
Max-Planck-Institut
für Meteorologie

REPORT No. 97

1200- SZA

1000'-

800-

MCOO M030 M060 MC90
600"-

400-. ... „ “I .. Control

200-

EQ
UI

VA
LE

NT
00

2
CO

NC
EN

TR
AT

IO
N

[p
pm

]

O

I : I l _l30 60 90 120 150
TIME [year]

0

MONTE CARLO CLIMATE CHANGE FORECASTS
- WITH A

GLOBAL COUPLED OCEAN-ATMOSPHERE MODEL
by

U. CUBASCH 0 B. D. SANTER - A. HELLBACH 0 G. HEGERL ° H. HOCK
E. MAIER-REIMER - U. MIKOLAJEWICZ ° A. STÖSSEL R. VOSS

HAMBURG, DECEMBER 1992



AUTHORS:

Hegefl
Höck
Maier—Reimer
Mikolajewicz
StösselP

lp
‚5° Voss

U. Cubasch
A. Hellboch

B. D. Scnter

MAXo-PLANCK—INSTITUT
FUR METEOROLOGIE

BUNDESSTRASSE
D—2000 HAMBURG
F.R. GERMANY

Mox—PIonck—Institut
für Meteorologie

Universität Hamburg
Meteorologisches Institut
Bundesstraße 55
D—ZOOO Hamburg 13
FRG

Deutsches Klimarechenzentrum (DKRZ)
Bundesstraße 55
D—ZOOO Hamburg 13
FRG

Program for Climate Model Diagnosis
and lntercomparison
Lawrence Livermore National Laboratory
Livermore
California 94550
USA

Tel.: +49 (4o) 4 11 73—0
Telex: 211092mpime d
Telemoil: MPI.METEOROLOGY
Telefax: +49 (40) 4 11 73-298 REPb 97



ISSN 0937—1060

Monte Carlo Climate Change Forecasts with
a Global Coupled Ocean—Atmosphere Model

U. Cubaschl, B. D. Santerz, A. Hellbachl, G. Hegerl3, H. H6ck3, E. Maier—Reimer3,
U. Mikolajewicz3, A. Stössel3 and R. Voss4

1: Deutsches Klimarechenzentrum, Bundesstr. 55, D-2000 Hamburg 13, FRG

2: Program for Climate Model Diagnosis and Intercomparison/Lawrence Livermore National Laboratory,
Livermore, Ca. 94550, USA

3: Max-Planck-Institut fiir Meteorologie, Bundesstr. 55, D-2000 Hamburg 13, FRG

4: Meteorologisches Institut der Universität Hamburg, Bundesstr. 55, D-2000 Hamburg 13, FRG

correspondence to: U. Cubasch

Abstract

The Monte Carlo approach, which has increasingly been used during the last decade in the field of extended

range weather forecasting, has been applied for climate change experiments. Four integrations with a global

coupled ocean—atmosphere model have been started from different initial conditions, but with the same

greenhouse gas forcing according to the IPCC scenario A. All experiments have been run for a period of 50

years.

The results indicate that the time evolution of the global mean warming depends strongly on the initial state

of the climate system. It can vary between 6 and 31 years. The Monte Carlo approach delivers information

about both the mean response and the statistical significance of the response. While the individual members

of the ensemble show a considerable variation in the climate change pattern of temperature after 50 years,

the ensemble mean climate change pattern closely resembles the pattern obtained in a 100 year integration



and is, at least over most of the land areas, statistically significant. The ensemble averaged sea-level change

due to thermal expansion is significant in the global mean and locally over wide regions of the Pacific.

The hydrological cycle is also significantly enhanced in the global mean, but locally the changes in precipi-

tation and soil moisture are masked by the variability of the experiments.

1.0 Introduction

The impact of the emission of anthropogenic greenhouse gases on the climate can be sim-

ulated reliably only with a coupled global ocean-atmosphere model (Houghton et a1,

1990). The enormous amount of computer resources required for these experiments, how—

ever, has limited the number of institutions which have actually performed such integra—

tions to only four. These institutions could up to now afford to run only one single climate

change simulation, so that currently there exist in the literature only four extended climate

change integrations with coupled ocean—atmosphere models. Each integration makes dif-

ferent assumptions about the future increase of the greenhouse gases, and the individual

models have different sensitivities and different spatial resolutions (Houghton et a1, 1992).

On the 100 year time—scale, it is likely that the variability of the ocean dominates the cli—

mate system. If the ocean surface exhibits cooling due to natural variability alone, a green—

house warming signal might be masked, thus increasing the time that it would take in

order to discriminate between the signal and the background noise. On the other hand, if

the ocean has a warming trend, it might exaggerate the greenhouse warming signal. The

problem of defining a greenhouse signal relative to the natural variability of the coupled

ocean-atmosphere system is compounded by the fact that comprehensive 4—dimensional

data sets of the observed state of the ocean circulation are not available. All coupled model

simulations therefore start with an ocean which has been spun up for hundreds to thou—

sands of years in order to accurately represent present day mean conditions. However, it is

Virtually impossible to determine wether the sub-surface initial conditions in the ocean

model coincide with the present ‘observed’ state of the ocean. A single simulation, there-
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fore may be unrepresentative of the “true” space-time greenhouse signal, since the current

trend within the ocean model caused by long—term variability might not coincide with the

trends in the real ocean. Additionally, even in the atmosphere on its own, circulation

anomalies can persist for decades. They are caused by nonlinear interactions within the

atmosphere (Hansen et a1, 1988; Lorenz, 1991). A single climate change integration is

therefore not representative for all possible states the climate system can adopt in the time-

scale considered here and does not allow any statement on the statistical significance of

the prediction.

