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Abstract

Let B be a set of n axis-parallel boxes in Rd such that each box has a corner at the origin
and the other corner in the positive quadrant of Rd, and let k be a positive integer. We
study the problem of selecting k boxes in B that maximize the volume of the union of the
selected boxes. This research is motivated by applications in skyline queries for databases
and in multicriteria optimization, where the problem is known as the hypervolume subset
selection problem. It is known that the problem can be solved in polynomial time in the
plane, while the best known running time in any dimension d ≥ 3 is Ω

((
n
k

))
. We show that:

• The problem is NP-hard already in 3 dimensions.

• In 3 dimensions, we break the bound Ω
((

n
k

))
, by providing an nO(

√
k) algorithm.

• For any constant dimension d, we present an efficient polynomial-time approximation
scheme.
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1 Introduction

An anchored box is an orthogonal range of the form box(p) := [0, p1] × . . . × [0, pd] ⊂ Rd≥0,
spanned by the point p ∈ Rd>0. This paper is concerned with the problem Volume Selection:
Given a set P of n points in Rd>0, select k points in P maximizing the volume of the union of
their anchored boxes. That is, we want to compute

VolSel(P, k) := max
S⊆P, |S|=k

vol
( ⋃
p∈S
box(p)

)
,

as well as a set S∗ ⊆ P of size k realizing this value. Here, vol denotes the usual volume.

Motivation This geometric problem is of key importance in the context of multicriteria
optimization and decision analysis, where it is known as the hypervolume subset selection problem
(HSSP) [2–4,12,13,24]. In this context, the points in P correspond to solutions of an optimization
problem with d objectives, and the goal is to find a small subset of P that “represents” the
set P well. The quality of a representative subset S ⊆ P is measured by the volume of the
union of the anchored boxes spanned by points in S; this is also known as the hypervolume
indicator [36]. Note that with this quality indicator, finding the optimal size-k representation is
equivalent to our problem VolSel(P, k). In applications, such bounded-size representations are
required in archivers for non-dominated sets [23] and for multicriteria optimization algorithms
and heuristics [3, 7, 10].1 Besides, the problem has recently received attention in the context of
skyline operators in databases [17].

In 2 dimensions, the problem can be solved in polynomial time [2,13,24], which is used in
applications such as analyzing benchmark functions [2] and efficient postprocessing of multiob-
jective algorithms [12]. A natural question is whether efficient algorithms also exist in dimension
d ≥ 3, and thus whether these applications can be pushed beyond two objectives.

In this paper, we answer this question negatively, by proving that Volume Selection is
NP-hard already in 3 dimensions. We then consider the question whether the previous Ω(

(
n
k

)
)

bound can be improved, which we answer affirmatively in 3 dimensions. Finally, for any constant
dimension, we improve the best-known (1− 1/e)-approximation to an efficient polynomial-time
approximation scheme (EPTAS). See Section 1.2 for details.

1.1 Further Related Work

Klee’s Measure Problem To compute the volume of the union of n (not necessarily anchored)
axis-aligned boxes in Rd is known as Klee’s measure problem. The fastest known algorithm
takes time2 O(nd/2), which can be improved to O(nd/3polylog(n)) if all boxes are cubes [15]. By
a simple reduction [8], the same running time as on cubes can be obtained on anchored boxes,
which can be improved to O(n log n) for d ≤ 3 [6]. These results are relevant to this paper
because Klee’s measure problem on anchored boxes (spanned by the points in P ) is a special
case of Volume Selection (by calling VolSel(P, |P |)).

Chan [14] gave a reduction from k-Clique to Klee’s measure problem in 2k dimensions. This
proves NP-hardness of Klee’s measure problem when d is part of the input (and thus d can be as
large as n). Moreover, since k-Clique has no f(k) · no(k)-time algorithm under the Exponential
Time Hypothesis [16], Klee’s measure problem has no f(d) · no(d)-time algorithm under the same
assumption. The same hardness results also hold for Klee’s measure problem on anchored boxes,
by a reduction in [8] (NP-hardness was first proven in [11]).

Finally, we mention that Klee’s measure problem has a very efficient randomized (1 ± ε)-
approximation algorithm in time O(n log(1/δ)/ε2) with error probability δ [9].
1We remark that in these applications the anchor point is often not the origin, however, by a simple translation

we can move our anchor point from (0, . . . , 0) to any other point in Rd.
2In O-notation, we always assume d to be a constant, and log(x) is to be understood as max{1, log(x)}.
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Known Results for Volume Selection As mentioned above, 2-dimensional Volume Se-
lection can be solved in polynomial time; the initial O(kn2) algorithm [2] was later improved
to O((n− k)k + n log n) [13, 24]. In higher dimensions, by enumerating all size-k subsets and
solving an instance of Klee’s measure problem on anchored boxes for each one, there is an
O
((
n
k

)
kd/3polylog(k)

)
algorithm. For small n−k, this can be improved toO(nd/2 log n+nn−k) [10].

Volume Selection is NP-hard when d is part of the input, since the same holds already for
Klee’s measure problem on anchored boxes. However, this does not explain the exponential
dependence on k for constant d.

Since the volume of the union of boxes is a submodular function (see, e.g., [33]), the
greedy algorithm for submodular function maximization [28] yields a (1− 1/e)-approximation
of VolSel(P, k). This algorithm solves O(nk) instances of Klee’s measure problem on at most
k anchored boxes, and thus runs in time O(nkd/3+1polylog(k)). Using [9], this running time
improves to O(nk2 log(1/δ)/ε2), at the cost of decreasing the approximation ratio to 1− 1/e− ε
and introducing an error probability δ. See [20] for related results in 3 dimensions.

A problem closely related to Volume Selection is Convex Hull Subset Selection:
Given n points in Rd, select k points that maximize the volume of their convex hull. For this
problem, NP-hardness was recently announced in the case d = 3 [30].

1.2 Our Results

In this paper we push forward the understanding of Volume Selection. We prove that
Volume Selection is NP-hard already for d = 3 (Section 3). Previously, NP-hardness was
only known when d is part of the input and thus can be as large as n. Moreover, this establishes
Volume Selection as another example for problems that can be solved in polynomial time in
the plane but are NP-hard in three or more dimensions (see also [5, 26]).

In the remainder, we focus on the regime where d ≥ 3 is a constant and k � n. All known
algorithms (explicitly or implicitly) enumerate all size-k subsets of the input set P and thus
take time Ω

((
n
k

))
= nΩ(k). In 3 dimensions, we break this time bound by providing an nO(

√
k)

algorithm (Section 4). To this end, we project the 3-dimensional Volume Selection to a
2-dimensional problem and then use planar separator techniques.

Finally, in Section 5 we design an EPTAS for Volume Selection. More precisely, we
present a (1− ε)-approximation algorithm running in time O(n · ε−d(log n+ k+ 2O(ε−2 log 1/ε)d)),
for any constant dimension d. Note that the “combinatorial explosion” is restricted to d and ε;
for any constant d, ε the algorithm runs in time O(n(k + log n)). This improves the previously
best-known (1− 1/e)-approximation, even in terms of running time.

2 Preliminaries

All boxes considered in the paper are axis-parallel and anchored at the origin. For points
p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ Rd, we say that p dominates q if pi ≥ qi for all 1 ≤ i ≤ d.
For p = (p1, . . . , pd) ∈ Rd>0, we let box(p) := [0, p1]× . . .× [0, pd]. Note that box(p) is the set of
all points q ∈ Rd≥0 that are dominated by p. A point set P is a set of points in Rd>0. We denote
the union

⋃
p∈P box(p) by U(P ). The usual Euclidean volume is denoted by vol. With this

notation, we set

µ(P ) := vol(U(P )) = vol
( ⋃
p∈P
box(p)

)
= vol

( ⋃
p∈P

[0, p1]× . . .× [0, pd]
)
.

We study Volume Selection: Given a point set P of size n and 0 ≤ k ≤ n, compute

VolSel(P, k) := max
S⊆P, |S|=k

µ(S).

Note that we can relax the requirement |S| = k to |S| ≤ k without changing this value.
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Figure 1: Triangular grid Γ.

3 Hardness in 3 Dimensions

We consider the following decision variant of 3-dimensional Volume Selection.

