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Abstract

In this thesis, we demonstrate some of the first necessary steps towards an ap-
plication of tensor networks to lattice gauge theories. Using matrix product
states, a particular kind of one-dimensional tensor network, we numerically
investigate certain 1+1 dimensional lattice gauge models in the Hamiltonian
formulation. The models we study encompass all the fundamental features
appearing in relevant 3+1 dimensional scenarios, such as quantum chromody-
namics, in particular matter fields coupled to a gauge field, and, the Abelian
and non-Abelian cases we address also suffer from the sign problem in certain
parameter regimes. Our analysis demonstrates the suitability of matrix prod-
uct states to study statical as well as dynamical properties of gauge models,
especially in regimes which cannot be accessed with Monte Carlo methods.
Furthermore we employ matrix product states to assess some crucial questions
regarding the quantum simulation of lattice gauge theories.

First, we study two models suitable for the quantum simulation of 1+1 di-
mensional quantum electrodynamics, also known as the Schwinger model. We
explore the effect of representing the gauge degrees of freedom with finite-
dimensional systems and show that the results converge quickly with increas-
ing dimensions. Moreover, we also investigate a possible adiabatic preparation
protocol for the interacting vacuum of the theory and demonstrate that the
resources needed are essentially independent of the system size and the di-
mension of the systems representing the gauge degrees of freedom in the stud-
ied parameter regime. Furthermore, we asses the effect of gauge-invariance-
breaking noise terms during the preparation protocol and quantify up to which
noise level the ground-state energy is still reasonably close to the noise free
case.

Second, we address the phase structure of the multiflavor Schwinger model
with nonzero chemical potential for a fixed physical volume, a regime where
the conventional Monte Carlo approach suffers from the sign problem. We re-
produce known analytic results for the two-flavor case at zero temperature and
vanishing mass and extend the computation to the massive case, where no an-
alytical prediction is available. Our calculations allow us to map out the phase
diagram of the model in the mass – chemical potential plane, thus providing
an example of overcoming the sign problem with tensor networks in a lattice
gauge theory calculation. Moreover, we also study the spatially resolved chiral
condensate within the different phases for the massless case. We recover the
theoretically predicted oscillatory behavior and quantify the volume depen-
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dence of the oscillation amplitude and frequency for the different phases.
Third, we investigate the phenomenon of string breaking in a non-Abelian

SU(2) lattice gauge model. We compute the static potential between heavy
external charges, similar to conventional Monte Carlo simulations, and also
explore the real-time dynamics of a string imposed on top of the interacting
vacuum of the theory between heavy external and fully dynamical charges.
Furthermore, we propose a number of (local) observables that can be used for
detecting string breaking and apply them to characterize the phenomenon in
the statical and dynamical cases.

Finally, we develop a basis for the physical subspace of a SU(2) lattice gauge
theory, where the gauge degrees of freedom are integrated out. Our formula-
tion is completely general and might have potential applications for the design
of future quantum simulators. Moreover, it is suitable for addressing the the-
ory with tensor networks. Using our formulation together with matrix product
states, we study the low-lying spectrum and determine the scaling exponent
of the vector mass gap for a family of SU(2) gauge models where the gauge
degrees of freedom are truncated to a finite dimension. In addition, we also
investigate the entanglement in the ground state and explore the scaling of the
entanglement entropy while approaching the continuum limit.
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Zusammenfassung

In der vorliegenden Arbeit zeigen wir einige der ersten notwendigen Schritte
hin zu einer Anwendung von Tensornetzwerken auf Gittereichtheorien. Unter
Verwendung von Matrixproduktzuständen, einer speziellen Form von eindi-
mensionalen Tensornetzwerken, untersuchen wir numerisch verschiedene 1+1
dimensionale Gittereichmodelle in der Hamiltonschen Formulierung. Die Mo-
dellsysteme, die wir behandeln, beinhalten alle grundlegenden Eigenschaften
von wichtigen 3+1 dimensionalen Szenarien, wie beispielsweise Quantenchro-
modynamik, insbesondere Matriefelder die an Eichfelder koppeln, und die
Abelschen und nicht-Abelschen Fälle mit denen wir uns beschäftigen unter-
liegen in bestimmten Parameterbereichen auch dem negativen Vorzeichenpro-
blem. Unsere Analyse zeigt die Eignung von Matrixproduktzuständen für die
Untersuchung von statischen und dynamischen Eigenschaften von Eichtheori-
en, insbesondere in Bereichen in denen ein Zugang mit Monte Carlo Methoden
nicht möglich ist. Weiterhin verwenden wir Matrixproduktzustände um ent-
scheidenden Fragen bezüglich der Quantensimulation von Gittereichtheorien
zu behandeln.

Zuerst untersuchen wir zwei Modelle, die sich für die Quantensimulati-
on von Quantenelektrodynamik in 1+1 Dimensionen, auch bekannt als das
Schwingermodell, eignen. Wir analysieren die Auswirkung, die durch die Dar-
stellung der Eichfreiheitsgrade mit endlichdimensionalen Systemen entsteht
und zeigen die schnelle Konvergenz der Ergebnisse mit zunehmender Dimen-
sion. Weiterhin erforschen wir ein mögliches Protokoll für die adiabatische
Herstellung des wechselwirkenden Vakuums der Theorie und legen dar, dass
die benötigten Ressourcen im untersuchten Parameterbereich im Wesentlichen
unabhängig von der Systemgröße und der Dimension der Systeme, die die
Eichfreiheitsgrade darstellen, sind. Außerdem behandeln wir die Frage nach
dem Einfluss von nicht eichinvarianten Störtermen während des Protokolls
zur adiabatischen Herstellung des Grundzustandes und quantifizieren, bis zu
welcher Stärke der Störung die Grundzustandsenergie noch in vernünftigem
Maße mit der des störungsfreien Falls übereinstimmt.