Furthermore, studies of the individual integrations have shown that the large internal vari-

ability of the modelled (and the natural) climate system makes it difficult to detect the cli-

mate change signal (Meehl et al, 1992; Manabe et al, 1992; Santer et a1, 1992).

In the present study, four climate change simulations have been carried out with the same

model. However, each simulation started at different times of the control simulation. All

other parameters, including the change of the radiative forcing according to the IPCC sce-

nario A (Houghton et a1, 1990), remain the same. This approach, known as the “Monte

Carlo Method” in numerical weather prediction, gives a prediction about a future change

and yields an estimate of the confidence limits of the forecasts.

Firstly, the technical details of the “Monte Carlo” Method will be described (chapter 2). In

the next section (chapter 3) the results and the sensitivity of the results to the precise defi-

nition of the climate change will be discussed.



2.0 The Experiment

2.1 The Model

The coupled global ocean—atmosphere model used in this experiment has been described

in Cubasch et a1 (1992). The atmospheric component comprises 19 levels in the vertical

and a horizontal resolution of T21 (with a Gaussian grid of 5.625 0). It has been coupled

synchronously to the LSG Ocean model with a horizontal grid spacing similar to the

Gaussian grid of the T21 model and 11 layers in the vertical. This model has been used in

a number of climate change experiments (Bakan et a1, 1991; Cubasch et a1, 1992). The

control and the scenario A simulation described in the latter paper form the basis for the

experiments introduced here.

2.2 The Monte Carlo Method

As pointed out in the introduction, the presence of variability on the timescale of the pre-

dicted phenomenon makes it necessary to assess its impact on the predicted signal. In the

present paper this is done using the “Monte Carlo” (MC) Method: Several identical cli-

mate change experiments are run from different initial conditions. A similar method,

which originally has been applied in extended range forecasting experiments (Molteni et

a1, 1988; Brankovic et a1, 1990) has already been employed for climate change studies by

Hansen et a1 (1988) to investigate the long—term variability in their integration. The 100

year control simulation with a coupled ocean—atmosphere model described in Cubasch et

a1 (1992) has been used to provide initial conditions for the MC experiments. As can be

seen in the schematic diagram (Fig. 1), the experiments have been started at 30 years inter-

vals with initial fields of the control experiment at years 0, 30, 60 and 90 with the radiative

forcing of the IPCC (1990) scenario A starting in the year 1985. They are referred to in the

text as MCOO, 'MC30, MC60 and MC90. All simulations have been run with the same cou-

pled global ocean-atmosphere model described in Cubasch et a1 (1992) for 50 years. The



EQ
UIV

AL
EN

T
002

CO
NC

EN
TR

AT
IO

N
[pp

m]

first MC experiment (MCOO) is identical to the first 50 years of the 100 year Scenario A

experiment described in Cubasch et a1 (1992), here referred to as SZA.
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Figure 1. Schematic diagram of the “Monte Carlo” climate forecasts.



3.0 Results

3.1 Global Mean Temperature Rise

The temperature of the climate change experiment can be represented by the sum of fol-

lowing terms:

T=T0+Ta+Tf+T’

with

T0: the initial temperature

Ta: temperature drift

Tf: externally forced temperature

T’: internal temperature variability

A change in the temperature can therefore be caused by drift, by the external forcing or

internal fluctuations:

AT = Tclimate change" control = (T0 + Tea + Tf + T,)climate change ' (TO + TOL + T,)control

All calculations have been done with

(T0)climate change = (T0)conlrol

and under the assumption that

(T,)climate change = (T,)control
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Figure 2. Schematic diagram of possible ways to calculate a climate change.

For the calculation of the changes of most of the parameters Definition 1 in accordance

with Cubasch et al (1992) has been used and extended to the MC simulations: The anom-

aly of each experiment is defined as the difference of the climate change experiment to the

10 years of the control experiment beginning at the start of the climate change simulation

(Fig. 2):

ATDef l = Tclimate change (t2) ' Tcontrol (t1)

The ensemble mean has been calculated accordingly as the mean of the anomalies gener-

ated in the above defined fashion. This definition assumes that changes in the control sim-

ulation are caused only by relatively short—term natural variability and that no drift exists



(i.e. Ta = 0). To clarify some of the results obtained by usage of Definition 1, Definition 2

has been applied as well. In Definition 2 the same years of the control experiment are sub-

tracted from the same year of the climate change experiment:

ATDef 2 : T climate change (132) ' T control (t2)

Definition 2 is correct under the assumption that both climate change and control experi-

ment exhibit the same climate drift or very long-term climate variability:

((Toc) climate change =(T0t)control)-

The final choice of either definition is somewhat arbitrarily, because both assumptions are

normally not completely fulfilled (Santer et a1, 1992). In this paper Definition 1 has been

used as the preferred definition to facilitate comparison of results with Cubasch et a1

(1992). However, for the sea level change and the change in sea ice, Definition 2 appeared

more appropriate due to the obvious long periodic variability in these quantities (c. f. Fig.