3d Volume Selection
Input: A triple (P, k, V ), where P is a set of points in R3

>0, k is a positive integer
and V is a positive real value.
Question: Is there a subset Q ⊆ P of k points such that µ(Q) ≥ V ?

We are going to show that the problem is NP-complete. First, we show that an intermediate
problem about selecting a large independent set in a given induced subgraph of the triangular
grid is NP-hard. The reduction for this problem is from independent set in planar graphs of
maximum degree 3. Then we argue that this problem can be embedded using boxes whose points
lie in two parallel planes. One plane is used to define the triangular-grid-like structure and the
other is used to encode the subset of vertices that describe the induced subgraph of the grid.

3.1 Triangular Grid

Let Γ be the infinite graph with vertex set and edge set (see Figure 1)

V (Γ) =
{

(i+ j · 1/2, j ·
√

3/2) | i, j ∈ N
}
,

E(Γ) = {ab | a, b ∈ V (Γ), the Euclidean distance between a and b is exactly 1} .

First we show that the following intermediate problem, which is closely related to independent
set, is NP-hard.

Independent Set on Induced Triangular Grid
Input: A pair (A, `), where A is a subset of V (Γ) and ` is a positive integer.
Question: Is there a subset B ⊆ A of size ` such that no two vertices in B are
connected by an edge of E(Γ)?

Lemma 3.1. Independent Set on Induced Triangular Grid is NP-complete.

Proof. It is obvious that the problem is in NP.
Garey and Johnson [19] show that the problem Vertex Cover is NP-complete for planar

graphs of degree at most 3. Since a subset U ⊆ V (G) is a vertex cover of graph G if and
only if V (G) \ U is an independent set of G, it follows that the problem Independent Set is
NP-complete for planar graphs of degree at most 3. For the rest of the proof, let G be a planar
graph of degree at most 3.

Let us define a Γ-representation of G to be a pair (H,ϕ), where H ⊂ Γ and ϕ is a mapping,
with the following properties:
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Figure 2: Transformation to get an induced subgraph of the triangular grid. Vertices from the
subdivision of edges are green squares.

• Each vertex u of G is mapped to a distinct vertex ϕ(u) of H.

• Each edge uv of G is mapped to a simple path ϕ(uv) contained in H and connecting ϕ(u)
to ϕ(v).

• For each two distinct edges uv and u′v′ of G, the paths ϕ(uv) and ϕ(u′v′) are disjoint
except at the common endpoints {ϕ(u), ϕ(v)} ∩ {ϕ(u′), ϕ(v′)}.

• The graph H is precisely the union of ϕ(u) and ϕ(uv) over all vertices u and edges uv
of G.

Note that if (H,ϕ) is a Γ-representation of G then H is a subdivision of G. The map φ identifies
which parts of H correspond to which parts of G.

A planar graph G with n vertices and maximum degree 3 (and also 4) can be drawn in a
square grid of polynomial size, and such a drawing can be obtained in polynomial time, see,
e.g., the results by Storer [31] or by Tamassia and Tollis [32]. Applying the shear mapping
(x, y) 7→ (x+ y/2, y

√
2/3) to the plane, the square grid becomes a subgraph of Γ. Therefore, we

can obtain a Γ-representation (H1, ϕ1) of G of polynomial size. Note that we only use edges of
Γ that are horizontal or have positive slope; edges of Γ with negative slope are not used.

Next, we obtain another Γ-representation (H2, ϕ2) such that H2 is an induced subgraph
of Γ. Induced means that two vertices of H2 are connected with an edge in H2 if and only if
the edge exists in Γ. For this, we first scale up the Γ-representation (H1, ϕ1) by a factor 2 so
that each edge of H1 becomes a 2-edge path. The new vertices used in the subdivision have
degree 2 and its 2 incident edges have the same orientation. After the subdivision, vertices of
degree 3 look like in Figure 2. Scaling up the figure by a factor of 3, and rerouting within a
small neighbourhood of each vertex v that was already in H1, we obtain a Γ-representation
(H2, ϕ2) such that H2 is an induced subgraph of Γ. See Figure 2 for an example of such a local
transformation.

Now we have a Γ-representation (H2, ϕ2) such that H2 is an induced subgraph of Γ. We
want to obtain another Γ-representation where for each edge uv ∈ E(G) the path ϕ2(uv) uses
an even number of interior edges. For this, we can slightly reroute each path ϕ2(uv) that has an
odd number of interior points, see Figure 3. To make sure that the graph is still induced, we can
first scale up the situation by a factor 2, and then reroute all the edges ϕ2(uv) that use an odd
number of interior vertices. (This is actually all the edges uv ∈ E(G) because of the scaling.)
Let (H3, ϕ3) be the resulting Γ-representation of G. Note that H3 is an induced subgraph of Γ
and it is a subdivision of G where each edge is subdivided an even number of times.

Let α(G) denote the size of the largest independent set in G. For each edge uv of G, let 2kuv
be the number of internal vertices in the path ϕ3(uv). Then α(H3) = α(G) +

∑
uv∈E(G) kuv.
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Figure 3: Choosing the parity of paths.

Figure 4: The point set Pm and the boxes box(p), with p ∈ Pm, for m = 9.

Indeed, we can obtain H3 from G by repeatedly replacing an edge by a 3-edge path, i.e., making
2 subdivisions on the same edge. Moreover, any such replacement increases the size of the largest
independent set by exactly 1.

It follows that the problem Independent Set is NP-complete in induced subgraphs of the
triangular grid Γ. This is precisely the problem Independent Set on Induced Triangular
Grid, where we take A to be the set of vertices defining the induced subgraph.

3.2 The Point Set

Let m ≥ 3 be an arbitrary integer and consider the point set Pm defined by (see Figure 4)

Pm = {(x, y, z) ∈ N3 | x+ y + z = m}.

Standard induction shows that the set Pm has 1 + 2 + · · ·+ (m− 2) = (m− 1)(m− 2)/2 points
and that

µ(Pm) = vol

 ⋃
p∈Pm

box(p)

 = m(m− 1)(m− 2)/6.

This last number appears as sequence A000292, tetrahedral (or triangular pyramidal) numbers,
in [27].
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Figure 5: The point q = p+ ∆ε and the set diff(q).

Consider the real number ε = 1/4m2, and define the vector ∆ε = (ε, ε, ε). Note that ε is
much smaller than 1. For each point p ∈ Pm−1, consider the point p+ ∆ε, see Figure 5. Let us
define the set Qm to be

Qm = {p+ ∆ε | p ∈ Pm−1}.

It is clear that Qm has |Pm−1| = (m− 2)(m− 3)/2 points, for m ≥ 3. The points of Qm lie on
the plane x+ y + z = m− 1 + 3ε.

For each point q of Qm define

diff(q) = U
(
Pm ∪ {q}

)
\ U
(
Pm
)

=

 ⋃
p∈Pm∪{q}

box(p)

 \
 ⋃
p∈Pm

box(p)

 .

Note that diff(q) is the union of 3 boxes of size ε × ε × 1 and a cube of size ε × ε × ε, see
Figure 5. To get the intuition for the following lemma, see Figure 6.

Lemma 3.2. Consider any Q′ ⊆ Qm.

• If the sets diff(q), for all q ∈ Q′, are pairwise disjoint, then µ(Pm ∪Q′) = µ(Pm) + |Q′| ·
(3ε2 + ε3).

• If Q′ contains two points q0 and q1 such that diff(q0) and diff(q1) intersect, then µ(Pm ∪
Q′) < µ(Pm) + |Q′| · (3ε2 + ε3).

Proof. Note that for each q ∈ Qm we have

µ(Pm ∪ {q})− µ(Pm) = vol(diff(q)) = 3ε2 + ε3.

If the sets {diff(q) | q ∈ Q′} are pairwise disjoint then

µ(Pm ∪Q′) = µ(Pm) + vol

 ⋃
q∈Q′
diff(q)


= µ(Pm) +

∑
q∈Q′
vol(diff(q))

= µ(Pm) + |Q′| ·
(
3ε2 + ε3

)
.
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Figure 6: The sets diff(q) for all q ∈ Qm.

