English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Retrospective 3D Modeling of RF Coils Using a 3D Tracker for EM Simulation

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kim, D., Park, Y., Perez Rodas, M., Hernandez, D., Lee, J., & Lee, S. (2013). Retrospective 3D Modeling of RF Coils Using a 3D Tracker for EM Simulation. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 43(4), 126-132. doi:10.1002/cmr.b.21245.


Cite as: https://hdl.handle.net/21.11116/0000-0001-3DC2-0
Abstract
The 3D geometry of the RF coil in use is often unavailable when the RF coil is a commercial one or the RF coil has been developed through ad hoc modification of the coil shape at the laboratory. Without the coil geometry information, making a 3D model of the RF coil may be necessary to simulate the RF coil performance using a finite difference time domain (FDTD) solver. We used a stylus‐type 3D tracker to measure the 3D positions of the landmarks on the coil wires. From the measured landmark positions, we built 3D models of the coil wires using a 3D design tool. We also carried out FDTD simulation of the RF coil performances after transferring the 3D model data to the FDTD solver. For demonstration, we built 3D models of a shoulder coil and a 36‐channel helmet‐style array coil, and we computed B1 field maps of the coils using the FDTD solver. We think the proposed method can be greatly used for FDTD simulation of the RF coils in use whose geometries are unknown.