15 a).

As it has been pointed out in Cubasch et al (1992), the annually averaged global mean near

surface atmospheric temperature of the control simulation fluctuates with a maximum

anomaly of — 0.4 K during the 100 year of integration time (Fig. 3a). There is a distinct

drop in the global mean temperature between year 50 and 70 of -O.3 K. Due to the short

length of the integration it is not clear whether this drop is a reflection of a real long term

variability or some residual climate drift, which might be caused by inconsistencies in the

coupling of the model components and might be related to the problems in the simulation

of the sea ice. Two of the MC integrations start before, two after this temperature drop.

All MC simulations display only a small warming at the beginning of the integration. This

phenomenon is apparently caused by the experimental procedure which neglects the effect

of prior oceanic warming from the early days of industrialization up to 1985. This “cold—



start” has been discussed in Hasselmann et a1 (1992) and Fichefet and Tricot (1992). The

latter estimated the temperature error due to the cold start to be as large as 30% of the

warming signal after 50 years of integration time (at the year 2035), when the experiment

is started at 1985 conditions instead of pre—industrial conditions. Even without the consid-

eration of the cold start problem, the IPCC curve for scenario A lies just outside the upper

95% bracket (2 *6) generated by the four MC experiments (Fig.3b). The lower 95%

bracket includes a period of no appreciable temperature rise for more than 30 years.
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Figure 3. The time evolution of the global mean surface temperature change (“0 for
the four “Monte~Carlo” Simulations and the control experiment (a); the time
evolution of the global mean surface temperature change (0C) for the four “Monte-
Carlo” simulations (smoothed), the mean over all four simulations (smoothed), the
95% significance limit and the IPCC “best estimate” after Houghton et al (1990) (b);
and the time evolution of the cold start corrected global mean surface temperature
change in the mean over all MC integrations (smoothed), the 95% significance limit,
the cold start corrected curve for a 100 year scenario A calculation after Cubasch et
al (1992) and the IPCC “best estimate” (c).



The “cold start” problem was investigated by Hasselmann et a1 (1992) for the SZA exper-

iments. In this report the warming delay by the “cold start” is estimated by a linear

response model. An exponential function, which forms the basis to the response model,

has been fitted for the individual MC integrations as well as for the ensemble mean (for

further details see Hasselmann et a1, 1992). Using this approximation, the cold start

response function R(t) in a simulation is represented by the formula:

R(t)=0c/p.(1—e'”t)

where 0L describes the rate of temperature increase per year and H the time constant.The

characteristic constants are displayed in Table l.

Experiment
warming
after 50
years [K]

detection
time [a]

u = time-
constant

[a4]

on = rate of
increase

[K/al

RMS of fit
[K]

temperature
error at
=infinity
[K]

SZA 0.8 15. l./37. 0.06 0.06 0.6

MCOO 0.8 15. 1./83. 0.05 0.07 1.3

MC30 0.8 31. 1./373. 0.05 0.08 7.1

MC60 0.9 11. l./77. 0.06 0.06 1.4

MC90 1.1 6. 1./8. 0.20 0.05 0.2

MC mean 0.9 16. 1./30. 0.07 0.03 0.5

Table 1: The start characteristics of the “Monte Carlo” climate simulations for the
global mean near surface temperature.

Due to the large variability within the individual curves and the short length of the records,

the fit of the exponential curves is not very stable. Therefore the coefficients CL of the fitted
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exponential functions differ widely varying from 0.05 K/a to 0.20 K/a. The characteristic

response time 1/11 varies between 8 and 373 years. The largest temperature rise in the

whole ensemble is found in MC90. This is reflected in the shortest characteristic time of 8

years and an increase rate of 0.2 K/a in this experiment, while MC30, on the other hand,

has an extremely long characteristic time of 373 years connected with a low rate of tem-

perature rise (0.05 K/a).

The temperature of the MC ensemble rises by 0.07 K/a and has a characteristic time of 30

years. Due to the smooth appearance, the ensemble mean can be much better represented

by an exponential function than the individual members of the ensemble. This is reflected

in the low root mean square (RMS) error of the fit, which is only half as large for the

ensemble mean as for the individual members.

The exponential function fitted to the ensemble mean has subsequently been used to esti-

mate the cold start correction in a similar way to the method used by Hasselmann et al

(1992). If the individual members of the ensemble are corrected for the cold start, some of

the curves lie higher than the IPCC “best estimate”, some of them below. Overall, the

spread between the highest and the lowest realization for a single year can be as large as

0.3 K. Related to an average temperature rise of 0.03 K per year this spread can be inter-

preted as an uncertainty in the timing of an temperature change of about 10 years, depend—

ing on the state of the climate system.The ensemble mean temperature rise corrected for

the cold start has a deviation smaller than 0.1 K from the IPCC “best estimate” (Fig. 3c).

When all temperature increases produced by the individual members of the ensemble are

corrected with the cold start correction of the ensemble mean, the error margin, which is

defined by the 2 * o—limits around the ensemble mean, reaches +/- 0.3 K and is almost

independent of the time elapsed since the start of the climate change experiments.

