
ar
X

iv
:1

80
3.

00
93

8v
1

 [
cs

.C
C

]
 2

 M
ar

 2
01

8

Multivariate Fine-Grained Complexity

of Longest Common Subsequence∗

Karl Bringmann† Marvin Künnemann‡

Abstract

We revisit the classic combinatorial pattern matching problem of finding a longest common
subsequence (LCS). For strings x and y of length n, a textbook algorithm solves LCS in time
O(n2), but although much effort has been spent, no O(n2−ε)-time algorithm is known. Recent
work indeed shows that such an algorithm would refute the Strong Exponential Time Hypothesis
(SETH) [Abboud, Backurs, Vassilevska Williams FOCS’15; Bringmann, Künnemann FOCS’15].

Despite the quadratic-time barrier, for over 40 years an enduring scientific interest continued
to produce fast algorithms for LCS and its variations. Particular attention was put into iden-
tifying and exploiting input parameters that yield strongly subquadratic time algorithms for
special cases of interest, e.g., differential file comparison. This line of research was successfully
pursued until 1990, at which time significant improvements came to a halt. In this paper, using
the lens of fine-grained complexity, our goal is to (1) justify the lack of further improvements
and (2) determine whether some special cases of LCS admit faster algorithms than currently
known.

To this end, we provide a systematic study of the multivariate complexity of LCS, taking into
account all parameters previously discussed in the literature: the input size n := max{|x|, |y|},
the length of the shorter string m := min{|x|, |y|}, the length L of an LCS of x and y, the numbers
of deletions δ := m− L and ∆ := n− L, the alphabet size, as well as the numbers of matching
pairs M and dominant pairs d. For any class of instances defined by fixing each parameter
individually to a polynomial in terms of the input size, we prove a SETH-based lower bound
matching one of three known algorithms (up to lower order factors of the form no(1)). Specifically,
we determine the optimal running time for LCS under SETH as (n + min{d, δ∆, δm})1±o(1).
Polynomial improvements over this running time must necessarily refute SETH or exploit novel
input parameters. We establish the same lower bound for any constant alphabet of size at least 3.
For binary alphabet, we show a SETH-based lower bound of (n+ min{d, δ∆, δM/n})1−o(1) and,
motivated by difficulties to improve this lower bound, we design an O(n+δM/n)-time algorithm,
yielding again a matching bound.

We feel that our systematic approach yields a comprehensive perspective on the well-studied
multivariate complexity of LCS, and we hope to inspire similar studies of multivariate complexity
landscapes for further polynomial-time problems.

∗Part of this work was done while the authors were visiting the Simons Institute for the Theory of Computing at
the University of California, Berkeley.

†Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, kbringma@mpi-inf.mpg.de
‡Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, marvin@mpi-inf.mpg.de

http://arxiv.org/abs/1803.00938v1

Contents

1 Introduction 1

1.1 Our Approach and Informal Results . 1
1.2 Related Work on LCS . 2
1.3 (Multivariate) Hardness in P . 3

2 Preliminaries 4

2.1 Parameter Definitions . 4
2.2 Hardness Hypotheses . 6

3 Formal Statement of Results 6

4 Hardness Proof Overview 8

4.1 Classification of Non-trivial Parameter Settings . 8
4.2 Monotonicity of Time Complexity . 10
4.3 Hardness for Large Alphabet . 11
4.4 Small Alphabet . 12

5 Organization 12

6 Parameter Relations 13

7 Technical Tools and Constructions 16

7.1 Generating dominant pairs . 16
7.2 Block elimination and dominant pair reduction . 20

8 Paddings 22

8.1 Matching Pairs . 23
8.2 Dominant Pairs . 23

9 Hardness for Large Alphabet 25

9.1 Small LCS . 25
9.1.1 Hard Core . 25
9.1.2 Constant Alphabet . 26
9.1.3 Superconstant Alphabet . 26

9.2 Large LCS . 27
9.2.1 Hard Core . 27
9.2.2 Constant Alphabet . 31
9.2.3 Superconstant Alphabet . 32

10 Hardness for Small Constant Alphabet 34

10.1 Small LCS . 34
10.2 Large LCS, Alphabet Size at least 3 . 39
10.3 Large LCS, Alphabet Size 2 . 44

10.3.1 Case α∆ ≤ αm = αL . 44
10.3.2 Case α∆ > αm = αL and αδ ≥ αM − 1 . 46
10.3.3 Case α∆ > αm = αL and αδ ≤ αM − 1 . 50

11 New Algorithm for Binary Alphabet 54

12 Strengthening Hardness via BP-SETH 56

1 Introduction

String comparison is one of the central tasks in combinatorial pattern matching, with various
applications such as spelling correction [68, 84], DNA sequence comparison [8], and differential
file comparison [46, 66]. Perhaps the best-known measure of string similarity is the length of the
longest common subsequence (LCS). A textbook dynamic programming algorithm computes the
LCS of given strings x, y of length n in time O(n2), and in the worst case only an improvement
by logarithmic factors is known [65]. In fact, recent results show that improvements by polynomial
factors would refute the Strong Exponential Time Hypothesis (SETH) [1, 28] (see Section 2.2 for a
definition).

Despite the quadratic-time barrier, the literature on LCS has been steadily growing, with a
changing focus on different aspects of the problem over time (see Section 1.2 for an overview).
Spurred by an interest in practical applications, a particular focus has been the design of LCS
algorithms for strings that exhibit certain structural properties. This is most prominently witnessed
by the UNIX diff utility, which quickly compares large, similar files by solving an underlying
LCS problem. A practically satisfying solution to this special case was enabled by theoretical
advances exploiting the fact that in such instances the LCS differs from the input strings at only
few positions (e.g., [66, 70]). In fact, since Wagner and Fischer introduced the LCS problem in
1974 [84], identifying and exploiting structural parameters to obtain faster algorithms has been a
decades-long effort [13, 14, 37, 45, 47, 50, 70, 71, 87].

Parameters that are studied in the literature are, besides the input size n := max{|x|, |y|}, the
length m := min{|x|, |y|} of the shorter string, the size of the alphabet Σ that x and y are defined
on, the length L of a longest common subsequence of x and y, the number ∆ = n − L of deleted
symbols in the longer string, the number δ = m− L of deleted symbols in the shorter string, the
number of matching pairs M , and the number of dominant pairs d (see Section 2.1 for definitions).
Among the fastest currently known algorithms are an Õ(n+ δL)-algorithm due to Hirschberg [45],
an Õ(n+δ∆)-algorithm due to Wu, Manbers, Myers, and Miller [87], and an Õ(n+d)-algorithm due
to Apostolico [13] (with log-factor improvements by Eppstein, Galil, Giancarlo, and Italiano [37]).
In the remainder, we refer to such algorithms, whose running time is stated in more parameters
than just the problem size n, as multivariate algorithms. See Table 1 on page 3 for a non-exhaustive
survey containing the asymptotically fastest multivariate LCS algorithms.

The main question we aim to answer in this work is: Are there significantly faster multivariate
LCS algorithms than currently known? E.g., can ideas underlying the fastest known algorithms be
combined to design an algorithm that is much faster than all of them?

1.1 Our Approach and Informal Results

We systematically study special cases of LCS that arise from polynomial restrictions of any of
the previously studied input parameters. Informally, we define a parameter setting (or polynomial
restriction of the parameters) as the subset of all LCS instances where each input parameter is
individually bound to a polynomial relation with the input size n, i.e., for each parameter p we
fix a constant αp and restrict the instances such that p attains a value Θ(nαp). An algorithm for
a specific parameter setting of LCS receives as input two strings x, y guaranteed to satisfy the
parameter setting and outputs (the length of) an LCS of x and y. We call a parameter setting
trivial if it is satisfied by at most a finite number of instances; this happens if the restrictions
on different parameters are contradictory. For each non-trivial parameter setting, we construct
a family of hard instances via a reduction from satisfiability, thus obtaining a conditional lower
bound. This greatly extends the construction of hard instances for the n2−o(1) lower bound [1, 28].

1

Results for large alphabets. Since we only consider exact algorithms, any algorithm for LCS
takes time Ω(n). Beyond this trivial bound, for any non-trivial parameter setting we obtain a
SETH-based lower bound of

min
{
d, δ∆, δm

}1−o(1)
.

Note that this bound is matched by the known algorithms with running times Õ(n+d), Õ(n+δL)1,
and Õ(n + δ∆). Thus, our lower bound very well explains the lack of progress since the discovery
of these three algorithms (apart from lower-order factors).

Results for constant alphabet size. For the alphabet size |Σ|, we do not only consider the
case of a polynomial relation with n, but also the important special cases of |Σ| being any fixed
constant. We show that our conditional lower bound for polynomial alphabet size also holds for
any constant |Σ| ≥ 3. For |Σ| = 2, we instead obtain a SETH-based lower bound of

min
{
d, δ∆, δM/n

}1−o(1)
.

This lower bound is weaker than the lower bound for |Σ| ≥ 3 (as the term δM/n is at most δm
by the trivial bound M ≤ mn; see Section 2.1 for the definition of M). Surprisingly, a stronger
lower bound is impossible (assuming SETH): Motivated by the difficulties to obtain the same lower
bound as for |Σ| ≥ 3, we discovered an algorithm with running time O(n+ δM/n) for |Σ| = 2, thus
matching our conditional lower bound. To the best of our knowledge, this algorithm provides the
first polynomial improvement for a special case of LCS since 1990, so while its practical relevance is
unclear, we succeeded in uncovering a tractable special case. Interestingly, our algorithm and lower
bounds show that the multivariate fine-grained complexity of LCS differs polynomially between
|Σ| = 2 and |Σ| ≥ 3. So far, the running time of the fastest known algorithms for varying alphabet
size differed at most by a logarithmic factor in |Σ|.

We find it surprising that the hardness assumption SETH is not only sufficient to prove a
worst-case quadratic lower bound for LCS, but extends to the complete spectrum of multivariate
algorithms using the previously used 7 parameters, thus proving an optimal running time bound
which was implicitly discovered by the computer science community within the first 25 years of
research on LCS (except for the case of Σ = {0, 1}, for which we provide a missing algorithm).

1.2 Related Work on LCS

Table 1 on the next page gives a non-comprehensive overview of progress on multivariate LCS,
including the asymptotically fastest known algorithms. Note that the most recent polynomial
factor improvement for multivariate LCS was found in 1990 [87]. Further progress on multivariate
LCS was confined to log-factor improvements (e.g., [37, 50]). Therefore, the majority of later works
on LCS focused on transferring the early successes and techniques to more complicated problems,
such as longest common increasing subsequence [33, 58, 67, 88], tree LCS [69], and many more
generalizations and variants of LCS, see, e.g., [6, 7, 9, 10, 20, 21, 24, 32, 36, 38, 41, 43, 48, 49, 53–
55, 57, 60–62, 74, 78, 79, 81, 85]. One branch of generalizations considered the LCS of more

1Note that L ≤ m. At first sight it might seem as if the Õ(n + δL) algorithm could be faster than our lower
bound, however, for L ≥ m/2 we have δL = Θ(δm), which appears in our lower bound, and for L ≤ m/2 we have
δ = m− L = Θ(m) and thus δL = Θ(Lm) which is Ω(d) by Lemma 6.3, and d appears in our lower bound.

2See [23] for how to extend the Masek-Paterson algorithm to non-constant alphabets.
3Wu et al. state their running time as O(nδ) in the worst case and O(n+ δ∆) in expectation for random strings.

However, Myers worst-case variation trick [70, Section 4c] applies and yields the claimed time bound O(n log n+ δ∆).
The additional O(n log n) comes from building a suffix tree.

2

Reference Running Time

Wagner and Fischer [84] O(mn)
Hunt and Szymanski [47] O((n + M) log n)
Hirschberg [45] O(n log n + Ln)
Hirschberg [45] O(n log n + Lδ log n)

Masek and Paterson [65] O(n + nm/ log2 n) assuming |Σ| = O(1)

O
(
n + nm ·

(log logn
logn

)2) 2

Nakatsu, Kambayashi and Yajima [71] O(nδ)
Apostolico [13] O(n log n + d log(mn/d))
Myers [70] O(n log n + ∆2)
Apostolico and Guerra [14] O(n log n + Lmmin{logm, log(n/m)})
Wu, Manbers, Myers and Miller [87] O(n log n + δ∆) 3

Eppstein, Galil, Giancarlo and Italiano [37] O(n log n + d log log min{d, nm/d})
Iliopoulos and Rahman [50] O(n + M log log n)

Table 1: Short survey of LCS algorithms. See Section 2.1 for definitions of the parameters. When
stating the running times, every factor possibly attaining non-positive values (such as δ, log(n/m),
etc.) is to be read as max{·, 1}. For simplicity, log(Σ)-factors have been bounded from above by
log n (see [72] for details on the case of constant alphabet size).

than two strings (e.g., [1, 25]), with variations such as string consensus (e.g., [11, 12]) and more
(e.g., [9, 19, 35, 41, 42, 61]). Since natural language texts are well compressible, researchers also
considered solving LCS directly on compressed strings, using either run-length encoding (e.g., [15,
31, 34, 57]) or straight-line programs and other Lempel-Ziv-like compression schemes (e.g., [40, 44,
63, 80]). Further research directions include approximation algorithms for LCS and its variants
(e.g., [42, 43, 59]), as well as the LCS length of random strings [18, 64]. For brevity, here we ignore
the equally vast literature on the closely related edit distance. Furthermore, we solely regard the
time complexity of computing the length of an LCS and hence omit all results concerning space
usage or finding an LCS. See, e.g., [22, 72] for these and other aspects of LCS (including empirical
evaluations).

1.3 (Multivariate) Hardness in P

After the early success of 3SUM-hardness in computational geometry [39], recent years have brought
a wealth of novel conditional lower bounds for polynomial time problems, see, e.g., [1–4, 16, 17, 26–
29, 56, 75, 83, 86] and the recent survey [82]. In particular, our work extends the recent successful
line of research proving SETH-based lower bounds for a number problems with efficient dynamic
programming solutions such as Fréchet distance [26, 29], edit distance [16, 28], LCS and dynamic
time warping [1, 28]. Beyond worst-case conditional lower bounds of the form nc−o(1), recently
also more detailed lower bounds targeting additional input restrictions have gained interest. Such
results come in different flavors, as follows.

Input parameters, polynomial dependence. Consider one or more parameters in addition to the
input size n, where the optimal time complexity of the studied problem depends polynomially on n
and the parameters. This is the situation in this paper as well as several previous studies, e.g., [4,
26, 56]. To the best of our knowledge, our work is the first of this kind to study combinations of
more than two parameters that adhere to a complex set of parameter relations – for previous results,
typically the set of non-trivial parameter settings was obvious and simultaneously controlling all

3

parameters was less complex.
Input parameters, superpolynomial dependence. Related to the above setting, parameters have

been studied where the time complexity depends polynomially on n and superpolynomially on the
parameters. If the studied problem is NP-hard then this is known as fixed-parameter tractability
(FPT). However, here we focus on problems in P, in which case this situation is known as “FPT in
P”. Hardness results in this area were initiated by Abboud, Vassilevska Williams, and Wang [4].

A finite/discrete number of special cases. Some input restrictions yield a discrete or even finite
set of special cases. For example, Backurs and Indyk [17] and later Bringmann et al. [27] studied
special cases of regular expression pattern matching by restricting the input to certain “types” of
regular expressions. The set of types is discrete and infinite, however, there are only finitely many
tractable types, and finitely many minimal hardness results. Their approach is similarly systematic
to ours, as they classify the complexity of pattern matching for any type of regular expressions. The
major difference is that our parameters are “continuous”, specifically our parameter exponents αp

are continuous, and thus our algorithms and lower bounds trace a continuous tradeoff.
While in all of the above settings the design of fast multivariate algorithms is well established,

tools for proving matching conditional lower bounds have been developed only recently. In par-
ticular, the systematic approach to multivariate lower bounds pursued in this paper provides an
effective complement to multivariate algorithmic studies in P, since it establishes (near-)optimality
and may uncover tractable special cases for which improved algorithms can be found.

Beyond SETH. Motivated in part to find barriers even for polylogarithmic improvements on
LCS, a surprising result of Abboud et al. [2] strengthens the conditional quadratic-time hardness
of LCS substantially. More precisely, they show that a strongly subquadratic-time algorithm for
LCS would even refute a natural, weaker variant of SETH on branching programs. In Section 12,
we survey their result and show that the conditional lower bounds we derive in this paper also hold
under this weaker assumption.

2 Preliminaries

We write [n] := {1, . . . , n}. For a string x, we denote its length by |x|, the symbol at its i-th
position by x[i], and the substring from position i to position j by x[i..j]. If string x is defined over
alphabet Σ, we denote the number of occurrences of symbol σ ∈ Σ in x by #σ(x). In running time
bounds we write Σ instead of |Σ| for readability. For two strings x, y, we denote their concatenation
by x ◦ y = xy and define, for any ℓ ≥ 0, the ℓ-fold repetition xℓ := ©ℓ

i=1 x. For any strings x, y
we let LCS(x, y) be any longest common subsequence of x and y, i.e., a string z = z[1..L] of
maximum length L such that there are i1 < . . . < iL with x[ik] = z[k] for all 1 ≤ k ≤ L and
there are j1 < . . . < jL with y[jk] = z[k] for all 1 ≤ k ≤ L. For a string x of length n, let
rev(x) := x[n]x[n − 1] . . . x[1] denote its reverse.

2.1 Parameter Definitions

We survey parameters that have been used in the analysis of the LCS problem (see also [22, 72]).
Let x, y be any strings. By possibly swapping x and y, we can assume that x is the longer of the two
strings, so that n = n(x, y) := |x| is the input size (up to a factor of two). Then m = m(x, y) := |y|
is the length of the shorter of the two strings. Another natural parameter is the solution size, i.e.,
the length of any LCS, L = L(x, y) := |LCS(x, y)|.

Since any symbol not contained in x or in y cannot be contained in a LCS, we can ensure the
following using a (near-)linear-time preprocessing.

4

d a b c c b d

d
c
b
a
d
c

1 1 1 1 1 1 1
1 1 1 2 2 2 2
1 1 2 2 2 3 3
1 2 2 2 2 3 3
1 2 2 2 2 3 4
1 2 2 3 3 3 4

(a)

n(x, y) := |x|, m(x, y) := |y|
L(x, y) := |LCS(x, y)|
δ(x, y) := |y| − L(x, y), ∆(x, y) := |x| − L(x, y)

Σ(x, y) := #({x[i] | 1 ≤ i ≤ |x|} ∩ {y[j] | 1 ≤ j ≤ |y|})

M(x, y) := #{(i, j) | x[i] = y[j]}
d(x, y) := #{(i, j) | L[i, j] > L[i− 1, j] and L[i, j] > L[i, j − 1]},

where L[i, j] := |LCS(x[1..i], y[1..j])|.

(b)

Figure 1: (a) Illustration of the L-table, matching pairs and dominant pairs. Entries marked in
orange color and bold letters correspond to dominant pairs (which by definition are also matching
pairs), while entries marked in blue are matching pairs only. (b) Summary of all input parameters.

Assumption 2.1. Every symbol σ ∈ Σ occurs at least once in x and in y, i.e., #σ(x),#σ(y) ≥ 1.

Consider the alphabet induced by x and y after ensuring Assumption 2.1, namely Σ = {x[i] |
1 ≤ i ≤ |x|} ∩ {y[j] | 1 ≤ j ≤ |y|}. Its size Σ(x, y) := |Σ| is a natural parameter.

Beyond these standard parameters n,m,L, |Σ| (applicable for any optimization problem on
strings), popular structural parameters measure the similarity and sparsity of the strings. These
notions are more specific to LCS and are especially relevant in practical applications such as, e.g.,
the diff file comparison utility, where symbols in x and y correspond to lines in the input files.

Notions of similarity. To obtain an LCS, we have to delete ∆ = ∆(x, y) := n−L symbols from
x or δ = δ(x, y) := m − L symbols from y. Hence for very similar strings, which is the typical
kind of input for file comparisons, we expect δ and ∆ to be small. This is exploited by algorithms
running in time, e.g., Õ(n + δ∆) [87] or Õ(n + δL) [45].

Notions of sparsity. Based on the observation that the dynamic programming table typically
stores a large amount of redundant information (suggested, e.g., by the fact that an LCS itself
can be reconstructed examining only O(n) entries), algorithms have been studied that consider
only the most relevant entries in the table. The simplest measure of such entries is the number of
matching pairs M = M(x, y) := #{(i, j) | x[i] = y[j]}. Especially for inputs with a large alphabet,
this parameter potentially significantly restricts the number of candidate pairs considered by LCS
algorithms, e.g., for files where almost all lines occur only once. Moreover, in the special case where x
and y are permutations of Σ we have M = n = m, and thus algorithms in time Õ(n+M) [46, 47, 50]
recover the near-linear time solution for LCS of permutations [77].

One can refine this notion to obtain the dominant pairs. A pair (i, j) dominates a pair (i′, j′) if
we have i ≤ i′ and j ≤ j′. A k-dominant pair is a pair (i, j) such that L(x[1..i], y[1..j]) = k and no
other pair (i′, j′) with L(x[1..i′], y[1..j′]) = k dominates (i, j). By defining L[i, j] := L(x[1..i], y[1..j])
and using the well known recursion L[i, j] = max{L[i−1, j], L[i, j−1], L[i−1, j−1]+1x[i]=y[j]}, we
observe that (i, j) is a k-dominant pair if and only if L[i, j] = k and L[i− 1, j] = L[i, j− 1] = k− 1.
Denoting the set of all k-dominant pairs by Dk, the set of dominant pairs of x, y is

⋃

k≥1Dk, and

we let d = d(x, y) denote the number of dominant pairs. Algorithms running in time Õ(n + d)

5

exploit a small number of dominant pairs [13, 37]. Figure 1a illustrates matching and dominant
pairs.

While at first sight the definition of dominant pairs might not seem like the most natural
parameter, it plays an important role in analyzing LCS: First, from the set of dominant pairs
alone one can reconstruct the L-table that underlies the basic dynamic programming algorithm.
Second, the parameter d precisely describes the complexity of one of the fastest known (multivariate)
algorithms for LCS. Finally, LCS with parameter d is one of the first instances of the paradigm of
sparse dynamic programming (see, e.g., [37]).

On practical instances, exploiting similarity notions seems to typically outperform algorithms
based on sparsity measures (see [66] for a classical comparison to an algorithm based on the number
of matching pairs M [46, 47]). To the best of our knowledge, Figure 1b summarizes all parameters
which have been exploited to obtain multivariate algorithms for LCS.

2.2 Hardness Hypotheses

Strong Exponential Time Hypothesis (SETH): For any ε > 0 there is a k ≥ 3 such that
k-SAT on n variables cannot be solved in time O((2 − ε)n).

SETH was introduced by Impagliazzo, Paturi, and Zane [51] and essentially asserts that satis-
fiability has no algorithms that are much faster than exhaustive search. It forms the basis of many
conditional lower bounds for NP-hard as well as polynomial-time problems.

Effectively all known SETH-based lower bounds for polynomial-time problems use reductions
via the Orthogonal Vectors problem (OV): Given sets A, B ⊆ {0, 1}D of size |A| = n, |B| = m,
determine whether there exist a ∈ A, b ∈ B with

∑D
i=1 a[i] ·b[i] = 0 (which we denote by 〈a, b〉 = 0).

Simple algorithms solve OV in time O(2D(n+m)) and O(nmD). The fastest known algorithm for
D = c(n) log n runs in time n2−1/O(log c(n)) (when n = m) [5], which is only slightly subquadratic
for D ≫ log n. This has led to the following reasonable hypothesis.

Orthogonal Vectors Hypothesis (OVH): OV restricted to n = |A| = |B| and D = no(1)

requires time n2−o(1).

A well-known reduction by Williams [86] shows that SETH implies OVH. Thus, OVH is the
weaker assumption and any OVH-based lower bound also implies a SETH-based lower bound. The
results in this paper do not only hold assuming SETH, but even assuming the weaker OVH.

3 Formal Statement of Results

Recall that n is the input size and P := {m,L, δ,∆, |Σ|,M, d} is the set of parameters that were
previously studied in the literature. We let P∗ := P ∪ {n}. A parameter setting fixes a polynomial
relation between any parameter and n. To formalize this, we call a vector α = (αp)p∈P with
αp ∈ R≥0 a parameter setting, and an LCS instance x, y satisfies the parameter setting α if each
parameter p attains a value p(x, y) = Θ(nαp). This yields a subproblem of LCS consisting of all
instances that satisfy the parameter setting. We sometimes use the notation αn = 1.

For our running time bounds, for each parameter p ∈ P except for |Σ| we can assume αp > 0,
since otherwise one of the known algorithms runs in time Õ(n) and there is nothing to show.
Similarly, for αd ≤ 1 there is an Õ(n) algorithm and there is nothing to show. For Σ, however, the
case αΣ = 0, i.e., |Σ| = Θ(1), is an important special case. We study this case more closely by also
considering parameter settings that fix |Σ| to any specific constant greater than 1.

6

Parameter Restriction

m 0 ≤ αm ≤ 1

L 0 ≤ αL ≤ αm

δ

{

0 ≤ αδ ≤ αm if αL = αm

αδ = αm otherwise

∆

{

αδ ≤ α∆ ≤ 1 if αL = αm = 1

α∆ = 1 otherwise

|Σ| 0 ≤ αΣ ≤ αm

d max{αL, αΣ} ≤ αd ≤ min{2αL + αΣ, αL + αm, αL + α∆}
M max{1, αd, 2αL − αΣ} ≤ αM ≤ αL + 1

if |Σ| = 2: αM ≥ max{αL + αm, 1 + αd − αL}
if |Σ| = 3: αM ≥ αm + αd − αL

Table 2: Complete set of restrictions for non-trivial parameter settings.

Definition 3.1 (Parameter Setting). Fix γ ≥ 1. Let α = (αp)p∈P with αp ∈ R≥0. We define
LCSγ(α) as the problem of computing the length of an LCS of two given strings x, y satisfying
nαp/γ ≤ p(x, y) ≤ nαp · γ for every parameter p ∈ P, where n = |x|, and |x| ≥ |y|. We call α and
LCSγ(α) parameter settings. In some statements we simply write LCS(α) to abbreviate that there
exists a γ ≥ 1 such that the statement holds for LCSγ(α).

For any fixed alphabet Σ, constant γ ≥ 1, and parameter setting α with αΣ = 0, we also define
the problem LCSγ(α,Σ), where additionally the alphabet of x, y is fixed to be Σ. We again call
(α,Σ) and LCSγ(α,Σ) parameter settings.

We call a parameter setting α or (α,Σ) trivial if for all γ ≥ 1 the problem LCSγ(α) or
LCSγ(α,Σ), respectively, has only finitely many instances.

As our goal is to prove hardness for any non-trivial parameter setting, for each parameter setting
we either need to construct hard instances or verify that it is trivial. That is, in one way or the other
we need a complete classification of parameter settings into trivial and non-trivial ones. To this
end, we need to understand all interactions among our parameters that hold up to constant factors,
which is an interesting question on its own, as it yields insight into the structure of strings from
the perspective of the LCS problem. For our seven parameters, determining all interactions is a
complex task. This is one of the major differences to previous multivariate fine-grained complexity
results, where the number of parameters was one, or in rare cases two, limiting the interaction
among parameters to a simple level.

Theorem 3.2 (Classification of non-trivial parameter settings). A parameter setting α or (α,Σ)
is non-trivial if and only if it satisfies all restrictions in Table 2.

Note that the restrictions in Table 2 consist mostly of linear inequalities, and that for small
alphabet sizes |Σ| ∈ {2, 3} additional parameter relations hold. The proof of this and the following
results will be outlined in Section 4. We are now ready to state our main lower bound.

Theorem 3.3 (Hardness for Large Alphabet). For any non-trivial parameter setting α, there is a

constant γ ≥ 1 such that LCSγ(α) requires time min
{
d, δ∆, δm

}1−o(1)
, unless OVH fails.

In the case of constant alphabet size, the (conditional) complexity differs between |Σ| = 2 and
|Σ| ≥ 3. Note that |Σ| = 1 makes LCS trivial.

7

Relation Restriction Reference

L ≤ m ≤ n trivial
L ≤ d ≤ M trivial
∆ ≤ n trivial
δ ≤ m trivial
δ ≤ ∆ trivial

δ = m− L by definition
∆ = n− L by definition

|Σ| ≤ m Assumption 2.1
n ≤ M Assumption 2.1

d ≤ Lm Lemma 6.3
d ≤ L2|Σ| Lemma 6.3
d ≤ 2L(∆ + 1) Lemma 6.4
|Σ| ≤ d Lemma 6.5
L2

|Σ| ≤ M ≤ 2Ln Lemma 6.6

M ≥ Lm/4 if |Σ| = 2 Lemma 6.7
M ≥ nd/(5L) if |Σ| = 2 Lemma 6.9

M ≥ md/(80L) if |Σ| = 3 Lemma 6.10

Table 3: Relations between the parameters.

Theorem 3.4 (Hardness for Small Alphabet). For any non-trivial parameter setting (α,Σ), there
is a constant γ ≥ 1 such that, unless OVH fails, LCSγ(α,Σ) requires time

• min
{
d, δ∆, δm

}1−o(1)
if |Σ| ≥ 3,

• min
{
d, δ∆, δM/n

}1−o(1)
if |Σ| = 2.

Finally, we prove the following algorithmic result, handling binary alphabets faster if M and δ
are sufficiently small. This yields matching upper and lower bounds also for |Σ| = 2.

Theorem 3.5 (Section 11). For |Σ| = 2, LCS can be solved in time O(n + δM/n).

4 Hardness Proof Overview

In this section we present an overview of the proofs of our main results. We first focus on the large
alphabet case, i.e., parameter settings α, and discuss small constant alphabets in Section 4.4.

4.1 Classification of Non-trivial Parameter Settings

The only-if-direction of Theorem 3.2 follows from proving ineqalities among the parameters that
hold for all strings, and then converting them to inequalities among the αp’s, as follows.

Lemma 4.1 (Parameter Relations, Section 6). For any strings x, y the parameter values P∗ satisfy
the relations in Table 3. Thus, any non-trivial parameter setting α or (α,Σ) satisfies Table 2.

Proof Sketch. The full proof is deferred to Section 6. Some parameter relations follow trivially from
the parameter definitions, like L ≤ m ≤ n. Since by Assumption 2.1 every symbol in Σ appears in

8

x and y, we obtain parameter relations like |Σ| ≤ m. Other parameter relations need a non-trivial
proof, like M ≥ md/(80L) if |Σ| = 3.

From a relation like L ≤ m we infer that if αL > αm then for sufficiently large n no strings
x, y have L(x, y) = Θ(nαL) and m(x, y) = Θ(nαm), and thus LCSγ(α) is finite for any γ > 0. This
argument converts Table 3 to Table 2.

For the if-direction of Theorem 3.2, the task is to show that any parameter setting satisfying
Table 2 is non-trivial, i.e., to construct infinitely many strings in the parameter setting. We start
with a construction that sets a single parameter p as specified by α, and all others not too large.

Lemma 4.2 (Paddings, Section 8). Let α be a parameter setting satisfying Table 2. For any
parameter p ∈ P∗ and any n ≥ 1 we can construct strings xp, yp such that (1) p(xp, yp) = Θ(nαp),
and (2) for all q ∈ P∗ we have q(xp, yp) = O(nαq). Moreover, given n we can compute xp, yp, and
L(xp, yp) in time O(n).

Note that although for Theorem 3.2 the existence of infinitely many strings would suffice, we
even show that they can be computed very efficiently. We will use this additional fact in Section 4.2.

Proof Sketch. We defer the full proof to Section 8 and here only sketch the proof for the parame-
ter |Σ|. Let w := 12 . . . t be the concatenation of t := ⌈nαΣ⌉ unique symbols. We argue that the
strings w,w or the strings w, rev(w) prove Lemma 4.2 for parameter p = |Σ|, depending on the
parameter setting α. Clearly, both pairs of strings realize an alphabet of size t = Θ(nαΣ), show-
ing (1). By Table 2, we have αL = αm or αδ = αm. In the first case, we use L(w,w) = t = O(nαΣ)
together with αΣ ≤ αm = αL, as well as δ(w,w) = ∆(w,w) = 0 ≤ nαδ ≤ nα∆ , to show (2)
for the parameters L, δ,∆. In the second case, we similarly have L(w, rev(w)) = 1 ≤ nαL and
δ(w, rev(w)) = ∆(w, rev(w)) = t− 1 = O(nαΣ) and αΣ ≤ αm = αδ ≤ α∆.