Als Zweites behandeln wir die Phasensruktur des mehrflavor Schwinger Mo-
dells mit nicht verschwindendem chemischen Potential in einem festen physi-
kalischem Volumen, einem Parameterbereich in dem der herkömmliche Monte
Carlo Zugang dem negativen Vorzeichenproblem unterliegt. Wir reproduzie-
ren bekannte analytische Ergebnisse für den masselosen Fall und dehnen die
Berechnung auf den massiven Fall aus, für den keine analytische Vorhersa-
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ge existiert. Unsere Berechnungen ermöglichen uns das Phasendiagramm des
Modells in der Masse – chemisches Potential – Ebene zu bestimmen und stellen
ein Beispiel für das Überwinden des negativen Vorzeichenproblems mit Hil-
fe von Tensornetzwerken in einer Gittereichtheorieberechnung dar. Weiterhin
analysieren wir das ortsaufgelöste chirale Kondensat innerhalb der verschie-
denen Phasen für den masselosen Fall. Wir beobachten das theoretisch vorher-
gesagte oszillierende Verhalten und bestimmen die Volumenabhängigkeit von
Oszillationsamplitude und Frequenz für die einzelnen Phasen.

Als Drittes untersuchen wir das Phänomen des “String breakings” in einem
nicht-abelschen SU(2) Gittereichmodell. Wir berechnen das statische Potenti-
al zwischen schweren externen Ladungen, vergleichbar mit konventionellen
Monte Carlo Simulationen, und erforschen die Zeitentwicklung eines Strings
sowohl zwischen schweren externen und komplett dynamischen Ladungen,
der im wechselwirkenden Vakuum der Theorie generiert wurde. Weiterhin
schlagen wir eine Reihe von (lokalen) Observablen vor, die es erlauben String
breaking zu detektieren und verwenden diese um die statischen und dynami-
schen Fälle zu charakterisieren.

Zuletzt entwickeln wir eine Basis für den physikalischen Unterraum einer
SU(2) Gittereichtheorie, bei der die Eichfreiheitsgrade ausintegriert sind. Un-
sere Formulierung ist nicht auf eine spezielle Methode beschränkt und könnte
möglicherweise Anwendung beim Entwurf von zukünftigen Quantensimula-
toren finden. Außerdem ist sie geeignet um die Theorie mit Tensornetzwer-
ken zu behandeln. Wir verwenden unsere Formulierung in Kombination mit
Matrixproduktzuständen um das niederenergetische Spektrum und den kri-
tischen Exponent der Vektormasse für eine Familie von SU(2) Eichmodellen
zu bestimmen, bei denen die Eichfreiheitsgrade auf eine endliche Dimensi-
on beschnitten sind. Zusätzlich untersuchen wir auch die Verschränkung im
Grundzustand und das Skalierungsverhalten der Verschränkungsentropie bei
Annäherung ans Kontinuum.
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Chapter 1

Introduction

The Standard Model is the basis of our understanding of modern high en-
ergy physics. Providing a full classification of all known elementary particles
and describing all the fundamental forces among them, except for gravity, it
shaped our picture of the subatomic structure of matter and led to major ex-
perimental breakthroughs, with the most recent one being the discovery of
the Higgs boson [1, 2]. At the theoretical level, it is described by non-Abelian
gauge theories. Since Weyl introduced the notion of a gauge theory in his early
attempts to unify electromagnetism and gravity [3], the generalization to non-
Abelian symmetry groups by C. Yang and R. Mills [4] has become the founda-
tion of our theoretical description of high energy physics. In case of the Stan-
dard Model the underlying Yang-Mills theories are given by quantum chro-
modynamics (QCD), a SU(3) gauge theory describing the strong interactions,
and the Glashow-Weinberg-Salam model for the electroweak interactions cor-
responding to a gauge theory with a U(1) × SU(2) symmetry.

Despite their great importance for the theoretical description of high energy
physics, the analytical investigation of Yang-Mills theories is inherently chal-
lenging and a full solution seems elusive in most cases. A further complication
arises from the fact that a perturbative approach to many relevant problems,
such as QCD at low energies, is impossible. Due to asymptotic freedom [5, 6],
QCD is strongly coupled at low energy scales, which leads to a breakdown of
the perturbative methods in that regime and leaves a lot of theoretical ques-
tions unanswered. For example, the mechanism leading to confinement in
QCD, meaning that at low energies only bound states of quarks are observed,
is not yet fully understood. More generally, it is still an open question if Yang-
Mills theories have a finite energy gap between the ground state and the first
excited state,1 which in the context of QCD is responsible for the interaction
potential between the quarks being strong but short ranged.

A standard tool for exploring gauge theories in the nonperturbative limit is
lattice gauge theory (LGT). Discretizing the action [8] or the Hamiltonian [9] of

1Proving that Yang-Mills theories with a simple, compact symmetry group in four space-
time dimensions are gapped is in fact one of the Millennium Problems stated by the Clay
Mathematics Institute [7].
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Chapter 1 Introduction

the theory on a lattice while simultaneously preserving the gauge symmetry,
allows for a numerical treatment. In particular, the discretized Lagrangian for-
mulation enables the application of sophisticated Markov chain based Monte
Carlo (MC) methods that have been highly successful for studying mass spec-
tra [10], phase diagrams [11] and many other (static) properties. However,
despite this great success, the MC approach faces a major obstacle in the sign
problem [12], as the onset of negative or even complex probability amplitudes
in certain parameter regimes prevents an efficient MC sampling. As a conse-
quence, there are many relevant problems which cannot be addressed with it
as for example real-time dynamics, or large parts of the QCD phase diagram
at nonzero temperature and baryon density. Hence, there is an ongoing search
for alternative approaches overcoming these limitations, among them MC on
Lefshetz thimbles [13–16], complex Langevin methods [15], density of states
techniques [17, 18], dualization [17, 19–22] and new integration methods [23,
24].

During recent years, approaches originating from quantum information the-
ory have proven themselves as promising alternatives. For one, numerical
methods based on tensor networks (TN) have been successfully applied to lat-
tice gauge models. Being free from the sign problem, they can access parameter
regimes and questions which are unamenable to the MC approach. Although
TN can be used to address the Lagrangian formulation [25–34], they are partic-
ularly suited for the Hamiltonian formulation, for which powerful algorithms
for the computation of low-lying spectra as well as for simulating time evolu-
tion exist. Moreover, contrary to the MC approach, these methods explicitly
yield the wave function at the end of the computation, thus allowing for easy
access to all kinds of (local) observables, and also the entanglement structure of
the state, which opens up new perspectives to characterize LGT problems. The
power of those techniques for spectral calculations and simulating dynamical
problems for both Abelian and non-Abelian theories, as well as for addressing
finite temperature has already been successfully demonstrated in the last few
years [35–53], and the work reported in this thesis has been part of this ef-
fort. Furthermore, there is a lot of progress in developing gauge invariant TN
suitable for LGT [37, 54–63].