Consider now the case when Q′ contains two points q0 and q1 such that diff(q0) and diff(q1)
intersect. The geometry of the point set Q′ implies that diff(q0) and diff(q1) intersect in a
cube of size ε× ε× ε, see Figure 6. Therefore, we have

µ(Pm ∪Q′) = µ(Pm) + vol

 ⋃
q∈Q′
diff(q)


≤ µ(Pm) +

∑
q∈Q′
vol(diff(q))− vol(diff(q0) ∩ diff(q1))

= µ(Pm) + |Q′| ·
(
3ε2 + ε3

)
− ε2

< µ(Pm) + |Q′| ·
(
3ε2 + ε3

)
.

We can define naturally a graph Tm on the set Qm by using the intersection of the sets
diff(·). The vertex set of Tm is Qm, and two points q, q′ ∈ Qm define an edge qq′ of Tm if
and only if diff(q) and diff(q′) intersect, see Figure 7. Simple geometry shows that Tm is
isomorphic to a part of the triangular grid Γ. Thus, choosing m large enough, we can get an
arbitrarily large portion of the triangular grid Γ. Note that a subset of vertices Q′ ⊆ Qm is
independent in Tm if and only if the sets {diff(q) | q ∈ Q′) are pairwise disjoint.

We next show that picking points in Pm has higher priority than picking points in Qm.

Lemma 3.3. Let P ′ be a subset of Pm such that Pm\P ′ is not empty. Then µ(P ′∪Qm) < µ(Pm).

Proof. Assume that Pm \ P ′ contains exactly one point, denoted by p. Having a smaller set P ′

can only decrease the value of µ(P ′ ∪Qm). Then

µ(P ′) = µ(Pm)− 1.

7



Figure 7: The graph Tm for m = 9.

Consider the sets of 3 points

Q1
m(p) = {(px − 1, py, pz) + ∆ε, (px, py − 1, pz) + ∆ε, (px, py, pz − 1) + ∆ε} ⊆ Qm,

Q2
m(p) = {(px − 1, py − 1, pz + 1) + ∆ε, (px + 1, py − 1, pz − 1) + ∆ε,

(px − 1, py + 1, pz − 1) + ∆ε} ⊆ Qm.

Figure 8 is useful for the following computations. For each point q ∈ Q1
m(p) we have

µ(P ′ ∪ q) = µ(P ′) + vol(diff(q)) + ε.

For each point q ∈ Q2
m(p) we have

µ(P ′ ∪ q) = µ(P ′) + vol(diff(q)) + ε2.

Using that ε2 ≤ ε because 0 < ε < 1, we get

∀q ∈ Q1
m(p) ∪Q2

m(p) : µ(P ′ ∪ q) ≤ µ(P ′) + vol(diff(q)) + ε.

For all points q of Qm \ (Q1
m(p) ∪Q2

m(p)) we have

µ(P ′ ∪ q) = µ(P ′) + vol(diff(q)).

We thus have

µ(P ′ ∪Qm) ≤ µ(P ′) +
∑
q∈Qm

vol(diff(q)) +
∑

q∈Q1
m(p)∪Q2

m(p)

ε

= µ(Pm)− 1 + |Qm| · (3ε2 + ε3) + 6 · ε

≤ µ(Pm)− 1 +
(m− 2)(m− 3)

2
· 4 · ε+ 6 · ε

< µ(Pm),

where the last step uses ε = 1/4m2.
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Figure 8: Image for the proof of Lemma 3.3. The point p of Pm that is missing in P ′ is indicated
with a white cross. Left: the contribution of points from Q1

m(p). Right: the contribution of
points from Q2

m(p).

3.3 The Reduction

We are now ready to prove NP-completeness of 3d Volume Selection.

Theorem 3.4. The problem 3d Volume Selection is NP-complete.

Proof. It is obvious that the problem is in NP. To show hardness we reduce from the problem
Independent Set Induced Triangular Grid, shown to be NP-complete in Lemma 3.1.

Consider an instance (A, `) to Independent Set on Induced Triangular Grid, where
A is a subset of the vertices of the triangular grid Γ and ` is an integer. Take m large enough
so that Tm is isomorphic to an induced subgraph of Γ that contains A. Recall that ε = 1/4m2.
For each vertex v of Tm let ψΓ(v) be the corresponding vertex of Γ. For each subset B of A, let
Qm(B) be the subset of Tm that corresponds to B, that is, Qm(B) = {q ∈ Qm | ψΓ(q) ∈ B}.

Consider the set of points P = Pm∪Qm(A), the parameter k = (m−1)(m−2)/2+`, and the
value V = m(m−1)(m−2)

6 + ` · (3ε2 + ε3). We claim that (A, `) is a yes-instance for Independent
Set on Induced Triangular Grid if and only if (P, k, V ) is a yes-instance for 3d Volume
Selection.

If (A, `) is a yes-instance for Independent Set on Induced Triangular Grid, there is a
subset B ⊆ A of ` independent vertices in Γ. This implies that Qm(B) is an independent set in
Tm, that is, the sets {diff(q) | q ∈ Qm(B)} are pairwise disjoint. Lemma 3.2 then implies that

µ(Pm ∪Qm(B)) = µ(Pm) + |B| · (3ε2 + ε3)

=
m(m− 1)(m− 2)

6
+ ` · (3ε2 + ε3)

= V.

Therefore Pm ∪Qm(B) is a subset of P with |Pm|+ |B| = (m− 1)(m− 2)/2 + ` = k points such
that µ(Pm ∪Qm(B)) = V . It follows that (P, k, V ) is a yes-instance for 3d Volume Selection.

Assume now that (P, k, V ) is a yes-instance for 3d Volume Selection. This means that P
contains a subset Q of k points such that

µ(Q) ≥ V =
m(m− 1)(m− 2)

6
+ ` · (3ε2 + ε3) = µ(Pm) + ` · (3ε2 + ε3) > µ(Pm).
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Because of Lemma 3.3, it must be that Pm is contained in Q, as otherwise we would have
µ(Q) < µ(Pm). Since we have Pm ⊂ Q and P = Pm ∪Qm(A), we obtain that Q is Pm ∪Qm(B)
for some B ⊆ A. Moreover, |B| = k− |Pm| = `. By Lemma 3.2, if Qm(B) is not an independent
set in Tm, we have

µ(Q) = µ(Pm ∪Qm(B)) < µ(Pm) + `(3ε2 + ε) = V,

which contradicts the assumption that µ(Q) ≥ V . Therefore it must be that Qm(B) is an
independent set in Tm. It follows that B ⊂ A has size ` and forms an independent set in Γ, and
thus (A, `) is a yes-instance for Independent Set on Induced Triangular Grid.

4 Exact Algorithm in 3 Dimensions

In this section we design an algorithm to solve Volume Selection in 3 dimensions in time
nO(
√
k). The main insight is that, for an optimal solution Q∗, the boundary of U(Q∗) is a planar

graph with O(k) vertices, and therefore has a balanced separator with O(
√
k) vertices. We would

like to guess the separator, break the problem into two subproblems, and solve each of them
recursively. This basic idea leads to a few technical challenges to take care of. One obstacle is
that subproblems should be really independent because we do not want to double count some
covered parts. Essentially, a separator in the graph-theory sense does not imply independent
subproblems in our context. Another technicality is that some of the subproblems that we
encounter recursively cannot be solved optimally; we can only get a lower bound to the optimal
value. However, for the subproblems that define the optimal solution at the higher level of the
recursion, we do compute an optimal solution.

Let P be a set of n points in the positive quadrant of R3. Through our discussion, we
will assume that P is fixed and thus drop the dependency on P and n from the notation. We
can assume that no point of P is dominated by another point of P . Using an infinitesimal
perturbation of the points, we can assume that all points have all coordinates different. Indeed,
we can replace each point p by the point p+ i(ε, ε, ε), where i is a different integer for each point
of P and ε > 0 is an infinitesimal value or a value that is small enough.

Let M be the largest x- or y-coordinate in P , thus M = max{px, py | p ∈ P}. We define σ
to be the square in R2 defined by [−1,M + 1]× [−1,M + 1]. It has side length M + 2.