The remaining parameters are straight-forward. Let (x, y) ∈ {(w,w), (w, rev(w))}. We have
n(x, y) = m(x, y) = t = O(nαΣ) = O(nαm) = O(n). Moreover, d(x, y) ≤ M(x, y) = t = O(nαΣ) =
O(nαd) = O(nαM). Clearly, the strings and their LCS length can be computed in time O(n).

To combine the paddings for different parameters, we need the useful property that all studied
parameters sum up if we concatenate strings over disjoint alphabets.

Lemma 4.3 (Disjoint Alphabets). Let Σ1, . . . ,Σk be disjoint alphabets and let xi, yi be strings over
alphabet Σi with |xi| ≥ |yi| for all i. Consider x := x1 . . . xk and y := y1 . . . yk. Then for any
parameter p ∈ P∗, we have p(x, y) =

∑k
i=1 p(xi, yi).

Proof. The statement is trivial for the string lengths n,m, alphabet size |Σ|, and number of match-
ing pairs M . For the LCS length L we observe that any common subsequence z can be de-
composed into z1 . . . zk with zi using only symbols from Σi, so that |zi| ≤ L(xi, yi) and thus
L(x, y) ≤ ∑k

i=1 L(xi, yi). Concatenating longest common subsequences of xi, yi, we obtain equal-
ity. Using δ = m− L and ∆ = n− L, the claim follows also for δ and ∆.

Since every dominant pair is also a matching pair, every dominant pair of x, y stems from
prefixes x1 . . . xjx

′ and y1 . . . yjy
′, with x′ being a prefix of xj+1 and y′ being a prefix of yj+1 for

some j. Since L(x1 . . . xjx
′, y1 . . . yjy′) =

∑j
i=1 L(xi, yi) + L(x′, y′), where the first summand does

not depend on x′, y′, the dominant pairs of x, y of the form x1 . . . xjx
′, y1 . . . yjy′ are in one-to-one

correspondence with the dominant pairs of xj+1, yj+1. This yields the claim for parameter d.

With these preparations we can finish our classification.

9

Proof of Theorem 3.2 for large alphabet. One direction follows from Lemma 4.1. For the other
direction, let α be a parameter setting satisfying Table 2. For any n ≥ 1 consider the instances
xp, yp constructed in Lemma 4.2, and let them use disjoint alphabets for different p ∈ P∗. Then
the concatenations x := ©p∈P∗ xp and y := ©p∈P∗ xp form an instance of LCS(α), since for any
parameter p ∈ P∗ we have p(xp, yp) = Θ(nαp), and for all other instances xp′ , yp′ the parameter
p is O(nαp), and thus p(x, y) = Θ(nαp) by the Disjoint Alphabets Lemma. Thus, we constructed
instances of LCS(α) of size Θ(n) for any n ≥ 1, so the parameter setting α is non-trivial.

We highlight two major hurdles we had to be overcome to obtain this classification result:

• Some of the parameter relations of Table 3 are scattered through the LCS literature, e.g., the
inequality d ≤ Lm is mentioned in [14]. In fact, proving any single one of these inequalities is
not very hard – the main issue was to find a complete set of parameter relations. The authors
had to perform many iterations of going back and forth between searching for new parameter
relations (i.e., extending Lemma 4.1) and constructing strings satisfying specific parameter
relations (i.e., extending Lemma 4.2), until finally coming up with a complete list.

• The dependency of d on the other parameters is quite complicated. Indeed, eight of the pa-
rameter relations of Table 3 involve dominant pairs. Apostolico [13] introduced the parameter
under the initial impression that “it seems that whenever [M] gets too close to mn, then this
forces d to be linear in m”. While we show that this intuition is somewhat misleading by con-
structing instances with high values of both M and d, it is a rather complex task to generate
a desired number of dominant pairs while respecting given bounds on all other parameters.
Intuitively, handling dominant pairs is hard since they involve restrictions on each pair of
prefixes of x and y. For Lemma 4.2, we end up using the strings (01)R+S , 0R(01)S as well as
((1 ◦ . . . ◦ t) ◦ (t′ ◦ . . . ◦ 1))R(1 ◦ . . . ◦ t)S−R, (1 ◦ . . . ◦ t)S for different values of R,S, t, t′.

4.2 Monotonicity of Time Complexity

It might be tempting to assume that the optimal running time for solving LCS is monotone in
the problem size n and the parameters P (say up to constant factors, as long as all considered
parameters settings are non-trivial). However, since the parameters have complex interactions (see
Table 3) it is far from obvious whether this intuition is correct. In fact, the intuition fails for
|Σ| = 2, where the running time O(n + δM/n) of our new algorithm is not monotone, and thus
also the tight time bound (n + min{d, δ∆, δM/n})1±o(1) is not monotone.

Nevertheless, we will prove monotonicity for any parameter setting α, i.e., when the alphabet
size can be assumed to be at least a sufficiently large constant. To formalize monotonicity, we define
problem LCS≤(α) consisting of all instances of LCS with all parameters at most as in LCS(α).

Definition 4.4 (Downward Closure of Parameter Setting). Fix γ ≥ 1 and let α be a parameter
setting. We define the downward closure LCSγ

≤(α) as follows. An instance of this problem is a
triple (n, x, y), where p(x, y) ≤ γ · nαp for any p ∈ P∗, and the task is to compute the length of an
LCS of x, y. In some statements, we simply write LCS≤(α) to abbreviate that there exists a γ ≥ 1
such that the statement holds for LCSγ

≤(α).
Similarly, for any fixed alphabet Σ we consider the downward closure LCSγ

≤(α,Σ) with instances
(n, x, y), where x, y are strings over alphabet Σ and p(x, y) ≤ γ · nαp for any p ∈ P∗.

Lemma 4.5 (Monotonicity). For any non-trivial parameter setting α and β ≥ 1, LCSγ(α) has an
O(nβ)-time algorithm for all γ if and only if LCSγ

≤(α) has an O(nβ)-time algorithm for all γ.

10

Proof of Lemma 4.5. The if-direction follows from the fact that if (x, y) is an instance of LCSγ(α)
then (|x|, x, y) is an instance of LCSγ

≤(α).
For the other direction, let (n, x, y) be an instance of LCS≤(α). Since α is non-trivial, it satisfies

Table 2, by Theorem 3.2. Lemma 4.2 thus allows us to construct paddings xp, yp for any p ∈ P∗

such that (1) p(xp, yp) = Θ(nαp) and (2) (n, xp, yp) is an instance of LCS≤(α). We construct
these paddings over disjoint alphabets for different parameters and consider the concatenations
x′ := x ◦©p∈P xp and y′ := y ◦©p∈P yp. Then (1), (2), and the Disjoint Alphabets Lemma
imply that p(x′, y′) = Θ(nαp) for any p ∈ P∗, so that (x′, y′) is an instance of LCS(α). By
assumption, we can thus compute L(x′, y′) in time O(nβ). By the Disjoint Alphabets Lemma, we
have L(x, y) = L(x′, y′) − ∑

p∈P L(xp, yp), and each L(xp, yp) can be computed in time O(n) by
Lemma 4.2, which yields L(x, y) and thus solves the given instance (n, x, y). We finish the proof
by observing that the time to construct x′, y′ is bounded by O(n).

Note that this proof was surprisingly simple, considering that monotonicity fails for |Σ| = 2.

4.3 Hardness for Large Alphabet

Since we established monotonicity for parameter settings α, it suffices to prove hardness for
LCS≤(α) instead of LCS(α). This makes the task of constructing hard strings considerably eas-
ier, since we only have to satisfy upper bounds on the parameters. Note that our main result
Theorem 3.3 follows from Lemma 4.5 and Theorem 4.6 below.

Theorem 4.6 (Hardness for Large Alphabet, Section 9). For any non-trivial parameter setting α,

there exists γ ≥ 1 such that LCSγ
≤(α) requires time min

{
d, δm, δ∆

}1−o(1)
, unless OVH fails.

Proof Sketch. The full proof is deferred to Section 9. We provide different reductions for the cases
αδ = αm and αL = αm. Intuitively, this case distinction is natural, since after this choice all
remaining restrictions from Table 2 are of an easy form: they are linear inequalities.

In the case αδ = αm the complexity min{d, δ∆, δm}1±o(1) simplifies to d1±o(1) (since αd ≤
αL + αm ≤ 2αm = αδ + αm and similarly αd ≤ αδ + αm = 2αδ ≤ αδ + α∆, see Table 2).
This simplification makes this case much easier. For constant alphabet, instantiating the known
reduction from OV to LCS [28] such that x chooses one of ≈ L vectors and y chooses one of
≈ d/L vectors yields the claim. For larger alphabet, the right-hand side of the parameter relation
d ≤ L2|Σ| increases and allows for potentially more dominant pairs. In this case, the second set of
vectors would increase to a size of ≈ d/L = ω(L), and the length of an LCS of this construction
becomes too large. We thus adapt the reduction by using the construction for constant alphabet
multiple times over disjoint alphabets and concatenating the results (reversing the order in one).

The case αL = αm is harder, since all three terms of the complexity min{d, δ∆, δm}1±o(1) are
relevant. The known reduction [28] fails fundamentally in this case, roughly speaking since the
resulting δ is always as large as the number of vectors encoded by any of x and y. Hence, we go
back to the “normalized vector gadgets” from the known reduction [28], which encode vectors a, b
by strings NVG(a),NVG(b) whose LCS length only depends on whether a, b are orthognal. We
then carefully embed these gadgets into strings that satisfy any given parameter setting. A crucial
trick is to pad each gadget to NVG′(a) := 0α1β(01)γNVG(a)1γ for appropriate lengths α, β, γ. It
is easy to see that this constructions ensures the following:

(1vs1) The LCS length of NVG′(a),NVG′(b) only depends on whether a, b are orthognal, and

(2vs1) NVG′(b) is a subsequence of NVG′(a) ◦ NVG′(a′) for any vectors a, a′, b.

11

In particular, for any vectors a(1), . . . , a(2k−1) and b(1), . . . , b(k), on the strings x = ©2k−1
i=1 NVG′(a(i))

and y = ©k
j=1NVG′(b(j)) we show that any LCS consists of k − 1 matchings of type 2vs1 and one

matching of type 1vs1 (between NVG′(b(j)) and NVG′(a(2j−1)) for some j). Thus, the LCS length
of x and y only depends on whether there exists a j such that a(2j−1), b(j) are orthogonal. Moreover,
since most of y is matched by type 2vs1 and thus completely contained in x, the parameter δ(x, y)
is extremely small compared to the lengths of x and y – which is not achievable with the known
reduction [28]. Our proof uses an extension of the above construction, which allows us to have
more than one matching of type 1vs1. We think that this 1vs1/2vs1-construction is our main
contribution to specific proof techniques and will find more applications.

4.4 Small Alphabet

Proving our results for small constant alphabets poses additional challenges. For instance, our
proof of Lemma 4.5 fails for parameter settings (α,Σ) if |Σ| is too small, since the padding over
disjoint alphabets produces strings over alphabet size at least |P| = 7. In particular, for |Σ| = 2
we may not use the Disjoint Alphabets Lemma at all, rendering Lemma 4.2 completely useless.
However, the classification Theorem 3.2 still holds for parameter settings (α,Σ). A proof is implicit
in Section 10, as we construct (infinitely many) hard instances for all parameter settings (α,Σ)
satisfying Table 2.

As mentioned above, the Monotonicity Lemma (Lemma 4.5) is wrong for |Σ| = 2, since our
new algorithm has a running time Õ(n + δM/n) which is not monotone. Hence, it is impossible
to use general strings from LCS≤(α,Σ) as a hard core for LCS(α,Σ). Instead, we use strings
from a different, appropriately chosen parameter setting LCS≤(α′,Σ′) as a hard core, see, e.g.,
Observation 10.18. Moreover, instead of padding with new strings xp, yp for each parameter, we
need an integrated construction where we control all parameters at once. This is a technically
demanding task to which we devote a large part of this paper (Section 10). Since the cases |Σ| = 2,
|Σ| = 3, and |Σ| ≥ 4 adhere to different relations of Table 2, these three cases have to be treated
separately. Furthermore, as for large alphabet we consider cases αδ = αm and αL = αm. Hence, our
reductions are necessarily rather involved and we need to very carefully fine-tune our constructions.

5 Organization

The remainder of the paper contains the proofs of Theorems 3.2, 3.3, 3.4, and 3.5, following the
outline given in Section 4. Specifically, Section 6 lists and proves our complete set of parameter
relations (proving Lemma 4.1). In Section 7, we prove basic facts and technical tools easing the
constructions and proofs in later sections – this includes a simple greedy prefix matching property
as well as a surprising technique to reduce the number of dominant pairs of two given strings.
In Section 8, we show how to pad each parameter individually (proving Lemma 4.2). Section 9
then constructs hard instances for large alphabet (for the downward closure of any parameter
setting, proving Theorem 4.6 and thus Theorem 3.3). Finally, the much more intricate case of
small constant alphabet sizes such as |Σ| = 2 is handled in Section 10, which takes up a large
fraction of this paper (proving Theorem 3.4). We present our new algorithm in Section 11 (proving
Theorem 3.5). Finally, Section 12 describes the necessary modifications to our hardness proofs to
show the same conditional lower bounds also under the weaker variant of SETH used in [2].

We remark that for some intermediate strings x, y constructed in the proofs, the assumption
|x| ≥ |y| may be violated; in this case we use the definitions given in Figure 1b (and thus we may
have n(x, y) < m(x, y) and ∆(x, y) < δ(x, y)). Since L,M, d, and Σ are symmetric in the sense

12

L(x, y) = L(y, x), these parameters are independent of the assumption |x| ≥ |y|.
For simplicity, we will always work with the following equivalent variant of OVH.

Unbalanced Orthogonal Vectors Hypothesis (UOVH): For any α, β ∈ (0, 1], and com-
putable functions f(n) = nα−o(1), g(n) = nβ−o(1), the following problem requires time nα+β−o(1):
Given a number n, solve a given OV instance with D = no(1) and |A| = f(n) and |B| = g(n).

Lemma 5.1 (Essentially folklore). UOVH is equivalent to OVH.

Proof. Clearly, UOVH implies OVH (using α = β = 1, f(n) = g(n) = n). For the other direction,
assume that UOVH fails and let α, β ∈ (0, 1], f(n) = nα−o(1), and g(n) = nβ−o(1) be such that OV

with D = no(1) and |A| = f(n) and |B| = g(n) can be solved in time O(nα+β−ε) for some constant
ε > 0. Consider an arbitrary OV instance A,B ⊆ {0, 1}D with D = no(1). We partition A into
s := ⌈ n

f(n)⌉ sets A1, . . . ,As of size f(n) and B into t := ⌈ n
g(n)⌉ sets B1, . . . ,Bt of size g(n) (note

that the last set of such a partition might have strictly less elements, but can safely be filled up
using all-ones vectors). By assumption, we can solve each OV instance Ai,Bj in time O(nα+β−ε).
Since there exist a ∈ A, b ∈ B with 〈a, b〉 = 0 if and only if there exist a ∈ Ai, b ∈ Bj with
〈ai, bj〉 = 0 for some i ∈ [s], j ∈ [t], we can decide the instance A,B by sequentially deciding the
s · t = O(n2−(α+β)+o(1)) OV instances Ai,Bj . This takes total time O(s · t ·nα+β−ε) = O(n2−ε′) for
any ε′ < ε, which contradicts OVH and thus proves the claim.

6 Parameter Relations

In this section we prove relations among the studied parameters, summarized in Table 3. Some
of these parameter relations can be found at various places in the literature, however, our set of
relations is complete in the sense that any parameter setting α is non-trivial if and only if it satisfies
all our relations, see Theorem 3.2.

Consider a relation like d(x, y) ≤ L(x, y) ·m(x, y), given in Lemma 6.3(i) below. Fix exponents
αd, αL, and αm, and consider all instances x, y with d(x, y) = Θ(nαd), L(x, y) = Θ(nαL), and
m(x, y) = Θ(nαm). Note that the relation may be satisfied for infinitely many instances if αd ≤
αL + αm. On the other hand, if αd > αL + αm then the relation is satisfied for only finitely many
instances. This argument translates Table 3 into Table 2 (using αn = 1), thus generating a complete
list of restrictions for non-trivial parameter settings.

Let x, y be any strings. In the remainder of this section, for convenience, we write p = p(x, y) for
any parameter p ∈ P∗. Recall that by possibly swapping x and y, we may assume m = |y| ≤ |x| = n.
This assumption is explicit in our definition of parameter settings. For some other strings x, y
considered in this paper, this assumption may be violated. In this case, the parameter relations of
Table 3 still hold after replacing n by max{n,m} and m by min{n,m}, as well as ∆ by max{∆, δ}
and δ by min{∆, δ} (as the other parameters are symmetric).

Note that Assumption 2.1 (i.e., every symbol in Σ appears at least once in x and y) implies
|Σ| ≤ m and ensures that any symbol of x has at least one matching symbol in y, and thus M ≥ n.

We next list trivial relations. The length of the LCS L satisfies L ≤ m. The numbers of deleted
positions satisfy ∆ = n − L ≤ n, δ = m − L ≤ m, and δ ≤ ∆. Since any dominant pair is also
a matching pair, we have d ≤ M . Moreover, d ≥ L since for any 1 ≤ k ≤ L there is at least one
k-dominant pair.

To prepare the proofs of the remaining relations, recall that we defined L[i, j] = L(x[1..i], y[1..j]).
Moreover, observe that L(x, y) ≤ ∑

σ∈Σ min{#σ(x),#σ(y)}, which we typically exploit without
explicit notice. Furthermore, we will need the following two simple facts.

13

Observation 6.1. For any σ ∈ Σ, we have #σ(x) ≤ L or #σ(y) ≤ L.

Proof. If some σ ∈ Σ occurs at least L + 1 times in both x and y, then σL+1 is an LCS of x and y
of length L + 1 > L, which is a contradiction.

Observation 6.2. Fix 1 ≤ k ≤ L and 1 ≤ ī ≤ n. Then there is at most one k-dominant pair (̄i, j)
with 1 ≤ j ≤ m, namely the pair (̄i, j∗) with j∗ = min{j | L[̄i, j] = k} if it exists. Symmetrically
for every 1 ≤ k ≤ n and 1 ≤ j̄ ≤ m, there is at most one k-dominant pair (i, j̄) with 1 ≤ i ≤ n.

Proof. All pairs (̄i, j) with j 6= j∗ and L[̄i, j] = k satisfy j ≥ j∗, so they are dominated by (̄i, j∗).

We are set up to prove the more involved relations of Table 3. We remark that while the
inequality d ≤ Lm is well known since the first formal treatment of dominant pairs, the bound
d ≤ L2|Σ| seems to go unnoticed in the literature.

Lemma 6.3. It holds that (i) d ≤ Lm and (ii) d ≤ L2|Σ|.

Proof. (i) Let 1 ≤ k ≤ L. For any 1 ≤ j̄ ≤ m there is at most one k-dominant pair (i, j̄) by
Observation 6.2. This proves |Dk| ≤ m and thus d =

∑L
i=1 |Dk| ≤ Lm.

(ii) Let σ ∈ Σ. By Observation 6.1, we may assume that #σ(x) ≤ L (the case #σ(y) ≤ L
is symmetric). For any occurrence iσ of σ in x and any 1 ≤ k ≤ L, there can be at most one
k-dominant pair (iσ , j) by Observation 6.2. Hence, σ contributes at most L k-dominant pairs.
Summing over all σ ∈ Σ and k = 1, . . . , L yields the claim.

Lemma 6.4. We have d ≤ 2L(∆ + 1).

Proof. Fix an LCS z of x and y. Since z can be obtained by deleting at most ∆ = n− L positions
from x or by deleting at most δ = m−L positions from y, x[1..i] and y[1..j] contain z[1..i−∆] and
z[1..j − δ], respectively, as a subsequence. Hence, we have min{i− ∆, j − δ} ≤ L[i, j] ≤ min{i, j}.

Let 1 ≤ k ≤ L. By the previous property, if L[i, j] = k then (i) k ≤ i ≤ k + ∆ or (ii)
k ≤ j ≤ k + δ. Note that for each ī ∈ {k, . . . , k + ∆} we have (by Observation 6.2) at most one
k-dominant pair (̄i, j), and similarly, for each j̄ ∈ {k, . . . , k + δ} we have at most one k-dominant
pair (i, j̄). This proves |Dk| ≤ ∆ + δ + 2 ≤ 2(∆ + 1), from which the claim follows.

Lemma 6.5. We have d ≥ |Σ|.

Proof. By Assumption 2.1, every symbol σ ∈ Σ appears in x and y. Let i be minimal with x[i] = σ
and j be minimal with y[j] = σ. We show that (i, j) is a dominant pair of x, y, and thus d ≥ |Σ|.
Let k = L[i, j] = L(x[1..i], y[1..j]). Since x[i] = y[j], we have L[i − 1, j − 1] = k − 1. Moreover,
since the last symbol in x[1..i] does not appear in y[1..j − 1], it cannot be matched, and we obtain
L[i, j − 1] = L[i − 1, j − 1] = k − 1. Similarly, L[i − 1, j] = k − 1. This proves that (i, j) is a
k-dominant pair of x, y, as desired.

Lemma 6.6. We have (i) M ≥ L2/|Σ| and (ii) M ≤ 2Ln.

Proof. (i) Let z be an LCS of x and y. We have M =
∑

σ∈Σ #σ(x) · #σ(y) ≥ ∑

σ∈Σ #σ(z)2. By
∑

σ∈Σ #σ(z) = L and the arithmetic-quadratic mean inequality, the result follows.
(ii) Let Σw := {σ ∈ Σ | #σ(w) ≤ L} for w ∈ {x, y}. By Observation 6.1, we have Σx ∪ Σy = Σ.

We can thus bound

M =
∑

σ∈Σ
#σ(x) · #σ(y) ≤

∑

σ∈Σy

L · #σ(x) +
∑

σ∈Σx

L · #σ(y) ≤ L(n + m) ≤ 2Ln.

14

Small alphabets. Not surprisingly, in the case of very small alphabets there are more relations
among the parameters. The following relations are specific to |Σ| = 2 and |Σ| = 3.

Lemma 6.7. Let Σ = {0, 1}. Then M ≥ Lm/4.

Proof. Let z be an LCS of x and y. Without loss of generality we may assume #0(x) ≥ n/2 (by
possibly exchanging 0 and 1). If #0(y) ≥ L/2, then M ≥ #0(x)·#0(y) ≥ Ln/4 ≥ Lm/4. Otherwise
we have #0(y) < L/2 ≤ m/2, which implies #1(y) ≥ m/2. By #0(y) < L/2, we must have that
#1(x) ≥ L/2, since otherwise L ≤ min{#0(x),#0(y)} + min{#1(x),#1(y)} ≤ #0(y) + #1(x) < L,
which is a contradiction. Hence M ≥ #1(x) · #1(y) ≥ Lm/4, proving the claim.

The following lemma (which is also applicable for large alphabets) asserts that if most positions
in x and y are the same symbol, say 0, then the number of dominant pairs is small.

Lemma 6.8. Let 0 be a symbol in Σ and set λ :=
∑

σ∈Σ\{0} min{#σ(x),#σ(y)}. Then d ≤ 5λL.
In particular, for Σ = {0, 1}, we have d ≤ 5L · #1(y).

Proof. Let 1 ≤ k ≤ L and σ ∈ Σ \ {0}. By Observation 6.2, there are at most min{#σ(x),#σ(y)}
k-dominant pairs (i, j) with x[i] = y[j] = σ. Hence in total, there are at most λ · L dominant pairs
(i, j) with x[i] = y[j] 6= 0.

To count the remaining dominant pairs, which are contributed by 0, we use a similar argument
to Lemma 6.4. Let 1 ≤ k ≤ L and consider any pair (i, j) with x[i] = y[j] = 0, say x[i] is the ℓx-th
occurrence of 0 in x and y[j] is the ℓy-th occurrence of 0 in y. If (i, j) is a k-dominant pair then
k − λ ≤ min{ℓx, ℓy} ≤ k. Indeed, if min{ℓx, ℓy} < k − λ, then

L[i, j] ≤
∑

σ∈Σ
min{#σ(x[1..i]),#σ(y[1..j])} ≤ min{ℓx, ℓy} + λ < k,

contradicting the definition of a k-dominant pair. Moreover, if min{ℓx, ℓy} > k, then 0min{ℓx,ℓy} is a
common subsequence of x[1..i], y[1..j] of length strictly larger than k, which is again a contradiction
to (i, j) being a k-dominant pair.

Hence, we have k− λ ≤ ℓx ≤ k or k− λ ≤ ℓy ≤ k. Since any choice of ℓx uniquely determines i
by Observation 6.2 (and symmetrically ℓy determines j), there are at most 2λ+ 2 k-dominant pairs
with x[i] = y[j] = 0. In total, we have at most (3λ + 2)L ≤ 5λL dominant pairs (note that λ ≥ 1
by Assumption 2.1 and |Σ| ≥ 2).

Lemma 6.9. If Σ = {0, 1} then M ≥ nd/(5L).

Proof. Without loss of generality assume that min{#0(x),#0(y)} ≥ min{#1(x),#1(y)} (by possi-
bly exchanging 0 and 1). Then λ = min{#1(x),#1(y)} satisfies #σ(y) ≥ λ for all σ ∈ Σ. Thus,
M =

∑

σ∈Σ #σ(x) · #σ(y) ≥ (#0(x) + #1(x)) · λ = λn. By Lemma 6.8, we have λ ≥ d/(5L) and
the claim follows.

For ternary alphabets, the following weaker relation holds.

Lemma 6.10. If Σ = {0, 1, 2} then M ≥ md/(80L).

Proof. Let z be an LCS of x and y. We permute the symbols such that σ = 0 maximizes #σ(z).
Thus, we have #0(x) ≥ #0(z) ≥ L/|Σ| = L/3 and symmetrically #0(y) ≥ L/3.

If #0(y) ≥ m/2 then we have M ≥ #0(x) · #0(y) ≥ Lm/6 ≥ dm/(18L) by Lemma 6.3(ii).
Similarly, if #0(x) ≥ n/2 then we obtain M ≥ Ln/6 ≥ dn/(18L) ≥ dm/(18L). Hence, it remains
to consider the case #0(x) ≤ n/2 and #0(y) ≤ m/2. Let x′, y′ be the subsequences obtained by

15

deleting all 0s from x and y, respectively, and note that |x′|, |y′| ≥ m/2. Since x′, y′ have alphabet
size 2, Lemma 6.7 is applicable and yields M(x′, y′) ≥ L(x′, y′) · m(x′, y′)/4. Observe that there
is a common subsequence of x′, y′ of length at least λ/2, where λ =

∑

σ∈Σ\{0} min{#σ(x),#σ(y)}
(consider the longer subsequence of 1min{#1(x),#1(y)} and 2min{#2(x),#2(y)}). Hence,

M(x, y) ≥ M(x′, y′) ≥ 1

4
· L(x′, y′) ·m(x′, y′) ≥ 1

4
· λ

2
· m

2
=

λm

16
.

The claim now follows from λ ≥ d/(5L) as proven in Lemma 6.8.

7 Technical Tools and Constructions

To prepare later constructions and ease their analysis, this section collects several technical results.
We start off with the simple fact that equal prefixes can be greedily matched.

Lemma 7.1 (Greedy Prefix Matching). For any strings w, x, y, we have L(wx,wy) = |w|+L(x, y)
and d(wx,wy) = |w| + d(x, y).

Proof. For the first statement, it suffices to prove the claim when w = 0 is a single symbol (by
induction and renaming of symbols). Consider any common subsequence z of 0x, 0y. If z is of the
form 0z′, then z′ is a common subsequence of x, y, so |z| ≤ 1 + L(x, y). If the first symbol of z is
not 0, then the first symbols of 0x, 0y are not matched, so z is a common subsequence of x, y and
we obtain |z| ≤ L(x, y). In total, L(0x, 0y) ≤ 1 + L(x, y). The converse holds by prepending 0 to
any LCS of x, y.

For the second statement, let x′ = wx and y′ = wy. For i ∈ [|w|], we have L(x′[1..i], y′[1..i]) = i.
Hence (i, i) is the unique i-dominant pair of x′, y′ and no other dominant pairs (i, j) with i ≤ |w| or
j ≤ |w| exist. This yields |w| dominant pairs. Consider now any (i, j) with i = |w|+ ī and j = |w|+j̄
where ī ∈ [|x|], j̄ ∈ [|y|]. By the first statement, L(x′[1..i], y′[1..j]) = |w| + L(x[1..̄i], y[1..j̄]). Thus
(i, j) is a (|w| + k)-dominant pair of x′ and y′ if and only if (̄i, j̄) is a k-dominant pair of x and y.
This yields d(x, y) additional dominant pairs, proving the claim.

For bounding the number of dominant pairs from below we often use the following observation.

Observation 7.2. For any strings a, x, b, y, we have d(ax, by) ≥ d(a, b).

Proof. This trivially follows from the fact that any prefixes a′, b′ of a, b are also prefixes of ax,by.

7.1 Generating dominant pairs

The dependency of d on the other parameters is quite complicated, and hence it is a rather complex
task to generate a desired number of dominant pairs while respecting given bounds on all other
parameters. We present different constructions for this purpose in the following.

The following lemma establishes the first such construction, illustrated in Figure 2. We remark
that statements (iii) and (iv) are technical tools that we will only use for |Σ| = O(1) in Section 10.

Lemma 7.3 (Generating dominant pairs). Let R,S ≥ 0 and define a := (01)R+S and b := 0R(01)S .
The following statements hold.

(i) We have L(a, b) = |b| = R + 2S.

(ii) We have R · S ≤ d(a, b) ≤ min{2(R + 1), 5S} · (R + 2S) = O(R · S).

16

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
0
0
0
0
1
0
1
0
1
0
1
0
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4
1 1 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5
1 2 2 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6
1 2 3 3 4 4 5 5 6 6 7 7 7 7 7 7 7 7
1 2 3 4 4 5 5 6 6 7 7 8 8 8 8 8 8 8
1 2 3 4 5 5 6 6 7 7 8 8 9 9 9 9 9 9
1 2 3 4 5 6 6 7 7 8 8 9 9 1010 10 10 10
1 2 3 4 5 6 7 7 8 8 9 9 10101111 11 11
1 2 3 4 5 6 7 8 8 9 9 101011111212 12
1 2 3 4 5 6 7 8 9 9 1010111112121313
1 2 3 4 5 6 7 8 9 101011111212131314

Figure 2: The L-table for the strings a = (01)R+S and b = 0R(01)S with R = 4, S = 5 (where the
entry in row j and column i denotes L(a[1..i], b[1..j])). The indicated dominant pairs visualize the
results of Lemma 7.3.

(iii) For any α, β, β′ ≥ 0, we have L(a1α, 0βb0β
′
) = |b| = R + 2S.

(iv) For any α, β, β′ ≥ 0, we have R · S ≤ d(a1α, 0βb0β
′
) ≤ 2(max{R + α, β + β′} + 1)(R + 2S).

Proof. All statements follow from the following fact.

(∗) For any 0 ≤ s ≤ S, s ≤ r ≤ R + s and β ≥ 0, we have L((01)r , 0β0R(01)s) = r + s.

To prove (∗), note that by Lemma 7.1 (reversing the strings) we have

L((01)r , 0β+R(01)s) = 2s+L((01)r−s, 0β+R) = 2s+min{#0((01)r−s), β+R} = 2s+(r−s) = r+s.

Statement (i) now follows from setting s = S, r = R + S, and β = 0.
To see (iii), note that L(a1α, 0βb0β

′
) ≥ L(a, b) = |b| by (i). For the upper bound, we compute

L(a1α, 0βb0β
′

) ≤ min{#0(a1α),#0(0βb0β
′

)} + min{#1(a1α),#1(0βb0β
′

)}
= min{R + S,R + S + β + β′} + min{R + S + α, S} = R + 2S = L(a, b).