A different quantum information based approach is quantum simulation of
(lattice) gauge theories. This approach, originally envisioned by Feynman [64],
uses an experimentally controllable quantum system to simulate another while
exploiting its quantum nature, and thus does not suffer from purely numerical
limitations as opposed to the simulations on a classical computer discussed
previously. Quantum simulators have already been discussed and demon-
strated for many condensed matter problems in a variety of experimental plat-
forms ranging from ultracold atoms [65–68], trapped ions [69–71], and Ryd-
berg atoms [72] over superconducting circuits [73], photons [74], to nuclear
spins [75] and many others, and in some cases already outperformed the clas-
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sical simulations [76]. This great success also motives the application of the
method to LGT problems, and lately there has been a variety of proposals to
quantum simulate gauge theories [55, 57, 60, 77–100]. Recently, the first quan-
tum simulator for quantum electrodynamics (QED) in 1+1 dimensions, also
known as the Schwinger model [101], has been realized experimentally in a
small system of trapped ions [102]. Hence, this route is particularly promising
for the future.

Here we address questions related to quantum simulation of gauge theo-
ries and the TN approach to LGT for certain gauge models in 1+1 dimensions.
Although these two approaches are seemingly unrelated, they have much in
common. One the one hand, the TN approach can help to explore the feasi-
bility of quantum simulation proposals. Since a majority of these also adopts
the Hamiltonian lattice formulation, numerical methods based on TN can be
used to investigate relevant questions for the practical implementation, as for
example possible protocols for the preparation of ground states and the influ-
ence of noise terms. In particular, TN also allow for the analysis of the effects
of approximations that might be necessary for an experimental realization and
how those can affect the performance of future quantum simulators. On the
other hand, the TN approach to LGT enables to explore parameter regimes and
problems intractable with MC methods and to access all kinds of local observ-
ables. Hence, the results obtained from applying TN methods to LGT problems
can also help to find observables and setups that might be more accessible in
future quantum simulation experiments than the ones typically used in MC
simulations.

The rest of this thesis is structured as follows: Chapters 2 and 3 give a
brief introduction to the theoretical background. In Chapter 2, we present
the basics of LGT with a particular focus on the Hamiltonian formulation, as
this is the more natural framework for TN and quantum simulation. Start-
ing from the continuum Lagrangian, we derive the Hamiltonian and show the
lattice discretization with Kogut-Susskind staggered fermions which we adopt
for our numerical simulations throughout this thesis. The particular kind of
one-dimensional TN, the matrix product states (MPS), which we use in our nu-
merical computations, are introduced in Chapter 3. After a short summary of
the theoretical foundations, we present the numerical algorithms we apply to
compute low-lying spectra and time evolution for the various gauge models we
examine.

Chapters 4 and 5 are devoted to the Abelian case of lattice Schwinger model.
In Chapter 4 we study two proposals for quantum simulation of the Schwinger
model where the gauge degrees of freedom are truncated to a finite dimen-
sion. First, using variational methods based on MPS, we investigate the spec-
tral properties of these proposals and systematically explore the effect of the
truncation on ground-state energy density. Second, taking advantage of the
fact that TN allow us to simulate real-time dynamics, we analyze a possible
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Chapter 1 Introduction

adiabatic preparation protocol for the interacting vacuum of the theory and
the physical resources needed therefor. We give evidence that the initial part
of the adiabatic evolution is decisive for its success and that the total time
needed for a successful preparation is essentially independent of the system
size in the parameter regime we study. Finally, we also assess the effect of
gauge invariance breaking noise during the procedure and quantify the noise
level for which the final state is still reasonably close to the ground state.

Afterwards, we turn to the multiflavor case at nonzero chemical potential, a
situation where the conventional MC approach suffers from the sign problem,
in Chapter 5. Using a formulation where the gauge degrees of freedom are inte-
grated out, we determine the phase structure for two flavors at a fixed physical
volume. Going through the full extrapolation procedure to recover the contin-
uum limit, we reproduce known analytical results for the massless case with
great precision and extend the study to the massive case, where no analytical
predictions are available. Our observations show that the phase structure for
the massive case changes significantly and we map out the phase diagram of
the theory in the mass – chemical potential plane. Moreover, with the MPS
approach we can also access the spatially resolved chiral condensate within
the different phases. Studying the chiral condensate for vanishing mass, we
observe the theoretically predicted spatial oscillations and quantify their fre-
quency as well as their amplitude.

Chapters 6 and 7 are devoted to the non-Abelian case. First, we study the
statical and dynamical aspects of string breaking in a SU(2) lattice gauge model
with a finite-dimensional representation for the gauge degrees of freedom in
Chapter 6. Using MPS simulations in imaginary time, we determine the static
potential of a color-flux string between two heavy external charges, similar
to the conventional MC approach. This allows us to identify the parameter
regimes for which string breaking occurs and to show that the signatures of
string breaking are clearly visible in certain (local) observables. These observ-
ables can also be used to characterize the dynamical case and we analyze the
real-time evolution of a string between two heavy external charges imposed
on top of the interacting vacuum of the theory. With our observables, we can
clearly identify the breaking case and observe the screening of the external
charges after the color-flux string breaks and particles are created. Finally,
we also investigate a scenario closer to more realistic out-of-equilibrium situ-
ations, where the charges added to the vacuum are themselves fully dynami-
cal. In that case, we again observe string breaking for small enough fermions
masses and characterize the phenomenon using our observables.

Furthermore, in Chapter 7, we develop a basis for the physical subspace
of a SU(2) lattice gauge theory, where the gauge degrees of freedom are inte-
grated out. The resulting formulation, which is similar to the one we use for
the multiflavor Schwinger case, is completely general and lends itself to any
numerical or analytical method. Due to the vastly reduced degrees of free-
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dom and its similarity to the one recently realized experimentally in trapped
ions for the Schwinger model [102], it might also be potentially suited for the
design of future quantum simulators. Moreover, our formulation also allows
for an efficient truncation of the color-electric flux at an arbitrary maximum
value while simultaneously preserving the gauge invariance. These truncated
models can be addressed with TN, and combining our basis with variational
methods based on MPS, we investigate the low-lying spectrum for a family of
truncated SU(2) models. Thanks to the great reduction of basis states in our
formulation, we can access much larger values for the color-electric flux than
amenable in previous numerical studies with TN [43, 52] and we analyze the
effects of the truncation in a systematic way. In particular, we explore the effect
on the closing of the vector mass gap and its scaling exponent as we approach
criticality and the scaling of the entanglement entropy in the ground state to-
wards the continuum limit.