It is interesting to note that the 100 year scenario A experiment analysed by Hasselmann et

a1 (1992) is, by chance, quite a good proxy for the cold start behavior of the ensemble

11



average. The curve for- the cold start corrected MC average lies slightly higher than the

one of the 100 year scenario A experiment and is therefore closer to the IPCC “best esti—

mate”.

A simple meaSure of the detection time td can be defined as the time when the C02 warm-

ing signal exceeds the mean of the control experiment by two standard deviations (assum-

ing that the drift T0c is negligable):

’Tf>TO +/- 2* o

This detection time td can be as short as 6 years or as large as 31 years (c. f. Table 1). It

reflects therefore not only the problems in the experimental procedure, the so called “cold

start”, which should be independent of the initial state of the climate system, but also indi-

cates the importance of the state of the ocean at the start of the integration.The average

value is 16 years.

To determine the major influences on the detection times, we investigated a number of

variables, which, for physical reasons, could be responsible for a difference in the rate of

warming of the modeled system (the wind stress, the vertical convection and the ice cover—

age). There is some indication that the detection time is correlated with the ice thickness

and with the cloud cover in the Arctic. However, this correlation appears to be related to

the drift in ice thickness, which did not stabilize before year 60 of the control simulation

(Cubasch et a1, 1992). No clear signal could be identified in any other quantity, probably

due to the small sample size.

12
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3.2 Regional Changes

3.2.1 2 m Temperature

The regional distribution of the temperature rise for the last 10 years of the MC ensemble

after Definition 1 (Fig. 4a) shows a comparatively stable climate change pattern over the

land areas in the tropics and the mid-latitudes which resembles the 2m temperature change

pattern of the scenario A experiment described in Cubasch et al (1992), but with reduced

amplitude. It is interesting to note that even the regions of cooling in the North Atlantic

and North Pacific are a stable feature in all integrations and are clearly visible in the mean

over all MC simulations. In these regions the standard deviation between the experiments

is small (Fig. 4b). The maximum standard deviation between the integrations is reached at

high latitudes of the Northern and Southern Hemisphere, particularly in the Arctic and

Antarctic regions, where it is as large as the climate change signal. The MC experiment

starting at year 30 (MC30) shows an extensive cooling in the Arctic, while the MC exper—

iments starting at year 60 (MC60) and 90 (MC90) show an extensive warming in this area

(Fig. 5).

The reasons for this different behavior in the Arctic can partially be explained by the

changes in the ice volume during the first part of the control integration (see section 3.2.3).

During a global warming in the northern hemisphere the ice thickness decreases, which

results in a temperature increase due to the larger heat flux through the ice (Manabe et al,

1992). As we employ Definition 1, i. e. the first years of the control experiments are sub-

tracted from the last 10 years of the climate change experiment, the ice thickness for the

first two MC experiments becomes larger than their respective starting value (see Fig.

10a), which ultimately results in the cooling relative to the starting value. If the climate

change over ice covered regions is calculated according to Definition 2, this cooling is

replaced by a slight warming (Fig. 6).

14
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Using this definition, the corresponding ice thickness of the control experiment is larger

than in the individual MC experiments, even for the first two experiments, because the

drift in the ice thickness is taken into account.

In the Antarctic the differences in warming and cooling between the experiments are

mainly related to changes in the ice-coverage in the Ross- and Weddell Sea. The extensive

cooling areas emerging in the MC30 experiment in the Weddell sea are due to a warming

in the control experiment, which is connected with a sudden decrease of the ice coverage

in the Weddell sea (Fig. 10 d).

When a univariate t—test is applied locally, the warming over most of the continents with

the exception of a large region stretching from Greece to central Russia is significant at the

95% level. Therefore, the warming of the landmasses is a stable climate change feature.

Over sea, only the central Pacific shows a significant warming.

As the space points are not statistically independent, additionally an multivariate pattern

test has been performed in order to reject the null-hypothesis of no significant warming.

We calculated the vector-product of a spatial guess pattern of the expected global warming

with the output of our integrations for this test. Two different guess patterns have been

derived from the smoothed output of the scenario A and the “2xC02” experiment men—

tioned in Cubasch et al. (1992). Samples of decadal means of the control run were used to

define the statistical properties of the resulting univariate random variable. The vector-

product of the temporal means of the last decade of the four MC integrations with the

guess pattern exceeds the standard deviation by a factor of around eight for both cases.

Hence the warming of the MC runs is highly significant.

The regional distribution of the temperature change (Definition 1) in the MC experiments

also varies considerably with the seasons. The Antarctic experiences a cooling in local

summer (DJF). This cooling is a stable feature in all integrations. In the same season the

16
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Arctic experiences a warming. This warming is, as in case of the annual mean, influenced

by the drift in the ice thickness. A cooling region situated near Greenland, which is related

to a reduction of deep vertical mixing in the ocean, is simulated in all experiments. In

southern winter (JJA) the Antarctic land mass warms up in all integrations. Near the ice

edge, cooling takes place due to a reduced exchange with the water in the deeper ocean

layers. Near the Ross Sea there is distinct warming emerges due to a reduced ice thickness.