To prove (ii), note that d(a, b) ≤ 5 · #1(b) · L(a, b) = 5S(R + 2S) by Lemma 6.8. The bound
d(a, b) ≤ 2(R + 1) · (R + 2S) follows from (iv) by setting α = β = β′ = 0, hence it remains to
prove (iv).

For the lower bound, we use d(a1α, 0βb0β
′
) ≥ d(a, 0βb) (by Observation 7.2) and consider

L′[r, s] := L((01)r , 0β+R(01)s). We prove that for any 1 ≤ s ≤ S, s < r ≤ R + s, we have at least
one (r+s)-dominant pair (i, j) with 2(r−1) < i ≤ 2r and β+R+2(s−1) < j ≤ β+R+2s. Indeed,
L′[r, s] = r + s (by (i)) implies that an (r + s)-dominant pair (i, j) with i ≤ 2r and j ≤ β + R + 2s
exists. If we had i ≤ 2(r − 1), then by monotonicity of L(x[1..i], y[1..j]) in i and j we would have
L′[r − 1, s] ≥ r + s, contradicting L′[r − 1, s] = r + s − 1 (by (i)). Thus, we obtain i > 2(r − 1),
and symmetrically we have j > β + R + 2(s − 1). Hence, for every 1 ≤ s ≤ S, s < r ≤ R + s, we
have at least one dominant pair which is not counted for any other choice of r and s. Since for
any 1 ≤ s ≤ S there are R choices for s < r ≤ R + s, we conclude that d(a, b) ≥ S · R. For the
upper bound, note that ∆(a1α, 0βb0β

′
) = max{R +α, β + β′} by (iii), and hence Lemma 6.4 yields

d(a1α, 0βb0β
′
) ≤ 2 ·L(a1α, 0βb0β

′
) · (∆(a1α, 0βb0β

′
) + 1) = 2(R + 2S)(max{R +α, β + β′}+ 1).

17

The previous construction uses alphabet size |Σ| = 2, enforcing M(a, b) ≥ L(a, b)2/2. If the
desired number of matching pairs is much smaller than L2, which can only be the case if the
desired alphabet size is large, we have to use a more complicated construction exploiting the larger
alphabet. To make the analysis more convenient, we first observe a simple way to bound the
number of dominant pairs from below: if we can find k pairwise non-dominating index pairs (i, j)
that have the same LCS value (of the corresponding prefixes) and whose predecessors (i− 1, j − 1)
have a strictly smaller LCS value, then at least k/2 dominant pairs exist.

Lemma 7.4. For any strings x, y set L[i, j] := L(x[1..i], y[1..j]). Suppose that there are index pairs
(i1, j1), . . . , (ik, jk) with i1 < i2 < · · · < ik and j1 > j2 > · · · > jk such that for some γ and all
1 ≤ ℓ ≤ k we have L[iℓ, jℓ] = γ and L[iℓ − 1, jℓ − 1] = γ − 1. Then the number of γ-dominant pairs
of x and y is at least k/2.

Proof. For each k, fix any γ-dominant pair pℓ = (i∗ℓ , j
∗
ℓ) that dominates (iℓ, jℓ). Note we may have

pℓ = (iℓ, jℓ) if (iℓ, jℓ) is itself a dominant pair, and thus pℓ always exists. Set i0 := 1. We argue
that for every ℓ, we have iℓ−1 ≤ i∗ℓ ≤ iℓ.

Note that for all ℓ, we have L[iℓ−1, jℓ−1] < γ and hence L[i, j] < γ for all i < iℓ, j < jℓ. Thus,
we have either (1) i∗ℓ = iℓ (and j∗ℓ ≤ jℓ) or (2) j∗ℓ = jℓ (and i∗ℓ ≤ iℓ). Case (1) trivially satisfies
iℓ−1 ≤ i∗ℓ ≤ iℓ. Thus, it remains to argue that in case (2) we have iℓ−1 ≤ i∗ℓ . Indeed, otherwise we
have i∗ℓ < iℓ−1 and j∗ℓ = jℓ < jℓ−1, which implies L[i∗ℓ , j

∗
ℓ] < γ and (i∗ℓ , j

∗
ℓ) is no γ-dominant pair.

Note that the above property implies pℓ 6= pℓ+2 for all 1 ≤ ℓ ≤ k−2, since i∗ℓ ≤ iℓ < iℓ+1 ≤ i∗ℓ+2.
Thus, the number of γ-dominant pairs is bounded from below by |{pℓ | 1 ≤ ℓ ≤ k}| ≥ k/2.

Note that the previous lemma would not hold without the condition L[iℓ − 1, jℓ − 1] = γ − 1.
We are set to analyze our next construction, which is illustrated in Figure 3.

Lemma 7.5 (Generating dominant pairs, large alphabet). Let t ≥ 2, 1 ≤ t′ ≤ t, and S ≥ R ≥ 1.
Over alphabet Σ = {1, . . . , t} we define the strings

a := ((1 . . . t) ◦(t′ . . . 1))R ◦(1 . . . t)S−R,

b := (1 . . . t)S .

It holds that

(i) L(a, b) = |b| = St,

(ii) Assume that S ≥ R(t′ + 1). Then (St)(Rt′)/8 ≤ d(a, b) ≤ 4(St)(Rt′),

(iii) tS2 ≤ M(a, b) ≤ t(S + R)S.

Proof. Note that (i) trivially follows from the fact that b is a subsequence of a. For (iii), observe that
for all σ ∈ Σ, we have S ≤ #σ(a) ≤ R+S and #σ(b) = S, from which the claim follows immediately.
The upper bound of (ii) follows from d(a, b) ≤ 2 ·L(a, b) ·(∆(a, b)+1) = 2(St)(Rt′ +1) ≤ 4(St)(Rt′)
(by Lemma 6.4). To prove the remaining lower bound, we establish the following fact.

(∗) Let w := 1 . . . t and w′ := t′ . . . 1. Then L((ww′)R, wR+k) = Rt + k for all 0 ≤ k ≤ t′R.

Let us postpone the proof and show that (ii) follows from (∗). Define v := wS−R. For 0 ≤ k ≤ K :=
min{S−R,Rt′} and 0 ≤ ℓ ≤ (S−R−k)t, we let a(k, ℓ) := (ww′)Rv[1..ℓ] and b(k, ℓ) := wR+kv[1..ℓ].

18

1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

1 1
1 2
1 2 3
1 2 3 3 3 4
1 2 3 3 4 4 4 5
1 2 3 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 2 3 4 4 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1 2 3 4 5 5 5 6 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 2 3 4 5 5 5 6 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9
1 2 3 4 5 6 6 6 7 7 7 8 8 8 9 1010 10 10 10 10 10 10 10 10 10 10
1 2 3 4 5 6 6 7 7 7 8 8 8 9 9 101111 11 11 11 11 11 11 11 11 11
1 2 3 4 5 6 6 7 8 8 8 8 8 9 1010 111212 12 12 12 12 12 12 12 12
1 2 3 4 5 6 7 7 8 8 8 9 9 9 101111 121313 13 13 13 13 13 13 13
1 2 3 4 5 6 7 8 8 8 9 9 9 1010 111212 131414 14 14 14 14 14 14
1 2 3 4 5 6 7 8 9 9 9 9 9 101111 121313 141515 15 15 15 15 15
1 2 3 4 5 6 7 8 9 9 9 1010 10 111212 131414 151616 16 16 16 16
1 2 3 4 5 6 7 8 9 9 1010 101111 121313 141515 161717 17 17 17
1 2 3 4 5 6 7 8 9 1010 10 10 111212 131414 151616 171818 18 18
1 2 3 4 5 6 7 8 9 10 101111 11 121313 141515 161717 181919 19
1 2 3 4 5 6 7 8 9 101111 111212 131414 151616 171818 192020
1 2 3 4 5 6 7 8 9 10 11 11 11 121313 141515 161717 181919 2021

Figure 3: The L-table for strings a, b of Lemma 7.5 with t = t′ = 3, R = 2, S = 7.

Note that a(k, ℓ) and b(k, ℓ) are prefixes of a and b, respectively. By greedy suffix matching (i.e.,
Lemma 7.1 applied to the reversed strings) and (∗), we obtain

L(a(k, ℓ), b(k, ℓ)) = ℓ + L((ww′)R, wR+k) = Rt + k + ℓ.

Hence, any 0 ≤ k ≤ K, 1 ≤ ℓ ≤ (S−R−k)t give rise to an index pair (i, j) with L(a[1..i], b[1..j]) =
L(a(k, ℓ), b(k, ℓ)) > L(a(k, ℓ − 1), b(k, ℓ − 1)) = L(a[1..i − 1], b[1..j − 1]). Let Iγ denote the set
of all such index pairs (i, j) that additionally satisfy L(a[1..i], b[1..j]) = γ. Then for any γ, no
(i, j) ∈ Iγ dominates another (i′, j′) ∈ Iγ . Thus by Lemma 7.4, d(a, b) ≥ ∑

γ |Iγ |/2. By counting
all possible choices for k and ℓ, we obtain

∑

γ |Iγ | =
∑

0≤k≤K t(S − R − k) ≥ tK(S − R)/2. This
yields d(a, b) ≥ t · min{S −R,Rt′} · (S −R)/4. For S ≥ R(t′ + 1), we have S −R ≥ S/2 as well as
S −R ≥ Rt′ and the lower bound of (ii) follows.

To prove (∗), let a′ := (ww′)R and b′ := wR+k. For the lower bound, it is easy to see that we
can completely match R of the copies of w in b′ to copies of w in a′, and at the same time match
a single symbol in each of the remaining k copies of w in b to a single symbol in some copy of w′

in a′ (since k ≤ R|w′| = Rt′). This yields L(a′, b′) ≥ R|w| + k = Rt + k.
For the upper bound, we write b′ = ©R+k

j=1 bj with bj := w and consider a partitioning a′ =

©R+k
j=1 aj such that L(a′, b′) =

∑R+k
j=1 L(aj , bj). For any aj, let w(aj) denote the number of symbols

that aj shares with any occurrence of w (if, e.g., aj = xw′y for some prefix x of w and some suffix
y of w, then w(aj) = |x| + |y|). We first show that

L(aj , bj) ≤
{

1 if w(aj) = 0,

min{w(aj), |w|} otherwise.
(1)

Note that trivially L(aj , bj) ≤ |bj | = |w|. Hence for an upper bound, we may assume that w(aj) <
|w|, and in particular that aj is a subsequence of a′j = xw′y for some prefix x = σx . . . t of w and

19

some suffix y = 1 . . . σy of w with σy ≤ σx, where |x|+ |y| = w(aj). Note that any longest common
subsequence z of a′j and bj = w = 1 . . . t is an increasing subsequence of a′j. Hence, if z starts
with a symbol σ′ ≥ σy, then z is an increasing subsequence in x t′ . . . σ′; easy inspection shows
that in this case |z| ≤ max{|x|, 1}. If z starts with a symbol σ′ ≤ σx, then z is an increasing
subsequence in σ′ . . . 1 y; again, one can see that |z| ≤ max{|y|, 1} holds in this case. Thus,
L(aj , bj) ≤ L(a′j, bj) = |z| ≤ max{|x|, |y|, 1} ≤ max{|x| + |y|, 1} = max{w(aj), 1}, concluding the
proof of (1).

Let J = {j | w(aj) ≥ 1}. We compute

L(a′, b′) =
R+k∑

j=1

L(aj, bj) ≤

∑

j∈J
min{w(aj), |w|}

 + (R + k − |J |)

≤ min

R+k∑

j=1

w(aj), |J | · |w|

+ (R + k − |J |)

≤ min{R · |w|, |J | · |w|} + R + k − |J | ≤ R|w| + k = Rt + k,

where the last inequality follows from the observation that |J | = R maximizes the expression
min{R · |w|, |J | · |w|} − |J |. This finishes the proof of (∗) and thus the lemma.

7.2 Block elimination and dominant pair reduction

We collect some convenient tools for the analysis of later constructions. The first allows us to
“eliminate” 0ℓ-blocks when computing the LCS of strings of the form x0ℓy, 0ℓz, provided that ℓ is
sufficiently large.

Lemma 7.6. For any strings x, y, z and ℓ ≥ #0(x) + |z| we have L(x0ℓy, 0ℓz) = ℓ + L(0#0(x)y, z).

Proof. Let u := x0ℓy and v := 0ℓz. In case we match no symbol in the 0ℓ-block of v with a symbol
in 0ℓy in u, then at most min{#0(x), ℓ} symbols of the 0ℓ-block of v are matched. The remainder
z yields at most |z| matched symbols. Otherwise, in case we match any symbol in the 0ℓ-block
of v with a symbol in 0ℓy in u, then no symbol σ 6= 0 of x can be matched. Thus, in this case
we may replace x by 0#0(x). Together this case distinction yields L(u, v) = max{min{#0(x), ℓ} +
|z|, L(0#0(x)+ℓy, 0ℓz)}. Using Lemma 7.1, we obtain L(u, v) = max{#0(x) + |z|, ℓ + L(0#0(x)y, z)}.
The assumption ℓ ≥ #0(x) + |z| now yields the claim.

The following lemma bounds the number of dominant pairs of strings of the form x′ = yx,
y′ = zy by d(x′, y′) = O(|z| · |y′|). If |x′| ≥ |y′|, this provides a bound of O(δ(x′, y′) · m(x′, y′))
instead of the general, weaker bound O(∆(x′, y′) ·m(x′, y′)) of Lemma 6.4.

Lemma 7.7. For any strings x, y, z, let x′ = yx, y′ = zy. Then

d(x′, y′) ≤ |y| · (|z| + 1) + d(x′, z) ≤ |y| · (|z| + 1) + |z|2.

Proof. For every prefix ỹ = y′[1..j], we bound the number of dominant pairs (i, j) of x′, y′. Clearly,
all prefixes ỹ of z (i.e., j ≤ |z|) contribute d(x′, z) ≤ L(x′, z) ·m(x′, z) ≤ |z|2 dominant pairs.

It remains to consider ỹ = z y[1..ℓ] (i.e., j = |z| + ℓ) for ℓ ∈ [|y|]. For i < ℓ, the string
x̃ = x′[1..i] = y[1..i] is a subsequence of ỹ, i.e., L(x̃, ỹ) = i, but the prefix z y[1..i] of ỹ already
satisfies L(x̃, z y[1..i]) = i. Hence, there are no dominant pairs with i < ℓ. Thus, consider i ≥ ℓ and
let x̃ = x′[1..i]. Clearly, y[1..j] is a common subsequence of x̃, ỹ. This yields L(x̃, ỹ) ≥ j = |ỹ| − |z|

20

0 0 0 0 0 1 0 1 0 1 0 1 0 1 2 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2
2
0
0
0
0
0
1
0
1
0
1
0
1
0
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6
1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7
1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8
1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 9 9 9 9 9 9 9 9
1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 1010 10 10 10 10 10
1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10101111 11 11 11 11
1 2 3 4 5 6 7 8 9 1010 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1011111212 12 12 12
1 2 3 4 5 6 7 8 9 101111 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1112121313 13 13
1 2 3 4 5 6 7 8 9 10 111212 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1213131414 14
1 2 3 4 5 6 7 8 9 10 11 121313 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 1314141515
1 2 3 4 5 6 7 8 9 10 11 12 131414 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14151516

Figure 4: Illustration of Lemma 7.8. The strings x′ = y2ℓx,y′ = 2ℓy are defined using x = (01)R+S ,
y = 0R(01)S , R = 4, S = 5, and ℓ = 2. The number of dominant pairs is significantly reduced
compared to Figure 2.

and hence any such dominant pair (i, j) satisfies j−|z| ≤ L(x′[1..i], y′[1..j]) ≤ j. By Observation 6.2,
there are at most |z|+ 1 such dominant pairs for fixed j. This yields at most |y| · (|z|+ 1) dominant
pairs (i, j) with |z| < j ≤ |y′|, concluding the proof.

The above lemma gives rise to a surprising technique: Given strings x, y, we can build strings
x′, y′ such that L(x′, y′) lets us recover L(x, y), but the number of dominant pairs may be reduced
significantly, namely to a value d(x′, y′) = O(δ(x, y) · n(x, y)), independently of d(x, y). The effect
of this technique is illustrated in Figure 4.

Lemma 7.8 (Dominant Pair Reduction). Consider strings x, y and a number ℓ > |y| − L(x, y).

(i) If 2 is a symbol not appearing in x, y, then x′ := y2ℓx and y′ := 2ℓy satisfy L(x′, y′) =
L(x, y) + ℓ and d(x, y) ≤ 3ℓ · |y|.

(ii) For any symbols 0, 1 (that may appear in x, y) set x′′ := 0k1ky1ℓ0k1kx and y′′ := 1ℓ0k1ky with
k := 2|y| + |x| + 1. Then L(x′′, y′′) = L(x, y) + ℓ + 2k and d(x, y) ≤ O(ℓ(|x| + |y| + ℓ)).

Proof. (i) We clearly have L(x′, y′) ≥ L(2ℓ, 2ℓ) + L(x, y) ≥ ℓ + L(x, y). For the other direction,
let z be a common subsequence of x′, y′. If z contains no 2, then by inspecting y′ we obtain
|z| ≤ |y| = L(x, y) + (|y| −L(x, y)) < L(x, y) + ℓ, so z is no LCS. Otherwise, if z contains a 2, then
no symbol from the copy of y in x′ can be matched by z, implying |z| ≤ L(2ℓx, y′) = ℓ + L(x, y).

For the dominant pairs, we apply Lemma 7.7 to obtain d(x′, y′) ≤ |y|(ℓ+1)+d(x′, 2ℓ). Note that
d(x′, 2ℓ) = d(2ℓ, 2ℓ) = ℓ, since we can delete all characters different from 2 in x′ without affecting
the dominant pairs of x′, 2ℓ and then apply Lemma 7.1. Thus, d(x′, y′) ≤ |y|(ℓ + 1) + ℓ ≤ 3ℓ · |y|.

(ii) The argument is slightly more complicated when the padding symbols may appear in x, y.
Clearly, we have L(x′′, y′′) ≥ L(1ℓ0k1kx, 1ℓ0k1ky) ≥ ℓ + 2k + L(x, y). For the other direction, let
z be a common subsequence of x′′, y′′. If z does not match any 0 in the 0k-block of y′′ with a
symbol in a 0k-block in x′′, then from the 0k-block of y′′ we match at most |y| + |x| symbols,
and we obtain |z| ≤ (|y| + |x|) + |1ℓ1ky| = |x| + 2|y| + ℓ + k < ℓ + 2k, since k > |x| + 2|y|,

21

so z is no longest common subsequence. If z matches a 0 in the 0k-block of y′′ with a symbol
in the left 0k-block of x′′, then no symbol in the 1ℓ-block in y′′ is matched by z, so we obtain
|z| ≤ |0k1ky| = 2k + L(x, y) + (|y| − L(x, y)) < 2k + L(x, y) + ℓ, so z is no longest common
subsequence. It remains the case where z matches some 0 in the 0k-block of y′′ with a symbol in
the right 0k-block of x′′. Then the part 1ky of y′′ has to be matched to a subsequence of 0k1kx in
x′′. This yields |z| ≤ ℓ + k + L(0k1kx, 1ky). Since k > |y| we can apply Lemma 7.6 (swapping the
roles of 0 and 1) to obtain L(0k1kx, 1ky) = k +L(x, y), so as desired we have |z| ≤ ℓ+ 2k+L(x, y).

For the dominant pairs, we apply Lemma 7.7 to obtain d(x′′, y′′) ≤ |0k1ky| · (ℓ + 1) + ℓ2 =
O(ℓ(|x| + |y| + ℓ)).

8 Paddings

In this section we construct paddings that allow to augment any strings from LCS≤(α) to become
strings in LCS(α). Specifically, we prove Lemma 4.2. So let α be a parameter setting satisfying
Table 2, let p ∈ P∗ = {n,m,L, δ,∆, |Σ|,M, d} be a parameter, and let n ≥ 1. We say that strings
x, y prove Lemma 4.2 for parameter p if (n, x, y) is an instance of LCS≤(α) with p(x, y) = Θ(nαp),
and given n we can compute x = x(n), y = y(n), and L(x, y) in time O(n). Note that for the first
requirement of being an instance of LCS≤(α), we have to show that p′(x, y) ≤ O(nαp′) for any
parameter p′ ∈ P∗. Recall that we write p = nαp for the target value of parameter p.

Lemma 8.1. Let Σ′ be an alphabet of size min{|Σ|, L}. Then the strings x := y := ©σ∈Σ′ σ⌊L/|Σ′|⌋

prove Lemma 4.2 for parameter L.

Proof. Note that ⌊L/|Σ′|⌋ = Θ(L/|Σ′|), since |Σ′| ≤ L. Thus, indeed L(x, y) = |x| = Θ(L/|Σ′|) ·
|Σ′| = Θ(L). Moreover, L(x, y) can be computed in time O(n), as well as x and y. For the number
of matching pairs we note that M(x, y) ≤ |Σ′| · (L/|Σ′|)2, which is max{L,L2/|Σ|} by choice of |Σ′|.
This is O(M), using the parameter relations M ≥ n ≥ m ≥ L and M ≥ L2/|Σ| (see Table 3).

The remaining parameters are straight-forward. Using m(x, y) = n(x, y) = L(x, y) = Θ(L) and
the parameter relations L ≤ m ≤ n we obtain that m(x, y) ≤ O(m) and n(x, y) ≤ O(n). Moreover,
δ(x, y) = ∆(x, y) = 0 ≤ δ ≤ ∆. The alphabet size |Σ(x, y)| = |Σ′| is at most |Σ| by choice of |Σ′|.
By Lemma 7.1 we obtain d(x, y) = |x| = Θ(L) ≤ O(d) using the parameter relation L ≤ d.

Lemma 8.2. The strings x := 1∆+1 and y := 1 prove Lemma 4.2 for parameter ∆. The strings
x := 1 and y := 1δ+1 prove Lemma 4.2 for parameter δ.

Proof. The analysis is straight-forward. Note that indeed ∆(x, y) = ∆, and that L(x, y) = 1 ≤
O(L). We have n(x, y) = ∆ + 1 ≤ O(n) and m(x, y) = 1 ≤ O(m). Clearly, L(x, y), x, and y can
be computed in time O(n). Moreover, δ(x, y) = 0 ≤ δ and the alphabet size is 1 ≤ O(Σ). Finally,
we have M(x, y) = Θ(∆) ≤ O(n) ≤ O(M) using the parameter relations L ≤ n ≤ M , and using
the relation d ≤ Lm we obtain d(x, y) ≤ 1 ≤ O(d).

The analysis for δ is symmetric; the same proof holds almost verbatim.

Lemma 8.3. The strings constructed in Lemma 8.1 or the strings constructed in Lemma 8.2 prove
Lemma 4.2 for parameters n and m.

Proof. Since n = L + ∆ we have L = Θ(n) or ∆ = Θ(n), i.e., αL = 1 or α∆ = 1. In the first case,
in Lemma 8.1 we construct strings of length Θ(L) = Θ(n), and thus these strings prove Lemma 4.2
not only for parameter L but also for parameter n. In the second case, the same argument holds
for the first pair of strings constructed in Lemma 8.2. The parameter m is symmetric.

22

Lemma 8.4. Let w := 12 . . . |Σ| be the concatenation of |Σ| unique symbols. The strings w,w or
the strings w, rev(w) prove Lemma 4.2 for parameter |Σ|.

Proof. Clearly, both pairs of strings realize an alphabet of size exactly |Σ|. Since m = L + δ
we have L = Θ(m) or δ = Θ(m). In the first case, we use L(w,w) = |Σ| ≤ m = Θ(L) and
δ(w,w) = ∆(w,w) = 0 ≤ δ ≤ ∆. In the second case, we have L(w, rev(w)) = 1 ≤ O(L) and
δ(w, rev(w)) = ∆(w, rev(w)) = |Σ| − 1 ≤ m = Θ(δ) ≤ O(∆).

The remaining parameters are straight-forward. Let (x, y) ∈ {(w,w), (w, rev(w))}. We have
n(x, y) = m(x, y) = |Σ| ≤ m ≤ n. Moreover, d(x, y) ≤ M(x, y) = |Σ| ≤ d ≤ M using the relations
|Σ| ≤ d ≤ M . Clearly, the strings and their LCS length can be computed in time O(n).

8.1 Matching Pairs

Lemma 8.5. If α∆ = 1 then x := 1⌊M/n⌋+∆ and y := 1⌊M/n⌋ prove Lemma 4.2 for parameter M .

Proof. Note that ⌊M/n⌋ = Θ(M/n) by the parameter relation M ≥ n. We have M(x, y) =
Θ((M/n)2+∆M/n). By the parameter relations M ≤ 2Ln ≤ 2n2 the first summand is O(n·M/n) =
O(M). Since α∆ = 1, the second summand is Θ(M). Thus, we indeed have M(x, y) = Θ(M).

The remainder is straight-forward. Clearly, x, y, and L(x, y) = ⌊M/n⌋ can be computed in time
O(n). Since M ≤ 2Ln we also obtain L(x, y) = m(x, y) = ⌊M/n⌋ ≤ O(L) ≤ O(m). Moreover,
n(x, y) = ⌊M/n⌋+ ∆ ≤ O(n) by the relations M/n ≤ 2L ≤ 2n and ∆ ≤ n. Note that ∆(x, y) = ∆
and δ(x, y) = 0 ≤ δ. The alphabet size is 1. By Lemma 7.1 we have d(x, y) = ⌊M/n⌋ ≤ 2L ≤ 2d.

Lemma 8.6. Assume α∆ < 1 and let Σ′ be an alphabet of size min{⌈m2/M⌉, |Σ|}. Then x := y :=
©σ∈Σ′ σ⌊m/|Σ′|⌋ prove Lemma 4.2 for parameter M .

Proof. Observe that α∆ < 1 implies αL = αm = 1, so that n = Θ(L) = Θ(m) (see Table 2).
The number of matching pairs is M(x, y) = |Σ′| · ⌊m/|Σ′|⌋2. By the parameter relation m ≥ |Σ|
and |Σ| ≥ |Σ′| we have ⌊m/|Σ′|⌋ = Θ(m/|Σ′|), and by M ≤ 2Ln = Θ(m2) we obtain ⌈m2/M⌉ =
Θ(m2/M). Thus, M(x, y) = Θ(m2/|Σ′|) = Θ(max{M,m2/|Σ|}) by choice of |Σ′|. Using m = Θ(L)
and the parameter relation M ≥ L2/|Σ| we indeed obtain M(x, y) = Θ(M).

The remainder is straight-forward. Since x = y we have L(x, y) = m(x, y) = n(x, y) = |Σ′| ·
⌊m/|Σ′|⌋ ≤ m = Θ(L) = Θ(n). Moreover, δ(x, y) = ∆(x, y) = 0 ≤ δ ≤ ∆. The alphabet size is
|Σ(x, y)| = |Σ′| ≤ |Σ| by choice of |Σ′|. By Lemma 7.1 we have d(x, y) = L(x, y) ≤ O(L) ≤ O(d).
Clearly, x, y, and L(x, y) can be computed in time O(n).

8.2 Dominant Pairs

We start with a simple construction that always works on constant-sized alphabets (αΣ = 0).

Lemma 8.7. Assume αd ≤ 2αL ≤ αM and set x := (01)R+S and y := 0R(01)R+S (as analyzed
in Lemma 7.3), instantiated with R = ⌊min{∆,

√
d}⌋, S = ⌈d/R⌉. Then x, y prove Lemma 4.2 for

parameter d.

Proof. Note that by definition R ≤
√
d, and hence S ≥ d/R ≥ R. By Lemma 7.3(ii), we obtain

d(x, y) = Θ(R ·S) = Θ(R · d/R) = Θ(d). For the other parameters, note that n(x, y) = 2(R+S) =
O(d/R) = O(d/∆ +

√
d). By the relation d ≤ 2L(∆ + 1), we have d/∆ ≤ O(L), and by the

assumption αd ≤ 2αL, we have d ≤ O(L2) and hence
√
d ≤ O(L). Thus, n(x, y) ≤ O(L).

The remainder is straight-forward. By L(x, y) ≤ m(x, y) ≤ n(x, y) ≤ O(L) ≤ O(m) ≤ O(n) we
have verified n,m,L. Consequently, also M(x, y) ≤ n(x, y)2 ≤ O(L2) ≤ O(M) by the assumption
2αL ≤ αM . Trivially, |Σ(x, y)| = 2 = O(|Σ|). Observing that δ(x, y) = 0 ≤ O(δ) and ∆(x, y) =

23

R ≤ O(∆) by Lemma 7.3(i) concludes the parameter verification. Since x, y and L(x, y) = R + 2S
(by Lemma 7.3(i)) can be computed in time O(n), the claim follows.

The construction above creates a long LCS of length L(x, y) = Θ(m(x, y)) which forces d(x, y) =
O(L(x, y)2). With super-constant alphabet sizes, one can construct larger numbers of dominant
pairs (compared to L(x, y)) by exploiting the crossing gadgets defined in Definition 9.4.

Lemma 8.8. Assume αd > 2αL and set v := (01)R+S and w := 0R(01)S with R = S = L.
Construct x := crx(v, . . . , v) and y := cry(w, . . . , w) on ⌊d/L2⌋ copies of v and w. Then x, y prove
Lemma 4.2 for parameter d.

Proof. Note that ⌊d/L2⌋ = Θ(d/L2) since we assume αd > 2αL. By the Crossing Alphabets
Lemma (Lemma 9.3), we obtain L(x, y) = L(v,w) = 3L, and in particular L(x, y), x, and y can be
computed in time O(n).

Furthermore, the Crossing Alphabets Lemma also yields d(x, y) = Θ(d/L2) · d(v,w) = Θ(d),
where the bound d(v,w) = Θ(L2) follows from Lemma 7.3(i). Similarly, we observe that ∆(x, y) ≤
n(x, y) = Θ(d/L2) · n(v,w) = Θ(d/L), which is at most O(∆) ≤ O(n) by the parameter relation
d ≤ 2L(∆ + 1). Likewise, m(x, y) ≤ n(x, y) = O(d/L) ≤ O(m) by the parameter relation d ≤ Lm.
Moreover, M(x, y) = O(d/L2) · M(v,w) = O(d) ≤ O(M) by d ≤ M . Finally, the assumption
2αL < αd together with the parameter relation d ≤ Lm, i.e., αd ≤ αL + αm, forces αL < αm.
Hence, αδ = αm, i.e., δ = Θ(m) (see Table 2), and thus δ(x, y) ≤ m(x, y) ≤ O(m) = O(δ).
Since v and w have alphabet size 2 and we use ⌊d/L2⌋ copies over disjoint alphabets, we have
|Σ(x, y)| = 2⌊d/L2⌋ ≤ O(|Σ|) by the parameter relation d ≤ L2|Σ|, which concludes the proof.

For super-constant alphabet sizes, the number of matching pairs M(x, y) can attain values much
smaller than L(x, y)2, which is an orthogonal situation to the lemma above. In this case, we use a
different generalization of the first construction (that we already prepared in Section 7).

Lemma 8.9. Assume αM < 2αL and set x := (1 . . . t t′ . . . 1)R(1 . . . t)S−R and y := (1 . . . t)S (as
analyzed in Lemma 7.5) instantiated with

t :=
⌊L2

M

⌋

, t′ := min{r, t} R :=
⌈r

t

⌉

S := 4
⌈ d

rt

⌉

,

where r := min{∆, ⌊
√

d/t⌋}. Then x, y prove Lemma 4.2 for parameter d.

Proof. We first verify the conditions of Lemma 7.5. Observe that by the assumption αM < 2αL

we indeed have t = Θ(L2/M) and t ≥ 2 (for sufficiently large n). From the parameter relation
M ≥ L2/|Σ| we obtain t ≤ |Σ|, and from the parameter relation d ≥ |Σ| (and α∆ > 0) this yields
r ≥ 1. Thus, 1 ≤ t′ ≤ t. Moreover, r = Θ(min{∆,

√

d/t}). Observe that r ≤ Rt′ ≤ 2r. Indeed, if
r ≤ t then R = 1 and t′ = r, and if r > t then r/t ≤ R ≤ 2r/t and t′ = t. In particular, we have

Rt′ = Θ
(

min{∆,
√

d/t}
)

and S = Θ
(d

Rt′ · t
)

.

Note that R(t′ + 1) ≤ 2Rt′ ≤ 4r ≤ S, since r ≤
√

d/t. In particular, this yields 1 ≤ R ≤ S, so that
all conditions of Lemma 7.5 are satisfied.