Finally, we give a brief summary of our main results and point out possible
future directions and perspectives in Chapter 8.

In the Appendices A to C we elaborate on the numerical simulation tech-
niques and the data analysis procedure, and we proof certain relations used in
the main text. These Appendices are not necessary for the understanding of
the rest of this thesis and we refer the reader interested in the technical details
to those.
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Chapter 2

Lattice gauge theory

In this Chapter, we briefly review the basic elements of (lattice) gauge theory
we use throughout the rest of this work. After introducing the continuum
formulation in Sec. 2.1, we focus on the Hamiltonian lattice formulation with
Kogut-Susskind staggered fermions in Sec. 2.2. Moreover, we illustrate the
discussion with two particular models in Sec. 2.3, the (Abelian) Schwinger
model, which is presumably the simplest nontrivial gauge theory with matter,
and a 1+1 dimensional SU(2) LGT as a paradigmatic example for the non-
Abelian case. After establishing the theoretical background of gauge theories
and their lattice formulation, we comment on the prospects and challenges of
potential future quantum simulators for gauge theories in Sec. 2.4.

2.1 Yang-Mills theory in the continuum

Before we turn to the Hamiltonian lattice formulation, let us briefly summarize
the main aspects of the continuum theory. To this end, we start with the classi-
cal Lagrangian density for noninteracting, relativistic fermions in 4 space-time
dimensions, given by1 [103, 104]

L = ψ(x)
(
iγµ�µ −m

)
ψ(x). (2.1)

Here ψ(x) is a spinor of some group G, x = (t,x) a four vector in Minkowski
space, m the bare fermion mass, γu are the Dirac matrices fulfilling the anti-
commutation relation {γµ,γν} = 2ηµν with η = diag(1,−1,−1,−1) the metric
tensor, and ψ = ψ†γ0. Throughout the Chapter Greek indices refer to Lorentz
indices ranging from 0 to 3, and, unless stated otherwise, the Einstein summa-
tion convention is implied. Looking at the Lagrangian above, it is easy to see
that it is invariant under global symmetry transformations

ψ(x)→ Vψ(x), ψ(x)→ ψ(x)V †,

where V ∈ G is some group element in the same representation as ψ(x). For all
the rest, we restrict ourselves to the compact (matrix) Lie groups SU(Nc) and

1Throughout this thesis we use natural units ~ = c = 1.
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Chapter 2 Lattice gauge theory

U(1), hence, the group elements can be written as the exponential of a finite
set of traceless hermitian generators, ta, forming a Lie algebra. The Lie bracket
is then simply the usual commutator fulfilling

[ta, tb] = if abctc,

where f abc are the (totally antisymmetric) structure constants of the group.
Similar to the Lorentz indices, we label all indices associated to the group and
the algebra with Latin letters and, again, the Einstein summation convention
applies unless stated otherwise. For the rest of this Chapter, we assume that
the generators fulfill the normalization condition

tr
(
tatb

)
=

1
2
δab. (2.2)

Since different space-time points are independent, there is a priori no reason
to allow for global symmetry transformations only, and we can also consider
local symmetry transformations

ψ(x)→ V (x)ψ(x), ψ(x)→ ψ(x)V †(x).

While this transformation leaves the mass term of the Lagrangian in Eq. (2.1)
invariant, one can immediately see that the kinetic term changes due to the
derivative. The definition of the derivate along the direction nµ

nµ�µψ(x) = lim
h→0

ψ(x+ hn)−ψ(x)
h

shows that the problem arises because it involves two different space-time
points and hence �µψ(x) does not have a simple transformation behavior. To
compensate for the different transformation at different space-time points, we
introduce the comparator, U (x′,x), a unitary matrix which we require to trans-
form as

U (x′,x)→ V (x′)U (x′,x)V †(x) (2.3)

and U (x,x) = 1 [104]. Hence, the covariant derivative

nµDµψ(x) = lim
h→0

ψ(x+ hn)−U (x+ hn,x)ψ(x)
h

(2.4)

has a simple transformation behavior under local symmetry transformations.
To find the explicit form of the comparator and the covariant derivative, we
can make use of the fact that we consider compact Lie groups, and expand
U (x+ hn,x) for infinitesimal h around the identity:

U (x+ hn,x) = 1+ ighnµAaµ(x)ta +O(h2). (2.5)
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2.1 Yang-Mills theory in the continuum

The infinitesimal form of the expansion suggests that the comparator along a
path C between two points y and z is given by [104–106]

U (z,y) = P exp
(
ig

∫
C

dxµAaµ(x)ta
)
, (2.6)

where P indicates path ordering. Here we have introduced the connectionAaµ(x)
and the (matrix valued) gauge field Aaµ(x)ta which transforms according to

Aaµ(x)ta→ V (x)
(
Aaµ(x)ta +

i
g
�µ

)
V †(x). (2.7)

Using this relation, one can indeed show that the explicit forms of the com-
parator we found in Eqs. (2.5) and (2.6) fulfill the transformation behavior
from Eq. (2.3). Substituting the expansion for the comparator in Eq. (2.4), we
find the explicit form for covariant derivative

Dµ = �µ − igAaµta.

Consequently, if we replace the derivative in the kinetic term of Eq. (2.1) with
the covariant derivative Dµ, the resulting Lagrangian is invariant under local
symmetry transformations.

Up to now,Aaµ(x) is not a dynamical variable. In order to introduce dynamics,
we have to add an invariant term to the Lagrangian containing the connection
and its derivatives. In analogy to the Abelian case, one finds for the non-Abelian
field strength tensor the expression [4, 104]

Faµν = �µA
a
ν − �νAaµ + gf abcAbµA

c
ν . (2.8)

This quantity is, however, not gauge invariant, as it carries an index of the Lie
algebra, and, contrary to the Abelian case, it contains a self-interaction term
between the gauge fields. To obtain a kinetic term for the gauge field from this
quantity, one has to form a gauge invariant combination. The simplest one is
given by the classical Yang-Mills Lagrangian density [4, 104]

LYM = −1
2

tr
((
Fa,µνta

)(
Fbµνt

b
))

= −1
4
Fa,µνFaµν , (2.9)

where the trace is understood in group space. The classical Lagrangian density
including the fermions and the gauge part hence reads [104, 107]

L = ψ(x)
(
iγµDµ −m

)
ψ(x) +LYM. (2.10)

Notice that there is no mass term for the gauge field present as due to the
transformation behavior of Aaµ(x)ta from Eq. (2.7) such a term would not be
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Chapter 2 Lattice gauge theory

gauge invariant and, thus, cannot appear in the Lagrangian density. Hence,
the Lagrangian from Eq. (2.10) describes the interaction of massive fermions
mediated by massless gauge bosons.