The MC30 experiment is the only integration in which the Ross sea cools. This is due to

the larg'e‘ic‘e melting in the control experiment, a feature, which is not present in the cli—

mate change experiment as well. As in the annual mean, the largest variability between the

experiments can be found in the high latitudes of both hemispheres. On the whole, the sea-

sonal distribution of the climate change in the surface temperature is similar to that

described in the IPCC report (1992).

3.2.2 EOF Analysis of 2m Temperature Changes

An EOF analysis of the near surface temperature of each member of the MC integration is

performed for Definition 1 as well as for Definition2.

Independent of the definition, the first EOF (Fig. 7, 8) shows a large variability of the sig—

nal in the high latitudes of both hemispheres. In low and mid-latitudes the patterns in all

MC integrations are generally spatially coherent and show a pronounced land-sea contrast

component. The variability at high latitudes in both hemispheres is sometimes out of

phase with variability in the tropics and mid-latitudes, particularly in the case of MCOO

(Definition 1 and 2) and MC30 (Definition 2). Note also that in the case of the MCOO and

MC30 experiments, the two signal definitions yield markedly different dominant EOF pat-

terns.

If Definition 1 is applied, the total space—time variance explained by the EOF 1 pattern

varies between 50% and 67%. This is lower than the variance explained by the dominant

l8



pattern in the 100—year SZA integration (84%; see Cubasch et al. 1992), which is simply

due to the shorter integration time of the MC simulations. Note that the first EOF 0f the

ensemble mean response (Fig. 9a) explains more of the total space-time variance (78%)

than any of the individual MC integrations. When Definition 2 is applied (Fig. 8), the first

EOF in each of the MC simulations explains less variance than under Definition 1 (Table

2). This difference is due to the fact that Definition 2 superimposes the interannual vari—

ability of the control simulation upon the variability of the climate change experiment,

whereas Definition 1 considers the interannual variability of the perturbation experiment

only.

In order to make a more objective comparison between the EOF 1 patterns of the individ-

ual members of the ensemble of MC experiments, we computed area-weighted anomaly

pattern correlations with and without subtraction of the spatial mean Component (r and r*,

respectively; see Santer et al., 1992). For Definition 1, the between-integration pattern cor—

relations (with spatial mean subtracted) do not exceed 0.31, mainly due to pattern differ—

ences at high latitudes (see Fig. 7 and Table 2). When the spatial mean is incorporated, the

large-scale spatial coherence of the EOF 1 patterns in MC60 and MC90 substantially

improves the pattern correlation (r = 0.26 vs. r* = 0.78; see Table 3).

The EOF 1 patterns calculated under Definition 2 are generally more highly intercorre—

lated than under Definitionl. This is true for both r and r* (see Tables 2 and 3), and is due

to the fact that the EOF 1 patterns computed under Definition 2 tend to have a more spa-

tially—coherent structure at high latitudes, particularly in the Northern Hemisphere. The

lower between-experiment pattern correlations under Definitionl are strongly dependent

on the amplitude and spatial coherence of the decadal mean control patterns which are

used to calculate the signal anomaly.
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correlation MC explained

between MCOO MC30 MC60 MC90 SZA _
Dell and val-lance

DefZ mean (Def 1)

MC00 0.02 0.06 0.20 0.26 0.54 0.76 0.50

MC30 0.47 0.28 0.31 0.07 0.76 0.47 0.67

MC60 0.12 0.62 0.50 0.26 0.61 0.53 0.56

MC90 0.30 0.73 0.80 0.69 0.51 0.44 0.62

MC mean 0 80 0.83 0.65 0.77 0.75 0.86 0.77

SZA 0.66 0.85 0.64 0.80 0.92 0.56 0.84

expl. var. 0 44 0.30 0.41 0.39 0.67 0.76
(Def. 1)

Table 2: Between-integration pattern correlations for EOF 1 of the individual
members of the ensemble of MC experiments and the mean of the ensemble. All
correlations are computed with removal of the spatial mean component (r).
Results are for Definition 1 (upper triangle of matrix) and Definition 2 (lower
triangle of matrix and italics) of the signal. The explained variance of the EOF l
pattern under both definitions is also given. The diagonal elements of the matrix
(bold) give the correlation of the EOF 1 pattern of the same experiment under
the two definitions.

The first EOF for MCOO calculated under Definition2 (Fig. 8a) and the first EOF of MC30

calculated under Definition 1 (Fig. 7b) both display a very similar pattern in the southern

ocean. This is caused by a large fluctuation in sea ice coverage in the Weddell Sea in the

control experiment between years 30 to 60, resulting in strong warming of the Weddell

Sea region in the control experiment. Under Definition 1 this anomaly pattern is projected

onto the MC30 experiment (since the decadal average of years 31-40 of the control is sub—

tracted)", while under Defintion 2 it influence the signal in MC00 experiment. This anoma—

lous behavior of the control run during years 30 to 60 explains why the correlation

between the EOF 1 patterns generated under both definitions (the diagonal elements of

Tables 2 and 3) is small for the MCOO and MC30 experiments, and large thereafter.
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The pattern of the first EOF of the ensemble mean of the MC experiments closely resem-

bles the pattern of the scenario A (SZA) experiment after 100 years (r = 0.86, rgk = 0.95;