In the remainder we show that x, y satisfy the parameter constraints. We have n(x, y) ≤
(R + S)t = O(St) = O(d/(Rt′)) = O(d/∆ +

√
dt). Note that d/∆ = O(L) by the parameter

relation d ≤ 2L(∆ + 1), and that
√
dt = O(

√

dL2/M) = O(L) by the parameter relation d ≤ M .
Thus, L(x, y) ≤ m(x, y) ≤ n(x, y) ≤ O(L) ≤ O(m) ≤ O(n), which satisfies the parameters L,m, n.

24

For d, note that by Lemma 7.5(ii), we have d = Θ((Rt′) · (St)) = Θ((Rt′) · d/(Rt′)) = Θ(d).
For M , Lemma 7.5(iii) shows that M(x, y) = O(S2t) = O((d/(Rt′))2 · (1/t)) = O(L2 · (M/L2)) =
O(M), where we used d/(Rt′) = O(L) as shown above. Since L(x, y) = |b| = St, we obtain
δ(x, y) = 0 ≤ O(δ) and ∆(x, y) = Rt′ ≤ O(∆). Finally, |Σ(x, y)| = t = Θ(L2/M) ≤ O(|Σ|) follows
from the parameter relation M ≥ L2/|Σ|. Observing that x, y, and L(x, y) = St can be computed
in time O(n) concludes the proof.

9 Hardness for Large Alphabet

In this section, we consider a parameter setting α satisfying the relations of Table 2, and we prove
a lower bound for LCS≤(α) assuming OVH, thus proving Theorem 4.6. We split our proof into the
two cases αδ = αm (where L may be small) and αL = αm (where L is large). For readability, but
abusing notation, for the target value ⌈nαp⌉ of parameter p we typically simply write p.

In this section we can assume that

αL, αm, αδ, α∆ > 0 and αd > 1, (LB)

since otherwise the known Õ(n+ min{d, δm, δ∆}) algorithm runs in (near-)optimal time Õ(n) and
there is nothing to show (here we used the parameter relations d ≤ Lm and L,m, δ,∆ ≤ n).

9.1 Small LCS

Assume αδ = αm, i.e., δ = Θ(m). In this case, the longest common subsequence might be arbitrarily
small, i.e., any value 0 < αL ≤ αm is admissible.

9.1.1 Hard Core

At the heart of our constructions lies the previous reduction from OV to LCS of [28], which we
restate here for our purposes.

Lemma 9.1. Let two sets A = {a1, . . . , aA} and B = {b1, . . . , bB} of vectors in {0, 1}D with A ≥ B
be given. In time O(AD), we can construct strings x1, . . . , x2A and y1, . . . , yB over {0, 1} and
γ, γ′ = Θ(D) such that the strings x and y defined by

x := x1 0γ x2 0γ . . . x2A−1 0γ x2A,

y := 0Aγ′

y1 0γ y2 0γ . . . yB−1 0γ yB 0Aγ′

,

satisfy the following properties:

(i) We can compute some ρ in time O(AD) such that L(x, y) ≥ ρ if and only if there is a pair
i, j with 〈ai, bj〉 = 0.

(ii) |x|, |y| = O(AD).

(iii) #1(y) = O(BD).

(iv) For all β ≥ 0, we have L(x, 0βy) = L(x, y).

Proof. Claims (i) and (ii) are a restatement of the main result in [28], instantiated for LCS. Claim
(iii) follows directly from the construction. It is easy to check that in [28] the value of γ′ is chosen
large enough to satisfy Aγ′ ≥ #0(x). This yields claim (iv), since any common subsequence z of
x, 0βy starts with at most #0(x) symbols 0, which can all be matched to the 0Aγ′

-block of y, so z
is also a common subsequence of x, y, and we obtain L(x, y) = L(x, 0βy).

25

9.1.2 Constant Alphabet

First assume αΣ = 0 and thus |Σ| = O(1). Consider any n ≥ 1 and target values p = nαp

for p ∈ P. Let A = {a1, . . . , aA}, B = {b1, . . . , bB} ⊆ {0, 1}D be a given OV instance with
D = no(1) and where we set A := ⌊L/D⌋ and B := ⌊d/(LD)⌋. Note that A = nαL−o(1) = nΩ(1) and
B = nαd−αL−o(1) = nΩ(1) by (LB). Also note that UOVH implies that solving such OV instances
takes time (AB)1−o(1) = nαd−o(1) = d1−o(1).

Construct strings x, y as in Lemma 9.1. Then from the LCS length L(x, y) we can infer whether
A,B has an orthogonal pair of vectors by Lemma 9.1(i). Moreover, this reduction runs in time
O(AD) = O(L) ≤ O(d1−ε) for sufficiently small ε > 0 (since αL ≤ αm ≤ 1 < αd by Table 2 and
(LB)). We claim that (n, x, y) is an instance of LCS≤(α). This shows that any algorithm solving
LCS≤(α) in time O(d1−ε) implies an algorithm for our OV instances with running time O(d1−ε),
contradicting UOVH. Hence, in the current case αδ = αm and αΣ = 0, any algorithm for LCS≤(α)
takes time d1−o(1), proving part of Theorem 4.6.

It remains to show the claim that (n, x, y) is an instance of LCS≤(α). Using the parameter
relations L ≤ m ≤ n, Lemma 9.1(ii), and the definition of A, we have L(x, y) ≤ m(x, y) ≤ n(x, y) =
|x| ≤ O(AD) = O(L) ≤ O(m) ≤ O(n), so indeed p(x, y) ≤ O(p) = O(nαp) for p ∈ {L,m, n}.
Similarly, we obtain δ(x, y) ≤ ∆(x, y) ≤ n(x, y) ≤ O(m) = O(δ) ≤ O(∆), where the equality
holds in the current case αδ = αm. Since x, y use the binary alphabet {0, 1}, we have |Σ(x, y)| =
2 ≤ O(nαΣ). For the number of matching pairs we have M(x, y) ≤ n(x, y)2 = O((AD)2) = O(L2).
Since we are in the case αΣ = 0, from the parameter relation M ≥ L2/|Σ| (Lemma 6.6(i)) we obtain
L2 ≤ O(M) and thus also M(x, y) is sufficiently small. Finally, we use Lemmas 6.8 and 9.1(iii)
to bound d(x, y) ≤ O(L(x, y) · #1(y)) ≤ O(AD · BD), which by definition of A,B is O(d). This
proves that (n, x, y) belongs to LCS≤(α).

We remark that our proof also yields the following lemma, which we will use for small alphabets.

Lemma 9.2. Let α be a parameter setting satisfying Table 2 with αΣ = 0 and αδ = αm. There
is a constant γ ≥ 1 such that any algorithm for LCSγ

≤(α, {0, 1}) takes time d1−o(1), unless OVH
fails. This holds even restricted to instances (n, x, y) of LCSγ

≤(α, {0, 1}) with |x|, |y| ≤ γ · nαL and

#1(y) ≤ γ · nαd−αL satisfying L(x, 0βy) = L(x, y) for all β ≥ 0.

9.1.3 Superconstant Alphabet

To tackle the general case αΣ ≥ 0 (while still assuming αδ = αm), we use the following fact which
is similar to the Disjoint Alphabets Lemma.

Lemma 9.3 (Crossing Alphabets). Let Σ1, . . . ,Σk be disjoint alphabets and let xi, yi be strings
over alphabet Σi. Consider x := x1 . . . xk and y := yk . . . y1, i.e., the order in y is reversed.
For any parameter p ∈ {n,m, |Σ|,M, d} we have p(x, y) =

∑k
i=1 p(xi, yi). Moreover, L(x, y) =

maxi L(xi, yi).

Proof. The statement is trivial for the string lengths n,m, alphabet size |Σ|, and number of match-
ing pairs M . For the LCS length L we observe that any common subsequence z that matches a
symbol in Σi cannot match any symbols in other alphabets, which yields L(x, y) ≤ maxi L(xi, yi).
Since any common subsequence of xi, yi is also a common subsequence of x, y, we obtain equality.

Since every dominant pair is also a matching pair, every dominant pair of x, y stems from
prefixes x1 . . . xj−1x

′ and yk . . . yj+1y
′, with x′ a prefix of xj and y′ a prefix of yj for some j. Since

L(x1 . . . xj−1x
′, yk . . . yj+1y

′) = L(x′, y′), we obtain that the dominant pairs of x, y of the form
x1 . . . xj−1x

′, yk . . . yj+1y
′ are in one-to-one correspondence with the dominant pairs of xj, yj . Since

these dominant pairs of x, y are incomparable, this yields the claim for parameter d.

26

We make use of the above lemma by invoking the following construction.

Definition 9.4. Let Σ1, . . . ,Σt be a collection of disjoint two-element alphabets. For any string z
over {0, 1} and Σi, let z ↑Σi denote the string z lifted to Σi, i.e., we replace the symbols {0, 1} in
z bijectively by Σi. Then for given x1, . . . , xt, y1, . . . , yt ∈ {0, 1}∗ we construct

crx(x1, . . . , xt) := x1 ↑Σ1 x2 ↑Σ2 . . . xt ↑Σt,

cry(y1, . . . , yt) := yt ↑Σt yt−1 ↑Σt−2 . . . y1 ↑Σ1.

We adapt the construction from Lemma 9.1 using the following trick that realizes an ”OR” of
t ≤ O(Σ) instances, without significantly increasing the parameters d and M .

Consider any n ≥ 1 and target values p = nαp for p ∈ P. Let A = {a1, . . . , aA}, B =
{b1, . . . , bB} ⊆ {0, 1}D be a given OV instance with D = no(1) and where we set A = ⌊ d

min{L,
√
d}·D ⌋

and B = ⌊min{L,
√
d}

D ⌋. Note that UOVH implies that solving such OV instances takes time

(AB)1−o(1) = nαd−o(1) = d1−o(1). Since clearly A ≥ B, we can partition A into t := ⌈A/B⌉
groups A1, . . . ,At of size B (filling up the last group with all-ones vectors). Using the relation
d ≤ L2|Σ| (Lemma 6.3(ii)), we obtain t ≤ O(d/L2 + 1) ≤ O(Σ).

For each i = 1, . . . , t we construct strings xi and yi for the sets Ai and B using Lemma 9.1.
Finally, we set x := crx(x1, . . . , xt) and y := cry(y1, . . . , yt). By the Crossing Alphabets Lemma
and Lemma 9.1.(i) from L(x, y) we can infer whether A,B has an orthogonal pair of vectors. We
claim that (n, x, y) is an instance of LCS≤(α). This shows that any algorithm solving LCS≤(α) in
time O(d1−ε) implies an algorithm for our OV instances with running time O(d1−ε), contradicting
UOVH. Hence, in the current case αδ = αm, any algorithm for LCS≤(α) takes time d1−o(1), proving
part of Theorem 4.6.

It remains to show the claim that (n, x, y) is an instance of LCS≤(α). This is similar to the
proof for the case αΣ = 0, additionally using the Crossing Aphabets Lemma. Specifically, we obtain
m(x, y) ≤ n(x, y) = |x| =

∑t
i=1 |xi| ≤ O(t · BD) = O(AD) = O(max{d/L,

√
d}), which is at most

O(m) ≤ O(n) using the parameter relations d ≤ Lm ≤ m2 (Lemma 6.3.(i)). Similarly, we obtain
δ(x, y) ≤ ∆(x, y) ≤ n(x, y) ≤ O(m) = O(δ) ≤ O(∆), where the equality holds in the current case
αm = αδ. For L we obtain L(x, y) = maxi L(xi, yi) ≤ |yi| = O(BD) ≤ O(L). Since t ≤ O(Σ)
we have |Σ(x, y)| ≤ O(Σ). Using the parameter relation d ≤ M we have d(x, y) ≤ M(x, y) =
∑t

i=1M(xi, yi) ≤ t · |xi| · |yi| = t · O((BD)2) = O(AD · BD) = O(d) ≤ O(M). This proves that
(n, x, y) belongs to LCS≤(α).

9.2 Large LCS

Now assume αL = αm, i.e., L = Θ(m). Then the number of deletions in the shorter string might
be arbitrary small, i.e., any value 0 < αδ ≤ αm is admissible. In this case, the construction of [28]
is no longer applicable. The new 1vs1/2vs1 gadgets that we design for constructing hard strings
for small δ can be seen as one of our main contributions.

9.2.1 Hard Core

The following lemma (which effectively represents an intermediate step in the proof of [28]) yields
the basic method to embed sets of vectors into strings x and y.

Lemma 9.5. Let two sets A = {a1, . . . , aA} and B = {b1, . . . , bB} of vectors in {0, 1}D be given.
In time O((A + B)D) we can construct strings x1, . . . , xA of length ℓx and y1, . . . , yB of length ℓy
over alphabet {0, 1}, as well as integers ρ1 < ρ0, such that for all i ∈ [A], j ∈ [B] we have

27

(i) ℓy ≤ ℓx ≤ O(D),

(ii) L(xi, yj) = ρ0 if 〈ai, bj〉 = 0,

(iii) L(xi, yj) = ρ1 if 〈ai, bj〉 6= 0, and

(iv) L(xi, yj) > ℓy/2.

Proof. We can construct strings x′1, . . . , x
′
A of length ℓ′x = O(D) and y′1, . . . , y

′
B of length ℓ′y = O(D)

and integers ρ′1 < ρ′0 as in [28, Claim III.6] (using the so called normalized vector gadget) that
satisfy L(x′i, y

′
j) = ρ′0 if 〈ai, bj〉 = 0 and L(x′i, y

′
j) = ρ′1 otherwise. To additionally enforce conditions

(i) and (iv), we define xi := 1ℓ
′
y0ℓ

′
y+1x′i and yj := 0ℓ

′
y+1y′j. Since L(xi, yj) = L(x′i, y

′
j) + ℓ′y + 1 by

Lemmas 7.6 and 7.1, we thus obtain conditions (ii) and (iii) for ρ0 := ρ′0+ℓ′y+1 and ρ1 := ρ′1+ℓ′y+1.
Since by definition ℓy = 2ℓ′y + 1 holds, the first condition follows directly and the trivial bound
L(xi, yj) ≥ ℓ′y + 1 > ℓy/2 shows that the last condition is fulfilled.

1vs1/2vs1 gadget. The aim of the following construction is to embed given strings y1, . . . , yQ
into a string y and strings x1, . . . , xP into x, where P = Θ(Q), such that in an LCS each yj is
either aligned with a single string xi or with several strings xi, xi+1, . . . , xi′ . In the first case,
|yj| − L(xi, yj) characters of yj are not contained in an LCS of x and y, while in the second case
yj can be completely aligned. By choosing P = 2Q −N for an arbitrary 1 ≤ N ≤ Q, it will turn
out that the LCS aligns N strings yj with a single partner xi, and the remaining Q−N strings yj
with two strings xi, xi+1 each. Thus, only N strings yj are not completely aligned.

To formalize this intuition, let P ≥ Q. We call a set Λ = {(i1, j1), . . . , (ik, jk)} with 0 ≤ k ≤ Q
and 1 ≤ i1 < i2 < · · · < ik ≤ P and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ Q a (partial) multi-alignment. Let
Λ(j) = {i | (i, j) ∈ Λ}. We say that every j ∈ [Q] with |Λ(j)| = k is k-aligned. We will also refer to
a 1-aligned j ∈ [Q] as being uniquely aligned to i, where Λ(j) = {i}. Every j ∈ [Q] with Λ(j) = ∅
is called unaligned. Note that each i ∈ [P] occurs in at most one (i, j) ∈ Λ. We denote the set of
multi-alignments as Λmulti

P,Q .
We will also need the following specialization of multi-alignments. We call a multi-alignment

Λ ∈ Λmulti
P,Q a (1,2)-alignment, if each j is either 1-aligned or 2-aligned. Let Λ1,2

P,Q denote the set of
all (1,2)-alignments.

Given strings x1, . . . , xP of length ℓx and y1, . . . , yQ of length ℓy, we define the value v(Λ) of a

multi-alignment Λ ∈ Λmulti
P,Q as v(Λ) =

∑Q
j=1 vj where

vj :=

0 if j is unaligned,

L(xi, yj) if j is uniquely aligned to i,

ℓy if j is k-aligned for k ≥ 2.

Lemma 9.6. Given strings x1, . . . , xP of length ℓx and y1, . . . , yQ of length ℓy, construct

x := G(x1) G(x2) . . . G(xP),

y := G(y1) G(y2) . . . G(yQ),

where G(w) := 0γ1 1γ2 (01)γ3 w 1γ3 with γ3 := ℓx + ℓy, γ2 := 8γ3 and γ1 := 6γ2. Then we have

max
Λ∈Λ1,2

P,Q

v(Λ) ≤ L(x, y) −Q(γ1 + γ2 + 3γ3) ≤ max
Λ∈Λmulti

P,Q

v(Λ). (2)

28

Proof. For the first inequality of (2), let Λ ∈ Λ1,2
P,Q. For every yj, we define zj = ©i∈Λ(j) G(xi).

Consider a 1-aligned j and let i ∈ [P] be the index j is uniquely aligned to. We have that
zj = G(xi) = 0γ11γ2(01)γ3xi1

γ3 and hence by Lemma 7.1, we obtain L(zj ,G(yj)) = γ1 + γ2 + 3γ3 +
L(xi, yj) = γ1 + γ2 + 3γ3 + vj . Likewise, consider a 2-aligned j and let i, i′ ∈ [P] be such that
Λ(j) = {i, i′}. Then zj = G(xi)G(xi′). We compute

L(zj ,G(yj)) = γ1 + γ2 + 3γ3 + L(xi1
γ30γ11γ2(01)γ3xi′ , yj)

≥ γ1 + γ2 + 3γ3 + L((01)γ3 , yj)

= γ1 + γ2 + 3γ3 + ℓy = γ1 + γ2 + 3γ3 + vj,

where the first line follows from Lemma 7.1, the second line from monotonicity and the third line
from γ3 ≥ ℓy = |yj|. Observe that z1z2 . . . zQ is a subsequence of x. We conclude that

L(x, y) ≥
Q
∑

j=1

L(zj ,G(yj)) = Q(γ1 + γ2 + 3γ3) +

Q
∑

j=1

vj .

It remains to prove the second inequality of (2). Write x = z1z2 . . . zQ such that L(x, y) =
∑Q

j=1 L(zj ,G(yj)). We define a multi-alignment Λ by letting (i, j) ∈ Λ if and only if zj contains
strictly more than half of the 0γ1-block of G(xi). Note that the thus defined set satisfies the
definition of a multi-alignment, since no two zj’s can contain more than half of G(xi)’s 0γ1 -block and
if (i, j), (i′ , j′) ∈ Λ, then j < j′ implies i < i′. It remains to show that L(zj ,G(yj)) ≤ γ1+γ2+3γ3+vj
for all j to prove the claim.

In what follows, we use the shorthand H(w) := 1γ2(01)γ3w1γ3 . Note that G(w) = 0γ1H(w).
Consider an unaligned j ∈ [Q]. By definition, zj is a subsequence of 0γ1/2H(xi)0

γ1/2 for some
i ∈ [P]. We can thus bound (using Lemma 7.1)

L(zj ,G(yj)) ≤ L(0γ1/2H(xi)0
γ1/2, 0γ1H(yj)) =

γ1
2

+ L(H(xi)0
γ1/2, 0γ1/2H(yj)).

By Lemma 7.6 with ℓ := γ1/2 ≥ 2γ2 + 6γ3 + ℓx + ℓy = |H(xi)| + |H(yj)| ≥ #0(H(xi)) + |H(yj)|,

L(H(xi)0
γ1/2, 0γ1/2H(yj)) = γ1/2 + L(0#0(H(xi)),H(yj)) ≤ γ1/2 + #0(H(yj)) ≤ γ1/2 + γ3 + ℓy.

Hence, in total we have L(zj ,G(yj)) ≤ γ1 + γ3 + ℓy ≤ γ1 + γ2 + 3γ3 = γ1 + γ2 + 3γ3 + vj, as desired.
Consider a j ∈ [Q] that is uniquely aligned (under Λ) to some i. Then zj is a subsequence of

0γ1/2H(xi−1)0γ1H(xi)0
γ1/2. Analogously to above we compute

L(zj ,G(yj)) ≤ γ1
2

+ L(H(xi−1)0γ1H(xi)0
γ1/2, 0γ1/2H(yj))

= γ1 + L(0#0(H(xi−1))+γ1H(xi)0
γ1/2,H(yj))

= γ1 + L(0#0(H(xi−1))+γ11γ2(01)γ3xi1
γ30γ1/2, 1γ2(01)γ3yj1

γ3).

Using Lemma 7.6 with symbol 0 replaced by 1 yields, since ℓ := γ2 ≥ 3γ3 + ℓy = |(01)γ3yj1
γ3 | and

#1(0
#0(H(xi−1))+γ1) = 0,

L(zj ,G(yj)) ≤ γ1 + γ2 + L((01)γ3xi1
γ30γ1/2, (01)γ3yj1

γ3) = γ1 + γ2 + 2γ3 + L(xi1
γ30γ1/2, yj1

γ3).

Similarly, using Lemma 7.6 with symbol 0 replaced by 1 on the reversed strings yields, since
ℓ := γ3 ≥ ℓy = |yj| and #1(0

γ1/2) = 0,

L(xi1
γ30γ1/2, yj1

γ3) = γ3 + L(xi, yj).

29

Hence, we obtain the desired L(zj ,G(yj)) ≤ γ1 + γ2 + 3γ3 + L(xi, yj) = γ1 + γ2 + 3γ3 + vj.
It remains to consider j ∈ [Q] that is k-aligned for k ≥ 2. In this case, the claim follows from

the trivial bound L(zj ,G(yj)) ≤ |G(yj)| = γ1 + γ2 + 3γ3 + vj.
Thus z1, . . . , zQ defines a multi-alignment Λ ∈ Λmulti

P,Q with

L(x, y) =

Q
∑

j=1

L(zj ,G(yj)) ≤ Q(γ1 + γ2 + 3γ3) + v(Λ),

proving the second inequality of (2).

We can now show how to embed an OV instance A = {a1, . . . , aA},B = {b1, . . . , bB} ⊆ {0, 1}D
with A ≤ B into strings x and y of length O(B ·D) whose LCS can be obtained by deleting at most
O(A ·D) symbols from y. For this we will without loss of generality assume that A divides B by
possibly duplicating some arbitrary element of B up to A− 1 times without affecting the solution
of the instance.

The key idea is that for any P and Q = 2P −N with N ∈ {0, . . . , P}, Λ1,2
P,Q is non-empty and

each Λ ∈ Λ1,2
P,Q has exactly N uniquely aligned j ∈ [Q] and exactly P −N 2-aligned j ∈ [Q]. At the

same time each Λ ∈ Λmulti
P,Q leaves at least N indices j ∈ [Q] either unaligned or uniquely aligned.

Lemma 9.7. Let a1, . . . , aA, b1, . . . bB ⊆ {0, 1}D be given with A | B. Construct the corresponding
strings x1, . . . , xA of length ℓx, y1, . . . , yB of length ℓy ≤ ℓx ≤ O(D), and integers ρ0, ρ1 as in
Lemma 9.5 and define

x̃ := (x̃1, . . . , x̃P) = (

2·(B/A)+3 groups of size A
︷ ︸︸ ︷
x1, . . . , xA, x1, . . . , xA, . . . , x1, . . . , xA),

ỹ := (ỹ1, . . . , ỹQ) = (y1, . . . , y1
︸ ︷︷ ︸

A copies of y1

, y1, . . . , yB, y1, . . . , y1
︸ ︷︷ ︸

A copies of y1

),

where P := 2B + 3A and Q := B + 2A. Then the instance x := ©i G(x̃i), y := ©j G(ỹj)
of Lemma 9.6 (with the corresponding choice of γ1, γ2 and γ3) satisfies the following properties:

(i) For every i ∈ [A], j ∈ [B], there is a (1,2)-alignment Λ ∈ Λ1,2
P,Q such that some ℓ ∈ [Q] is

uniquely aligned to some k ∈ [P] with x̃k = xi and ỹℓ = yj.

(ii) We have L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + (A − 1)ρ1 + ρ0 + (Q − A)ℓy if and only if there are
i ∈ [A], j ∈ [B] with 〈ai, bj〉 = 0.

(iii) We have |y| ≤ |x| ≤ O(B ·D) and δ(x, y) = O(A ·D).

Proof. For (i), we let j ∈ [B] and note that yj = ỹℓ for ℓ := A + j. We will show that for every

λ ∈ {0, . . . , A− 1}, there is a (1,2)-alignment Λ with (k, ℓ) ∈ Λ1,2
P,Q where k := 2(A+ j)− 1− λ. By

the cyclic structure of x̃, (x̃k)0≤λ<A cycles through all values x1, . . . , xA. Hence, for some choice
of λ the desired x̃k = xi follows, yielding the claim.

To see that for any λ ∈ {0, . . . , A − 1}, some Λ ∈ Λ1,2
P,Q with (k, ℓ) ∈ Λ exists, observe that

there are ℓ − 1 = A + j − 1 predecessors of ỹℓ and k − 1 = 2(A + j − 1) − λ = 2(ℓ − 1) − λ
predecessors of x̃k. Hence there is a (1,2)-alignment Λ1 ∈ Λ1,2

k−1,ℓ−1 (leaving λ indices j ∈ [Q]
uniquely aligned). Similarly, observe that there are Q − ℓ = B + A − j successors of ỹℓ and
P − k = 2B + A − 2j + λ + 1 = 2(Q − ℓ) − (A − λ − 1) successors of x̃k, hence there is a (1,2)-
alignment Λ2 ∈ Λ1,2

P−k,Q−ℓ (which leaves A − (λ + 1) indices j uniquely aligned). By canonically

composing Λ1, (k, ℓ) and Λ2 we can thus obtain Λ ∈ Λ1,2
P,Q with (k, ℓ) ∈ Λ.

30

For (ii), assume that there are i ∈ [A], j ∈ [B] satisfying 〈ai, bj〉 = 0. By (i), there is some

Λ ∈ Λ1,2
P,Q where some ℓ ∈ [Q] is uniquely aligned to some k ∈ [P] such that x̃k = xi and ỹℓ = yj.

To apply Lemma 9.6, observe that Λ has Q−A 2-aligned j ∈ [Q], which contribute value ℓy to v(Λ),
and A uniquely aligned j ∈ [Q], in particular, ℓ is uniquely aligned to k. Since any x̃i corresponds to
some xi′ , every ỹj corresponds to some yj′ and L(xi′ , yj′) ∈ {ρ0, ρ1}, we conclude that ℓ contributes
ρ0 to v(Λ) and the other A−1 uniquely aligned j contribute at least ρ1. Hence by the lower bound
in Lemma 9.6, we obtain L(x, y) ≥ Q(γ1+γ2+3γ3)+v(Λ), where v(Λ) ≥ (A−1)ρ1+ρ0+(Q−A)ℓy.

Assume now that no i ∈ [A], j ∈ [B] satisfy 〈ai, bj〉 = 0, and let Λ ∈ Λmulti
P,Q . Then any j ∈ [Q]

uniquely aligned to some i ∈ [P] contributes L(x̃i, ỹj) = ρ1 to v(Λ). Let λ be the number of
j ∈ [Q] that are k-aligned for any k ≥ 2, each contributing ℓy to v(Λ). Then there are at most
min{P − 2λ,Q − λ} uniquely aligned j ∈ [Q] (since every k-aligned j blocks at least two i ∈ [P]
for other alignments), and the remaining j ∈ [Q] are unaligned, with no contribution to v(Λ).
Hence v(Λ) ≤ λℓy + min{P − 2λ,Q − λ} · ρ1 = min{Pρ1 + (ℓy − 2ρ1)λ,Qρ1 + (ℓy − ρ1)λ}. Note
that ℓy/2 < ρ1 ≤ ℓy (by Lemma 9.5(iv)), hence this minimum of linear functions with leading
coefficients ℓy − 2ρ1 < 0 and ℓy − ρ1 ≥ 0 is maximized when both have the same value, i.e., when
λ = P −Q = Q− A. Thus, v(Λ) ≤ (Q− A)ℓy + Aρ1 < (Q− A)ℓy + (A− 1)ρ1 + ρ0. Thus by the
upper bound of Lemma 9.6 we conclude that L(x, y) < Q(γ1+γ2+3γ3)+(Q−A)ℓy+(A−1)ρ1+ρ0.

For (iii), since P ≥ Q and ℓx ≥ ℓy we have |x| ≥ |y|, and by P ≤ O(A) and |G(x̃i)| ≤ O(ℓx) ≤
O(D) we obtain |x| ≤ O(AD). Note that for any (1,2)-alignment Λ ∈ Λ1,2

P,Q, we have

v(Λ) = Q · ℓy −
∑

j uniquely aligned to i

(ℓy − L(xi, yj)) = Q · ℓy −O(A ·D),

since by P = 2Q − A the number of uniquely aligned indices j in Λ equals A, and ℓy = O(D).
Hence by Lemma 9.6, L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + Qℓy − O(A · D) = |y| − O(A · D), implying
δ(x, y) = |y| − L(x, y) ≤ O(A ·D).

9.2.2 Constant Alphabet

First assume αΣ = 0 and thus |Σ| = O(1). Consider any n ≥ 1 and target values p = nαp for
p ∈ P. We write ⌊x⌋2 for the largest power of 2 less than or equal to x. Let A = {a1, . . . , aA},
B = {b1, . . . , bB} ⊆ {0, 1}D be a given OV instance with D = no(1) and where we set

A :=
⌊ 1

D
min

{

δ,
d

min{m,∆}
}⌋

2
and B :=

⌊ 1

D
min{m,∆}

⌋

2
.

By αm, α∆ ≤ 1 and (LB) we obtain A ≥ nmin{αL,αd−1}−o(1) = nΩ(1) and B = nmin{αm,α∆}−o(1) =
nΩ(1). Also note that UOVH implies that solving such OV instances takes time (AB)1−o(1) =
min{d, δm, δ∆}1−o(1) , which is the desired bound. We claim that A ≤ B, implying A | B. Indeed,
if δ ≤ d/min{m,∆} this follows from the simple parameter relations δ ≤ m and δ ≤ ∆. Otherwise,
if δ > d/min{m,∆}, then in particular δ∆ > d, implying d < ∆2. Together with the parameter
relations d ≤ Lm ≤ m2 we indeed obtain d/min{m,∆} ≤ min{m,∆}.

Thus, we may construct strings x, y as in Lemma 9.7. We finish the construction by invoking
the Dominant Pair Reduction (Lemma 7.8) to obtain strings x′ := 0k1ky1ℓ0k1kx and y′ := 1ℓ0k1ky
with k := 2|y|+ |x|+1 and ℓ := Θ(A ·D) with sufficiently large hidden constant, so that ℓ > δ(x, y).
Then from the LCS length L(x′, y′) we can infer whether A,B has an orthogonal pair of vectors by
L(x′, y′) = L(x, y)+ℓ+2k and Lemma 9.7(ii). Moreover, this reduction runs in time O(|x′|+ |y′|) =
O(|x| + |y|) = O(BD) ≤ O(min{d, δm, δ∆}1−ε) for sufficiently small ε > 0 (since αδ > 0 and
αd > 1 ≥ αm, α∆ by (LB) and Table 2). We claim that (n, x′, y′) is an instance of LCS≤(α). This

31

shows that any algorithm solving LCS≤(α) in time O(min{d, δm, δ∆}1−ε) implies an algorithm for
our OV instances with running time O(min{d, δm, δ∆}1−ε), contradicting UOVH. Hence, in the
current case αL = αm and αΣ = 0, any algorithm for LCS≤(α) takes time min{d, δm, δ∆}1−o(1) ,
proving part of Theorem 4.6.