Before we consider the equations of motion and continue to present the
Hamiltonian formulation let us make a few remarks:

1. The derivation above shows the geometrical origin of the (matrix-valued)
gauge field Aaµ(x)ta which arises due to the local symmetry and the neces-
sity to introduce the comparator to obtain a sensible derivative.

2. The structure constants of the group appear in Eq. (2.8) and, hence, de-
termine the form of the self interaction. In particular, one can see that
for Abelian groups the self interaction is absent. Moreover, the interac-
tion term for the gauge field and the fermion field contains the covariant
derivative which depends on the (adjoint) representation of the Lie alge-
bra. Thus, it is also affected by the structure of the gauge group. As a
consequence, the symmetry group has a decisive influence on the form of
the interactions in the theory.

The Euler-Lagrange equations for Eq. (2.10) are given by [104]:

(
iγµDµ −m

)
ψ(x) = 0,

�µFaµν(x) + gf abcAb,µ(x)Fcµν(x) = −gψ(x)γνt
aψ(x). (2.11)

The first equation for the fermion field is simply the Dirac equation in an exter-
nal field. The second set of equations contain the non-Abelian generalization
of Gauss’ law (temporal component) and Ampère’s law (spatial components).

In the context of quantum simulation and TN, which we are exploring in the
later part of the thesis, it is more convenient to work with the Hamiltonian for-
mulation. The Hamiltonian can be obtained from Eq. (2.10) by computing the
Legendre transformation. The canonical momenta are given by the following
functional derivatives of the classical Lagrangian density [103, 108–110]

π`F =
δL

δ(�0ψ`(x))
= iψ†`(x), πa,0 =

δL
δ(�0A

a
0(x))

= 0, πa,k =
δL

δ(�0A
a
k(x))

= Fa,k0(x),

(2.12)

where k = 1,2,3 refers to the spatial indices of the gauge field. Hence, we find
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2.1 Yang-Mills theory in the continuum

for the classical Hamiltonian [103, 108]

H =
∫

d3x
(
π`F(x)�0ψ

`(x) +πa,k(x)�0A
a
k(x)−L

)
=

∫
d3x ψ†(x)

(
−iα∇+ gαA(x) +γ0m

)
ψ(x)

+
∫

d3x
(
−1

2
πa,k(x)πak(x) +

1
4
Fa,kj(x)Fakj(x)

)
−
∫

d3x Aa0(x)
(
�kFak0(x) + gf abcAb,k(x)Fck0(x) + gψ†(x)taψ(x)

)
.

Since the Hamiltonian formulation is no longer Lorentz invariant, we distin-
guish explicitly between the temporal and spatial components (labeled by k, j),
and we omit the time arguments for all fields. Moreover, we have introduced
the vectors α and A(x) consisting of the components γ0γk and Aa,k(x)ta. From
the Hamiltonian, we can again find the equations of motion by taking the func-
tional derivatives with respect to the generalized positions and momenta.

Up to know, we have considered a purely classical theory. To quantize it,
we can impose the canonical equal-time (anti) commutation relations between
the fields and the conjugate momenta. Equation (2.12) reveals, however, that
πa,0 = 0 and hence the commutation relation with the conjugate temporal com-
ponent of the gauge field cannot be nontrivial. One way of avoiding this prob-
lem is making use of gauge freedom and setting the temporal components of
the gauge field to zero, Aa0 = 0, which is known as temporal or Weyl gauge [108,
109, 111]. Thus, imposing

{ψa(x),ψ†b(y)} = δ(x− y)δab, {ψa(x),ψb(y)} = 0,

[Aak(x),πbj (y)] = iδabδkjδ(x− y), [Aak(x),Abj (y)] = 0, [πak(x),πbj (y)] = 0,
(2.13)

yields the quantized Hamiltonian

H =
∫

d3x ψ†(x)
(
−iα∇+ gαA(x) +γ0m

)
ψ(x)

+
∫

d3x
(
−1

2
πa,k(x)πak(x) +

1
4
Fa,kj(x)Fakj(x)

)
.

(2.14)

As a result of the choice of gauge, we cannot take the functional derivative
with respect to the temporal component of the gauge field anymore. Thus, we
do not recover the quantized version of Gauss’ law from the Hamiltonian and
it has to be added as an additional constraint imposed on the physical states,
|Ψ 〉, of the Hamiltonian

Ga(x)|Ψ 〉 = qa(x)|Ψ 〉, Ga(x) = �kFak0(x) + gf abcAb,k(x)Fck0(x) + ρa(x).
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Chapter 2 Lattice gauge theory

In the expression above ρa(x) = gψ†(x)taψ(x) are the (non-Abelian) charge den-
sity components and qa(x) can be interpreted as the components of an external,
static charge density distribution. It is easy to see that for non-Abelian groups
the Gauss law components fulfill the commutation relation [108, 111][

Ga(x),Gb(y)
]

= igf abcGc(x)δ(x− y)

and hence cannot be diagonalized simultaneously. However, they all com-
mute with the Hamiltonian from Eq. (2.14) and, thus, are conserved. The
choice Aa0 = 0 does not fix the gauge completely and we can still apply time-
independent gauge transformations. As one can show, the Gauss Law compo-
nents are the generators for such time-independent gauge transformations.

The pure gauge part of the Hamiltonian in the second line of Eq. (2.14) can
be cast to a more familiar form. If we interpret the spatial components Aa,k(x)
of the gauge field for a fixed color index as the components of a vector poten-
tial, Aa(x), we can define the color-electric and color-magnetic field as [108,
111]

Ea(x) = −�tAa(x), Ba(x) = ∇×Aa(x)− 1
2
gf abcAb(x)×Ac(x).