For each subset Q of P , consider the projection of U(Q) onto the xy-plane. This defines
a plane graph, which we denote by G(Q), and which we define precisely in the following, see
Figure 9. We consider G(Q) as a geometric, embedded graph where each vertex is a point and
each edge is (drawn as) a straight-line segment, in fact, a horizontal or vertical straight-line
segment on the xy-plane. There are different types of vertices in G(Q). The projection of each
point q ∈ Q defines a vertex, which we denote by vq. When for two distinct points q, q′ ∈ Q the
boundary of the projection of the boxes box(q) and the boundary of the projection of box(q′)
intersect outside the x- and y-axis, then they do so exactly once because of our assumption on
general position, and this defines a vertex that we denote by vq,q′ . (Not all pairs (q, q′) define
such a vertex.) Additionally, each point q ∈ Q defines a vertex vx,q at position (qx, 0) and a
vertex vy,q at position (0, qy). Finally, we have a vertex vx,y placed at the origin. The vertices of
G(Q) are connected in a natural way: the boundary of the visible part of box(q) connects the
points that appear on that boundary. In particular, the vertices on the x-axis are connected and
so do those on the y-axis. Since we assume general position, each vertex uniquely determines
the boxes that define it. Each vertex q ∈ Q defines a bounded face f(q,Q) in G(Q). This is the
projection of the face on the boundary of U(Q) contained in the plane {(x, y, z) ∈ R3 | z = qz},
see Figure 9, right. In fact, each bounded face of G(Q) is f(q,Q) for some q ∈ Q.

We triangulate each bounded face f(q,Q) of G(Q) canonically, as follows, see Figure 10.
The boundary of a bounded face f(q,Q) is made of a top horizontal segment t(q,Q) (which
may contain several edges of the graph), a right vertical segment r(q,Q) (which may contain
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Figure 9: A sample of the different vertices in G(Q) and the faces of G(Q).

t(q,Q)

r(q,Q)

γ(q,Q)
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vt(q,Q)

f(q,Q)

Figure 10: Triangulating a bounded face of G(Q).

several edges of the graph), and a monotone path γ(q,Q) from the top, left corner to the bottom,
right corner. Such a monotone path γ(q,Q) alternates horizontal and vertical segments and
has non-decreasing x-coordinates and non-increasing y-coordinates. Let vt(q,Q) be the first
interior vertex of γ(q,Q) and let vr(q,Q) be the last interior vertex of γ(q,Q). Note that vq is
the vertex where t(q,Q) and r(q,Q) meet. We add diagonals from vq to all interior vertices of
γ(q,Q), diagonals from vt(q,Q) to all the interior vertices of t(q,Q) and diagonals from vr(q,Q)
to all the interior vertices of r(q,Q). This is the canonical triangulation of the face f(q,Q), and
we apply it to each bounded face of G(Q).

The outer face of G(Q) may also have many vertices. We place on top the square σ, with
vertices {−1,M + 1}2. From the vertices at (−1,−1) and (M + 1,M + 1) we add all possible
edges, while keeping planarity. From the vertex (−1,M + 1) we add the edges to (−1,−1), to
(M + 1,M + 1), and to the highest vertex on the y-axis. Similarly, from the vertex (M + 1,−1)
we add the edges to (−1,−1), to (M + 1,M + 1), and to the rightmost vertex on the x-axis.
With such an operation, the outer face is defined by the boundary of the square σ.

Let T (Q) be the resulting geometric, embedded graph, see Figure 11. The graph T (Q) is
a triangulation of the square σ with internal vertices. It is easy to see that G(Q) and T (Q)
have O(|Q|) vertices and edges. For example, one can argue that G(Q) has |Q|+ 1 faces and no
parallel edges, and the graph T (Q) is a triangulation of G(Q) with 4 additional vertices. To
treat some extreme cases, we also define T (∅) = σ, as a graph, with the diagonal of positive
slope.

A polygonal domain is a subset of the plane defined by a polygon where we remove the
interior of some polygons, which form holes. The combinatorial complexity of a domain D,
denoted by |D|, is the number of vertices and edges used to define it. We say that a polygonal
curve or a family of polygonal curves in R2 is Q-compliant if the edges of of the curves are also
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Figure 11: The graph T (Q).

edges of T (Q). A polygonal domain D is Q-compliant if its boundary is Q-compliant. Note
that a Q-compliant polygonal domain has combinatorial complexity O(|Q|) because the graph
T (Q) has O(|Q|) edges.

Consider a set Q ⊆ P and a Q-compliant polygonal curve γ. Let Pγ be the points of P
that participate in the definition of the vertices on γ. Thus, if vq is in γ, we add q to Pγ ; if
vq,q′ is in γ, we add q and q′ to Pγ ; if vx,q is in γ, we add q to Pγ , and so on. Since each
vertex on γ contributes O(1) vertices to Pγ , we have |Pγ | = O(|γ|). For a family Γ of polygonal
curves we define PΓ = ∪γ∈ΓPγ . For a polygonal domain D with boundary ∂D we then have
|P∂D| = O(|D|).

Lemma 4.1. If γ is a Q-compliant polygonal curve then, for each Q′ with Pγ ⊆ Q′ ⊂ Q, the
curve γ is also Q′-compliant.

Proof. For each edge e of T (Q), the edge e is also contained in T (Q̃) for all Q̃ that contain Pe.
It follows that T (Q′) has all the edges e contained in γ, and thus T (Q′) contains γ.

We are going to use dynamic programming based on planar separators of T (Q∗) for an
optimal solution Q∗. A valid tuple to define a subproblem is a tuple (S,D, `), where S ⊂ P ,
D is an S-compliant polygonal domain, and ` is a positive integer. The tuple (S,D, `) models a
subproblem where the points of S are already selected to be part of the feasible solution, D is a
S-compliant domain so that we only care about the volume inside the cylinder D × R, and we
can still select ` points from P ∩ (D × R). We have two different values associated to each valid
tuple, depending on which subsets Q of vertices from P ∩D can be selected:

Φfree(S,D, `) = max{vol(U(S ∪Q) ∩ (D × R)) | Q ⊂ P ∩ (D × R), |Q| ≤ `}.
Φcomp(S,D, `) = max{vol(U(S ∪Q) ∩ (D × R)) | Q ⊂ P ∩ (D × R), |Q| ≤ `,

D is (S ∪Q)-compliant}.

Obviously, we have for all valid tuples (S,D, `)

Φcomp(S,D, `) ≤ Φfree(S,D, `).

On the other hand, we are interested in the valid tuple (∅, σ, k), for which we have Φfree(∅, σ, k) =
Φcomp(∅, σ, k).
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We would like to get a recursive formula for Φfree(S,D, `) or Φcomp(S,D, `) using planar
separators. More precisely, we would like to use a separator in T (S ∪Q∗) for an optimal solution,
and then branch on all possible such separators. However, none of the two definitions seem
good enough for this. If we would use Φfree(S,D, `), then we divide into domains that may
have too much freedom and the interaction between subproblems gets complex. If we would
use Φcomp(S,D, `), then merging the problems becomes an issue. Thus, we take a mixed route
where we argue that, for the valid tuples that are relevant for finding the optimal solution, we
actually have Φfree = Φcomp.

We start showing how to compute Φcomp(S,D, `) in the obvious way. This will be used to
solve the base cases of the recursion.

Lemma 4.2. We can compute Φcomp(S,D, `) in O(n`+2) time.

Proof. We enumerate all the subsets Q of P ∩D with ` points, and for each such Q we proceed
as follows. We first build T (S ∪Q) and check whether D is contained in the edge set of T (S ∪Q).
If it is not, then D is not (S ∪Q)-compliant and we move to the next subset Q. Otherwise, we
compute U(S ∪Q), its restriction to D × R, and its volume. Standard approaches can be used
to do this in O((|S|+ |Q|+ |D|)2) = O(n2) time, for example working with the projection onto
the xy-plane. (The actual degree of the polynomial is not relevant.) This procedure enumerates
O(|P |`) = O(n`) subsets of P and for each one spends O(n2) time. The result follows.

A valid partition π of (S,D, `) is a collection of valid tuples π = {(S1, D1, `1), . . . , (St, Dt, `t)}
such that

• S1 = · · · = St = S ∪ S0 for some set S0 ⊂ P ∩D;

• |S0| = O
(√
|S|+ `

)
;

• the domains D1,. . . , Dt have pairwise disjoint interiors and D =
⋃
iDi;

• ` = |S0|+
∑

i `i; and

• `i ≤ 2`/3 for each i = 1, . . . , t.