It remains to show the claim that (n, x′, y′) is an instance of LCS≤(α). From Lemmas 7.8
and 9.7(iii) we obtain L(x′, y′) = ℓ + 2k + L(x, y) = ℓ + 2k + |y| − δ(x, y) ≥ |y′| − O(AD), and
thus δ(x′, y′) ≤ O(AD) ≤ O(δ). Using the parameter relations L ≤ m ≤ n, Lemma 9.7(iii), and
the definition of B, we have L(x′, y′) ≤ m(x′, y′) ≤ n(x′, y′) = |x′| ≤ O(BD) = O(min{m,∆}),
which together with the relation m ≤ n and the assumption αL = αm shows that p(x′, y′) ≤ O(p) =
O(nαp) for p ∈ {L,m, n}. Similarly, we obtain ∆(x′, y′) ≤ n(x′, y′) ≤ O(min{m,∆}) ≤ O(∆). Since
x′, y′ use the binary alphabet {0, 1}, we have |Σ(x′, y′)| = 2 ≤ O(nαΣ). For the number of matching
pairs we have M(x′, y′) ≤ n(x′, y′)2 = O((BD)2) = O(L2). Since we are in the case αΣ = 0, from
the parameter relation M ≥ L2/|Σ| (Lemma 6.6(i)) we obtain L2 ≤ O(M) and thus also M(x′, y′)
is sufficiently small. Finally, we use Lemma 7.8 to bound d(x′, y′) ≤ O(ℓ · |y|) ≤ O(AD ·BD), which
by definition of A,B is O(d). This proves that (n, x′, y′) belongs to LCS≤(α).

We remark that our proof also yields the following, which we will use for small alphabets.

Lemma 9.8. Let α be a parameter setting satisfying Table 2 with αΣ = 0 and αL = αm. There
is a constant γ ≥ 1 such that any algorithm for LCSγ

≤(α, {0, 1}) takes time min{d, δm, δ∆}1−o(1) ,
unless OVH fails. This holds even restricted to instances (n, x, y) of LCSγ

≤(α, {0, 1}) with |y| ≤
|x| ≤ γ · min{nαm , nα∆}.

9.2.3 Superconstant Alphabet

The crucial step in extending our construction to larger alphabets is to adapt the 1vs1/2vs1 gadget
such that the strings use each symbol in the alphabet Σ roughly evenly, thus reducing the number
of matching pairs by a factor |Σ|.

Recall that given a 2-element alphabet Σ′ and a string z over {0, 1}, we let z ↑Σ′ denote the
string z lifted to alphabet Σ′ by bijectively replacing {0, 1} with Σ′.

Lemma 9.9. Let P = 2B + 3A and Q = B + 2A for some A | B. Given strings x1, . . . , xP of
length ℓx and y1, . . . , yQ of length ℓy, we define, as in Lemma 9.6, G(w) := 0γ1 1γ2 (01)γ3 w 1γ3

with γ3 := ℓx + ℓy, γ2 := 8γ3 and γ1 := 6γ2. Let Σ1, . . . ,Σt be disjoint alphabets of size 2 with
Q/t ≥ A/2 + 1. We define

x := H(x1) H(x2) . . . H(xP),

y := G(y1) ↑Σf(1) G(y2) ↑Σf(2) . . . G(yQ) ↑Σf(Q),

where f(j) = ⌈ j
Q · t⌉ and

H(xi) :=

{

G(xi) ↑Σk+1 G(xi) ↑Σk if
⋃⌊(i+A)/2⌋

j=⌈i/2⌉ {f(j)} = {k, k + 1}
G(xi) ↑Σk if

⋃⌊(i+A)/2⌋
j=⌈i/2⌉ {f(j)} = {k}

Then we have

max
Λ∈Λ1,2

P,Q

v(Λ) ≤ L(x, y) −Q(γ1 + γ2 + 3γ3) ≤ max
Λ∈Λmulti

P,Q

v(Λ). (3)

Proof. Note that H(·) is well-defined, since f(·) maps {1, . . . , Q} to constant-valued intervals of
length at least Q/t − 1 ≥ A/2, as f(j) = k if and only if j ∈

(Qk
t − Q

t ,
Qk
t

]
, containing at least

32

Q/t − 1 integers. Hence for every i, the ≤ A/2 values f(⌈i/2⌉), . . . , f(⌊(i + A)/2⌋) can touch at
most 2 different constant-valued intervals.

The proof of (3) is based on the proof of Lemma 9.6 (the analogous lemma for alphabet Σ =
{0, 1}). For the first inequality of (3), let Λ ∈ Λ1,2

P,Q and define for every j the substring z′j =
©i∈Λ(j)H(xi). Note that under Λ, each Λ(j) consists of one or two elements from {2j−A, . . . , 2j},
since there are at most 2Q − P = A uniquely aligned j. In other words, for any i ∈ Λ(j) we have
j ∈ {⌈i/2⌉, . . . , ⌊(i + A)/2⌋}. Thus, by definition each H(xi) for i ∈ Λ(j) contains G(xi) ↑Σf(j) as
a substring and hence z′j contains ©i∈Λ(j) G(xi) ↑Σf(j) as a subsequence. This proves

L
(
z′j ,G(yj) ↑Σf(j)

)
≥ L

(

©
i∈Λ(j)

G(xi) ↑Σf(j),G(yj) ↑Σf(j)

)

= L
(

©
i∈Λ(j)

G(xi),G(yj)
)

,

which reduces the proof to the case of Σ = {0, 1} – note that the last term is equal to L(zj ,G(yj))
in the proof of the same inequality of Lemma 9.6 and thus the remainder follows verbatim.

It remains to show the second inequality of (3). Essentially as in the proof of Lemma 9.6, we
write x = z′1z

′
2 . . . z

′
Q with L(x, y) =

∑Q
j=1 L(z′j ,G(yj) ↑Σf(j)). For every z′j , we obtain a string

zj by deleting all symbols not contained in Σf(j) and then lifting it to the alphabet {0, 1}. We
conclude that L(z′j ,G(yj) ↑Σf(j)) = L(zj ,G(yj)). We claim that z := z1z2 . . . zQ is a subsequence
of x{0,1} := G(x1) . . .G(xP) (which is equal to the string x that we constructed in the case of
Σ = {0, 1}). Indeed, if H(xi) is of the form wk+1wk for some k with wℓ = G(xi) ↑Σℓ, then symbols
of at most one of wk and wk+1 are contained in z. To see this, note that if wk is not deleted then
at least one of its symbols is contained in some z′j with f(j) = k, but then no symbol in wk+1 can
be contained in z′j′ with f(j′) = k + 1, since this would mean j′ > j, so wk+1 is deleted. Thus,

L(x, y) =

Q
∑

j=1

L
(
z′j ,G(yj) ↑Σf(j)

)
=

Q
∑

j=1

L
(
zj ,G(yj)

)
≤ L(x{0,1}, y{0,1}),

where y{0,1} := G(y1) . . .G(yQ) is the string y that we constructed in the case of Σ = {0, 1}. Hence,
the second inequality of (3) follows from the proof of Lemma 9.6.

By the same choice of vectors as in Lemma 9.7, we can embed orthogonal vectors instances.

Lemma 9.10. Let a1, . . . , aA, b1, . . . bB ⊆ {0, 1}D be given with A | B. Construct the corresponding
strings x1, . . . , xA of length ℓx, y1, . . . , yB of length ℓy ≤ ℓx ≤ O(D) and integers ρ0, ρ1 as in
Lemma 9.5 and define

x̃ := (x̃1, . . . , x̃P) = (

2·(B/A)+3 groups of size A
︷ ︸︸ ︷
x1, . . . , xA, x1, . . . , xA, . . . , x1, . . . , xA),

ỹ := (ỹ1, . . . , ỹQ) = (y1, . . . , y1
︸ ︷︷ ︸

A copies of y1

, y1, . . . , yB, y1, . . . , y1
︸ ︷︷ ︸

A copies of y1

),

where P := 2B+3A and Q := B+2A. For disjoint alphabets Σ1, . . . ,Σt of size 2 with Q/t ≥ A/2+1,
we construct the instance x := ©iH(x̃i), y := ©j G(ỹj) of Lemma 9.9 (with the corresponding
choice of γ1, γ2 and γ3). This satisfies the following properties:

(i) We have that L(x, y) ≥ Q(γ1 + γ2 + 3γ3) + (A− 1)ρ1 + ρ0 + (Q−A)ℓy if and only if there are
i ∈ [A], j ∈ [B] with 〈ai, bj〉 = 0.

(ii) We have |y| ≤ |x| ≤ O(B ·D) and δ(x, y) = O(A ·D).

33

Proof. The lemma and its proof are a slight adaptation of Lemma 9.7: For (i), since Lemma 9.9
proves (3) which is identical to (2), we can follow the proof of Lemma 9.7(i) and (ii) verbatim
(since we have chosen x̃ and ỹ as in this lemma). For (ii), the bounds |y| ≤ |x| ≤ O(B · D) and
δ(x, y) = O(A ·D) follow exactly as in Lemma 9.6 (note that only |x| has increased by at most a
factor of 2, so that |x| ≤ O(B ·D) still holds by the trivial bound).

We can now finish the proof of Theorem 4.6 for the case of αL = αm and αΣ > 0. Consider any
n ≥ 1 and target values p = nαp for p ∈ P. Let A = {a1, . . . , aA}, B = {b1, . . . , bB} ⊆ {0, 1}D be a
given OV instance with D = no(1) and where we set, as in the case αΣ = 0,

A :=
⌊ 1

D
min

{

δ,
d

min{m,∆}
}⌋

2
and B :=

⌊ 1

D
min{m,∆}

⌋

2
.

As before, we have A | B, so we may construct strings x, y as in Lemma 9.10, where we set
t := min{⌊Q/(A/2 + 1)⌋, |Σ|} = Θ(min{B/A, |Σ|}). We finish the construction by invoking the
Dominant Pair Reduction (Lemma 7.8) to obtain strings x′ := y2ℓx and y′ := 2ℓy, where 2 is a
symbol not appearing in x, y and we set ℓ := Θ(A ·D) with sufficiently large hidden constant, so
that ℓ > δ(x, y).

For the remainder of the proof we can follow the case αΣ = 0 almost verbatim. The only excep-
tion is the bound on the number of matching pairs. Note that symbol 2 appears O(AD) times in x′

and y′. As in x and y every symbol appears roughly equally often and the total alphabet size is Θ(t),
for any symbol σ 6= 2 we have #σ(x) ≤ O(|x|/t) and #σ(y) ≤ O(|y|/t), implying #σ(x′),#σ(y′) ≤
O(BD/t). Hence, M(x′, y′) ≤ O((AD)2+t·(BD/t)2). Using t = Θ(min{B/A, |Σ|}) and A ≤ B, we
obtain M(x′, y′) ≤ O(max{AD ·BD, (BD)2/|Σ|}) ≤ O(max{d,m2/|Σ|}. The assumption αL = αm

and the parameter relations M ≥ L2/|Σ| and M ≥ d now imply M(x′, y′) ≤ O(M). This concludes
the proof of Theorem 4.6.

10 Hardness for Small Constant Alphabet

In this section, we show hardness of the parameter settings LCS(α,Σ) for alphabets of constant
size |Σ| ≥ 2, i.e., we prove Theorem 3.4. The general approach, as outlined in Section 4, is to take
the hard instances x, y of LCS≤(α, {0, 1}) constructed in Section 9 and pad them to instances x′, y′

of LCS(α,Σ). Notably, unlike the black-box method of Lemma 4.5 that effectively considered each
parameter separately, we now cannot make extensive use of the Disjoint Alphabets Lemma, as this
would introduce more symbols than admissible. Instead, for small alphabet size such as |Σ| = 2 we
need to pad all parameters simultaneously in a combined construction, taking care of the interplay
of the parameters manually. Additionally, for |Σ| ∈ {2, 3}, more complex parameter relations hold.

Unfortunately, this general approach fails for Σ = {0, 1}, i.e., we cannot always pad hard strings
x, y of LCS≤(α, {0, 1}) to LCS(α, {0, 1}). Surprisingly, the reason is that by an O(n+ δM/n)-time
algorithm (given in Section 11), some parameter settings LCS(α, {0, 1}) are indeed simpler to solve
than LCS≤(α, {0, 1}) (conditional on SETH). In these cases, we take hard instances (n, x, y) from
LCS≤(α′, {0, 1}) for a suitably defined “simpler” parameter setting α

′ and pad x, y to instances of
LCS(α, {0, 1}).

As in Section 9, we distinguish between the two cases αδ = αm (i.e., δ = Θ(m) and any
0 < αL ≤ αm is admissible) and αL = αm (i.e., L = Θ(m) and any 0 < αδ < αm is admissible).

10.1 Small LCS

In this section, we assume αδ = αm. It can be checked that this assumption implies α∆ = 1,
i.e., ∆ = Θ(n). Moreover, if |Σ| = 2 then the assumption and the parameter relation M ≥

34

nd/(80L) ≥ Ω(nd/m) imply δM/n = Ω(d). Thus, the desired running time bound simplifies to
d1−o(1). Theorem 3.4 in this regime follows from the following statement (and Lemma 4.1).

Lemma 10.1. Let (α,Σ) be a parameter setting satisfying Table 2 with αδ = αm. There is a
constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time d1−o(1) unless OVH fails.

We prove the above lemma in the remainder of this section. Note that any parameter setting
(α,Σ) satisfying Table 2 gives rise to a parameter setting α satisfying Table 2 with αΣ = 0 (where
the converse does not hold in general). Recall that for any such α, in Lemma 9.2 we constructed hard
instances (n, x, y) of LCSγ

≤(α, {0, 1}) with an additional threshold ρ such that deciding L(x, y) ≥ ρ
decides the corresponding OV instance, yielding hardness of LCSγ

≤(α, {0, 1}). Furthermore, the
constructed instances have the additional guarantees that |x|, |y| ≤ γ · nαL and #1(y) ≤ γ · nαd−αL

and for any β ≥ 0 we have L(x, 0βy) = L(x, y).
Hence, to prove the above lemma it suffices to show how to compute, given any such instance

(n, x, y) and threshold ρ, an instance x′, y′ of LCSγ′

(α,Σ) (for some γ′ ≥ 1) and an integer ρ′ in
time O(n) such that L(x′, y′) ≥ ρ′ if and only if L(x, y) ≥ ρ. More precisely, we show how to
compute an integer τ in time O(n) such that L(x′, y′) ≥ τ + ρ if and only if L(x, y) ≥ ρ.

We will do this successively for alphabet sizes |Σ| = 2, |Σ| = 3, |Σ| = 4, and |Σ| ≥ 5. To this
end, the following basic building block will be instantiated with different parameters. Recall that
in Lemma 7.3, we defined strings a = (01)R+S and b = 0R(01)S with the properties L(a, b) = |b| =
R + 2S and d(a, b) = Θ(R · S).

Lemma 10.2 (Basic building block). Let x, y be given strings. Given α, β,R, S ≥ 0, we set
ℓ := |x| + |y|, and define

x′ := a 1α 0ℓ x = (01)R+S 1α 0ℓ x

y′ := b 0β 0ℓ y = 0R(01)S 0β 0ℓ y.

Then we have L(x′, y′) = L(a, b) + ℓ + L(x, 0βy) = R + 2S + ℓ + L(x, 0βy). If L(x, 0βy) = L(x, y)
then we even have L(x′, y′) = R + 2S + ℓ + L(x, y).

Proof. Clearly, L(x′, y′) ≥ L(a, b) +L(0ℓ, 0ℓ) +L(x, 0βy) = (R+ 2S) + ℓ+L(x, 0βy) since L(a, b) =
|b| = R + 2S by Lemma 7.3. To prove a corresponding upper bound, note that we can partition
y′ = wz such that L(x′, y′) = L(a1α, w) +L(0ℓx, z). Consider first the case that z is a subsequence
of y. Then

L(x′, y′) = L(a1n, w) + L(0ℓx, z) ≤ L(a1n, y′) + L(0ℓx, y),

since w, z are subsequences of y′, y, respectively. Using L(u, v) ≤ ∑

σ∈Σ min{#σ(u),#σ(v)} for any
strings u, v, we obtain

L(x′, y′) ≤ (#0(a1n) + #1(y′)) + (#0(y) + #1(0
ℓx))

= (R + S) + (S + #1(y)) + #0(y) + #1(x)

≤ (R + 2S) + ℓ + L(x, 0βy),

since ℓ ≥ |x| + |y| ≥ #0(x) + #0(y) + #1(y). It remains to consider the case that z is not a
subsequence of y and hence w is a subsequence of b0β+ℓ. By Lemma 7.3(iii), we can without loss
of generality assume that w is a subsequence of b, since L(a1α, b0β+ℓ) = L(a, b). We write z = z′z′′

such that z′′ is a subsequence of 0ℓ+βy and maximal with this property. Hence, wz′ is a subsequence
of b. Using the facts L(u, v) ≤ |v| and L(u, v′v′′) ≤ |v′| + L(u, v′′), we bound

L(x′, y′) = L(a1n, w) + L(0ℓx, z′z′′) ≤ |w| + (|z′| + L(0ℓx, z′′)),

35

Since wz′ is a subsequence of b and z′′ is a subsequence of 0ℓ+βy, this yields

L(x′, y′) ≤ |b| + L(0ℓx, 0ℓ+βy) = (R + 2S) + ℓ + L(x, 0βy),

where we used greedy prefix matching. This finishes the proof.

We now instantiate the basic building block to prove Lemma 10.1 for Σ = {0, 1}. Note that in
the remainder we again simply write p for the target value ⌈nαp⌉ of parameter p ∈ P, while the
parameter value attained by any strings x, y is denoted by p(x, y), as in Section 9. Note that the
additional guarantees for (n, x, y) are satisfied by Lemma 9.2.

Lemma 10.3. Consider a parameter setting (α, {0, 1}) satisfying Table 2 with αδ = αm. Let
(n, x, y) be an instance of LCSγ

≤(α, {0, 1}) with |x|, |y| ≤ γ · L and #1(y) ≤ γ · d/L satisfying

L(x, 0β
′
y) = L(x, y) for any β′ ≥ 0. We obtain strings x′, y′ from Lemma 10.2 (recall that in this

lemma we set ℓ := |x| + |y|), where we choose

R := L, S := ⌊d/L⌋, β := m̃ := max{m, 2|x|}, α := ñ := max{n, m̃ + |y|}.

Then, setting κ := ⌊M/n⌋, the strings defined by

x′′ := 1κ x′ = 1κ a 1ñ 0ℓ x = 1κ (01)R+S 1ñ 0ℓ x,

y′′ := 1κ y′ = 1κ b 0ℓ+m̃ y = 1κ 0R(01)S 0ℓ+m̃ y.

are an instance of LCSγ′

(α, {0, 1}) (for some constant γ′ ≥ γ) and can be computed in time O(n),
together with an integer τ such that L(x′′, y′′) ≥ τ + ρ if and only if L(x, y) ≥ ρ.

Proof. Note that
L(x′′, y′′) = κ + L(x′, y′) = κ + (R + 2S) + ℓ + L(x, y), (4)

where the first equality follows from greedy prefix matching and the second follows from Lemma 10.2.
Thus by setting τ = κ + (R + 2S) + ℓ, we have that L(x′′, y′′) ≥ τ + ρ if and only if L(x, y) ≥ ρ.
Clearly, x′′, y′′, and τ can be computed in time O(n), and Σ(x′′, y′′) = {0, 1}.

We first verify that |x|, |y|, ℓ, R, S, |a|, |b|, κ = O(L). By assumption, |x|, |y| = O(L) and thus
ℓ = |x| + |y| = O(L). By the parameter relation d ≤ |Σ| · L2 = 2L2, we note that d/L = O(L)
and hence by choice of R,S, we have |a|, |b| = Θ(R + S) = Θ(L + d/L) = Θ(L). Furthermore,
the parameter relation M ≤ 2Ln implies κ ≤ M/n ≤ 2L. Since L(x, y) ≤ |x| = O(L), the bound
L(x′′, y′′) = κ + R + 2S + ℓ + L(x, y) = R + O(L) = Θ(L) follows directly from (4).

Observe that ñ is chosen such that |x′′| ≥ |y′′|. Also, m̃ = Θ(m) and ñ = Θ(n). Since
L ≤ m ≤ n, we thus have |x′′| = κ+|a|+ñ+ℓ+|x| = ñ+O(L) = Θ(n) and |y| = κ+|b|+m̃+ℓ+|y| =
m̃ + O(L) = Θ(m).

Note that by (4), δ(x′′, y′′) = (m̃ + |y|) − L(x, y) ≥ m̃ − |x| ≥ m/2. Hence, δ(x′′, y′′) =
Θ(m) = Θ(δ) (by the assumption αδ = αm). Moreover, since δ = Θ(m), for some constant
ε > 0 we have ∆ = δ + (n − m) ≥ εm + n − m = n − (1 − ε)m ≥ n − (1 − ε)n = Ω(n) (where
we used the parameter relation m ≤ n). Since also ∆ ≤ n we have ∆ = Θ(n). By the same
argument, using δ(x′′, y′′) = Θ(m) = Θ(m(x′′, y′′)) and n(x′′, y′′) = Θ(n) as shown above, we
obtain ∆(x′′, y′′) = Θ(n(x′′, y′′)) = Θ(n), and thus ∆(x′′, y′′) = Θ(∆).

For M , observe that #1(x
′′) = κ + #1(a) + ñ + #1(x) = ñ + O(L) = Θ(n). Moreover,

#1(y) = O(d/L) (by assumption) and #1(b) = S = O(d/L) yield #1(y
′′) = κ + #1(b) + #1(y) =

Θ(M/n) + O(d/L) (here κ = Θ(M/n) follows from the parameter relation M ≥ n). This yields
#1(x

′′) · #1(y
′′) = Θ(M) + O(dn/L) = Θ(M) (using the parameter relation M ≥ nd/(5L)). Also

36

note that #0(x
′′) = #0(a) + ℓ+ #0(x) = O(L) and #0(y

′′) = #0(b) + ℓ+ m̃+ #0(y) = m̃+O(L) =
O(m). This yields #0(x′′) · #0(y

′′) = O(Lm) = O(M) (using the parameter relation M ≥ Lm/4).
Combining these bounds, we obtain M(x′′, y′′) = #0(x

′′) ·#0(y
′′) + #1(x

′′) ·#1(y
′′) = Θ(M). Note

that the last two parameter relations used here exploited that we have Σ = {0, 1}.
It remains to determine the number of dominant pairs. Since L(x′, y′) = Θ(L) (as argued above)

and #1(y′) = O(d/L), Lemma 6.8 yields d(x′, y′) ≤ 5L(x′, y′) · #1(y
′) = O(L · d/L) = O(d). For

a corresponding lower bound, from Observation 7.2 and Lemma 7.3 we obtain d(x′, y′) ≥ d(a, b) ≥
R ·S = Ω(d). By Lemma 7.1, the claim now follows from d(x′′, y′′) = κ+ d(x′, y′) = O(L) + Θ(d) =
Θ(d), where we use κ = O(L) and the parameter relation d ≥ L.

The case Σ = {0, 1, 2} is similar to {0, 1}, except that we use the new symbol 2 to pad the
parameter n, we use symbol 1 to pad m, and we have to swap the constructions for x′′ and y′′.

Lemma 10.4. Consider a parameter setting (α, {0, 1, 2}) satisfying Table 2 with αδ = αm. Let
(n, x, y) be an instance of LCSγ

≤(α, {0, 1}) with |x|, |y| ≤ γ · L and #1(y) ≤ γ · d/L satisfying

L(x, 0β
′
y) = L(x, y) for any β′ ≥ 0. We obtain strings x′, y′ from Lemma 10.2 (recall that in this

lemma we set ℓ := |x| + |y|), where we choose

R := L, S := ⌊d/L⌋, β := 0, α := m.

Then, setting κ := ⌊M/n⌋ and ñ := max{n, κ + |a| + m + |x|}, the strings defined by

x′′ := 2ñ y′ = 2ñ b 0ℓ y = 2ñ 0R(01)S 0ℓ y,

y′′ := 2κ x′ = 2κ a 1m 0ℓ x = 2κ (01)R+S 1m 0ℓ x.

are an instance of LCSγ′

(α, {0, 1, 2}) (for some constant γ′ ≥ γ) and can be computed in time
O(n), together with an integer τ such that L(x′′, y′′) ≥ τ + ρ if and only if L(x, y) ≥ ρ.

Proof. Note that unlike the case {0, 1} the string x now appears in y′′ and y appears in x′′, so the
constructions are swapped. This is necessary to realize m and M , using the parameter relation
M ≥ md/(80L) that holds for Σ = {0, 1, 2}. Observe that as usual |x′′| ≥ |y′′|.

We first compute

L(x′′, y′′) = L(2ñ, 2κ) + L(y′, x′) = κ + (R + 2S) + ℓ + L(x, y), (5)

where the first equality follows from the Disjoint Alphabets Lemma and the second equality from
greedy prefix matching and Lemma 10.2. Thus, by setting τ = κ+(R+2S)+ℓ, we have L(x′′, y′′) ≥
τ + ρ if and only if L(x, y) ≥ ρ. Clearly, x′′, y′′, and τ can be computed in time O(n), and
Σ(x′′, y′′) = {0, 1, 2}.

As in the case {0, 1}, we have |x|, |y|, ℓ, R, S, |a|, |b|, κ = O(L). Thus, by (5), we have L(x′′, y′′) =
R+O(L) = Θ(L). Furthermore, note that ñ = Θ(n). Thus, |y′′| = κ+|a|+m+ℓ+|x| = m+O(L) =
Θ(m) and |x′′| = ñ + |b| + ℓ + |y| = ñ + O(L) = Θ(n). Since L(x, y) ≤ |x| = O(L), the bound
L(x′′, y′′) = R + O(L) = Θ(L) follows directly from (5).

By (5), we see that δ(x′′, y′′) = |y′′| − L(x′′, y′′) = R + m + (|x| − L(x, y)) ≥ m. Hence
δ(x′′, y′′) = Θ(m). Thus, ∆(x′′, y′′) = δ(x′′, y′′) + (|x′′| − |y′′|) = Θ(n) follows as in the case {0, 1}.

For M , observe that #1(y
′′) = #1(a) + m + #1(x) = m + O(L) = Θ(m). Moreover, #1(y) =

O(d/L) (by assumption) yields #1(x
′′) = #1(b) + #1(y) = S + O(d/L) = O(d/L). Also note that

#0(y
′′) = #0(a) + ℓ + #0(x) = O(L) and #0(x

′′) = #0(b) + ℓ + #0(y) = O(L). Since furthermore
#2(y

′′) = Θ(M/n) (by the parameter relation M ≥ n) and #2(x
′′) = Θ(n), we conclude that

37

M(x′′, y′′) =
∑

σ∈{0,1,2} #σ(x′′) · #σ(y′′) = O(dm/L + L2) + Θ(M). By the parameter relations

M ≥ md/(80L) (using that Σ = {0, 1, 2}) and M ≥ L2/|Σ| = Ω(L2), this yields M(x′′, y′′) = Θ(M).
For the remaining parameter d, by the disjoint alphabets lemma and Lemma 7.1 we have

d(x′′, y′′) = d(2ñ, 2κ) + d(y′, x′) = κ + d(x′, y′) (using symmetry d(x, y) = d(y, x)). The remaining
arguments are the same as in the case {0, 1}.

In the case Σ = {0, 1, 2, 3} we can use the new symbol 3 to pad m (instead of using symbol 1,
as in the previous case). Note that now x appears in x′′ and y in y′′, as in the case {0, 1}.

Lemma 10.5. Consider a parameter setting (α, {0, 1, 2, 3}) satisfying Table 2 with αδ = αm. Let
(n, x, y) be an instance of LCSγ

≤(α, {0, 1}) with |x|, |y| ≤ γ · L and #1(y) ≤ γ · d/L satisfying

L(x, 0β
′
y) = L(x, y) for any β′ ≥ 0. We obtain strings x′, y′ from Lemma 10.2 (recall that in this

lemma we set ℓ := |x| + |y|), where we choose

R := L, S := ⌊d/L⌋, β := 0, α := 0.

Then, setting κ := ⌊M/n⌋ and ñ := max{n,m + κ + |y|}, the strings defined by

x′′ := 3 2ñ x′ = 3 2ñ a 0ℓ x = 3 2ñ (01)R+S 0ℓ x,

y′′ := 3m 2κ y′ = 3m 2κ b 0ℓ y = 3m 2κ 0R(01)S 0ℓ y,

are an instance of LCSγ′

(α, {0, 1, 2, 3}) (for some constant γ′ ≥ γ) and can be computed in time
O(n), together with an integer τ such that L(x′′, y′′) ≥ τ + ρ if and only if L(x, y) ≥ ρ.

Proof. We compute

L(x′′, y′′) = L(3, 3m) + L(2ñ, 2κ) + L(x′, y′) = 1 + κ + (R + 2S) + ℓ + L(x, y), (6)

where the first equality follows from the Disjoint Alphabets Lemma and the second follows from
greedy prefix matching and Lemma 10.2. Hence, by setting τ = 1 + κ + R + 2S + ℓ, we have
L(x, y) ≥ ρ if and only if L(x′′, y′′) ≥ τ + ρ. Clearly, x′′, y′′, and τ can be computed in time O(n),
and Σ(x′′, y′′) = {0, 1, 2, 3}.

As for the cases {0, 1} and {0, 1, 2}, we have |x|, |y|, ℓ, R, S, |a|, |b|, ℓ, κ = Θ(L). Note that by
choice of ñ, we have again |x′′| ≥ |y′′| and ñ = Θ(n). Hence, |x′′| = 1 + ñ + |a| + ℓ + |x| =
ñ+O(L) = Θ(n) and |y′′| = m+κ+ |b|+ ℓ+ |y| = m+O(L) = Θ(m). Since L(x, y) ≤ |x| = O(L),
the bound L(x′′, y′′) = R + O(L) = Θ(L) follows directly from (6). Note that (6) also implies that
δ(x′′, y′′) = |y′′| − L(x′′, y′′) = m − 1 + |x| − L(x, y) ≥ m − 1 and hence δ(x′′, y′′) = Θ(m). Thus,
∆(x′′, y′′) = δ(x′′, y′′) + (|x′′| − |y′′|) = Θ(n) follows as for the case {0, 1}.

For M , observe that |a0ℓx|, |b0ℓy| = O(L) implies that M(a0ℓx, b0ℓy) = O(L2). By the Disjoint
Alphabets Lemma, we obtain

M(x′′, y′′) = M(2ñ, 2κ) + M(3, 3m) + M(a0ℓx, b0ℓy) = κñ + O(m + L2) = Θ(M),

where we used κñ = Θ(M/n ·n) = Θ(n) (note that M ≥ n implies κ = Θ(M/n)) and the parameter
relations M ≥ n ≥ m and M ≥ L2/|Σ| = Ω(L2).

For the remaining parameter d, as in the case {0, 1} we show that d(x′, y′) = Θ(d). Now the
Disjoint Alphabets Lemma and Lemma 7.1 prove that d(x′′, y′′) = d(3, 3m) + d(2ñ, 2κ) + d(x′, y′) =
1 + κ + d(x′, y′) = d(x′, y′) + O(L) = Θ(d) using κ = O(L) and the parameter relation d ≥ L.

Finally, observe that for any parameter setting (α,Σ) with |Σ| ≥ 5 satisfying Table 2, also
the parameter setting (α, {0, 1, 2, 3}) satisfies Table 2. Hence, the following lemma transfers the
hardness of LCS(α, {0, 1, 2, 3}) to LCS(α,Σ).

38

Lemma 10.6. Let α be a parameter setting satisfying Table 2 with αδ = αm. Let Σ be an alphabet
of size |Σ| ≥ 5. If there is an O(nβ)-time algorithm for LCS(α,Σ), then also LCS(α, {0, 1, 2, 3})
admits an O(nβ)-time algorithm.

Proof. Given an instance (x, y) of LCS(α, {0, 1, 2, 3}) with n := |x|, we show how to compute in
time O(n) an instance (x′, y′) of LCS(α,Σ) such that L(x′, y′) = 1+L(x, y). The claim then follows
from applying the O(nβ)-time algorithm on x′, y′ (and subtracting 1 from the result).