With this definition, we can rewrite the Yang-Mills part of the Hamiltonian as
Hel +Hmag with

Hel =
1
2

∫
d3x Ea(x)Ea(x), (2.15)

Hmag =
1
2

∫
d3x Ba(x)Ba(x), (2.16)

the color-electric and color-magnetic energy contributions.
Let us briefly mention that it is also possible to quantize the theory using

functional integrals. In this approach the quantum theory is obtained by su-
perposing all field configurations weighted with the classical action of the cor-
responding path, exp(iS), S =

∫
d4xL. Ground state expectation values for an

observable O can then be formally obtained from the functional integral ex-
pression [104, 112]

〈O〉 =
1
Z

∫
DADψDψOexp(iS) (2.17)

with Z =
∫
DADψDψ exp(iS) the “partition function” of the system. In partic-

ular, if one applies a Wick rotation, t→ −iτ , to Eq. (2.17) and looks at its for-
mulation in Euclidean space-time, one can see that the expression is formally
analogous to the one obtained for expectation values in statistical mechanics.
This analogy is one of the key ingredients which have led to the great success
of LGT, as it allows us to apply sophisticated Monte Carlo methods after dis-
cretizing the theory on a space-time lattice [112]. The discretization procedure
is discussed in the following Section.
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2.2 Lattice formulation

2.2 Lattice formulation

From the continuum theory, reviewed in the previous Section, we would now
like to go to a discretized lattice formulation. Originally pioneered by Wilson
starting from the path integral formulation [8], the theory is formulated on a
discretized space-time lattice in such a way that the gauge symmetry is pre-
served and the continuum model is recovered in the limit of vanishing lattice
spacing. Shortly after Wilson’s proposal, Kogut and Susskind showed how to
obtain a discretized version of the Hamiltonian formulation [9]. In this Section
we introduce the basics of the lattice Hamiltonian formulation, as this is the
framework better suited for quantum simulation and TN.

2.2.1 The doubling problem

Looking at Eq. (2.14) a discretized formulation for the Hamiltonian might seem
straightforward: one could simply introduce a spatial lattice, discretize the
fields and approximate the derivatives with finite differences. However, this
naive discretization fails to reproduce the correct continuum limit even in the
simplest case of free, massless fermions in 1+1 dimensions, as we illustrate in
the following.

The Hamiltonian for free massless fermions in 1+1 dimensions is given by

H =
∫

dx ψ†(x)
(
−iγ0γ1�x

)
ψ(x) (2.18)

and the equation of motion obtained via i�tψ(x) = [ψ(x),H] is simply the Dirac
equation

�tψ(x) = −γ0γ1�xψ(x). (2.19)

It can be easily solved using the plain wave ansatz ψ(x) = exp(i(Et − px))u(p,E)
where u(p,E) is a two component spinor. If we choose the Weyl representation
for the Dirac matrices [113],

γ0 =
(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, γ5 = γ0γ1 =

(
1 0
0 −1

)
,

the equations for the different components of the spinor decouple and we ob-
tain the trivial eigenvalue problem(

p 0
0 −p

)
u(p,E) = Eu(p,E)

from which we find the usual dispersion relation for relativistic particles, E =
±p, with the corresponding eigenvectors u±(p,E). Due to our choice of the
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Chapter 2 Lattice gauge theory

Dirac matrices, it is apparent that the two solutions are eigenstates of γ5,
γ5u±(p,E) = ±u±(p,E), thus they have a well defined chirality of ±1. More-
over, the group velocity for the two solutions is simply �E/�p = ±1. As a con-
sequence, the eigenstates with positive chirality correspond to right moving
fermions and antifermions, whereas the eigenstates with negative chirality cor-
respond to left moving ones [114, 115].

Let us now look at the same problem after discretizing space on a lattice
with spacing a and replacing the continuous position by na, n ∈ Z. To obtain
a proper discretization which approaches the continuum formulation in the
naive continuum limit,2 a→ 0, we make the replacements

ψ(x)→ ψ̂n/
√
a, �xψ(x)→ 1

2a3/2

(
ψ̂n+1 − ψ̂n−1

)
,

∫
dx→ a

∑
n

,

where we have chosen the symmetric finite difference for approximating the
derivative to obtain a hermitian lattice version of the Dirac operator. The re-
sulting lattice Hamiltonian reads

Ĥ =
∑
n

ψ̂†n

(
−iγ0γ1 1

2a
(
δk,n+1 − δk,n−1

))
ψ̂k

from which we can again get the equation of motion for the discretized spinor
via i�tψ̂n = [ψ̂n, Ĥ], yielding

�tψ̂n = −γ0γ1 1
2a

(
ψ̂n+1 − ψ̂n−1

)
.

To solve the equation, we use the lattice version of the ansatz before, ψ̂n =
exp(i(Et − pna)) û(p,E), again resulting in the trivial eigenvalue equation(

sin(pa)/a 0
0 −sin(pa)/a

)
û(p,E) = Eû(p,E),

with the momentum restricted to the first Brillouin zone −π/a ≤ p ≤ π/a, as
the lattice provides a cutoff and exp(−i(p + 2π/a)na) = exp(−ipna). The two
solutions û±(p,E), which in turn are eigenstates of the chirality operator γ5,
have different to the continuous case the dispersion E = ±p̄ with p̄ = sin(pa)/a
(cf. Fig. 2.1). Comparing the lattice dispersion to the continuum one, we
observe that for p = ±π/a additional low energy states appear in the spectrum.

2We call the continuum limit, a→ 0, for the lattice Hamiltonian the naive continuum limit.
As we are going to see, the fact that we recover the continuum Hamiltonian from the dis-
cretized one in the limit of vanishing lattice spacing does not necessarily mean that the
physics of the lattice theory approaches the one of the continuum model one tried to dis-
cretize.
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2.2 Lattice formulation

Expanding the lattice dispersion around the low-energy regions and looking at
the corresponding group velocity, we find

E ≈

±p for p close to 0
∓p ± π

a for p close to ±π/a
⇒ �E

�p
≈

±1 for p close to 0
∓1 for p close to ±π/a.

(2.20)

Consequently, for a given energy we find two solutions for each chirality, a left
moving one and a right moving one [114, 115], as it is illustrated in Fig. 2.1.
These additional contributions, caused by the zeros of the dispersion at edges
of the Brillouin zone, do not vanish in the continuum limit a→ 0. Hence, our
naive lattice discretization corresponds to two flavors of Dirac fermions in the
continuum theory. In general, if we discretize the Dirac theory in d spatial
dimensions following the same scheme, there occur 2d zeros in the region of
nonegative momenta of the first Brillouin zone, of which 2d−1 yield unwanted
contributions. Since the number of contributions doubles with each dimen-
sion, this is called the doubling problem.