Let Π(S,D, `) be the family of valid partitions for the tuple (S,D, `). We remark that different
valid partitions may have different cardinality.

Lemma 4.3. For each valid tuple (S,D, `) we have

Φfree(S,D, `) ≥ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φfree(S
′, D′, `′).

Proof. For any valid partition π ∈ Π(S,D, `), let Sπ be the smallest set such that S′ = S ∪ Sπ
for all tuples (S′, D′, `′) ∈ π. This means that Sπ = S′ \ S for an arbitrary (S′, D′, `′) ∈ π. For
each such tuple (S′, D′, `′) ∈ π, let Q∗(S′, D′, `′) be an optimal solution to Φfree(S

′, D′, `′), and
define

Qπ = Sπ ∪
⋃

(S′,D′,`′)∈π

Q∗(S′, D′, `′).

Then from the properties of valid partitions we have

|Qπ| = |Sπ|+
∑

(S′,D′,`′)∈π

|Q∗(S′, D′, `′)| = |Sπ|+
∑

(S′,D′,`′)∈π

`′ = `.

Obviously, Qπ is contained in P ∩D because D contains P ∩Di.
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We have seen that for each valid partition π ∈ Π(S,D, `) the set Qπ is a feasible solution
considered in the problem Φfree(S,D, `). Therefore

Φfree(S,D, `) ≥ max
π∈Π(S,D,`)

vol(U(S ∪Qπ) ∩ (D × R)).

Using that the interiors of {D′ | (S′, D′, `′) ∈ π} are pairwise disjoint, and then using that
S′ ∪Q∗(S′, D′, `′) is contained in S ∪Qπ for all (S′, D′, `′) ∈ π, we obtain

Φfree(S,D, `) ≥ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

vol(U(S ∪Qπ) ∩ (D′ × R))

≥ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

vol(U(S′ ∪Q∗(S′, D′, `′)) ∩ (D′ × R)).

Since Q∗(S′, D′, `′) is optimal for Φfree(S
′, D′, `′), we obtain the desired

Φfree(S,D, `) ≥ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φfree(S
′, D′, `′).

Lemma 4.4. For each valid tuple (S,D, `) we have

Φcomp(S,D, `) ≤ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φcomp(S′, D′, `′).

Proof. Let Q∗ be the optimal solution defining Φcomp(S,D, `). Thus, Q∗ ⊆ P ∩D has at most `
points, D is (S ∪Q∗)-compliant, and

Φcomp(S,D, `) = vol(U(S ∪Q∗) ∩ (D × R)).

Consider the triangulation T (S ∪ Q∗). This is a 3-connected planar graph. Recall that the
boundary of D is contained in T (S ∪Q∗) because D is (S ∪Q∗)-compliant. Note that T (S ∪Q∗)
has O(|S ∪Q∗|) = O(|S|+ `) vertices.

Assign weight 1/|Q∗| to the vertices vq, q ∈ Q∗, and weight 0 to the rest of vertices in
T (S ∪Q∗). The sum of the weights is obviously 1. Because of the cycle-separator theorem of
Miller [25], there is a cycle γ in T (S ∪Q∗) with O(

√
|S|+ `) vertices, such that the interior of γ

has at most 2|Q∗|/3 vertices of Q∗ and the exterior of γ has at most 2|Q∗|/3 vertices of Q∗.
Since γ has O(

√
|S|+ `) vertices, the set Pγ also has O(

√
|S|+ `) vertices. Note that

Pγ ⊆ S ∪Q∗. Take S0 = Pγ \ S, so that S ∪ Pγ is the disjoint union of S and S0. Because of
Lemma 4.1, the domain D and the cycle γ are (S ∪ S0)-compliant.

The cycle γ breaks the domain D into at least 2 domains. Let D = {D1, . . . , Dt} be those
domains. Since the boundary of each domain Di ∈ D is contained in ∂D ∪ γ, each domain
Di ∈ D is (S ∪ S0)-compliant. For each domain Di ∈ D, let Q∗i = {q ∈ Q∗ \ (S ∪ S0) | vq ∈ Di}
and let `i = |Q∗i |. Since the interior of Di is either in the interior or the exterior of γ, we have
`i ≤ 2`/3 for each Di ∈ D. Moreover, |`| = |S0|+

∑
i `i because the points q of Q∗ that could be

counted twice have the corresponding vertex vq on γ, but then they also belong to Pγ ⊂ S ∪ S0

and thus cannot belong to Q∗i .
The properties we have derived imply that πγ = {(S ∪ S0, Di, `i) | i = 1, . . . , t} is a valid

partition of (S,D, `), and thus πγ ∈ Π(S,D, `). Moreover Q∗i is a feasible solution for the
problem Φcomp(S ∪ S0, Di, `i). Indeed, since Di is (S ∪ S0)-compliant and (S ∪Q∗)-compliant,
Lemma 4.1 implies that Di is also (S ∪ S0 ∪Q∗i )-compliant.

Note that, for each (S ∪ S0, Di, `i) in the partition πγ we have

vol(U(S ∪Q∗) ∩ (Di × R)) = vol(U(S ∪ S0 ∪Q∗i ) ∩ (Di × R)). (1)
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Indeed, for a point q ∈ Q∗ \ (S ∪ S0 ∪Q∗i ), box(q) may contribute to the union U(S ∪ Pγ ∪Q∗),
but when projected onto the xy-plane it lies outside the domain Di because the face f(q, S ∪Q∗)
lies outside Di.

Therefore we obtain

Φcomp(S,D, `) = vol(U(S ∪Q∗) ∩ (D × R)) ≤
∑
i

vol(U(S ∪Q∗) ∩ (Di × R)),

where we used D =
⋃
iDi. With equation (1), and then using that Q∗i is feasible for Φcomp(S ∪

S0, Di, `i), we get

Φcomp(S,D, `) ≤
∑
i

vol(U(S ∪ S0 ∪Q∗i ) ∩ (Di × R))

≤
∑
i

Φcomp(S ∪ S0, Di, `i) =
∑

(S′,D′,`′)∈πγ

Φcomp(S′, D′, `′).

The statement now follows since πγ ∈ Π(S,D, `).

Our dynamic programming algorithm closely follows the inequality of Lemma 4.4. Specifically,
we define for each valid tuple (S,D, `) the value

Ψcomp(S,D, `) =


Φcomp(S,D, `) if ` ≤ O(

√
k);

max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Ψcomp(S′, D′, `′), otherwise.

Lemma 4.5. For each valid tuple (S,D, `) we have

Φcomp(S,D, `) ≤ Ψcomp(S,D, `) ≤ Φfree(S,D, `).

Proof. We show this by induction on `. When ` ≤ O(
√
k), then from the definitions we have

Ψcomp(S,D, `) = Φcomp(S,D, `) ≤ Φfree(S,D, `).

This covers the base cases. For larger values of `, we use Lemma 4.4, the induction hypothesis,
and the definition of Ψcomp(·) to derive

Φcomp(S,D, `) ≤ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φcomp(S′, D′, `′)

≤ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Ψcomp(S′, D′, `′)

= Ψcomp(S,D, `).

Also for larger values of `, we use the definition of Ψcomp(·), the induction hypothesis, and
Lemma 4.3, to derive

Ψcomp(S,D, `) = max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Ψcomp(S′, D′, `′)

≤ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φfree(S
′, D′, `′)

≤ Φfree(S,D, `).

Since we know that Φfree(∅, σ, k) = Φcomp(∅, σ, k), Lemma 4.5 implies that Ψcomp(∅, σ, k) =
Φfree(∅, σ, k). Hence, it suffices to compute Ψcomp(∅, σ, k) using its recursive definition. In the
remainder, we bound the running time of this algorithm.
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Theorem 4.6. In 3 dimensions, Volume Selection can be solved in time nO(
√
k).

Proof. We compute Ψcomp(∅, σ, k) using its recursive definition. We need a bound on the number
of different subproblems, defined by valid tuples (S,D, `) that appear in the recursion. We will
see that there are nO(

√
k) different subproblems.

