ 1
pB
− 1

pA+pB−pApB

≤
n? + 1

pA

1
pA

+ 1
pB
− 1

pA+pB−pA

= pAn
? + 1 . (E51)

g̃err(pA, pB , n?), then, is upper bounded by

g̃err(pA, pB , n?) ≤ e−β
′
[
(pAn? + 1)

(
2

1− e−β′

)
− 1
]

(E52)

= e−β
′

1− e−β′ (2pAn? + 1 + e−β
′
) (E53)

≤ e−β
′

1− e−β′ (2β′ + 1 + e−β
′
) (E54)

= e−β
′
(

2β′
1− e−β′ + coth

(
β′

2

))
(E55)

< e−β
′
(

2β′
1− e−1 + coth

(
1
2

))
(E56)

< e−β
′
coth

(
1
2

)
(2β′ + 1) (E57)

< 3 coth
(

1
2

)
β′e−β

′
. (E58)

Therefore g̃err(pA, pB , n?) = O
(
β′e−β

′
)
.
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