Figure 2.1: Dispersion relation obtained from the continuum Dirac equation
(dashed blue and red lines) and the lattice discretization (solid blue and red
lines) in the first Brillouin zone. The red lines correspond to the solution with
chirality +1, the blue ones to the solution with chirality −1. The dashed hor-
izontal line shows that for a given energy smaller then the maximum one al-
lowed by the cutoff, the lattice formulation yields two solutions for each chiral-
ity. One of these solutions corresponds to right moving particles (intersection
in the region of positive slope) and one to left moving particles (intersection in
the region with negative slope).

Obviously this poses the question if the doubling problem is an artifact of
the lattice discretization we have chosen and can be avoided. It was shown in
series of works by Nielsen and Ninomiya [116–119] that any local, translation-
ally invariant, hermitian lattice formulation of a chiral fermion gives rise to an
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equal number of left and right movers. Thus, one cannot find a local, trans-
lational invariant, hermitian lattice formulation of Eq. (2.14) preserving the
chiral symmetry for the case of massless fermions which avoids the doubling
problem.

To circumvent the doubling problem, one has to violate one of the prerequi-
sites of the Nielsen-Ninomiya theorem. One solution, presented by Wilson, is
to break the chiral symmetry explicitly by adding a term to the action which
prevents the zeros at the boundary of the Brillouin zone and vanishes in the
continuum limit. The same mechanism of avoiding the doublers is used when
introducing Wilson twisted mass fermions which have certain other interesting
feature with respect to the standard Wilson fermions [120]. A different (par-
tial) solution are the staggered fermions [9, 114, 121, 122], where the fermionic
degrees of freedom are “thinned out” to avoid the doubling problem. A solu-
tion, which preserves at least a lattice version of the chiral symmetry are the
Ginsparg-Wilson fermions [123, 124]. Minimally doubled fermions [125], origi-
nally introduced by Karsten and Wilczek [126, 127] and in a different variant
suggested by Boriçi and Creutz [128, 129], also preserve the chiral symmetry
while reducing the doublers to two degenerate flavors in the continuum. The
doubling problem can also be avoided at the expense of locality which is for
example the case for SLAC fermions [130] or perfect lattice fermions [131, 132].
Domain wall fermions [133–135] circumvent the doubler solutions by introduc-
ing an additional dimension which separates solutions of different chirality.
Here we focus on staggered fermions which we are going to discuss in the next
Section.

2.2.2 The Kogut-Susskind Hamiltonian formulation

Staggered fermions

One possible way of (partially) removing the doubler solutions, which turns
out to be convenient in the context of quantum simulation and TN, are the
Kogut-Susskind staggered fermions [9, 114, 121, 122]. To illustrate the method,
let us again start with the 1+1 dimensional case. The lattice Hamiltonian we
consider is [114, 121]

Ĥ = − i
2a

∑
n

(
φ̂†nφ̂n+1 − φ̂†n+1φ̂n

)
, (2.21)

where, contrary to our naive discretization approach, on every site n there is
only a single component fermionic field, φ̂n, which fulfills the usual anticommu-
tation relations, {φ̂n, φ̂m} = 0, {φ̂†n, φ̂m} = δmn. The equation of motion for this
case is given by

�tφ̂n =
1
2a

(
φ̂n+1 − φ̂n−1

)
,
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which is exactly the equation we have found for the lower component of the
spinor in our naive discretization approach. Hence, the solution corresponds
to the red branch of the dispersion shown in Fig. 2.1 and we obtain a single
left and a single right moving solution. Looking at the equation of motion, it
is apparent that the time derivative for the even sites is determined by the odd
sites, and vice versa. To make this more apparent, we relabel the field φ̂n as
ψ̂u,n for even n and ψ̂l,n for odd n, and the equation of motion can be written as

�tψ̂u,n =
1
2a

(
ψ̂l,n+1 − ψ̂l,n−1

)
, �tψ̂l,n =

1
2a

(
ψ̂u,n+1 − ψ̂u,n−1

)
.

Taking the naive continuum limit, a → 0, of these equations, we recover the
Dirac equation (2.19) if we choose the representation

γ0 =
(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, γ0γ1 =

(
0 1
1 0

)
,

for the Dirac matrices and identify the continuum limit of ψ̂u,n (ψ̂l,n) with the
upper (lower) component of the Dirac spinor [114, 121]:

lim
a→0

(
ψ̂u,n/

√
a

ψ̂l,n/
√
a

)
→

(
ψ1(x)
ψ2(x)

)
= ψ(x).

Moreover, it is straightforward to see that with this identification, we recover
the Dirac Hamiltonian from our lattice formulation. Using the relabeling of φ̂n,
the lattice Hamiltonian reads

Ĥ = − i
2a

∑
n even

(
ψ̂†u,n

(
ψ̂l,n+1 − ψ̂l,n−1

)
+ ψ̂†l,n+1

(
ψ̂u,n+2 − ψ̂u,n

))
= −ia

∑
n even

ψ̂†u,n√a 1
2a

(
ψ̂l,n+1√
a
−
ψ̂l,n−1√
a

)
+
ψ̂†l,n+1√
a

1
2a

(
ψ̂u,n+2√

a
−
ψ̂u,n√
a

) .
From the rewriting in the last line it is easy to see that in the naive continuum
limit this reduces to Eq. (2.18):

Ĥ →H = −i
∫

dx
(
ψ†1(x)�xψ2(x) +ψ†2(x)�xψ1(x)

)
=

∫
dxψ†(x)(−iγ0γ1�x)ψ(x).

The considerations above show that the staggered discretization corresponds
to separating the two components of the Dirac spinor to different lattice sites,
the upper ones to even sites and the lower ones to odd sites. The resulting
lattice fields for the even sites, ψ̂u,n, and the odd sites, ψ̂l,n, have an effective
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lattice spacing of 2a. As a result, the doubling contributions are removed and
one recovers the correct continuum limit.

So far, we have only considered the massless case. To add a mass term, we
have to include the lattice analog of∫

dxmψ(x)ψ(x) =
∫

dxm
(
ψ†1(x)ψ1(x)−ψ†2(x)ψ2(x)

)
in Eq. (2.21) which is given by [114]

m

 ∑
n even

ψ̂†u,nψ̂u,n −
∑
n odd

ψ̂†l,nψ̂l,n

 =m
∑
n

(−1)nφ̂†nφ̂n.