Starting with (S1, D1, `1) = (∅, σ, k), consider a sequence of valid tuples (S1, D1, `1), (S2, D2, `2),
. . . such that, for i ≥ 2, the tuple (Si, Di, `i) appears in some valid partition of (Si−1, Di−1, `i−1).
Because of the properties of valid partitions, we have `i ≤ 2`i−1/3 and |Si−1| ≤ |Si| ≤
|Si−1|+O(

√
|Si|+ `i−1).

Let i0 be the first index i with |Si| > `i. Consider first the indices i < i0, where |Si| ≤ `i.
Then |Si| ≤ |Si−1|+O(

√
`i−1) and it follows by induction that

|Si| ≤ |S1|+O(
√
`1) +O(

√
`2) + · · ·+O(

√
`i−1)

≤ 0 +O

(∑
j<i

√
`j

)
≤ O

(∑
j<i

√(
2

3

)j
`1

)
≤ O

(√
`1

)
≤ O

(√
k
)
,

where we have used that `1 = k. By definition of i0, for i > i0 we have |Si| ≤ |Si0 | + `i0 ≤
2|Si0 | = O(

√
k). Therefore, for all indices i we have |Si| = O(

√
k).

For each valid tuple that appears in the recursive computation of Ψcomp(∅, σ, k), there is
some sequence of valid tuples, as considered before, that contains it. It follows that, for all valid
tuples (S,D, `) considered through the algorithm we have |S| = O(

√
k).

Let us give an upper bound on the valid tuples (S,D, `) that appear in the computation.
There are nO(

√
k) choices for the set S. Once we have fixed S, the domain D has to be S-

compliant, and this means that we have to select edges in the triangulated graph T (S). Since
T (S) has O(|S|) = O(

√
k) vertices and edges, there are at most 2|E(T (S))| = 2O(

√
k) possible

choices for D. Finally, we have k options for the value `. Therefore, there are at most

nO(
√
k) · 2O(

√
k) · k = nO(

√
k)

valid tuples (S,D, `) that appear in the recursion.
We next bound how much time we spend for each tuple. Consider a valid tuple (S,D, `)

that appears through the recursion. If ` = O(
√
k), we compute Ψcomp(S,D, `) using Lemma 4.2

in nO(`) = nO(
√
k) time. Otherwise, to compute Ψcomp(S,D, `) we have to iterate over all the

valid partitions Π(S,D, `). There are nO(
√
k) such valid partitions. Indeed, we have to select the

subset S0 ⊂ D ∩ P with O(
√
k) vertices and then the partitioning of D into regions D1, . . . , Dt

that are (S ∪S0)-compliant. This can be bounded by nO(
√
k). (Alternatively, we can iterate over

the nO(
√
k) possible options to define the separating cycle γ used in the proof of Lemma 4.4.)

We conclude that in the computation of Ψcomp(∅, σ, k) we have to consider nO(
√
k) valid

tuples and for each one of them computing Ψcomp(·) takes nO(
√
k) time. The result follows.

We only described an algorithm that computes VolSel(P, k), i.e., the maximal volume
realized by any size-k subset of P . It is easy to augment the algorithm with appropriate
bookkeeping to also compute an actual optimal subset.

5 Efficient Polynomial-Time Approximation Scheme

In this section we design an approximation algorithm for Volume Selection.

Theorem 5.1. Given a point set P of size n in Rd>0, 0 ≤ k ≤ n, and 0 < ε ≤ 1/2, we can
compute a (1± ε)-approximation of VolSel(P, k) in time O(n · ε−d(log n+ k + 2O(ε−2 log 1/ε)d)).
We can also compute a set S ⊆ P of size at most k such that µ(S) is a (1− ε)-approximation of
VolSel(P, k) in the same time.
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We also discuss an improvement to time O
(
2O(ε−2 log 1/ε)d · n log n

)
in Section 5.4.

The approach is based on the shifting technique of Hochbaum and Maass [21]. However,
there are some non-standard aspects in our application. It is impossible to break the problem
into independent subproblems because all the anchored boxes intersect around the origin. We
instead break the input into subproblems that are almost independent. To achieve this, we use
an exponential grid, instead of the usual regular grid with equal-size cells. Alternatively, this
could be interpreted as using a regular grid in a log-log plot of the input points.

Throughout this section we need two numbers λ, τ ≈ d/ε. Specifically, we define τ as the
smallest integer larger than d/ε, and λ as the smallest power of (1− ε)−1/d larger than d/ε. We
consider a partitioning of the positive quadrant Rd>0 into regions of the form

R(x̄) :=
d∏
i=1

[λxi , λxi+1) for x̄ = (x1, . . . , xd) ∈ Zd.

On top of this partitioning we consider a grid, where each grid cell contains (τ − 1)d regions
and the grid boundaries are thick, i.e., two grid cells do not touch but have a region in between.
More precisely, for any offset ¯̀= (`1, . . . , `d) ∈ Zd, we define the grid cells

C¯̀(ȳ) :=
d∏
i=1

[λτ ·yi+`i+1, λτ(yi+1)+`i) for ȳ = (y1, . . . , yd) ∈ Zd.

Note that each grid cell indeed consists of (τ − 1)d regions, and the space not contained in any
grid cell (i.e., the grid boundaries) consists of all regions R(x̄) with xi ≡ `i (mod τ) for some
1 ≤ i ≤ d.

Our approximation algorithm now works as follows (cf. the pseudocode given below).
(1) Iterate over all grid offsets ¯̀ ∈ [τ ]d. This is the key step of the shifting technique of

Hochbaum and Maass [21].
(2) For any choice of the offset ¯̀, remove all points not contained in any grid cell, i.e., remove

points contained in the thick grid boundaries. This yields a set P ′ ⊆ P of remaining points.
(3) The grid cells now induce a partitioning of P ′ into sets P ′1, . . . , P

′
m, where each P ′i is

the intersection of P ′ with a grid cell Ci (with Ci = C¯̀(ȳ(i)) for some ȳ(i) ∈ Zd). Note that
these grid cell subproblems P ′1, . . . , P

′
m are not independent, since any two boxes have a common

intersection near the origin, no matter how different their coordinates are. However, we will see
that we may treat P ′1, . . . , P

′
m as independent subproblems since we only want an approximation.

(4) We discretize by rounding down all coordinates of all points in P ′1, . . . , P
′
m to powers of3

(1 − ε)1/d. We can remove duplicate points that are rounded to the same coordinates. This
yields sets P̃1, . . . , P̃m. Note that within each grid cell in any dimension the largest and smallest
coordinate differ by a factor of at most λτ−1. Hence, there are at most log(1−ε)−1/d(λτ−1) =

O(ε−2 log 1/ε) different rounded coordinates in each dimension, and thus the total number of
points in each P̃i is O(ε−2 log 1/ε)d.

(5) Since there are only few points in each P̃i, we can precompute all Volume Selection
solutions on each set P̃i, i.e., for any 1 ≤ i ≤ m and any 0 ≤ k′ ≤ |P̃i| we precompute
VolSel(P̃i, k′). We do so by exhaustively enumerating all 2|P̃i| subsets S of P̃i, and for each
one computing µ(S) by inclusion-exclusion in time O(2|S|) (see, e.g., [34, 35]). This runs in total
time O(m · 2O(ε−2 log 1/ε)d) = O(n · 2O(ε−2 log 1/ε)d).

(6) It remains to split the k points that we want to choose over the subproblems P̃1, . . . , P̃m.
As we treat these subproblems independently, we compute

V (¯̀) := max
k1+...+km≤k

m∑
i=1

VolSel(P̃i, ki).

3Here we use that λ is a power of (1− ε)−1/d, to ensure that rounded points are contained in the same cells as
their originals.

17



Note that if the subproblems would be independent, then this expression would yield the exact
result. We argue below that the subproblems are sufficiently close to being independent that this
expression yields a (1− ε)-approximation of VolSel(

⋃m
i=1 P̃i, k). Observe that the expression

V (¯̀) can be computed efficiently by dynamic programming, where we compute for each i and k′

the following value:

T [i, k′] = max
k1+...+ki≤k′

i∑
i′=1

VolSel(P̃i′ , ki′).

The following rule computes this table (see the pseudocode below for further details):

T [i, k′] = max
0≤κ≤min{k′,|P̃i|}

(
VolSel(P̃i, κ) + T [i− 1, k′ − κ]

)
.

(7) Finally, we optimize over the offset ¯̀ by returning the maximal V (¯̀).