Definition 1; see Tables 2 and 3 and Fig. 9a,c). The major difference is in the Weddell Sea,

since the previously-discussed control anomaly in years 30-60 influences the Monte Carlo

experiments, but not the Scenario A experiment under Definition 1. The ensemble mean of

the MC simulations under Definition 2 (explained variance: 67%; Fig. 9b) shoWs a larger

signal in the Arctic and reduced variance in the Antarctic relative to Definition 1. As for

Definition 1, averaging the MC ensemble yields a signal which is even more highly corre-

lated with the EOF 1 pattern of SZA (r = 0.92, r* = 0.98; see Tables 2 and 3). These

results, together with the high correlation between EOF 1 of the MC ensemble means

under both definitions (r = 0.75, r* = 0.92), show that ensemble averaging is a useful tool

to isolate the climate change signal in short and noisy samples.

correlation MC

between MCOO MC3O MC60 MC90 SZA
Defl and

meanDem

MCOO 0.28 0.16 0.62 0.64 0.76 0.84

MC3O 0.61 0.29 0.31 0.18 0.59 0.39

MC60 0.45 0.91 0.88 0.84 0.87 0.87

MC90 0.53 0.93 0.96 0.92 0.83 0.84

MC mean 0.76 0.96 0.91 0.90 0.92 0.95

SZA 0.67 0.96 0.93 0.96 0.98 0.90

Table 3: Between-integration pattern correlations for EOF l of the individ-
ual members of the ensemble of MC experiments and the mean of the
ensemble. All correlfltions are computed without removal of the spatial
mean component (1‘ ). Results are for Definition l (upper triangle of
matrix) and Definition 2 (lower triangle of matrix and italics) of the signal.
The diagonal elements of the matrix (bold) give the correlation of the EOF
1 pattern of the same experiment under the two definitions.
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3.2.3 Sea Ice

The previous sections showed that temperature changes are of largest amplitude in the

polar regions largely due to changes in the sea-ice coverage and thickness. In order to bet-

ter understand the results of the MC simulations, it is useful to examine whether the cou-

pled model simulates realistic changes in the distribution and thickness of sea-ice in the

control run; ICE EXTENT
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Figure 10. The annual cycle of the ice extent of the first 10 years of the control
simulation and observed after Gloerson and Campbell (1988). a): Arctic; b):
Antarctic.
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The interannual fluctuations in ice extent of the control simulation (Fig. 10) are within the

observed range of variability (Zwally et al., 1983; Parkinson, 1991, 1992), though some—

what overestimated in the Southern Ocean. The most crucial variable for evaluating the

skill of sea—ice simulations, however, is the areal sea-ice thickness distribution. Its inte-

grated product is the ice volume. In the control simulation, sea ice requires about 60 years

in the northern hemisphere to equilibrate from an initial volume of 11 . 103 km3 to a mean

ice volume of about 40 . 103 km3 (Fig. 11a). In the southern hemisphere, the same simula-

tion yields an ice volume of up to 65 . 103 km3 after about 70 years starting from an initial

mean ice volume of 25 . 103 km3 (Fig. 11b). For comparison, the present day annual mean

sea-ice volume is about 20 . 103 km3 in the northern hemisphere (see e. g. Loewe, 1987)

and approximately 10 to 16 . 103 km3 in the southern hemisphere (Parkinson and Bind-

schadler, 1984; Stossel et a1., 1990).

In the MC simulations, the ice volume in the northern hemisphere generally decreases if

Definition 2 is applied. As the ice extent is not significantly changed, the ice thickness

decreases. In the southern hemisphere the ice volume increases in the first and third exper—

iment (MCOO, MC60) after application of Definition 2, but decreases for the other two

experiments. The ice extent remains stable. The only large change is caused by a sudden

decrease of ice coverage in the control experiment due to a melting of the ice in the Wed-

dell sea, an event which is not simulated in any of the MC simulations. This decrease in

the ice coverage in the control simulation is more than twice as large as the change in any

of the MC simulations.

The simulations yields ice—volume increases of more than twice to up to four times the ini—

tial values. Similar discrepancies are obtained when compared with present day ice vol—

umes. This unrealistic behavior in the simulations make an evaluation of the results,

especially those of the climate change experiments, in sea ice covered regions rather diffi-

cult.
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The large ice volume in the Southern Ocean is caused by isolated grid points within the

ice pack reaching highly overestimated thicknesses of 10 m and more. This leads to a

severe underestimation of the seasonal cycle of the ice extent as compared to observations

obtained by remote sensing (Gloersen and Campbell, 1988; Fig. 10b). While in the winter

in the southern hemisphere the simulated ice extent coincides with observations, the ice

fails to melt away in the South summer due to the large ice thickness. The summer ice

extent is therefore reduced by only 23% compared to winter, while in the observations

reductions of up to 80% are quite common. In the MC simulations, the ice-melt in summer

is increased, while the winter ice extent remains the same. The seasonal cycle is therefore

enhanced under climate change conditions.

In the Arctic Ocean, on the other hand, the seasonal cycles of ice extent are overestimated

in the beginning of the control integration, which is reflected by a summer ice extent of

about one third of the observed value (Fig. 10a). The climate change conditions of the MC

simulations do not significantly alter the seasonal cycle in the northern hemisphere.