Without loss of generality, let Σ = {0, . . . , σ} with σ ≥ 4. Define x′ := wx and y′ = wRy, where
w = 4 . . . σ and wR = σ . . . 4. Then by the Disjoint Alphabets and Crossing Alphabets Lemmas
(Lemmas 4.3 and 9.3), we obtain L(x′, y′) = L(w,wR) + L(x, y) = 1 + L(x, y). It remains to show
that (x′, y′) is an instance of LCS(α,Σ). By the Crossing Alphabets Lemma, for all parameters
p ∈ {d,M, n,m} we have p(w,wR) =

∑σ
σ′=4 p(σ′, σ′) = |Σ| − 4, and hence the Disjoint Alphabets

Lemma yields p(x′, y′) = p(w,wR) + p(x, y) = |Σ| − 4 + p(x, y) = Θ(p(x, y)), by the parameter
relations n ≥ m ≥ |Σ| and M ≥ d ≥ |Σ|. For L we obtain L(x′, y′) = L(w,wR) + L(x, y) =
1 + L(x, y) = Θ(L(x, y)). For p ∈ {δ,∆} this yields p(x′, y′) = (|w| − 1) + p(x, y) = Θ(p(x, y)),
since α∆ ≥ αδ = αm ≥ αΣ (by the assumption αδ = αm and the parameter relations ∆ ≥ δ and
m ≥ |Σ|) and thus ∆(x, y) ≥ δ(x, y) ≥ Ω(|w|− 1). Hence, (x′, y′) has the same parameters as (x, y)
up to constant factors, so all parameter relations satisfied by (x, y) are also satisfied by (x′, y′).
Since clearly x′, y′ use alphabet Σ, indeed (x′, y′) is an instance of LCS(α,Σ).

Lemmas 10.3, 10.4, 10.5, and 10.6 of this section, together with the construction of hard strings
in LCS≤(α, {0, 1}) in Lemma 9.2, prove hardness of LCS(α,Σ) for any constant alphabet size in
the case αδ = αm, i.e., Lemma 10.1.

10.2 Large LCS, Alphabet Size at least 3

In this section, we study the case that αL = αm (and αδ, α∆ may be small). Additionally, we assume
that |Σ| ≥ 3. In this regime, Theorem 3.4 follows from the following statement (and Lemma 4.1).

Lemma 10.7. Let (α,Σ) be a parameter setting satisfying Table 2 with αL = αm and |Σ| ≥ 3.
There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time min{d, δm, δ∆}1−o(1)

unless OVH fails.

By the following lemma, it suffices to prove the result for Σ = {0, 1, 2} (note that for any (α,Σ)
satisfying Table 2 with αL = αm and |Σ| ≥ 4, also (α, {0, 1, 2}) satisfies Table 2, since the only
additional constraint αM ≥ αm + αd − αL for ternary alphabets simplifies, by αL = αm, to the
constraint αM ≥ αd, which is satisfied by α).

Lemma 10.8. Let α be a parameter setting satisfying Table 2 with αL = αm. Let Σ be an alphabet
of size |Σ| ≥ 4. If there is an O(nβ)-time algorithm for LCS(α,Σ), then also LCS(α, {0, 1, 2})
admits an O(nβ)-time algorithm.

Proof. Given an instance (x, y) of LCS(α, {0, 1, 2}) with n := |x|, we show how to compute in time
O(n) an instance (x′, y′) of LCS(α,Σ) such that L(x′, y′) = |Σ|−3+L(x, y). The claim then follows
from applying the O(nβ)-time algorithm on x′, y′ (and subtracting |Σ| − 3 from the result).

Without loss of generality, let Σ = {0, . . . , σ} with σ ≥ 3. Define x′ := wx and y′ = wy,
where w = 3 . . . σ. Then by the Disjoint Alphabets Lemma (Lemma 4.3), we obtain L(x′, y′) =
L(w,w) + L(x, y) = |Σ| − 3 + L(x, y). It remains to show that (x′, y′) is an instance of LCS(α,Σ).
By the Disjoint Alphabets Lemma, for all parameters p ∈ P∗ = {n,m,L, δ,∆, |Σ|,M, d} we have
p(x′, y′) = p(w,w)+p(x, y) =

∑σ
σ′=3 p(σ′, σ′)+p(x, y). For p ∈ {n,m,L,M, d} we have p(σ′, σ′) = 1

39

and thus p(x′, y′) = |Σ| − 3 + p(x, y) = Θ(p(x, y)) by the assumption αL = αm and the parameter
relations n ≥ m ≥ |Σ| and M ≥ d ≥ |Σ|. For p ∈ {δ,∆} this yields p(x′, y′) = 0 + p(x, y) = p(x, y).
Hence, (x′, y′) has the same parameters as (x, y) up to constant factors, so all parameter relations
satisfied by (x, y) are also satisfied by (x′, y′). Since clearly x′, y′ use alphabet Σ, indeed (x′, y′) is
an instance of LCS(α,Σ).

To prepare the construction, we adapt the construction of Lemma 10.2 to obtain a desired value
for d (and, in later sections, δ). Recall that Lemma 7.3 defines a = (01)R+S , b = 0R(01)S with
L(a, b) = |b| = R + 2S and d(a, b) = Θ(R · S).

Lemma 10.9 (Basic building block). Given strings x, y and R,S, ℓ, β ≥ 0 with ℓ ≥ R + |x| + |y|
we define

x′ := a 0ℓ x = (01)R+S 0ℓ x,

y′ := 0β b 0ℓ y = 0β 0R(01)S 0ℓ y.

Assume that S ≥ |x| or L(x, 0βy) = L(x, y). Then we have L(x′, y′) = R + 2S + ℓ + L(x, y).

Proof. Clearly, L(x′, y′) ≥ L(a, b) + L(0ℓ, 0ℓ) +L(x, y) = R + 2S + ℓ+ L(x, y), since L(a, b) = |b| =
R + 2S. To prove the corresponding upper bound, we partition y′ = y1y2 such that L(x′, y′) =
L(a, y1) + L(0ℓx, y2). Consider first the case that y2 is a subsequence of y. Then

L(x′, y′) ≤ L(a, y1) + L(0ℓx, y) ≤ |a| + |y| = 2(R + S) + |y| ≤ (R + 2S) + ℓ + L(x, y),

since ℓ ≥ R + |y|.
It remains to consider the case that y2 is not a subsequence of y and hence y1 is a subsequence

of 0βb0ℓ. By Lemma 7.3(iii), we can without loss of generality assume that y1 is a subsequence
of 0βb, since L(a, 0βb0ℓ) = |b| = L(a, 0βb). Hence, we can partition 0βb = y1z with L(x′, y′) ≤
L(a, y1) + L(0ℓx, z0ℓy). We bound

L(a, y1) ≤ min{#0(a),#0(y1)} + min{#1(a),#1(y1)} ≤ (R + S) + #1(y1).

Observe that L(0ℓx, z0ℓy) ≤ #1(z)+L(0ℓx, 0#0(z)+ℓy), since each “1” in z can increase the LCS
by at most 1. By greedy prefix matching, we obtain L(0ℓx, z0ℓy) ≤ #1(z) + ℓ+L(x, 0#0(z)y). With
the assumption L(x, 0βy) = L(x, y) for any β ≥ 0, this yields

L(x′, y′) ≤ L(a, y1)+L(0ℓx, z0ℓy) ≤ (R+S+#1(y1))+(#1(z)+ ℓ+L(x, y)) = R+2S+ ℓ+L(x, y),

since 0βb = y1z and hence #1(y1) + #1(z) = #1(0
βb) = S.

With the alternative assumption S ≥ |x|, we bound L(0ℓx, z0ℓy) ≤ |0ℓx| ≤ ℓ+S. If #1(y1) = 0
this yields

L(x′, y′) ≤ L(a, y1) + L(0ℓx, z0ℓy) ≤ (R + S) + (ℓ + S) ≤ R + 2S + ℓ + L(x, y).

Otherwise, if #1(y1) ≥ 1, by inspecting the structure of 0βb = 0β+R(01)S we see that z is a
subsequence of (01)S−#1(y1). Consider an LCS of 0ℓx, z0ℓy. If no “1” in z is matched by the LCS,
then we obtain

L(0ℓx, z0ℓy) ≤ L(0ℓx, 0#0(z)+ℓy) ≤ #0(z) + L(0ℓx, 0ℓy) = #0(z) + ℓ + L(x, y),

40

where we used the fact L(u, vw) ≤ |v| + L(uw) and greedy prefix matching. Otherwise, if a “1” in
z is matched by the LCS to a “1” in 0ℓx, i.e., to a “1” in x, then the 0ℓ-block of 0ℓx is matched to
a subsequence of z and hence

L(0ℓx, z0ℓy) ≤ L(0ℓ, z) + L(x, z0ℓy) ≤ #0(z) + |x| ≤ #0(z) + ℓ + L(x, y),

where we used ℓ ≥ |x|. Since z is a subsequence of (01)S−#1(y1) and thus #0(z) ≤ S − #1(y1), in
both cases we obtain

L(x′, y′) ≤ L(a, y1)+L(0ℓx, z0ℓy) ≤ (R+S+#1(y1))+(#0(z)+ ℓ+L(x, y)) ≤ R+2S+ ℓ+L(x, y),

which finally proves the claim.

Lemma 10.10. Consider x′, y′ as in Lemma 10.9 with β = 0, and assume S ≥ |x|. Then

R · S ≤ d(x′, y′) ≤ (R + 1)(4R + 6S + ℓ) + d(x, y).

Proof. Note that the simple fact L(u′u′′, v) ≤ |u′′| + L(u′, v) implies that for any strings w, z
and any i we have L(w, z) ≤ |w[(i + 1)..|w|]| + L(w[1..i], z) = |w| − i + L(w[1..i], z), and hence
L(w[1..i], z) ≥ i− (|w|−L(w, z)). Recall that L(a, b) = |b| = R+2S by Lemma 7.3(iii). This yields
L(a[1..i], b) ≥ i− (|a| − (R + 2S)) = i−R and L(a, b[1..j]) ≥ j − (|b| − |b|) = j.

The lower bound follows from d(x′, y′) ≥ d(a, b) ≥ R ·S by Observation 7.2 and Lemma 7.3(iv).
For the upper bound, we consider all possible prefixes x̃ := x′[1..i], ỹ := y′[1..j] of x′, y′ and count
how many of them correspond to dominant pairs. Clearly, for i ≤ |a|, j ≤ |b|, there are d(a, b)
dominant pairs.

By the above observation, for any i ≤ |a|, we have L(a[1..i], b) ≥ i − R. Hence, any dominant
pair of the form (i, j) satisfies i−R ≤ L(a[1..i], b) ≤ |a[1..i]| = i. By Observation 6.2, there are at
most R+1 such dominant pairs for fixed i. Thus, there are at most |a| ·(R+1) dominant pairs with
i ≤ |a| and j > |b|. Similarly, for j ≤ |b|, we have L(a, b[1..j]) ≥ j. Hence, there are no dominant
pairs with i > |a| and j ≤ |b|, since already the prefix a of x′[1..i] includes b[1..j] as a subsequence.
In total, there are at most d(a, b) + |a| · (R + 1) dominant pairs with i ≤ |a| or j ≤ |b|.

Let i = |a| + k, j = |b| + k with k ∈ [ℓ]. Then L(x̃, ỹ) = L(a0k, b0k) = L(a, b) + k = |b| + k
by greedy suffix matching and Lemma 7.3(iii). As any such choice could correspond to a dominant
pair, we count at most ℓ dominant pairs. Analogously to above, for i = |a| + k, there can be at
most i − L(a0k, b0k) ≤ R dominant pairs with j > |b| + k. Symmetrically, for j = |b| + k, there
are at most j − L(a0k, b0k) = 0 dominant pairs with i > |a| + k. This yields at most (R + 1) · ℓ
dominant pairs with |a| < i ≤ |a| + ℓ or |b| < j ≤ |b| + ℓ.

It remains to count dominant pairs with i = |a|+ ℓ+ ĩ and j = |b|+ ℓ+ j̃, with ĩ ∈ [|x|], j̃ ∈ [|y|].
Here, Lemma 10.9 bounds L(x̃, ỹ) = L(a0ℓx[1..̃i], b0ℓy[1..j̃]) = L(a, b)+ℓ+L(x[1..̃i], y[1..j̃]). Hence,
the dominant pairs of this form are in one-to-one correspondence to the dominant pairs of x, y.

Summing up all dominant pairs, we obtain

d(x′, y′) ≤ d(a, b) + (R + 1)(|a| + ℓ) + d(x, y)

≤ (R + 1)(4R + 6S + ℓ) + d(x, y),

since |a| = 2R + 2S and Lemma 7.3(iv) yields d(a, b) ≤ 2(R + 1)(R + 2S).

Finally, to pad δ (and later, in Section 10.3.1, ∆), we need the following technical lemma.

41

Lemma 10.11. Let x, y be arbitrary and µ, ν such that ν ≥ µ + |y|. We define

x′ := 0µ 1ν 0µ x,

y′ := 1ν 0µ y.

Then L(x′, y′) = µ + ν + L(x, y) and d(x′, y′) = 2µ + ν + #1(y) + d(x, y).

Proof. Note that for any prefix w, z of 0µx, 0µy, we have

L(0µ1νw, 1νz) = ν + L(w, z), (7)

by Lemma 7.6 (swapping the role of “0”s and “1”s). In particular, we obtain L(x′, y′) = ν +
L(0µx, 0µy) = µ + ν + L(x, y) by greedy prefix matching.

For the second statement, we consider all possible prefixes x̃ := x′[1..i], ỹ := y′[1..j] of x′, y′ and
count how many of them correspond to dominant pairs. Note that these prefixes have to end in
the same symbol, since any dominant pair is a matching pair. Recall that x̃ := x′[1..i], ỹ := y′[1..j]
gives rise to a dominant pair if and only if L(x̃, ỹ) > L(x′[1..i−1], ỹ) and L(x̃, ỹ) > L(x̃, y′[1..j−1]).

• x̃ = 0µ1νw, ỹ = 1ℓ (with w non-empty prefix of 0µx, ℓ ∈ [ν]): These prefixes do not correspond
to a dominant pair, since L(0µ1νw, 1ℓ) = L(0µ1ℓ, 1ℓ) = ℓ is obtained already by a shorter prefix
of x̃.

• x̃ = 0µ1νw, ỹ = 1νz (with w non-empty prefix of 0µx, z non-empty prefix of 0µy): These
prefixes correspond to a dominant pair if and only if w, z correspond to a dominant pair of
0µx, 0µy, since by (7) we have L(x̃, ỹ) = ν + L(w, z). This yields d(0µx, 0µy) dominant pairs,
which by Lemma 7.1 evaluates to µ + d(x, y).

• x̃ = 0k, ỹ = 1µ0ℓ (with k, ℓ ∈ [µ]): Clearly, L(x̃, ỹ) = min{k, ℓ}. It follows that x̃, ỹ corre-
sponds to a dominant pair if and only if k = ℓ. This yields exactly µ dominant pairs.

• x̃ = 0µ1k, ỹ = 1ℓ (with k, ℓ ∈ [ν]): Analogously to above, L(x̃, ỹ) = min{k, ℓ}, hence this
corresponds to a dominant pair if and only if k = ℓ. This yields exactly ν dominant pairs.

• x̃ = 0k, ỹ = 1ν0µz (with k ∈ [µ], z non-empty prefix of y): We have L(x̃, ỹ) = L(0k, 1ν0k) = k,
hence these prefixes do not correspond to a dominant pair, since the LCS is already obtained
for a shorter prefix of ỹ.

• x̃ = 0µ1k, ỹ = 1ν0µz (with k ∈ [ν], z non-empty prefix of y): Since we can either match some
“1” of the 1ν-block in ỹ to a “1” in x̃ (necessarily discarding the initial 0µ-block of x̃) or delete
the complete 1ν-block, we obtain

L(0µ1k, 1ν0µz) = max{L(1k, 1ν0µz), L(0µ1k, 0µz)}
= max{k, µ + L(1k, z)} = max{k, µ + min{k,#1(z)}}.

Consider the case L(x̃, ỹ) = L(x′[1..i], y′[1..j]) = k. Then also L(x′[1..i], y′[1..(j − 1)]) = k,
and hence (i, j) is no dominant pair. If, however, L(x̃, ỹ) = µ + min{k,#1(z)}, then this
corresponds to a dominant pair if and only if k = #1(z) (and z ends in “1”): if k > #1(z), then
also L(x′[1..(i−1)], y′[1..j]) = µ+#1(z), if k < #1(z), then also L(x′[1..i], y′[1..(j−1)]) = µ+k.
Thus, there are exactly min{ν,#1(y)} = #1(y) such dominant pairs.

In total, we have counted ν + 2µ + #1(y) + d(x, y) dominant pairs.

42

We start with the basic building block from Lemma 10.9 and then further pad the strings to
obtain the desired n,m,∆, δ,M as follows. Note that the guarantee |y| ≤ |x| ≤ O(min{∆,m}) is
satisfied by Lemma 9.8.

Lemma 10.12. Let (α, {0, 1, 2}) be a parameter setting satisfying Table 2 with αL = αm. Let
(n, x, y) be an instance of LCSγ

≤(α, {0, 1}) with |y| ≤ |x| ≤ O(min{∆,m}). We set

S = max{m, |x|}, R = ⌊d/m⌋,

to instantiate the basic building block x′ = a0ℓx = (01)R+S0ℓx and y′ = b0ℓy = 0R(01)S0ℓy of
Lemma 10.9 with ℓ := R + S + |x| + |y|. Moreover, we define κ := ⌊M/n⌋ and m̃ := max{m, δ +
2R + 2S + ℓ + |x|} to further pad the instance to

x′′ = 2κ 2∆ 1m̃ 0δ a 0ℓ x,

y′′ = 2κ 0δ 1m̃ 0δ b 0ℓ y.

Then x′′, y′′ is an instance of LCSγ′

(α, {0, 1, 2}) for some constant γ′ ≥ 1 and can be computed in
time O(n), together with an integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. We first use the Disjoint Alphabets Lemma and greedy prefix matching to obtain

L(x′′, y′′) = κ+L(1m̃0δx′, 0δ1m̃0δy′) = κ+ m̃+ δ+L(x′, y′) = κ+ m̃+ δ+R+2S+ ℓ+L(x, y), (8)

where we used Lemma 10.11 for the second equality (with the roles of x, y swapped) and Lemma 10.9
for the last equality. Observe that x′′, y′′ and τ = κ+ m̃+ δ +R+ 2S + ℓ can be computed in time
O(n).

It remains to verify that x, y is an instance of LCSγ′

(α, {0, 1, 2}) for some γ′ ≥ 1. We first
observe that S = Θ(m) by |x| = O(m) and R = O(S) by the parameter relation d ≤ Lm ≤ m2.
Since also |y| = O(m), we conclude R,S, |x|, |y|, ℓ = O(m). Observe that κ = O(M/n) = O(m) by
the relation M ≤ mn and m̃ = Θ(m) (using that R,S, ℓ, |x| = O(m) and the parameter relation
δ ≤ m). Thus, |x′′| = κ + ∆ + m̃ + δ + 2(R + S) + ℓ + |x| = Θ(m + ∆) + O(m) = Θ(n). Similarly,
|y′′| = κ + m̃ + δ + R + 2S + ℓ + |y| = Θ(m + δ) + O(m) = Θ(m). By (8), we also have
L(x′′, y′′) = m̃ + O(m) = Θ(m), as desired.

Note that by ∆ ≥ δ, |a| ≥ |b| and |x| ≥ |y|, we indeed have |x′′| ≥ |y′′|. Furthermore, using
the relation d ≤ 2L(∆ + 1) = O(m∆), we obtain R = O(d/m) = O(∆). By (8), we obtain
∆(x′′, y′′) = ∆ + R + (|x| − L(x, y)) = ∆ + O(∆) = Θ(∆) since |x| = O(∆). Similarly, (8) yields
δ(x′′, y′′) = δ + (|y| − L(x, y)) = δ + O(δ) = Θ(δ), since |y| − L(x, y) = δ(x, y) = O(δ).

For the dominant pairs, we apply the disjoint alphabets lemma, Lemma 7.1 and Lemma 10.11
to compute

d(x′′, y′′) = κ + d(1m̃0δx′, 0δ1m̃0δy′) = κ + m̃ + 2δ + d(x′, y′). (9)

Lemma 10.10 yields the lower bound d(x′, y′) ≥ R · S = Ω(d) and the corresponding upper bound

d(x′, y′) ≤ (R + 1)(4R + 6S + ℓ) + d(x, y) = O(R · S + d(x, y)) = O(d).

Thus, (9) yields d(x′′, y′′) = Θ(d) + O(m) = Θ(d), where we used that d ≥ L = Ω(m) since
αL = αm.

For M , we count #2(x
′′) = ∆ + κ and #2(y′′) = κ, as well as #0(y

′′),#1(y′′) ≤ |y′′| = O(m),
#0(x

′′) ≤ δ + |x′| = O(m) and #1(x
′′) ≤ m̃ + |x′| = O(m). Thus, M(x′′, y′′) = (∆ + κ)κ + O(m2)

and by M ≥ L2/|Σ| = Ω(m2) (since αL = αM), it suffices to prove that (∆ + κ)κ = Θ(M) to

43

verify M(x′′, y′′) = Θ(M). Indeed, we have κ = Θ(M/n), since M ≥ n. If α∆ < 1, we have
αm = αn = 1 and M = Ω(m2) together with the relation M ≤ mn = O(m2) implies M = Θ(m2).
Thus, κ = Θ(m) and hence (κ + ∆)κ = Θ(m2) = Θ(M). If α∆ ≥ αm, then α∆ = 1 and hence
∆ + κ = ∆ + O(m) = Θ(n), which implies (κ + ∆)κ = Θ(n · M/n) = Θ(M). Finally, note that
indeed Σ(x′′, y′′) = {0, 1, 2}.

Combining Lemma 10.12 with Lemma 9.8 finally proves Lemma 10.7.

10.3 Large LCS, Alphabet Size 2

In this section, we study the case that αL = αm (and αδ, α∆ may be small) for the case of binary
alphabets, i.e., Σ = {0, 1}. In this regime, Theorem 3.4 follows from the following statement (and
Lemma 4.1).

Lemma 10.13. Let (α, {0, 1}) be a parameter setting satisfying Table 2 with αL = αm. There is
a constant γ ≥ 1 such that any algorithm for LCSγ(α, {0, 1} takes time min{d, δ∆, δM/n}1−o(1)

unless OVH fails.

We present different constructions for three subcases, that we discuss shortly in the following
paragraphs and in detail in the remainder of this section. We hope that this short discussion
conveys enough intuition about the “complexity” of the task to make it believable that our lengthy
and technical case distinction is indeed necessary.

Case 1: α∆ ≤ αm = αL. Then n = Θ(m) and it follows that any binary strings x, y satisfy
M(x, y) = Θ(m2), so M poses no constraints, in particular there are no constraints on the numbers
of “0”s and “1”s in the constructed strings. On the other hand, the potentially small value of ∆
renders some of our gadgets useless (e.g., Lemma 10.25). Since δ may be small, we use the hardness
construction from Section 9.2 (for large LCS).

Otherwise, we have α∆ > αm and thus ∆ = Θ(n) ≫ m. Note that any string x of length n
contains at least n/2 “0”s or “1”s, say x contains many “1”s. Then to obtain Θ(M) matching pairs,
y must contain at most O(M/n) “1”s. Thus, we need to pay close attention to the number of “1”s
in the constructed string y. We split the case α∆ > αm into two subcases. Case 2: α∆ > αm = αL

and αδ ≥ αM − 1. Here, the constraint on #1(y) is stronger than the constraint on δ, and we
use the hardness construction from Section 9.1 (for small LCS), since it introduces few “1”s. Case
3: α∆ > αm = αL and αδ < αM − 1. Here, the constraint on δ is stronger than the constraint
on #1(y), and we use the hardness construction from Section 9.2 (for large LCS), since it keeps δ
small.

10.3.1 Case α∆ ≤ αm = αL

Since n = ∆ + L, the assumptions αL = αm and α∆ ≤ αm imply n = Θ(m). Together with the
parameter relations L2/|Σ| ≤ M ≤ 2Ln and Σ = {0, 1} we obtain M = Θ(m2). In particular, in
this regime the Õ(δ∆) time bound beats Õ(δM/n), and Lemma 10.13 simplifies to the following
result.

Lemma 10.14. Let (α,Σ) be a parameter setting satisfying Table 2 with αL = αm and α∆ ≤ αm.
There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time min{d, δ∆}1−o(1)

unless OVH fails.

We can now instantiate the parameters of Lemma 10.9 to create a string with the desired number
of dominant pairs. The remaining parameters will be padded in an additional construction. Note
that the preconditions, specifically the additional guarantee, are satisfied by Lemma 9.8.

44

Lemma 10.15. Let (α,Σ) be a parameter setting satisfying Table 2 with αL = αm and α∆ ≤ αm.
Given any instance (n, x, y) of LCSγ

≤(α, {0, 1}) with the additional guarantee |y| ≤ |x| ≤ γ ·m, we

can construct an instance (n, x′, y′) of LCSγ′

≤ (α, {0, 1}) (for some constant γ′ ≥ γ) and τ in time
O(n) such that

(i) L(x′, y′) = τ + L(x, y),

(ii) d(x′, y′) = Θ(d).

(iii) |x′| ≥ |y′|.

Proof. We construct x′, y′ as in Lemma 10.9 with S = max{|x|,m}, R = ⌈d/S⌉, β = 0 and
ℓ = (R+S+|x|+|y|). Note that indeed |x′| ≥ |y′| by |x| ≥ |y|, |a| ≥ |b|, and β = 0. The assumption
|x|, |y| = O(m) yields S = Θ(m). By the parameter relation d ≤ 2(∆ + 1) · L = O(∆ ·m), we also
have R = O(d/S + 1) = O(d/m + 1) = O(∆). We conclude that |x′|, |y′| = O(R + S + |x| + |y|) =
O(m + ∆) = O(m), since by assumption α∆ ≤ αm. This yields L(x′, y′) = O(m) = O(L) (by the
assumption αL = αm) and M(x′, y′) = O(m2) = O(M) (note that M ≥ L2/|Σ| = Ω(m2) by the
assumption αL = αm).

By Lemma 10.9, we have L(x′, y′) = R + 2S + ℓ + L(x, y), satisfying (i). This yields δ(x′, y′) =
δ(x, y) = O(δ) and ∆(x′, y′) = R + ∆(x, y) = O(d/m + ∆) = O(∆), by the parameter relation
d ≤ 2L(∆ + 1) = O(m∆). For d, we first observe that ⌈d/S⌉ = Θ(d/m) (by the parameter relation
d ≥ L = Θ(m)) and ℓ = O(R + S + |x| + |y|) = O(m). Lemma 10.10 yields the lower bound
d(x′, y′) ≥ R · S = Ω(d/m · m) = Ω(d) as well as the corresponding upper bound d(x′, y′) =
O(R · ℓ + d(x, y)) = O(d/m ·m + d) = O(d).

These bounds prove that (n, x′, y′) is an instance of LCSγ′

≤ (α, {0, 1}) for some γ′ ≥ 1.

We use Lemma 10.11 to finally pad δ,∆, and m.

Lemma 10.16. Let x, y, x′, y′, τ be as given in Lemma 10.15. Then, in time O(n) we can construct
an instance x′′′, y′′′ of LCSγ′′

(α, {0, 1}) (for some constant γ′′ ≥ 1) and an integer τ ′ such that
L(x′′′, y′′′) = τ ′ + L(x′, y′) = (τ + τ ′) + L(x, y).

Proof. As an intermediate step, let m̃ := max{m, |x′|, |y′|,∆} and construct

x′′ := 0∆ 1m̃+∆ 0∆ x′,

y′′ := 1m̃+∆ 0∆ y′.

We obtain the final instance as

x′′′ := 15m̃+δ 0δ x′′,

y′′′ := 0δ 15m̃+δ 0δ y′′.

Note that by definition of m̃, we have m̃+∆ ≥ ∆+ |y′| and δ+5m̃ ≥ δ+(3∆+ m̃+ |x′|) = δ+ |x′′|,
satisfying the conditions of Lemma 10.11. Hence, this lemma yields

L(x′′′, y′′′) = 5m̃ + 2δ + L(x′′, y′′) = 6m̃ + 2δ + 2∆ + L(x′, y′). (10)

Clearly, x′, y′, τ and hence also x′′, y′′ and τ ′ := 6m̃ + 2δ + 2∆ can be computed in time O(n).
We now verify all parameters. Clearly, Σ(x′′′, y′′′) = {0, 1}. Since by assumption α∆ ≤ αm = 1,

we have |x′| = O(n) = O(m), |y′| = O(m), and ∆ = O(m). This implies m̃ = Θ(m) and
consequently |x′′′| = 6m̃ + 2δ + 3∆ + |x′| = 6m̃ + O(m) = Θ(m) = Θ(n) (using δ ≤ ∆ and

45

α∆ ≤ αm = 1). Similarly, |y′′′| = 6m̃ + 3δ + 2∆ + |y′| = 6m̃ + O(m) = Θ(m). By (10), we have
L(x′′′, y′′′) = 6m̃ + 2δ + 2∆ + L(x′, y′) = 6m̃ + O(L) = Θ(L) (using the assumption αL = αm).

Note that |x′′′| ≥ |y′′′| follows from ∆ ≥ δ and |x′| ≥ |y′| (by Lemma 10.15(iii)). Hence, (10)
provides ∆(x′′′, y′′′) = ∆ + ∆(x′, y′) = Θ(∆) and δ(x′′′, y′′′) = δ + δ(x′, y′) = Θ(δ).

The number of matching pairs satisfies M(x′′′, y′′′) = #0(x
′′′)#0(y

′′′) + #1(x
′′′)#1(y

′′′) =
Θ(m2) = Θ(M), where the last bound follows from M ≥ L2/|Σ| = Ω(m2) and M ≤ 2Ln = O(m2)
by αL = αm = 1. For the number of dominant pairs, we apply Lemma 10.11 to bound

d(x′′′, y′′′) = 3δ + 5m̃ + #1(x′′) + d(x′′, y′′)

= 3δ + 5m̃ + (m̃ + ∆ + #1(x
′)) + (3∆ + m̃ + #1(y

′) + d(x′, y′))

= 7m̃ + 3(δ + ∆) + #1(x
′) + #1(y

′) + d(x′, y′) = Θ(d) + O(m) = Θ(d),

where the last two bounds follow from m̃, |x′|, |y′|, δ,∆ = O(m), d(x′, y′) = Θ(d) by Lemma 10.15
and the parameter relation d ≥ L = Ω(m).

Combining Lemmas 10.15 and 10.16 with Lemma 9.8 finally proves Lemma 10.14.

10.3.2 Case α∆ > αm = αL and αδ ≥ αM − 1

In this section, we consider the case where αL = αm < α∆ and αδ ≥ αM − 1. In this case, we have
∆ = Θ(n) ≫ m and M/n ≤ O(δ). Since M/n ≤ O(m) ≤ O(∆), the fastest known algorithm runs
in time Õ(min{d, δM/n}). Consequently, in this regime Lemma 10.13 simplifies to the following
statement.

Lemma 10.17. Let (α, {0, 1}) be a parameter setting satisfying Table 2 with αL = αm < α∆

and αM − 1 ≤ αδ. There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time
min{d, δM/n}1−o(1) unless OVH fails.

To obtain this result, we cannot simply pad our hard instances (n, x, y) of LCS≤(α, {0, 1}) to
LCS(α, {0, 1}), since the desired running time bound min{d, δM/n} is not monotone. In other
words, for LCS≤(α, {0, 1}) we have a lower bound of min{δ∆, δm, d}1−o(1) (see Lemma 9.8) which
can be higher than the running time O(n+δM/n) of our new algorithm (Theorem 3.5) and thus we
would violate SETH. In fact, we even cannot start from an instance as constructed in Lemma 9.8,
since this would generate too many “1”s. Instead, we use instances of a different parameter setting
LCS≤(α′, {0, 1}) with α′

δ = α′
m, i.e., we invoke Lemma 9.2.

Observation 10.18. Let (α, {0, 1}) be a parameter setting satisfying Table 2 with αL = αm < α∆

and αM − 1 ≤ αδ. Then α
′ := α

′(α) defined by

α′
d = min{αd, αδ + αM − 1}, α′

M = 2α′
L,

α′
d − α′

L = min{αM − 1, αd/2}, α′
∆ = 1,

α′
m = α′

δ = α′
L, α′

Σ = 0,

yields a parameter setting (α′, {0, 1}) satisfying Table 2. The definition of α′ implies

α′
L = min{αδ ,max{αd − αM + 1, αd/2}}. (11)

Moreover, there is some constant γ ≥ 1 such that no algorithm solves LCSγ
≤(α′, {0, 1}) in time

min{d, δM/n}1−o(1) unless OVH fails. This holds even restricted to instances (n, x, y) with |x|, |y| ≤
γnα′

L = O(min{δ,max{dn/M,
√
d}}) and #1(y) ≤ γ · nα′

d
−α′

L = O(min{M/n,
√
d}) satisfying

L(x, 0βy) = L(x, y) for any β ≥ 0.