This finishes the description of the approximation algorithm. In pseudocode, this yields the
following procedure.

(1) Iterate over all offsets ¯̀= (`1, . . . , `d) ∈ [τ ]d:

(2) P ′ := P . Delete any p from P ′ that is not contained in any grid cell C¯̀(ȳ).

(3) Partition P ′ into P ′1, . . . , P
′
m, where P ′i = P ′ ∩ Ci for some grid cell Ci.

(4) Round down all coordinates to powers of (1− ε)1/d and remove duplicates, obtaining
P̃1, . . . , P̃m.

(5) Compute H[i, k′] := VolSel(P̃i, k′) for all 1 ≤ i ≤ m, 0 ≤ k′ ≤ |P̃i|.
(6) Compute V (¯̀) := maxk1+...+km≤k

∑m
i=1VolSel(P̃i, ki) by dynamic programming:

– Initialize T [i, k′] = 0 for all 0 ≤ i ≤ m, 0 ≤ k′ ≤ k.
– For i = 1, . . . ,m, for κ = 0, . . . , |P̃i|, and for k′ = κ, κ+ 1, . . . , k:

– Set T [i, k′] := max{T [i, k′], H[i, κ] + T [i− 1, k′ − κ]}
– Set V (¯̀) := T [m, k].

(7) Return max¯̀V (¯̀).

5.1 Running Time

Step (1) yields a factor τd = O(1
ε )d in the running time. Since we can compute for each point in

constant time the grid cell it is contained in, step (2) runs in time O(n). For the partitioning in
step (3), we use a dictionary data structure storing all ȳ ∈ Zd with nonempty P ′ ∩ C¯̀(ȳ). Then
we can assign any point p ∈ P ′ to the other points in its cell by one lookup in the dictionary, in
time O(log n). Thus, step (3) can be performed in time O(n log n). Step (4) immediately works
in the same running time. For step (5) we already argued above that it can be performed in
time O

(
n2O(ε−2 log 1/ε)d

)
. Finally, from the pseudocode for step (6) we read off a running time of

O(
∑m

i=1 |P̃i| · k) = O(nk). The total running time is thus

O
(
n · ε−d

(
log n+ k + 2O(ε−2 log 1/ε)d

))
.

5.2 Correctness

The following lemmas show that the above algorithm indeed computes a (1±O(ε))-approximation
of VolSel(P ). Reducing ε by an appropriate constant factor then yields a (1±ε)-approximation.
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Lemma 5.2 (Removing grid boundaries). Let P be a point set and let 0 ≤ k ≤ |P |. Remove all
points contained in grid boundaries with offset ¯̀ to obtain the point set P¯̀ := P ∩

⋃
ȳ∈Zd C¯̀(ȳ).

Then for all ¯̀∈ Zd we have

VolSel(P¯̀, k) ≤ VolSel(P, k),

and for some ¯̀∈ Zd we have

VolSel(P¯̀, k) ≥ (1− ε)VolSel(P, k).

Proof. Since we only remove points, the first inequality is immediate. For the second inequality
we use a probabilistic argument. Consider an optimal solution, i.e., a set S ⊆ P of size at
most k with µ(S) = VolSel(P, k). Let S¯̀ := S ∩ P¯̀. For a uniformly random offset ¯̀∈ [τ ]d,
consider the probability that a fixed point p ∈ S survives, i.e., we have p ∈ S¯̀. Consider the
region R(x̄) =

∏d
i=1[λxi , λxi+1) containing point p, where x̄ = (x1, . . . , xd) ∈ Zd. Recall that

the grid boundaries consist of all regions R(x̄) with xi ≡ `i (mod τ) for some 1 ≤ i ≤ d. For a
uniformly random ¯̀, for fixed i the equation xi ≡ `i (mod τ) holds with probability 1/τ . By
a union bound, the probability that at least one of these equations holds for 1 ≤ i ≤ d is at
most d/τ ≤ ε (by definition of τ as the smallest integer larger than d/ε). Hence, p survives with
probability at least 1− ε.

Now for each point q ∈ U(S) identify a point s(q) ∈ S dominating q. Since s(q) survives in
S¯̀ with probability at least 1− ε, the point q is dominated by S¯̀ with probability at least 1− ε.
By integrating over all q ∈ U(S) we thus obtain an expected volume of

E¯̀[µ(S¯̀)] =

∫
U(S)

Pr[q is dominated by S¯̀]dq ≥
∫
U(S)

(1− ε)dq = (1− ε)µ(S).

It follows that for some ¯̀ we have µ(S¯̀) ≥ E[µ(S¯̀)] ≥ (1− ε)µ(S). For this ¯̀ we have

VolSel(P¯̀, k) ≥ µ(S¯̀) ≥ (1− ε)µ(S) = (1− ε)VolSel(P, k),

where the first inequality uses |S¯̀| ≤ k and the definition of VolSel as maximizing over
all subsets, and the last inequality holds since we picked S as an optimal solution, realizing
VolSel(P, k).

Lemma 5.3 (Rounding down coordinates). Let P be a point set, and let P̃ be the same point
set after rounding down all coordinates to powers of (1− ε)−1/d. Then for any k

(1− ε)VolSel(P, k) ≤ VolSel(P̃ , k) ≤ VolSel(P, k).

Proof. Let P̂ be the set P with all coordinates scaled down by a factor α := (1−ε)1/d. By a simple
scaling invariance, we have VolSel(P̂ , k) = αd ·VolSel(P, k) = (1 − ε)VolSel(P, k). Note
that for any point p̃ ∈ P̃ the corresponding point p ∈ P dominates p̃, and the corresponding point
p̂ ∈ P̂ is dominated by p̃. Now pick any subset S̃ of P̃ of size k, and let S, Ŝ be the corresponding
subsets of P, P̂ . Then we have U(Ŝ) ⊆ U(S̃) ⊆ U(S), which implies µ(Ŝ) ≤ µ(S̃) ≤ µ(S), and
thus

(1− ε)VolSel(P, k) = VolSel(P̂ , k) ≤ VolSel(P̃ , k) ≤ VolSel(P, k).

In the proof of the next lemma it becomes important that we have used the thick grid
boundaries, with a separating region, when defining the grid cells.

Lemma 5.4 (Treating subproblems as independent I). For any offset ¯̀, let S1, . . . , Sm be point
sets contained in different grid cells with respect to offset ¯̀. Then we have

(1− ε)
m∑
i=1

µ(Si) ≤ µ
( m⋃
i=1

Si

)
≤

m∑
i=1

µ(Si).
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Proof. The second inequality is essentially the union bound. Specifically, for any sets X1, . . . , Xm

the volume of
⋃m
i=1Xi is at most the sum over all volumes of Xi for 1 ≤ i ≤ m. In particular,

this statement holds with Xi = U(Si), which yields the second inequality.
For the first inequality, observe that we obtain the total volume of all points dominated by

S1 ∪ . . .∪ Sm by summing up the volume of all points dominated by Si but not by any Sj , j < i,
for each 1 ≤ i ≤ m, i.e., we have

µ
( m⋃
i=1

Si

)
=

m∑
i=1

(
µ(Si)− vol

(
U(Si) ∩

⋃
j<i

U(Sj)
))

. (2)

Now let C¯̀(ȳ(i)) be the grid cell containing Pi for 1 ≤ i ≤ m, where ȳ(i) = (y
(i)
1 , . . . , y

(i)
d ) ∈ Zd.

We may assume that these cells are ordered in non-decreasing order of y(i)
1 + . . .+ y

(i)
d . Observe

that in this ordering, for any j < i we have y
(j)
t < y

(i)
t for some 1 ≤ t ≤ d. Recall that

C¯̀(ȳ) =
∏d
t=1[λτ ·yt+`t+1, λτ(yt+1)+`t). It follows that each point in

⋃
j<i U(Sj) has t-th coordinate

at most δt := λτ ·yt+`t for some 1 ≤ t ≤ d. Setting Dt := {(z1, . . . , zd) ∈ Rd≥0 | zt ≤ δt}, we thus

have
⋃
j<i U(Sj) ⊆

⋃d
t=1Dt, which yields

vol
(
U(Si) ∩

⋃
j<i

U(Sj)
)
≤ vol

(
U(Si) ∩

d⋃
t=1

Dt

)
≤

d∑
t=1

vol
(
U(Si) ∩Dt

)
. (3)

Let A be the (d−1)-dimensional volume of the intersection of U(Si) with the plane xt = 0. Since
all points in Si have t-th coordinate at least λτ ·yt+`t+1 = λ·δt, we have µ(Si) ≥ A·λ·δt. Moreover,
U(Si) ∩Dt has d-dimensional volume A · δt. Together, this yields vol(U(Si) ∩Dt) ≤ µ(Si)/λ.
With (2) and (3), we thus obtain

µ
( m⋃
i=1

Si

)
≥

m∑
i=1

(
µ(Si)− d · µ(Si)/λ

)
≥ (1− ε)

m∑
i=1

µ(Si),

since λ ≥ d/ε.