The increase of ice volume in the Arctic during the integration is primarily caused by local

increases of ice thicknesses, which eventually reaches values, which locally prevent the

ice from melting in summer. Since these increases are constrained to isolated gridpoints,

the summer ice extent hardly increases during the integration (about 5 . 106 km2 during

years 91- 100 of the control integration).

The reasons for the problems in the sea ice simulation seem to be related to the applica-

tion of the flux correction and to the crude treatment of sea ice in the coupled simulations.

Specifically, large heat fluxes may occur due to flux corrections in grid cells, where the

uncoupled simulation did not reveal climatologically consistent sea-ice conditions or

where the heat flux in the ocean varies strongly due to fluctuations in the upwelling. When
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these flux corrections are continuously applied in a grid cell, where the sea—ice conditions

or the upwelling rate has changed due to the coupling procedure, unrealistic accumula—

tions are the consequence.

The present sea-ice formulation with over—simplified dynamics and thermodynamics, on

the other hand, generally leads to higher sensitivities with respect to the ambient condi-

tions, and therefore cannot compensate the unrealistic forcing. As the ice dn'ft is essen-

tially determined by the currents of the uppermost layer of the OGCM, this leads to severe

underestimations of the ice drift in major parts of the divergent regions within the Antarc-

tic ice pack, which is mostly wind driven (Stössel et al.‚ 1990). As a results, the areal ice—

thickness distribution (not shown) is far from representing the typical dynamically

induced characteristics. Instead, the overestimated ice thicknesses are thermodynamically

induced, being highly controlled by flux corrections of the order of 100 W/mZ.

Generally it has to be stated that the presently used sea ice component of the coupled

model has only a limited capabililty to simulate the present day climate, similar to other

models used in climate change experiments (Houghton et a1, 1992). Predicted climate

changes over regions with sea ice coverage should therefore be treated with caution.
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Figure 12. The hydrological cycle in the control experiment and in the ensemble of
the climate change integrations.
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3.2.4 Hydrological Cycle

The simulation of the global mean hydrological cycle of the control experiment is within

the uncertainty range of the available observations (Baumgartner and Reichel, 1975).

Following Definition 1, the modelled hydrological cycle has generally increased by 2%

after 50 years of simulation with the forcing of scenario A (Fig. 12) and is almost one

order of magnitude larger than the standard deviation of the MC ensemble. About 25%

more fresh water is deposited on the permanent ice. Together with increased evaporation,

this leads to a net fresh water loss of 1000 km3/year, which would result in a lowering of

the sea-level by 30 cm within 100 years. The control simulation already has a high water

deficit of about 120 cm within 100 years, as the snow which falls onto ice covered land

areas is stored and cannot be recycled into the ocean, because this effect has not yet been

parameterized. However, this does not influence the ocean circulation negatively, as this

deficit in the mean is automatically compensated by the flux correction (Cubasch et a1,

1992).

The change in the precipitation pattern shows very little spatial coherence, regardless of

whether Definition 1 or Definition 2 is used. This noisy appearance makes it difficult to

separate the climate change from the internal variability. The standard deviation of the MC

simulations (Fig. 13) is as large as the signal. An univariate t-test consequently shows no

region of significant precipitation change at the 95% level. The precipitation should there—

fore not be used for regional climate change studies. Nevertheless, the following state-

ments about the regional distribution of precipitation change have been attempted

(following Definition 1), because the IPCC reports explicitly mentions this quantity: There

are indications that the rainfall increases in the mid-latitudes of the northern hemisphere in

northern winter (Fig. 13b) and in the monsoon region in northern summer (Fig. 13a), sim-

ilar to the findings in the IPCC report (Houghton et a1, 1992).
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Particularly the increased rainfall at the east coast of the US appears to be a stable feature

in the northern winter season. In northern summer the north American continent experi-

ences a decrease in precipitation. However, this decrease is strongly developed only in two

of the four experiments. An increase of precipitation in the southern hemisphere storm-

tracks, as suggested by IPCC (1992), cannot be identified as a stable feature.

The predicted climate change pattern for soil moisture is generally as noisy as for the pre—

cipitation. If Definition 1 is applied, the soil moisture increases over wide areas of the

northern hemisphere in the northern winter (Fig. 14b). This seems to be a stable phenome-

non of all the integrations. India experiences a decrease of soil moisture, while Australia

experiences as many dry as moist events.

In the northern summer season the US, India and Africa south of the equator generally

become drier (Fig. 14a) in agreement with the IPCC (1992) results, while the s signal over

Australia and Europe varies strongly. It again must be stressed that because of the large

between experiment standard deviation, no statistical significance can be attributed to any

of the soil moisture change patterns (Fig. 14c, 14d) in an univariate t-test.