46

Proof. We first prove (11). Consider the case that αd/2 ≤ αM − 1. Then αd ≤ 2(αM − 1) ≤
αδ + (αM − 1), where we used the assumption αM − 1 ≤ αδ. Thus, α′

d = αd and by definition

α′
L = α′

d − min{αM − 1, αd/2} = αd − αd/2 = αd/2.

From αd/2 ≤ αM − 1, it follows that αd − αM + 1 ≤ αd/2 and αd/2 ≤ αM − 1 ≤ αδ, hence
α′
L = αd/2 = min{αδ,max{αd − αM + 1, αd/2}}, as desired.

Consider the remaining case that αd/2 > αM − 1. Then by definition

α′
L = α′

d − (αM − 1) = min{αd − αM + 1, αδ}.

Since αd/2 > αM − 1 implies αd − αM + 1 ≥ αd/2, this indeed yields

α′
L = min{max{αd − αM + 1, αd/2}, αδ},

as desired, concluding the proof of (11).
Checking all constraints from Table 2 is straight-forward, except for the inequalities 0 ≤ α′

L ≤ 1
and α′

d ≤ 2α′
L. From (11), 0 ≤ α′

L ≤ 1 follows immediately by the parameter relations αδ, αd ≥ 0
and αδ ≤ αm ≤ 1. For the other inequality, note that α′

d ≤ 2α′
L is equivalent to min{αM−1, αd/2} =

α′
d − α′

L ≤ α′
L = min{αδ,max{αd − αM + 1, αd/2}}, which directly follows from the assumption

αM − 1 ≤ αδ and the trivial fact that αd/2 ≤ max{αd − αM + 1, αd/2}.
The last statement directly follows from Lemma 9.2.

It remains to pad strings x, y of LCS≤(α′, {0, 1}) to LCS(α, {0, 1}). The first step is the following
construction which pads δ and d.

Lemma 10.19. Let (α, {0, 1}) be a parameter setting satisfying Table 2 with αL = αm < α∆

and αM − 1 ≤ αδ, and construct α
′ as in Observation 10.18. Let (n, x, y) be an instance of

LCS≤(α′, {0, 1}) with |x|, |y| = O(min{δ,max{dn/M,
√
d}}) and #1(y) = O(min{M/n,

√
d}) sat-

isfying L(x, 0βy) = L(x, y) for any β ≥ 0. We set

S = ⌊min{M/n,
√
d}⌋, R = ⌊d/S⌋, ℓ = |x| + |y| + R + S, β = δ,

and define, as in Lemma 10.9,

x′ := a 0ℓ x = (01)R+S 0ℓ x,

y′ := 0β b 0ℓ y = 0β 0R(01)S 0ℓ y.

Then x′, y′ is an instance of LCSγ′

≤ (α, {0, 1}) (for some γ′ ≥ 1) with the additional guarantees that

(i) |x′|, |y′| = O(m),

(ii) #1(y
′) = O(M/n) and #1(y

′) · |b0ℓy| = O(d).

(iii) d(x′, y′) = Θ(d),

(iv) |y′| − L(x′, y′) = Θ(δ),

(v) In time O(n) we can compute a number τ such that L(x′, y′) = τ + L(x, y).

47

Proof. Note that S ≤
√
d implies that S ≤ R. Note also that by assumption, |x|, |y| = O(min{δ,R})

and hence R,S, ℓ, |x|, |y| = O(R). Furthermore, R = Θ(d/S) = Θ(d/Mn +
√
d) = O(m), where

the first bound follows from αd ≥ 0 and αM ≥ 1and the second follows from the parameter
relations d/Mn ≤ 5L = O(m) and d ≤ Lm ≤ m2. Hence |x′| = O(R) = O(m). Additionally,
δ̃ = Θ(δ) and thus |y′| = O(δ + m) = O(m) by δ ≤ m; thus we have proven (i). This also implies
L(x′, y′) ≤ O(m) = O(L) since αL = αm.

Note that #1(y) = S + #1(y) = O(S) by definition of S and assumption on #1(y). We
compute d(x′, y′) ≤ 5L(x′, y′) · #1(y′) ≤ 5|x′| · #1(y

′) = O(R · S) = O(d). Furthermore, we
obtain by Observation 7.2 and Lemma 7.3 that d(x′, y′) ≥ d(a, 0βb) ≥ R · S = Ω(d). Note that in
particular #1(y

′) = O(S) = O(M/n) and #1(y
′)·|b0ℓy| = O(S ·R) = O(d), proving (ii). The bound

M(x′, y′) ≤ O(m2) = O(M) trivially follows from |x′|, |y′| = O(m) and M ≥ L2/|Σ| = Ω(m2) since
αL = αm.

By Lemma 10.9 we have L(x′, y′) = R+2S+ℓ+L(x, y), which immediately yields (v). Moreover,
we obtain δ(x′, y′) = δ+δ(x, y) = Θ(δ), since δ(x, y) ≤ |x| ≤ O(δ), proving (iv). Finally, ∆(x′, y′) ≤
|x′| ≤ O(m) ≤ O(∆) by the assumption α∆ > αm.

To finally pad all remaining parameters, we first prepare the following technical tool.

Lemma 10.20. Let x = 1κ0µw and y = 0µ0νz with µ > |z|. Then it holds that L(x, y) =
µ+L(w, 0νz), as well as d(x, y) ≥ d(w, 0νz) and d(x, y) ≤ min{κ, |z|}+µ+ d(1κ0µ, z) + d(w, 0νz).

Proof. By Lemma 7.6, we have that L(x, y) = µ + L(w, 0νz).
This immediately shows that d(x, y) ≥ d(w, 0νz), since the above statement implies, for any

prefixes w̃, z̃ of w, 0νz, that L(1κ0µw̃, 0µz̃) = µ+L(w̃, z̃) and hence any k-dominant pair (i, j) of w
and 0νz gives rise to a (µ + k)-dominant pair (κ + µ + i, µ + j) of x and y.

For the upper bound, we count the number of prefixes x̃, ỹ of x, y corresponding to dominant
pairs. Note that x̃, ỹ have to end in the same symbol to be a dominant pair. Consider first the case
that x̃ = 1k. Hence we must have ỹ = 0µ0ν z̃ for some prefix z̃ = z[1..ℓ] of z̃. Clearly, L(x̃, ỹ) =
min{k,#1(z̃)}. Hence, x̃, ỹ corresponds to a dominant pair if and only if #1(z̃) = #1(z[1..ℓ]) = k
and #1(z[1..ℓ − 1]) < k, i.e., z̃ is determined by the k-th occurrence of “1” in z. Thus, there can
be at most min{κ,#1(z)} ≤ min{κ, |z|} such dominant pairs.

Consider the case that x̃ = 1κ0k with k ∈ [µ]. We separately regard the following types of
prefixes of y.

• ỹ = 0ℓ with ℓ ∈ [µ + ν]: By greedy suffix matching, L(x̃, ỹ) = L(1κ0k, 0ℓ) = min{k, ℓ}, hence
as above there can be at most µ dominant pairs, since there are only µ choices for k.

• ỹ = 0µ0ν z̃: We have L(x̃, ỹ) = max{k, L(1κ0k, z̃)}. To see that this holds, note that the
longest common subsequence either includes none of the ones of 1κ of ỹ, in which case 0k is
the LCS of ỹ and x̃, or otherwise it matches at least one 1 in ỹ, which means that the LCS
deletes all “0”s preceding the first “1” in ỹ, i.e., the whole 0µ+ν block in y′.

If L(x̃, ỹ) = k, then x̃, ỹ cannot correspond to a dominant pair since already the prefix 0k

of ỹ satisfies L(x̃, 0k) = k = L(x̃, ỹ). Hence x̃, ỹ can only correspond to a dominant pair if
L(x̃, ỹ) = L(1κ0k, z̃) and hence 1κ0k, z̃ correspond to a dominant pair of 1κ0µ, z. This yields
at most d(1κ0µ, z) dominant pairs.

Finally, consider the case that x̃ = 1κ0µw̃ with w̃ a prefix of w. There are no dominant pairs
for ỹ = 0ℓ with ℓ ∈ [µ]: Already for the prefix 1κ0ℓ of x̃, we have L(1κ0ℓ, 0ℓ) = ℓ = L(x̃, ỹ), hence
these prefixes cannot correspond to dominant pairs. It remains to consider ỹ = 0µz̃ for a prefix z̃
of 0νz. Again by Lemma 7.6, we have L(x̃, ỹ) = µ + L(w̃, z̃) and hence such dominant pairs are

48

in one-to-one correspondence with the dominant pairs of w and 0νz. This yields at most d(w, 0νz)
further dominant pairs.

By summing up over the three cases, we conclude that there are at most min{κ, |z|} + µ +
d(1κ0µ, z) + d(w, 0νz) dominant pairs.

We can finally pad to LCS(α, {0, 1}).

Lemma 10.21. Let x, y, x′, y′, τ be as in Lemma 10.19. We set κ := ⌊M/n⌋, ∆̃ := max{∆, |y′|},
and m̃ := max{m, |y′|} and define

x′′ = 1κ+∆̃ 0m̃ x′,

y′′ = 1κ 0m̃ y′.

Then x′′, y′′ is an instance of LCS(α, {0, 1}). Moreover, we can compute a number τ ′ in time O(n)
such that L(x′′, y′′) = τ ′ + L(x, y).

Proof. Note that κ = O(M/n) = O(m) by the parameter relation M ≤ mn. Lemma 10.19(i)
yields |x′|, |y′| = O(m) and hence m̃ = Θ(m) and ∆̃ = Θ(∆) (since αm ≤ α∆ = 1). Thus,
|x′′| = κ + ∆̃ + m̃ + |x′| = Θ(∆) + O(m) = Θ(n) since α∆ = 1. Furthermore, |y′′| = κ + m̃ + |y′| =
m̃ + O(m) = Θ(m).

Observe that ∆̃ has been defined such that |x′′| ≥ |y′′|. By greedy prefix matching and
Lemma 10.20, we obtain

L(x′′, y′′) = κ + L(1∆̃0m̃x′, 0m̃y′) = κ + m̃ + L(x′, y′). (12)

Since L(x′, y′) = τ + L(x, y), we satisfy the last claim by setting τ ′ := κ + m̃ + τ . Moreover,
L(x′′, y′′) = m̃ + O(m) = Θ(m) = Θ(L) since |x′|, |y′| ≤ O(m) and αL = αm. Furthermore, (12)
yields ∆(x′′, y′′) = ∆̃ + (|x′| − L(x′, y′)) = Θ(∆) + O(m) = Θ(∆) and δ(x′′, y′′) = |y′| − L(x′, y′) =
Θ(δ) by Lemma 10.19(iv).

For the dominant pairs, we apply Lemma 7.1 to bound d(x′′, y′′) = κ + d(1∆̃0m̃x′, 0m̃y′). To

bound the latter term, note that Lemma 10.20 yields d(1∆̃0m̃x′, 0m̃y′) ≥ d(x′, y′) = Ω(d) by

Lemma 10.19(iii). For the upper bound, we first recall that y′ = 0δ̃b0ℓy and that #1(y′) · |b0ℓy| =

O(d) by Lemma 10.19(ii). Hence we have d(1∆̃0m̃, b0ℓy) ≤ 5 ·L(1∆̃0m̃, b0ℓy) ·#1(b0ℓy) = O(|b0ℓy| ·
#1(y

′)) = O(d). We can finally compute, using Lemma 10.20,

d(1∆̃0m̃x′, 0m̃y′) ≤ min{∆̃, |y′|} + m̃ + d(1∆̃0m̃, b0ℓy) + d(x′, y′)

≤ |y′| + m̃ + O(d) + d(x′, y′) = O(d),

where the last bound follows from |y′|, m̃ = O(m) = O(d) by the relation d ≥ L = Ω(m) (since
αL = αm) and d(x′, y′) = O(d).

It remains to count the number of matching pairs. We have #0(x
′′),#0(y′′) ≤ |x′| + |y′| +

m̃ = O(m), as well as #1(x
′′) = κ + ∆̃ + #1(x

′) = Θ(∆) + O(m) = Θ(n) (since α∆ = 1)
and #1(y

′′) = κ + #1(y
′) = κ + O(M/n) = Θ(M/n) by Lemma 10.19(ii). Thus M(x′′, y′′) =

#1(x
′′)#1(y

′′) + #0(x
′′)#0(y

′′) = Θ(M) + O(m2) = Θ(M), where the last bound follows from
M ≥ L2/|Σ| = Ω(m2) since αL = αm.

Combining Lemmas 10.19 and 10.21 with Observation 10.18 finally proves Lemma 10.17.

49

10.3.3 Case α∆ > αm = αL and αδ ≤ αM − 1

In this section, we consider the case where αL = αm < α∆ and αδ ≤ αM − 1. In this case, we have
∆ = Θ(n) ≫ m and δ ≤ O(M/n). Since M/n ≤ O(m) ≤ O(∆), the fastest known algorithm runs
in time Õ(min{d, δM/n}). Consequently, in this regime Lemma 10.13 simplifies to the following
statement.

Lemma 10.22. Let (α, {0, 1}) be a parameter setting satisfying Table 2 with αL = αm < α∆

and αδ ≤ αM − 1. There is a constant γ ≥ 1 such that any algorithm for LCSγ(α,Σ) takes time
min{d, δM/n}1−o(1) unless OVH fails.

As in the previous section, to prove this result we cannot simply pad instances of LCS≤(α, {0, 1})
to LCS(α, {0, 1}), since the desired running time bound min{d, δM/n} is not monotone. Instead,
we start from instances of a suitably chosen different parameter setting LCS≤(α′, {0, 1}) with
α′
L = α′

m, i.e., we invoke Lemma 9.8.

Observation 10.23. Let (α, {0, 1}) be a non-trivial parameter setting satisfying Table 2 with
αL = αm < α∆ and αδ ≤ αM − 1. Define α

′ := α
′(α) by

α′
δ = min{αδ, αd/2}, α′

M = 1 + α′
m,

α′
L = α′

m = min{αM − 1, αd − α′
δ}, α′

∆ = 1,

α′
d = min{αδ + αM − 1, αd}, α′

Σ = 0,

Then the parameter setting (α′, {0, 1}) satisfies Table 2. Furthermore, there is some constant
γ ≥ 1 such that no algorithm solves LCSγ

≤(α′, {0, 1}) in time nα′
d
(1−o(1)) = min{d, δM/n}1−o(1)

unless OVH fails. This holds even restricted to instances (n, x, y) with |x|, |y| ≤ γ · nα′
m =

O(min{M/n,max{d/δ,
√
d}}).

Proof. We only discuss the inequalities from Table 2 that are not straight-forward to verify. To see
α′
δ ≤ α′

m, note that αδ ≤ αM − 1 by assumption and αd/2 = αd − αd/2 ≤ αd − α′
δ. The inequality

α′
L ≤ α′

d follows from αM − 1 ≤ αM − 1 + αδ and αd − α′
δ ≤ αd. Furthermore, α′

d ≤ 2α′
L follows

from αδ + αM − 1 ≤ 2(αM − 1) (by assumption) and αd = 2(αd − αd/2) ≤ 2(αd − α′
δ). From

α′
d ≤ 2α′

L and α′
L = α′

m we also obtain α′
M = 1 + α′

m = 1 + α′
L ≥ 1 + α′

d − α′
L, which corresponds

to the parameter relation M ≥ nd/(5L) that only holds for Σ = {0, 1}. Finally, α′
M ≥ α′

d follows
from α′

M = 1 + α′
m = min{αM , 1 + αd − α′

δ} ≥ min{αM , αd} by α′
δ ≤ αδ ≤ 1 and similarly

α′
d = min{αδ + αM − 1, αd} ≤ min{αM , αd}.

Lemma 9.8 shows that some γ ≥ 1 exists such that LCSγ
≤(α′, {0, 1}) cannot be solved in time

min{nα′
d , nα′

δ
+α′

m , nα′
δ
+α′

∆}(1−o(1)), even restricted to instances (n, x, y) with |x|, |y| ≤ γ · nα′
m =

O(min{M/n,max{d/δ,
√
d}}). We simplify the running time bound by noting that α′

∆ = 1 ≥ α′
m,

so that nα′
δ
+α′

m ≤ nα′
δ
+α′

∆ . Moreover, we have α′
δ + α′

m = α′
d = min{αδ + αM − 1, αd}. Indeed,

if αδ ≤ αd/2, we have α′
δ = αδ and hence α′

δ + α′
m = min{αδ + αM − 1, αd} = α′

d. Otherwise,
αd/2 < αδ ≤ αM − 1, forcing α′

δ = αd/2 and α′
m = αd/2, which yields α′

δ + α′
m = αd = min{αδ +

αM − 1, αd} = α′
d. Thus, min{α′

d, α
′
δ + α′

m, α′
δ + α′

∆} = α′
d and the lower bound simplifies to

nα′
d
(1−o(1)) = min{δM/n, d}1−o(1) .

In this section, to pad the number of dominant pairs, we will construct instances x′ = a0ℓx =
(01)R+S0ℓx, y′ = b0ℓy = 0R(01)S0ℓy, where we choose R,S proportional to nαR , nαS with

αS := min{αM − 1,max{αd − αδ, αd/2}}, αR := αd − αS .

50

Note that the use of αS , αR is a slight abuse of notation, since R,S are not actual input parameters,
but αS , αR depend only on α. We will later set R = c·nαR , S = c′ ·nαS with suitably large constants
c, c′. However, depending on whether αS ≤ αR or αS > αR, we will extend and analyze the basic
construction differently. We start with the simpler case of αS ≤ αR.

Lemma 10.24 (Construction for αS ≤ αR). Let (α, {0, 1}) be a parameter setting satisfying Table 2
with αL = αm < α∆, αδ ≤ αM − 1, and αS ≤ αR. Given an instance (n, x, y) of LCSγ

≤(α′, {0, 1})

with |y| ≤ |x| = O(min{M/n,max{d/δ,
√
d}}), we use the parameters

S = max{|x|, ⌊nαS ⌋}, R = ⌊d/S⌋,
ℓ = R + S + |x| + |y|, β = δ,

to instantiate x′ = a0ℓx = (01)R+S0ℓx and y′ = 0βb0ℓy = 0β0R(01)S0ℓy as in Lemma 10.9. We
furthermore set m̃ := max{m, δ + R + 2S + ℓ + |y|} and κ := ⌊M/n⌋ and define

x′′ := 1∆+κ 0m̃ x′ = 1∆+κ 0m̃ a 0ℓ x = 1∆+κ 0m̃ (01)R+S 0ℓ x,

y′′ := 1κ 0m̃ y′ = 1κ 0m̃ 0δ b 0ℓ y = 1κ 0m̃ 0δ 0R(01)S 0ℓ y.

Then x′′, y′′ is an instance of LCSγ′

(α, {0, 1}) for some constant γ′ ≥ 1 and can be constructed in
time O(n) together with some integer τ such that L(x′′, y′′) = τ + L(x, y).

Proof. By greedy prefix matching and Lemma 7.6, we obtain

L(x′′, y′′) = κ + L(1∆0m̃x′, 0m̃y′) = κ + m̃ + L(x′, y′) = κ + m̃ + R + 2S + ℓ + L(x, y), (13)

where the last equality follows from Lemma 10.9, which applies since S ≥ |x|. Clearly, x′′, y′′ and
τ = κ + m̃ + R + 2S + ℓ can be computed in time O(n).

It remains to verify that x, y is an instance of LCSγ′

(α, {0, 1}) for some γ′ ≥ 1. We observe that
|x|, |y| = O(nαS) by assumption, and hence S = Θ(nαS) = Θ(min{M/n,max{d/δ,

√
d}}). Thus,

R = Θ(d/S) = Θ(nαR) = O(dn/M + min{δ,
√
d}) = O(m), where the last bound follows from

the parameter relations M ≥ nd/(5L) = Ω(nd/m) (since αL = αm) and δ ≤ m. By assumption
αS ≤ αR, we have S = O(R) = O(m). Furthermore, we have κ = O(M/n) = O(m) by the relation
M ≤ mn and m̃ = Θ(m) by R,S, |x|, |y|, ℓ = O(m) and δ ≤ m. Thus, |x′′| = κ + ∆ + m̃ + 2(R +
S) + ℓ+ |x| = Θ(∆ +m) = Θ(n) and |y′′| = κ+ m̃+ δ +R+ 2S + ℓ+ |y| = Θ(m). By (13), we also
conclude that L(x′′, y′′) = m̃ + O(m) = Θ(m) = Θ(L) by the assumption αL = αm.

Note that by ∆ ≥ δ, |a| ≥ |b| and |x| ≥ |y|, we have |x′′| ≥ |y′′|. Hence by (13), ∆(x′′, y′′) =
∆ + R + (|x| − L(x, y)) = Θ(∆), since R, |x| = O(m) = O(∆) by α∆ > αm. Likewise, (13) yields
δ(x′′, y′′) = δ + (|y| − L(x, y)) = δ + δ(x, y) = Θ(δ) since δ(x, y) = O(δ) by δ(x, y) = O(nα′

δ) and
α′
δ ≤ αδ.

For the dominant pairs, we first compute

d(1∆0m̃x′, 0m̃y′) ≥ d(x′, y′) ≥ d(a, 0δb) ≥ R · S = Ω(d),

using Lemma 10.20, Observation 7.2, and Lemma 7.3. For a corresponding upper bound, we use
Lemma 10.20 to obtain

d(1∆0m̃x′, 0m̃y′) = d(1∆0m̃x′, 0m̃0δb0ℓy) ≤ |y′| + m̃ + d(1∆0m̃, b0ℓy) + d(x′, y′).

By Lemma 6.8 we have d(1∆0m̃, b0ℓy) ≤ 5 ·L(1∆0m̃, b0ℓy) ·#1(b0ℓy) = O(|b0ℓy| · (S + |y|)) = O(R ·
S) = O(d). Since |y′| + m̃ = O(m) = O(d) (using d ≥ L = Ω(m) since αL = αm) and d(x′, y′) ≤

51

5 ·L(x′, y′) ·#1(y′) = O(|x′| ·#1(y′)) = O(R ·S) = O(d), we conclude that d(1∆0m̃x′, 0m̃y′) = Θ(d).
Finally, Lemma 7.1 yields d(x′′, y′′) = κ + d(1∆0m̃x′, 0m̃y′) = Θ(d) + O(m) = Θ(d), as desired.

It remains to count the matching pairs. Note that #0(x
′′),#0(y′′) = O(m̃+ |x′|+ |y′|) = O(m).

Furthermore #1(x
′′) = ∆ + κ + #1(x

′) = Θ(∆) + O(m) = Θ(n) (since α∆ > αm implies α∆ = 1)
and #1(y

′′) = κ+S + #1(y) = Θ(κ) = Θ(M/n), where we used S, |y| = O(M/n) and κ = Θ(M/n)
(since M ≥ n). Thus, M(x′′, y′′) = #1(x

′′)#1(y′′) + #0(x
′′)#1(y

′′) = Θ(n ·M/n) +O(m2) = Θ(M)
using that M ≥ L2/|Σ| = Ω(m2) by αL = αm. Note that indeed Σ(x′′, y′′) = {0, 1}.

Before giving the construction for the case αS > αR, we present a technical lemma that is
similar to the dominant pair reduction technique of Lemma 7.8.

Lemma 10.25. Let x′ = a0ℓx = (01)R+S0ℓx, y′ = b0ℓy = 0R(01)S0ℓy be an instance of Lemma 10.2
and R ≥ |y| − L(x, y). We set t := R + |y′| + 1 and define

x̄ := 1t 0t y′ 0R 1t+∆ 0t x′,

ȳ := 0R 1t 0t y′.

Then

(i) L(x̄, ȳ) = R + 2t + L(x′, y′),

(ii) d(x̄, ȳ) ≤ (2t + |y′|)(R + 1) + R2,

(iii) d(x̄, ȳ) ≥ R · S.

Proof. We first prove the following property.

(∗) For any prefixes x̃, ỹ of x′, y′, we have

L(1t0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ) = max{2t + |ỹ|, R + 2t + L(x̃, ỹ)}.

Note that the lower bound immediately follows from either matching 1t0tỹ with 1t0ty′, or by
matching 0R1t0tỹ with 0R1t+∆0tx̃. For the upper bound, fix an LCS and observe that it cannot
match symbols in the 1t-prefix of x̄ and symbols in the 0R-prefix of ȳ, so at least one of the two
prefixes stays unmatched. Thus,

L(1t0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ) ≤ max{L(0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ), L(1t0ty′ 0R 1t+∆0tx̃, 1t0tỹ)}
= max{R + L(0t−Ry′ 0R 1t+∆0tx̃, 1t0tỹ), 2t + |ỹ|},

where the second line follows from greedy prefix matching. Setting x̂ := 0t−Ry′ 0R 1t+∆0tx̃ and
ŷ := 1t0tỹ, it remains to provide the upper bound R + L(x̂, ŷ) ≤ max{2t + |ỹ|, R + 2t + L(x̃, ỹ)}
to prove (∗). Assume that an LCS z of x̂, ŷ matches less than t− R symbols of the 1t-prefix of ŷ.
Then |z| ≤ t−R +L(x̂, 0tỹ) ≤ 2t−R + |ỹ|, yielding R +L(x̂, ŷ) ≤ 2t + |ỹ|. Hence, assume instead
that at least t−R symbols of the 1t-prefix of ŷ are matched. Since the number of “1”s in the prefix
0t−Ry′0R of x̂ is only #1(y′) ≤ |y′| < t−R, all zeroes of this prefix have to be deleted, resulting in

L(x̂, ŷ) = |z| ≤ L(1#1(y′)+t+∆0tx̃, 1t0tỹ)

= t + L(1#1(y′)+R+∆0tx̃, 0tỹ)

= 2t + L(x̃, ỹ),

52

where the second line follows from greedy prefix matching and the third follows from Lemma 7.6.
Thus, we have verified R + L(x̂, ŷ) ≤ max{2t + |ỹ|, R + 2t + L(x̃, ỹ)}, which implies (∗).

As an immediate consequence, (∗) yields L(x̄, ȳ) = max{2t+ |y′|, R+ 2t+L(x′, y′)} = R+ 2t+
L(x′, y′) since R ≥ |y| − L(x, y) = |y′| − L(x′, y′) (where the equality follows from Lemma 10.2).
This proves (i).

For (ii), an application of Lemma 7.7 yields d(x̄, ȳ) ≤ (2t + |y′|)(R + 1) + R2.
Finally, for (iii) we consider, analogous to Lemma 7.3, for any 0 ≤ s ≤ S and s ≤ r ≤ R + s,

the prefixes x̃ = (01)r of x′ and ỹ = 0R(01)s of y′. Then by (∗),

L(1t0ty′ 0R 1t+∆0tx̃, 0R 1t0tỹ) = max{2t + |ỹ|, R + 2t + L(x̃, ỹ)}
= max{2t + R + 2s,R + 2t + r + s} = (R + 2t) + r + s,

where we used Lemma 7.3(∗) for the second equality and r ≥ s for the last equality. Analogously
to the proof of Lemma 7.3(ii), this yields d(x̄, ȳ) ≥ R · S, since any feasible choice of r, s gives rise
to a unique dominant pair.

We can now give the construction for αS > αR. Recall that

αS := min{αM − 1,max{αd − αδ, αd/2}}, αR := αd − αS .

Lemma 10.26 (Construction for αS > αR). Let (α, {0, 1}) be a parameter setting satisfying
Table 2 with αL = αm < α∆, αδ ≤ αM − 1, and αS > αR. Given an instance (n, x, y) of
LCSγ

≤(α′, {0, 1}) with |y| ≤ |x| = O(min{M/n,max{d/δ,
√
d}}), we can construct an instance

x(4), y(4) of LCSγ′

(α, {0, 1}) (for some constant γ′ ≥ 1) in time O(n) together with some integer τ
such that L(x(4), y(4)) = τ + L(x, y).

Proof. We first set ℓ1 := |x| to define

x(1) := 0ℓ1 x,

y(1) := 1δ 0ℓ1 y,

which pads the parameter δ. For convenience, define δ1 := |y(1)| − L(x(1), y(1)). We use the
parameters

S := ⌊nαS⌋, R := max{⌊nαR⌋, δ1}, ℓ2 := |x(1)| + |y(1)|,

to define, as in Lemma 10.2,

x(2) := a 0ℓ2 x(1),

y(2) := b 0ℓ2 y(1).

We then use the dominant pair reduction trick of Lemma 10.25, that additionally pads ∆, and
define

x(3) := 1ℓ3 0ℓ3 y(2) 0R 1ℓ3+∆ 0ℓ3 x(2),

y(3) := 0R 1ℓ3 0ℓ3 y(2),

where ℓ3 := R + |y(2)| + 1. The final instance is then constructed as

x(4) = 1κ 0m x(3),

y(4) = 1κ 0m y(3),

53

where κ := ⌊M/n⌋.
We first compute

L(x(4), y(4)) = κ + m + L(x(3), y(3))

= κ + m + R + 2ℓ3 + L(x(2), y(2))

= κ + m + 2R + 2S + ℓ2 + 2ℓ3 + L(x(1), x(1))

= κ + m + 2R + 2S + ℓ1 + ℓ2 + 2ℓ3 + L(x, y), (14)

where we used greedy prefix matching in the first line, Lemma 10.25(i) in the second, Lemma 10.2 in
the third, and Lemma 7.6 in the last line. Note that x(4), y(4), and τ := κ+m+2R+2S+ℓ1+ℓ2+2ℓ3
can be computed in time O(n).

It remains to verify that x(4), y(4) is an instance of LCSγ′

(α, {0, 1}) for some γ′ ≥ 1. We
first observe that |x|, |y| = O(nαS) and hence |x(1)|, |y(1)| = O(nαS + δ). Note that by definition
S = Θ(nαS).

Assume for contradiction that αR < αδ. Note that by definition αR = αd − αS = max{αd −
αM + 1,min{αδ, αd/2}} and hence αR < αδ only holds if αd − αM + 1 ≤ αR = αd/2 < αδ. But
then αd − αδ ≤ αd/2 < αδ ≤ αM − 1. This forces αS = αd/2 by definition, which contradicts the
assumption αS > αR. We therefore obtain αR ≥ αδ.

Note that δ1 = |y(1)| − L(x(1), y(1)) = δ + δ(x, y) by Lemma 7.6. Since δ(x, y) ≤ O(nα′
δ) and

α′
δ ≤ αδ, this yields δ1 = Θ(δ), and hence R = Θ(nαR). Thus, R = O(S), since αR < αS . It

is immediate that |x(2)|, |y(2)| = O(R + S + |x(1)| + |y(1)|) = O(S). Furthermore, it follows that
|x(3)| = ∆ + O(S) and |y(3)| = O(S). Finally |y(4)| = m + O(M/n + S) = Θ(m), where the last
bound follows from S = O(M/n) = O(m) by the parameter relation M ≤ mn. Likewise, |x(4)| =
m+∆+O(M/n+S) = Θ(m+∆) = Θ(n). Finally, L(x(4), y(4)) = m+O(M/n+S) = Θ(m) = Θ(L)
by (14) and αL = αm.

Since |x| ≥ |y|, |a| ≥ |b| and ∆ ≥ δ it is easy to see that |x(4)| ≥ |y(4)|. Hence (14) yields

∆(x(4), y(4)) = 2ℓ3 + |y(2)| + ∆ + R + ∆(x, y) = ∆ + O(m) = Θ(∆),

since in particular ∆(x, y) ≤ |x| = O(m). Similarly, δ(x(4), y(4)) = δ + δ(x, y) = Θ(δ) as above.
For the number of dominant pairs, we observe that Lemma 10.25(iii) yields d(x(3), y(3)) ≥ R·S =

Ω(d). From Lemma 10.25(ii), the corresponding upper bound d(x(3), y(3)) ≤ (2ℓ3 + |y(2)|) · (R+1)+
R2 = O(S · R + R2) = O(d) follows, since R = O(S) by αR < αS . Thus, by Lemma 7.1 we obtain
d(x(4), y(4)) = κ + m + d(x(3), y(3)) = Θ(d) + O(m) = Θ(d) by d ≥ L = Ω(m) since αL = αm.