Lemma 5.5 (Treating subproblems as independent II). For any offset ¯̀, let P1, . . . , Pm be point
sets contained in different grid cells, and k ≥ 0. Set P :=

⋃m
i=1 Pi. Then we have

(1− ε) · max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki) ≤ VolSel(P, k) ≤ max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki).

Proof. Consider an optimal solution S of VolSel(P, k) and let Si := S ∩ Pi for 1 ≤ i ≤ m.
Then by choice of S as an optimal solution, and by Lemma 5.4, we have

VolSel(P, k) = µ(S) = µ
( m⋃
i=1

Si

)
≤

m∑
i=1

µ(Si).

Since VolSel maximizes over all subsets and
∑m

i=1 |Si| = |S| ≤ k, we further obtain

m∑
i=1

µ(Si) ≤
m∑
i=1

VolSel(Pi, |Si|) ≤ max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki).

This shows the second inequality.
For the first inequality, we pick sets S1, . . . , Sm, where Si ⊆ Pi for all i and

∑m
i=1 |Si| ≤ k,

realizing maxk1+...+km≤k
∑m

i=1VolSel(Pi, ki) =
∑m

i=1 µ(Si). We then argue analogously:

(1− ε) max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki) = (1− ε)
m∑
i=1

µ(Si) ≤ µ
( m⋃
i=1

Si

)
≤ VolSel(P, k).
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Note that the above lemmas indeed prove that the algorithm returns a (1±O(ε))-approximation
to the value VolSel(P, k). In step (2) we delete the points containing the the grid boundaries,
which yields an approximation for some choice of the offset ¯̀ by Lemma 5.2. As we iterate over
all possible choices for ¯̀ and maximize over the resulting volume, we obtain an approximation.
In step (4) we round down coordinates, which yields an approximation by Lemma 5.3. Finally,
in step (6) we solve the problem maxk1+...+km≤k

∑m
i=1VolSel(P̃i, ki), which yields an approxi-

mation to VolSel(
⋃m
i=1 P̃i, k) by Lemma 5.5. All other steps do not change the point set or

the considered problem. The final approximation factor is 1±O(ε).

5.3 Computing an Output Set

The above algorithm only gives an approximation for the value VolSel(P, k), but does not yield
a subset S ⊆ P of size k realizing this value. However, by tracing the dynamic programming
table we can reconstruct the values k1 + . . . + km ≤ k with V (¯̀) =

∑m
i=1VolSel(P̃i, ki). By

storing in step (5) not only the values H[i, k′] but also corresponding subsets S̃i,k′ ⊂ P̃i, we can
thus construct a subset S̃ = S̃1,k1 ∪ . . . ∪ S̃m,km with V (¯̀) =

∑m
i=1 µ(S̃i,ki). Lemma 5.4 now

implies that
µ(S̃) ≥ (1− ε)V (¯̀).

By storing in step (4) for each rounded point an original point, we can construct a set S
corresponding to the rounded points S̃ such that

µ(S) ≥ µ(S̃) ≥ (1− ε)V (¯̀) ≥ (1−O(ε))VolSel(P, k),

and thus S is a subset of P of size at most k yielding a (1−O(ε))-approximation of the optimal
volume VolSel(P, k).

Note that we do not compute the exact volume µ(S) of the output set S. Instead, the
value V (¯̀) only is a (1 +O(ε))-approximation of µ(S). To explain this effect, recall that exactly
computing µ(T ) for any given set T takes time nΘ(d) (under the Exponential Time Hypothesis).
As our running time is O(n2) for any constant d, ε, we cannot expect to compute µ(S) exactly.

5.4 Improved Algorithm

The following improvement was suggested to us by Timothy Chan. For constant d and ε the
algorithm shown above runs in time O(n(k + log n)). The bottleneck for the O(nk)-term is
step (6): Given Hi(k

′) := VolSel(P̃i, k′) for all 1 ≤ i ≤ m, 0 ≤ k′ ≤ |P̃i|, we want to compute

max
k1+...+km≤k

m∑
i=1

Hi(ki).

Note that it suffices to compute an (1 + ε)-approximation to this value, to end up with an
(1 +O(ε))-approximation overall.

This problem is an instance of the multiple-choice 0/1 knapsack problem, where we are given a
budget W and items j ∈ S with corresponding weights wj and profits pj , as well as a partitioning
S = S1 ∪ . . . ∪ Sm, and the task is to compute the maximum

∑
j∈T pj over all sets T ⊆ S

satisfying
∑

j∈T wj ≤W and |T ∩ Si| = 1 for all 1 ≤ i ≤ m. In order to cast the above problem
as an instance of multiple-choice 0/1 knapsack, we simply set Si := {0, 1, . . . ,min{k, |P̃i|}} and
define pj := Hi(j) and wj = j for all j ∈ Si. We also set W := k. Note that now the constraint∑

j∈T wj ≤ W corresponds to k1 + . . . + km ≤ k and the objective
∑

j∈T pj corresponds to∑m
i=1Hi(ki).
For the multiple-choice 0/1 knapsack problem there are known PTAS techniques. In particular,

in his Master’s thesis, Rhee [29, Section 4.2] claims a time bound of O(mε−2 log(m/ε) maxj |Sj |+
|S| log |S|). In our case, we have m ≤ n and |Sj | = min{k, |P̃i|}+ 1 = O(ε−2 log 1/ε)d. Moreover,
|S| ≤ m ·maxj |Sj |. This yields a time of O(n log(n/ε) · (ε−2 log 1/ε)d).
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Plugging this solution for step (6) into the algorithm from the previous sections, we obtain
time

O
(
n · ε−d

(
log n+ log(n/ε) · (ε−2 log 1/ε)d + 2O(ε−2 log 1/ε)d

))
.

This can be simplified to O
(
n
(

log(n/ε) · ε−3d · logd(1/ε) + 2O(ε−2 log 1/ε)d
))

, which is bounded by
O
(
2O(ε−2 log 1/ε)d · n log n

)
.

6 Conclusions

We considered the volume selection problem, where we are given n points in Rd>0 and want to
select k of them that maximize the volume of the union of the spanned anchored boxes. We
show: (1) Volume selection is NP-hard in dimension d = 3 (previously this was only known when
d is part of the input). (2) In 3 dimensions, we design an nO(

√
k) algorithm (the previously best

was Ω
((
n
k

))
). (3) We design an efficient polynomial time approximation scheme for any constant

dimension d (previously only a (1− 1/e)-approximation was known).
We leave open to improve our NP-hardness result to a matching lower bound under the

Exponential Time Hypothesis, e.g., to show that in d = 3 any algorithm takes time nΩ(
√
k) and

in any constant dimension d ≥ 4 any algorithm takes time nΩ(k). Alternatively, there could
be a faster algorithm, e.g., in time nO(k1−1/d). Finally, we leave open to figure out the optimal
dependence on n, k, d, ε of a (1− ε)-approximation algorithm.

Moving away from the applications, one could also study volume selection on general axis-
aligned boxes in Rd, i.e., not necessarily anchored boxes. This problem General Volume
Selection is an optimization variant of Klee’s measure problem and thus might be theoretically
motivated. However, General Volume Selection is probably much harder than the restriction
to anchored boxes, by analogies to the problem of computing an independent set of boxes, which
is not known to have a PTAS [1]. In particular, General Volume Selection is NP-hard
already in 2 dimensions, which follows from NP-hardness of computing an independent set in a
family of congruent squares in the plane [18,22].
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