3.3 Sea Level Rise

The sea level changes presented in this section contain only the effects of thermal expan-

sion and dynamic topography. The effect of glacier melting and the hydrological cycle are

not included. The sea level rise has been calculated as the difference relative to the control

run at the same year (Definition 2), as in Cubasch et a1 (1992), since the sea level in the

control integration shows a drift of about 1.5 cm during the first 50 years before it seems to

exhibit long periodic oscillations. Contrary to the behavior of the global mean tempera-

ture, the sea level rise after 50 years of integration time is almost identical in all four sim—

ulations (Fig. 15). The average sea level rise in the MC calculations is 4.2 cm within 50

years, with an RMS error in the order of 0.2 cm.
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Following Hasselmann et al (1992), a correction for the “cold start” has been calculated

from the ensemble mean sea level rise. It is in the order of 3 cm within 50 years and repre-

sents a substantial additional contribution to the sea level rise (Fig. 15b). The rate of cor-

rected sea level rise falls well within the bracket quoted in the IPCC report (Houghton et

a1, 1992). It is, however, lower than the values obtained by a box diffusion model for the
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“best” and even slightly below the “low” IPCC (Houghton et a1, 1990) estimate. It is also

slightly lower than the values obtained by Hasselmann et al (1992) for a single integra-

tion.The sea level rise during the first 50 years is to about 25% of the value after 100 years
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Figure 16. The horizontal distribution of the mean sealevel change of the ensemble
mean for the last decade of the simulation (a) and the standard deviation of the
members of the ensemble to the mean (b) after Definition 2 [unit: cm].

The horizontal pattern of sea level rise is comparatively stable (Fig. 16). The individual

experiments show similar regions of increased sea level, particularly near the Bering Strait

and at the northern edge at the Antarctic Circumpolar Current (ACC), probably due to a

poleward shift of the ACC. The relatively small scale extreme values near the poles are
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connected with the difficulties in the treatment of the sea ice. The regional differences in

sea level rise have approximately the same size as the global mean signal. A similar result

has been found by Mikolajewicz et al (1990). In the ensemble mean the sea level rise pat-

tern closely resembles the pattern obtained after 100 years of integration time, but with

much reduced amplitude.

The sea level change exhibits a large between integration variability only around the ACC

and in regions with sea ice. Therefore, an univariate t—test (95%) reveals areas of signifi-

cant sea—level rise due to thermal expansion in the Indian Ocean, the northern edge of the

ACC as well as the North and Central Pacific, while in the Atlantic and the central and

southern ACC only limited regions can be labelled significant.

4.0 Summary

Generally the MC experiments confirm the findings of the 100 year integration made with

the same model (Cubasch et al, 1992; Santer et a1, 1992). But, even with such a small sam-

ple, the MC approach provides additional information not available from a single integra—

tion:

The method enables the estimation of not only of the mean response, but also of the vari-

ability around the mean signal and about the regional distribution of the areas with the

largest uncertainty. This uncertainty might be caused by internal variability or by drift of

the system. Individual members of the ensemble show quite different climate change pat-

terns and amplitudes, so that a single integration, at least over a time period of 50 years,

might give misleading results. After 100 years of simulation time the experiment by Cub-

asch et al (1992) gives a climate change prediction whose pattern is close to the mean of

the MC ensemble. The climate change signal can be more clearly isolated with the MC

method than would have been possible from a single short integration. '
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In a global mean, the climate change signal for near surface temperature, the hydrological

cycle and sea level significantly exceed the variability among the members of the ensem—

ble. Due to the high internal variability of the modelled climate system, the estimated

detection time of the global mean temperature change signal is uncertain by at least 1

decade.

Due to the short integration time of only 50 years the temperature change pattern of the

individual members of the ensemble show a large variability. This is consistent with the

studies by Cubasch et al (1992) and Santer et al (1992), where it was found that a stable

climate change signal could be defined only in the second half of a single 100 year integra-

tion.

While the local temperature and sea level change are at least in some regions significant in

the ensemble mean, it is not possible to identify a characteristic climate change pattern of

the precipitation and the soil moisture fields, because their climate change pattern are spa-

tially noisy and are characterized by large variability between the individual integrations.

This agrees with results obtained by Santer et a1, 1992, where changes in precipitation

were difficult to separate from the coupled model’s inherent climate variability and/or

drift.

The seasonal patterns of the ensemble mean temperature change agree reasonably well

with the results published in the recent IPCC report (Houghton et al, 1992). An increase in

precipitation in the storm tracks of the southern hemisphere, as suggested in the same

IPCC report, could not be verified.

There is little difference in the predicted sea—level rise due to thermal expansion between

the experiments in the global mean, but the simulated values are still slightly lower than

the IPCC estimate, even when corrected for the cold start. The cold start contributes sub-

stantially to the sea level rise in the time period considered. After 50 years integration time
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more than a third of the contribution to the sea level rise is estimated to arise from the cold

start error.

The results of climate change experiments are generally very sensitive to the actual defini-

tion of a climate change. The results can vary considerable, depending, on what assump-

tions regarding the cause of the changes in the state of the control experiment are made, i.

e. whether they are considered as internal fluctuations or drifts, and what definition is

therefore used to calculate the climate change. In our study, a cooling or a warming can be

obtained in the Arctic for the same experiment, just by applying different definitions for

the climate change. A larger ensemble might reduce uncertainties and clarify whether an

unusual response has been obtained by chance, or represents an more frequently emerging

state. Furthermore, in order to gain more reliable statements about climate change from

globally coupled ocean-atmosphere models in the high latitudes, it seems to be necessary

to incorporate a more sophisticated formulation of the sea—ice component and to reduce

the size of the flux correction.

The MC simulations complement the longer 100 year scenario A experiment. While the

long experiment was necessary to establish a stable climate change pattern for the near

surface temperature, the MC simulations give an estimate of both, the climate change pat-

tern and its uncertainties in the next 50 years.
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