It remains to count the number of matching pairs. We have #1(y
(4)) = κ+#1(y

(3)) = Θ(M/n),
since κ = Θ(M/n) by the parameter relation M ≥ n, and #1(y(3)) ≤ |y(3)| = O(S) = O(M/n).
Since |y(4)| = O(m), we have #0(y

(4)) = O(m). Note that #1(x
(4)) = κ+ 2ℓ3 + ∆ + |x(2)|+ |y(2)| =

∆+O(S+κ) = Θ(n), since α∆ > αm implies α∆ = 1. Finally, #0(x
(4)) = m+2ℓ3 +R+#0(y

(2))+
#0(x

(2)) = O(m). Thus, we obtain M(x(4), y(4)) = #1(x(4)) · #1(y
(4)) + #0(x

(4)) · #0(y
(4)) =

Θ(n ·M/n) + O(m2) = Θ(M) by the relation M ≥ L2/|Σ| = Ω(m2), since αL = αm.

Note that combining Lemmas 10.24 and 10.26 with Observation 10.23 yields Lemma 10.22.

11 New Algorithm for Binary Alphabet

In this section we prove Theorem 3.5, i.e., we assume that Σ = {0, 1} and provide an algorithm
running in time O(n + δM/n). More precisely, for any input x, y, by #0(x) + #1(x) = n we have
max{#0(x),#1(x)} ≥ n/2, so without loss of generality assume #1(x) ≥ n/2 (otherwise exchange

54

0 and 1). Since M = #0(x) ·#0(y)+#1(x) ·#1(y), it follows that #1(y) ≤ 2M/n. Hence, it suffices
to design an algorithm running in time O(n + δ · #1(y)).

Theorem 11.1. For Σ = {0, 1}, LCS has an O(n + δ · #1(y)) algorithm.

We preprocess x in time O(n) to support the following queries. For σ ∈ {0, 1}, 0 ≤ i ≤ n, and
t ≥ 1, Nexttσ(i) returns the position of the t-th occurrence of symbol σ after position i in x, i.e.,
Nexttσ(i) = i′ if and only if x[i′] = σ and #σ(x[i+1..i′]) = t (if such a number i′ does not exist then
Nexttσ(i) := ∞). For convenience, we let Next0σ(i) := i. For t = 1 we also write Next1σ(i) = Nextσ(i).
It is easy to implement Nexttσ in time O(1) using rank/select data structures on the 0’s and 1’s
in x, which can be built in time O(n) [52, 73]. The symbol succeeding i is NextΣ(i) := i + 1 if
i + 1 ≤ n, or ∞ otherwise, which can be computed in time O(1).

Let λ = #1(y) and 1 ≤ j1 < . . . < jλ ≤ m be the positions of all 1’s in y, and for convenience
set j0 := 0. We can assume that the last symbol in each of x and y is a 1, in particular jλ = m,
because appending symbol 1 to both x and y increases the LCS by exactly 1 (by Lemma 7.1). We
write zℓ for the number of 0’s between jℓ−1 and jℓ in y, i.e., y = 0z110z21 . . . 10zλ1 with zℓ ≥ 0.

Consider the dynamic programming table T that contains for all 0 ≤ ℓ ≤ λ and k ≥ 0 (it
remains to fix an upper bound on k) the value

T [ℓ, k] = min{0 ≤ i ≤ n | L(x[1..i], y[1..jℓ]) = jℓ − k}, (15)

where we set min ∅ = ∞. Observe that from T we can read off the LCS length as L(x, y) =
m − min{k | T [λ, k] < ∞}. In particular, we may initialize δ̃ := 1, and compute the table T for
0 ≤ ℓ ≤ λ and 0 ≤ k ≤ δ̃. If there is no 0 ≤ k ≤ δ̃ with T [λ, k] < ∞ then we double δ̃ and repeat.
This exponential search ends once we find a value δ̃ ∈ [δ, 2δ).

Next we show how to recursively compute T [ℓ, k]. For ℓ = 0, we clearly have T [0, 0] = 0 and
T [0, k] = ∞ for any k > 0. For ℓ > 0, the following dynamic programming recurrence computes
T [ℓ, k], as shown in Lemma 11.2 below.

T [ℓ, k] = min
{

min{NextΣ(Nextzℓ−k+k′

0 (T [ℓ− 1, k′])) | max{0, k − zℓ} ≤ k′ < k},
Next1(Nextzℓ0 (T [ℓ− 1, k])), (16)

T [ℓ− 1, k − zℓ − 1]
}
.

Note that the third line only applies if k − zℓ − 1 ≥ 0, as T [ℓ′, k′] = ∞ for k′ < 0.
Let us discuss how to efficiently implement the above algorithm, assuming we already have

computed the values T [ℓ − 1, k], 0 ≤ k ≤ δ̃. Clearly, we can evaluate the second and third line in
constant time, using the Next data structures that we built in the preprocessing. For the first line,
observe that Nextt0(i) is the position of the (t + #0(x[1..i]))-th 0 in x. Hence, Nextzℓ−k+k′

0 (T [ℓ −
1, k′]) is the position of the (zℓ − k + k′ + #0(x[1..T [ℓ − 1, k′]]))-th 0 in x, so it is minimized if
k′ + #0(x[1..T [ℓ − 1, k′]]) is minimized4. Thus, it suffices to compute a range minimum query
over the interval [max{0, k − zℓ}, k) on the array Aℓ[0..δ̃] with Aℓ[k

′] := k′ + #0(x[1..T [ℓ − 1, k′]]).
From the answer Aℓ[r] to this range minimum query we can infer T [ℓ, k] in time O(1). Specifically,
the first line evaluates to the next symbol after the position of the (zℓ − k + A[r])-th 0 in x, i.e.,

NextΣ(Next
zℓ−k+Aℓ[r]
0 (0)).

Note that range minimum queries can be performed in time O(1), after a preprocessing of
O(|Aℓ|) = O(δ̃) [30, 76], where |Aℓ| is the size of array Aℓ. Since we can reuse the array Aℓ for
all 0 ≤ k ≤ δ̃, we spend (amortized) preprocessing time O(1) per entry of T [ℓ, ·]. In total, this

4Here we interpret #0(x[1..∞]) as ∞.

55

yields time O(δ̃ · λ) = O(δ̃ · #1(y)) to build the table T . The exponential search for δ yields time
O(δ · #1(y)). Adding the preprocessing time O(n), we obtain an O(n + δ · #1(y)) algorithm. It
remains to prove correctness of the recursive formula (16).

Lemma 11.2. Table (15) follows the recursive formula (16).

Proof. For any 1 ≤ ℓ ≤ λ and 0 ≤ k ≤ δ̃ we show that the value T [ℓ, k] of (15) follows the recursive
formula (16). Let i = T [ℓ, k] and let i′ be minimal with

L(x[1..i], y[1..jℓ]) = L(x[1..i′], y[1..jℓ−1]) + L(x[i′ + 1..i], y[jℓ−1 + 1..jℓ]). (17)

Let k′ = jℓ−1 − L(x[1..i′], y[1..jℓ−1]). Then we claim i′ = T [ℓ − 1, k′]. Indeed, since i′ satisfies
the condition L(x[1..i′], y[1..jℓ−1]) = jℓ−1 − k′ of (15) we have i′ ≥ T [ℓ − 1, k′]. Moreover, if we
had i′ > T [ℓ − 1, k′] then we could replace i′ by T [ℓ − 1, k′], as both values satisfy the condition
L(x[1..i′], y[1..jℓ−1]) = jℓ−1 − k′, contradicting minimality of i′.

Let r = L(x[i′ + 1..i], y[jℓ−1 + 1..jℓ]). By (17) we have jℓ − k = jℓ−1 − k′ + r, and we obtain
r = 1 + zℓ − k + k′ using zℓ = jℓ − jℓ−1 − 1. Note that i ≥ i′ is the smallest value attaining
L(x[i′ + 1..i], y[jℓ−1 + 1..jℓ]) = r. Indeed, if there was a smaller value i′ ≤ i∗ < i with L(x[i′ +
1..i∗], y[jℓ−1 + 1..jℓ]) = r, then L(x[1..i∗], y[1..jℓ]) ≥ L(x[1..i′], y[1..jℓ−1]) + L(x[i′ + 1..i∗], y[jℓ−1 +
1..jℓ]) = L(x[1..i′], y[1..jℓ−1]) + L(x[i′ + 1..i], y[jℓ−1 + 1..jℓ]) = L(x[1..i], y[1..jℓ]) = jℓ − k. Then
there also exists 0 ≤ i′′ ≤ i∗ < i with equality, i.e., L(x[1..i′′], y[1..jℓ]) = jℓ − k. Indeed, if
L(x[1..i∗], y[1..jℓ]) > jℓ − k then we can repeatedly reduce i∗ by 1, this reduces L(x[1..i∗], y[1..jℓ])
by at most 1, and we eventually reach jℓ − k since L(x[1..t], y[1..jℓ]) = 0 for t = 0. However,
existence of i′′ < i contradicts minimality of i = T [ℓ, k].

Now we show that i is one of the terms on the right hand side of (16), considering three cases.
Case 1: If 1 ≤ r < zℓ+1, then the LCS of x[i′+1..i] and y[jℓ−1+1..jℓ] = 0zℓ1 consists of r−1 0’s

and one additional symbol which is 0 or 1. Thus, the smallest i attaining r is NextΣ(Nextr−1
0 (i′)),

accounting for r − 1 0’s and one additional symbol. Since r − 1 = zℓ − k + k′ and i′ = T [ℓ− 1, k′],

we have shown that i = T [ℓ, k] is of the form NextΣ(Nextzℓ−k+k′

0 (T [ℓ− 1, k′])) for some k′. Observe
that 1 ≤ r < zℓ + 1 implies k − zℓ ≤ k′ < k. We clearly also have k′ ≥ 0. This corresponds to the
first line of (16).

Case 2: If r = zℓ +1 then x[i′ +1..i] contains y[jℓ−1 +1..jℓ] = 0zℓ1. Thus, i = Next1(Nextzℓ0 (i′)),
accounting for zℓ 0’s followed by a 1. In this case, we have k′ = k+ r−zℓ−1 = k so that i = T [ℓ, k]
is of the form Next1(Nextzℓ0 (T [ℓ− 1, k])). This corresponds to the second line of (16).

Case 3: If r = 0 then i = i′, since the smallest value i ≥ i′ attaining L(x[i′+1..i], y[jℓ−1+1..jℓ]) =
0 is i′. In this case, we have k′ = k − zℓ − 1, and we obtain T [ℓ, k] = i = i′ = T [ℓ − 1, k′] =
T [ℓ− 1, k − zℓ − 1]. This only applies if k − zℓ − 1 ≥ 0. This corresponds to the third line of (16).

This case distinction shows that i is one of the terms on the right hand side of (16). Also observe
that we have i ≤ Next1(Nextzℓ0 (T [ℓ− 1, k])), since the number Next1(Nextzℓ0 (T [ℓ− 1, k])) is part of

the set of which i = T [ℓ, k] is the minimum. Similarly, we have i ≤ NextΣ(Nextzℓ−k+k′

0 (T [ℓ−1, k′]))
for any max{0, k − zℓ} ≤ k′ < k, and i ≤ T [ℓ− 1, k − zℓ − 1] if k − zℓ − 1 ≥ 0. This proves that i
is the minimum over all expressions on the right hand side of (16), proving that i = T [ℓ, k] follows
the recursive formula (16).

12 Strengthening Hardness via BP-SETH

A recent and surprising result by Abboud, Hansen, Virginia Williams and Williams [2] proves con-
ditional lower bounds for LCS and related problems under a natural weaker variant of SETH, called

56

BP-SETH. In this variant, the role of CNF formulas in SETH is replaced by branching programs,
providing a much more expressive class of Boolean functions – intuitively, the corresponding satisfi-
ability problem becomes much harder. As a consequence, refuting a conditional lower bound based
on BP-SETH would yield stronger algorithmic consequences, strengthening the conditional lower
bound significantly. Furthermore, Abboud et al. show that even a sufficiently strong polylogarithmic
improvement for LCS would imply faster (formula) satisfiability algorithms than currently known.

In this section, we show how to adapt the proofs of our conditional lower bounds to also hold
under BP-SETH. To this end, we first introduce this weaker assumption, briefly state the main
construction of Abboud et al. (specialized to LCS) and then describe the necessary modifications
to our proofs.

Branching Programs and BP-SETH. Branching programs provide a popular model for non-
uniform computation. Formally, a branching program P on N variables, length T and width W
consists of a directed graph G, whose vertex set V is divided into T disjoint layers V1, . . . , VT . Each
layer contains at most W vertices. Every edge in G starts in some layer Vj and ends at the following
layer Vj+1. Each edge is annotated with a constraint Xi = b, where X1, . . . ,XN are the Boolean
input variables and b ∈ {0, 1}. The constraints of all edges starting in layer Vj must use the same
variable Xi, but may have potentially different values of b. There are two distinguished nodes,
namely some start node v0 ∈ V1, and an accept node v∗ ∈ VT . Given an assignment X ∈ {0, 1}N
to the variables, we say that P accepts x if and only if there is a path from v0 to v∗ such that the
constraints on all edges on the path are satisfied by X.

The corresponding satisfiability problem BP-SAT asks, given a branching program P on N
variables, length T and width W , to determine whether there exists an assignment X ∈ {0, 1}N
that is accepted by P . The results in [2] rely on the following hypothesis.

Hypothesis 12.1. For any ε > 0, BP-SAT with (logW)(log T) = o(N) cannot be solved in time
O((2 − ε)N).

Note that this hypothesis is much weaker than SETH: By Barrington’s theorem, already branch-
ing programs of constant width and T = polylog(N) can simulate any NC circuit, and thus any
CNF formula.

Central Construction of Abboud et al. We present an intermediate step of the construction
of Abboud et al. in a convenient form for our purposes.

Lemma 12.2 (Normalized BP-Vector Gadgets [2, Implicit lemma in the proof of Theorem 6,
specialized to LCS]). Let P be a branching program on N1 + N2 variables, width W and length T .
Let A = {a1, . . . , aA} ⊆ {0, 1}N1 ,B = {b1, . . . , bB} ⊆ {0, 1}N2 be sets of partial assignments.
In linear time in the output size, we can construct binary strings x1, x2, . . . , xA of length ℓx and
y1, y2, . . . , yB of length ℓy (called normalized vector gadgets) with the following properties.

1. There is some function f(W,T) = TO(logW) with ℓx, ℓy ≤ f(W,T),

2. We can compute ρ0, ρ1 with ρ0 > ρ1 such that L(xi, yj) ≥ ρ0 if the assignment given by
assigning ai to the variables X1, . . . ,XN1

and assigning bj to XN1+1, . . . ,XN1+N2
is accepted

by P . Otherwise, we have L(xi, yj) = ρ1.

57

Proof modifications. Equipped with the above lemma, we sketch how to modify our lower
bounds to also hold under BP-SETH. Consider the following problem LCS-Pair with Guarantees:
Given binary strings x1, x2, . . . , xA of length ℓx and y1, y2, . . . , yB of length ℓy, where ℓx, ℓy =
(A + B)o(1), and given integers ρ0 > ρ1, decide whether either (1) L(xi, yj) ≥ ρ0 for some i, j, or
(2) L(xi, yj) = ρ1 for all i, j. The naive solution for this problem runs in time (AB)1+o(1).

Lemma 12.2 shows that any O((AB)1−ε)-time algorithm for LCS-Pair with Guarantees would
break BP-SETH. Indeed, given a branching program P on N variables, length T and width W ,
we first split the variables into two sets of size N/2, and let A,B be the sets of all assignments to
these two sets of variables. Then testing whether there are partial assignments ai ∈ A and bj ∈ B
that together are accepted by P is equivalent to deciding satisfiability of P . Since A = |A| = B =
|B| = 2N/2, any O((AB)1−ε)-time algorithm would break BP-SETH. Moreover, in BP-SETH we
can assume log T · logW = o(N) and thus ℓx, ℓy = TO(logW) = 2o(N) = (A + B)o(1), as required in
the definition of LCS-Pair with Guarantees. Furthermore, the same (AB)1−o(1) lower bound under
BP-SETH also holds restricted to instances with B = Aβ±o(1) for any 0 < β ≤ 1. To see this, in the
above reduction instead of splitting the N variables into equal halves N1 = N2 = N/2, we choose
N1, N2 such that N2 ≈ βN1, so that the sets of partial assignments A = {0, 1}N1 and B = {0, 1}N2

satisfy B = |B| = |A|β±o(1) = Aβ±o(1).
Observe that the normalized vector gadgets constructed in Lemma 9.5 show the similar claim

that any O((AB)1−ε)-time algorithm for LCS-Pair with Guarantees would break the OV hypoth-
esis, and thus SETH. Since all reductions presented in this paper use normalized vector gadgets
either directly via Lemma 9.5 or indirectly via Lemma 9.1, they all implicitly go via LCS-Pair
with Guarantees. Hence, we can easily replace the first part of our reductions, i.e., the reduction
from SAT/OV to LCS-Pair with Guarantees, by the reduction from BP-SAT to LCS-Pair with
Guarantees given in Lemma 12.2. This yields a conditional lower bound based on BP-SETH.

There are two steps where we have to be careful: First, LCS-Pair with Guarantees does not
immediately give properties (i) and (iv) of Lemma 9.5, however, they can be ensured easily as in
the proof of Lemma 9.5. Second, Lemma 9.1 is the construction from [28], and thus to check that
it goes via LCS-Pair with Guarantees one needs to check that the proof in [28] indeed only uses
Lemma 9.5. Along these lines we obtain the following strengthening of our main result.

Theorem 12.3. Theorems 3.3 and 3.4 also hold after replacing SETH by BP-SETH.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hardness
of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends or: A polylog shaved is a lower
bound made. In Proc. 48th Annual ACM Symposium on Symposium on Theory of Computing
(STOC’16), 2016. To appear.

[3] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’14), pages 434–443, 2014.

[4] Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed

58

parameter subquadratic algorithms for radius and diameter. In Proc. 27th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’16), pages 377–391, 2016.

[5] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method
to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’15), pages 218–230, 2015.

[6] Muhammad Rashed Alam and M. Sohel Rahman. The substring inclusion constraint longest
common subsequence problem can be solved in quadratic time. Journal of Discrete Algorithms,
17:67–73, 2012.

[7] Jochen Alber, Jens Gramm, Jiong Guo, and Rolf Niedermeier. Towards optimally solving
the longest common subsequence problem for sequences with nested arc annotations in linear
time. In Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM’02), pages
99–114, 2002.

[8] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403 – 410, 1990.

[9] Amihood Amir, Zvi Gotthilf, and B. Riva Shalom. Weighted LCS. Journal of Discrete Algo-
rithms, 8(3):273–281, 2010.

[10] Amihood Amir, Tzvika Hartman, Oren Kapah, B. Riva Shalom, and Dekel Tsur. Generalized
LCS. Theoretical Computer Science, 409(3):438–449, 2008.

[11] Amihood Amir, Haim Paryenty, and Liam Roditty. On the hardness of the consensus string
problem. Information Processing Letters, 113(10-11):371–374, 2013.

[12] Amihood Amir, Haim Paryenty, and Liam Roditty. Configurations and minority in the string
consensus problem. Algorithmica, 74(4):1267–1292, 2016.

[13] Alberto Apostolico. Improving the worst-case performance of the Hunt-Szymanski strategy
for the longest common subsequence of two strings. Inf. Process. Lett., 23(2):63–69, 1986.

[14] Alberto Apostolico and Concettina Guerra. The longest common subsequence problem revis-
ited. Algorithmica, 2:316–336, 1987.

[15] Alberto Apostolico, Gad M. Landau, and Steven Skiena. Matching for run-length encoded
strings. In Proc. 1997 International Conference on Compression and Complexity of Sequences
(SEQUENCES’97), pages 348–356, 1997.

[16] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proc. 47th Annual ACM on Symposium on Theory of Computing
(STOC’15), pages 51–58, 2015.

[17] Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Proc. 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS’16), pages
457–466, 2016.

[18] Ricardo A. Baeza-Yates, Ricard Gavaldá, Gonzalo Navarro, and Rodrigo Scheihing. Bound-
ing the expected length of longest common subsequences and forests. Theory of Computing
Systems, 32(4):435–452, 1999.

59

[19] Nikhil Bansal, Moshe Lewenstein, Bin Ma, and Kaizhong Zhang. On the longest common rigid
subsequence problem. Algorithmica, 56(2):270–280, 2010.

[20] David Becerra, Juan Mendivelso, and Yoan Pinzón. A multiobjective optimization algorithm
for the weighted LCS. Discrete Applied Mathematics, 212:37–47, 2016.

[21] Gary Benson, Avivit Levy, S. Maimoni, D. Noifeld, and B. Riva Shalom. LCSk: a refined
similarity measure. Theoretical Computer Science, 638:11–26, 2016.

[22] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Proc. 7th International Symposium on String Processing and Information Re-
trieval (SPIRE’00), pages 39–48, 2000.

[23] Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching. The-
oretical Computer Science, 409(3):486 – 496, 2008.

[24] Guillaume Blin, Paola Bonizzoni, Riccardo Dondi, and Florian Sikora. On the parameterized
complexity of the repetition free longest common subsequence problem. Information Processing
Letters, 112(7):272–276, 2012.

[25] Guillaume Blin, Laurent Bulteau, Minghui Jiang, Pedro J. Tejada, and Stéphane Vialette.
Hardness of longest common subsequence for sequences with bounded run-lengths. In Proc.
23th Annual Symposium on Combinatorial Pattern Matching (CPM’12), pages 138–148, 2012.

[26] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’14), pages 661–670, 2014.

[27] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expres-
sion membership testing. In Proc. 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’17), 2017. To appear, arXiv:1611.00918.

[28] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’15), pages 79–97, 2015.

[29] Karl Bringmann and Wolfgang Mulzer. Approximability of the Discrete Fréchet Distance. In
Proc. 31st International Symposium on Computational Geometry (SoCG’15), pages 739–753,
2015.

[30] Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. On space efficient two dimen-
sional range minimum data structures. Algorithmica, 63(4):815–830, 2012.

[31] Horst Bunke and Janos Csirik. An improved algorithm for computing the edit distance of
run-length coded strings. Information Processing Letters, 54(2):93–96, 1995.

[32] Mauro Castelli, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis. The longest filled common
subsequence problem. In Proc. 28th Annual Symposium on Combinatorial Pattern Matching
(CPM’17), 2017. To appear.

[33] Wun-Tat Chan, Yong Zhang, Stanley P.Y. Fung, Deshi Ye, and Hong Zhu. Efficient algorithms
for finding a longest common increasing subsequence. Journal of Combinatorial Optimization,
13(3):277–288, 2007.

60

[34] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM Journal on Computing, 32(6):1654–
1673, 2003.

[35] Marek Cygan, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
Polynomial-time approximation algorithms for weighted LCS problem. Discrete Applied Math-
ematics, 204:38–48, 2016.

[36] Sebastian Deorowicz. Quadratic-time algorithm for a string constrained LCS problem. Infor-
mation Processing Letters, 112(11):423–426, 2012.

[37] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dynamic
programming I: Linear cost functions. J. ACM, 39(3):519–545, July 1992.

[38] Effat Farhana and M. Sohel Rahman. Doubly-constrained LCS and hybrid-constrained LCS
problems revisited. Information Processing Letters, 112(13):562–565, 2012.

[39] Anka Gajentaan and Mark H. Overmars. On a class of O(N2) problems in computational
geometry. Comput. Geom. Theory Appl., 5(3):165–185, October 1995.

[40] Pawe l Gawrychowski. Faster algorithm for computing the edit distance between SLP-
compressed strings. In Proc. 19th International Conference on String Processing and Infor-
mation Retrieval (SPIRE’12), pages 229–236, 2012.

[41] Zvi Gotthilf, Danny Hermelin, Gad M. Landau, and Moshe Lewenstein. Restricted LCS.
In Proc. 17th International Conference on String Processing and Information Retrieval
(SPIRE’10), pages 250–257, 2010.

[42] Zvi Gotthilf, Danny Hermelin, and Moshe Lewenstein. Constrained LCS: Hardness and ap-
proximation. In Proc. 19th Annual Symposium on Combinatorial Pattern Matching (CPM’08),
pages 255–262, 2008.

[43] Zvi Gotthilf and Moshe Lewenstein. Approximating constrained LCS. In Proc. 14th Interna-
tional Conference on String Processing and Information Retrieval (SPIRE’07), pages 164–172,
2007.

[44] Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann. Unified compression-
based acceleration of edit-distance computation. Algorithmica, 65(2):339–353, 2013.

[45] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM,
24(4):664–675, 1977.

[46] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computing
Science Technical Report 41, Bell Laboratories, 1975.

[47] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest subse-
quences. Commun. ACM, 20(5):350–353, 1977.

[48] Costas S Iliopoulos, Marcin Kubica, M Sohel Rahman, and Tomasz Waleń. Algorithms for
computing the longest parameterized common subsequence. In Proc. 18th Annual Conference
on Combinatorial Pattern Matching (CPM’07), pages 265–273, 2007.

[49] Costas S. Iliopoulos and M. Sohel Rahman. Algorithms for computing variants of the longest
common subsequence problem. Theoretical Computer Science, 395(2–3):255–267, 2008.

61

[50] Costas S. Iliopoulos and M. Sohel Rahman. A new efficient algorithm for computing the longest
common subsequence. Theory of Computing Systems, 45(2):355–371, 2009.

[51] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Computer and System Sciences, 63(4):512–530, 2001.

[52] Guy Jacobson. Space-efficient static trees and graphs. In Proc. 30th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’89), pages 549–554, 1989.

[53] Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems. In
Proc. 3th Annual Symposium on Combinatorial Pattern Matching (CPM’92), pages 52–66,
1992.

[54] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subsequence
problem for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–270, 2004.

[55] Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. On the longest common parameterized
subsequence. Theoretical Computer Science, 410(51):5347–5353, 2009.

[56] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16), pages 1272–
1287, 2016.

[57] Keita Kuboi, Yuta Fujishige, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster
STR-IC-LCS computation via RLE. In Proc. 28th Annual Symposium on Combinatorial Pat-
tern Matching (CPM’17), 2017. To appear, arXiv:1703.04954.

[58] Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms for
computing longest common increasing subsequences. Journal of Discrete Algorithms, 9(4):314–
325, 2011.

[59] Gad M. Landau, Avivit Levy, and Ilan Newman. LCS approximation via embedding into local
non-repetitive strings. In Proc. 20th Annual Symposium on Combinatorial Pattern Matching
(CPM’09), pages 92–105, 2009.

[60] Gad M. Landau, Eugene Myers, and Michal Ziv-Ukelson. Two algorithms for LCS consecutive
suffix alignment. Journal of Computer and System Sciences, 73(7):1095–1117, 2007.

[61] Gad M. Landau, Baruch Schieber, and Michal Ziv-Ukelson. Sparse LCS common substring
alignment. Information Processing Letters, 88(6):259–270, 2003.

[62] Kjell Lemström, Gonzalo Navarro, and Yoan Pinzon. Bit-parallel branch and bound algorithm
for transposition invariant LCS. In Proc. 11th International Conference on String Processing
and Information Retrieval (SPIRE’04), pages 74–75, 2004.

[63] Yury Lifshits. Processing compressed texts: A tractability border. In Proc. 18th Annual
Symposium on Combinatorial Pattern Matching (CPM’07), pages 228–240, 2007.

[64] George S. Lueker. Improved bounds on the average length of longest common subsequences.
J. ACM, 56(3):17, 2009.

[65] William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J.
Computer and System Sciences, 20(1):18–31, 1980.

62

[66] Webb Miller and Eugene W. Myers. A file comparison program. Softw., Pract. Exper.,
15(11):1025–1040, 1985.

[67] Johra Muhammad Moosa, M. Sohel Rahman, and Fatema Tuz Zohora. Computing a longest
common subsequence that is almost increasing on sequences having no repeated elements.
Journal of Discrete Algorithms, 20:12–20, 2013.

[68] Howard L. Morgan. Spelling correction in systems programs. Communications of the ACM,
13(2):90–94, 1970.

[69] Shay Mozes, Dekel Tsur, Oren Weimann, and Michal Ziv-Ukelson. Fast algorithms for com-
puting tree LCS. Theoretical Computer Science, 410(43):4303–4314, 2009.

[70] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–
266, 1986.

[71] Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima. A longest common subsequence
algorithm suitable for similar text strings. Acta Inf., 18:171–179, 1982.

[72] Mike Paterson and Vlado Danćık. Longest common subsequences. In Proc. 19th International
Symposium on Mathematical Foundations of Computer Science (MFCS’94), pages 127–142,
1994.

[73] Mihai Patrascu. Succincter. In Proc. 49th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’08), pages 305–313, 2008.

[74] Pavel Pevzner and Michael Waterman. Matrix longest common subsequence problem, dual-
ity and Hilbert bases. In Proc. 3th Annual Symposium on Combinatorial Pattern Matching
(CPM’92), pages 79–89, 1992.

[75] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the di-
ameter and radius of sparse graphs. In Proc. 45th Annual ACM Symposium on Symposium on
Theory of Computing (STOC’13), pages 515–524, 2013.

[76] Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007.

[77] Thomas G. Szymanski. A special case of the maximal common subsequence problem. Technical
report, TR-170, Computer Science Laboratory, Princeton University, 1975.

[78] Alexander Tiskin. Longest common subsequences in permutations and maximum cliques in
circle graphs. In Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM’06),
pages 270–281, 2006.

[79] Alexander Tiskin. Semi-local longest common subsequences in subquadratic time. Journal of
Discrete Algorithms, 6(4):570–581, 2008.

[80] Alexander Tiskin. Faster subsequence recognition in compressed strings. Journal of Mathe-
matical Sciences, 158(5):759–769, 2009.

[81] Alexander Tiskin. Fast distance multiplication of unit-Monge matrices. In Proc. 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pages 1287–1296, 2010.

63

[82] Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hardness on Popular
Conjectu res such as the Strong Exponential Time Hypothesis (Invited Talk). In Proc. 10th
International Symposium on Parameterized and Exact Computation (IPEC’15), pages 17–29,
2015.

[83] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix
and triangle problems. In Proc. 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’10), pages 645–654, 2010.

[84] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, 1974.

[85] Biing-Feng Wang, Gen-Huey Chen, and Kunsoo Park. On the set LCS and set-set LCS
problems. Journal of Algorithms, 14(3):466–477, 1993.

[86] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

[87] Sun Wu, Udi Manber, Gene Myers, and Webb Miller. An O(NP) sequence comparison algo-
rithm. Inf. Process. Lett., 35(6):317–323, 1990.

[88] I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing a
longest common increasing subsequence. Information Processing Letters, 93(5):249–253, 2005.

64

	1 Introduction
	1.1 Our Approach and Informal Results
	1.2 Related Work on LCS
	1.3 (Multivariate) Hardness in P

	2 Preliminaries
	2.1 Parameter Definitions
	2.2 Hardness Hypotheses

	3 Formal Statement of Results
	4 Hardness Proof Overview
	4.1 Classification of Non-trivial Parameter Settings
	4.2 Monotonicity of Time Complexity
	4.3 Hardness for Large Alphabet
	4.4 Small Alphabet

	5 Organization
	6 Parameter Relations
	7 Technical Tools and Constructions
	7.1 Generating dominant pairs
	7.2 Block elimination and dominant pair reduction

	8 Paddings
	8.1 Matching Pairs
	8.2 Dominant Pairs

	9 Hardness for Large Alphabet
	9.1 Small LCS
	9.1.1 Hard Core
	9.1.2 Constant Alphabet
	9.1.3 Superconstant Alphabet

	9.2 Large LCS
	9.2.1 Hard Core
	9.2.2 Constant Alphabet
	9.2.3 Superconstant Alphabet

	10 Hardness for Small Constant Alphabet
	10.1 Small LCS
	10.2 Large LCS, Alphabet Size at least 3
	10.3 Large LCS, Alphabet Size 2
	10.3.1 Case m = L
	10.3.2 Case > m = L and M - 1
	10.3.3 Case > m = L and M - 1

	11 New Algorithm for Binary Alphabet
	12 Strengthening Hardness via BP-SETH