The staggered formulation can also be generalized to higher dimensions,
where again the components of the Dirac spinors are distributed in different
sublattices. The Hamiltonian for d spatial dimensions is of the form [9, 114]

Ĥ = εd
∑
n

d∑
k=1

(
φ̂†nφ̂n+eke

iθk + h.c.
)

+m
∑
n

(−1)
∑d
k=1nk φ̂†nφ̂n (2.22)

where n ∈ Zd is a lattice vector with components nk, ek is a lattice unit vector
pointing in direction k, εd a dimension dependent prefactor and exp(iθk) are
direction dependent phase factors. In higher dimensions the staggered formu-
lation only leads to a reduction of the doubling solutions and does not remove
them completely, for example, in three dimensions one recovers two flavors
of Dirac fermions after taking the continuum limit instead of 8 in the naive
approach [114].

Up to now we have only considered Dirac spinors with no additional inter-
nal degrees of freedom such as color. The staggered formulation also works
the same way in that case. Since we are only distributing the Dirac compo-
nents, the color degrees of freedom stay unaffected and the single component
fermionic field at each site, φ̂n, is simply replaced by a color spinor.

Throughout the rest of this thesis, it will be clear from the context if we refer
to lattice quantities or the continuum ones, hence, we drop for all the following
the hat we used in this Section to distinguish between both. Moreover, since
we are only working with the Kogut-Susskind staggered formulation we call
all lattice fermionic fields from now on again ψn.

Inclusion of the gauge field

Now that we know how to treat fermion fields on the lattice, we would like to
find the lattice version of Eq. (2.14). Starting from the staggered Hamiltonian
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2.2 Lattice formulation

in Eq. (2.22), it is easy to see that it is again invariant under global symmetry
transformations

ψn→ Vψn, ψ†n→ ψ†nV
†,

where V is some group element. Looking at the lattice version of local symme-
try transformations,

ψn→ Vnψn, ψ†n→ ψ†nV
†
n , (2.23)

we discover the same problem as already for the continuum theory: the hop-
ping term involves two different lattice sites and hence cannot be invariant
under such transformations. In the continuum case, the invariance under local
transformations was ensured by introducing the comparator. Looking at Eq.
(2.6) we can see that for a directed path between two space-time points it is
nothing but a group element. Hence, in the lattice case, we are led to put a
group element Un,k on the link going from site n to n+ ek which under gauge
transformations transforms as [8]

Un,k→ VnUn,kV
†
n+ek (2.24)

and Un+ek ,−k = U†n,k. In particular, due to the last property, the links are di-
rected objects, as it is illustrated in Fig. 2.2. Since we restricted ourselves to
the compact (matrix) Lie groups U(1) and SU(Nc), we can again write Un,k as
the exponential of the generators

Un,k = exp
(
iΛa

n,kt
a
)

with Λa
n,k parameters in the group space.3 For small lattice spacings, we can

expand the expression around the identity which yields [8]

Un,k = 1+ iΛa
n,kt

a +O
((
Λa

n,k

)2
)
. (2.25)

Comparing this equation to the continuum case in Eq. (2.5), we find the rela-
tion

1
ag

Λa
n,k→ Aak(x) (2.26)

between the lattice quantity and the continuum gauge field in the limit of van-
ishing lattice spacing.

3Notice that the Λa
n,k are (hermitian) operators on the physical Hilbert space for the link

between sites n and n+ ek . Hence, after choosing a representation, Un,k can be interpreted
as a matrix whose entries are operators acting on the physical Hilbert space.
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Chapter 2 Lattice gauge theory

Up to now the lattice gauge field is not a dynamical quantity. To generate
dynamics we have to add a term corresponding to the canonical momentum
of the gauge field to the Hamiltonian which in the continuum case was simply
given by its time derivative. To find the corresponding lattice version, let us
first consider the Abelian case of U(1) for which the operators Un,k are sim-
ply phases on group space, exp(iΛn,k). The conjugate momentum Ln,k for the
gauge field should, analogously to the continuum case, fulfill[

Λn,k ,Ln′ ,k′
]

= iδkk′δnn′ (2.27)

which implies for its differential representation Ln,k = −i�/�Λn,k [136]. More-
over, from the canonical commutation relation, we find for the commutator
between Un,k and Ln,k [

Ln,k ,Un,k
]

=Un,k . (2.28)

In particular, the expression above shows that Ln,k is the generator of transfor-
mations for the link variables

Un,k→ VnUn,k =Un,kVn,

where Vn commutes with Un,k since we are working with the Abelian group
U(1). Hence, a suitable candidate for the lattice version of the electric energy
is given by

Hel = cel

∑
n,k

L2
n,k .

The constant cel can be determined by requiring thatHel reduces to the contin-
uum expression from Eq. (2.15) for vanishing lattice spacing. To this end let us
first relate the lattice electric field to the continuum one, cLLn,k → Ek(x) with
some constant cL, as we have already done for the gauge field in Eq. (2.26). In
order to recover the canonical commutation relation from Eq. (2.13) for a→ 0,
the lattice analogs of the electric field and the gauge field should fulfill

i

ad
=

[
cLLn,k ,

Λn,k

ag

]
=
cL
ag

[
Ln,k ,Λn,k

]
= i

cL
ag
.

Here we have used Eq. (2.27) and that on a regular lattice in d spatial dimen-
sions with spacing a the delta distribution can be discretized as a rectangular
function of height 1/ad . Thus we find

ga1−dLn,k→ Ek(x)

and together with the correspondence that for d dimensions ad
∑

n →
∫

ddx
in the limit of vanishing lattice spacing, we obtain cel = a2−dg2/2. For the
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2.2 Lattice formulation

Abelian case Ln,k can also be rewritten using its differential representation and
Eq. (2.28) as [136]

Ln,k = −i
(
�tUn,k

)
U†n,k = −iU†n,k

(
�tUn,k

)
. (2.29)

Let us now turn to the case of SU(Nc). Due to the non-Abelian nature of the
group, Eq. (2.29) does not hold anymore, and we have to distinguish between
left and right transformations of Un,k. To this end, let us define two sets of
operators [136]

Ln,k = −i
(
�tUn,k

)
U†n,k , Rn,k = −iU†n,k

(
�tUn,k

)
.

Since we are working with a compact Lie group, we can expand Ln,k and Rn,k
in terms of the generators of the group

Ln,k = Lan,kt
a, Rn,k = Ran,kt

a

where Lan,k, R
a
n,k are operators on the physical Hilbert space. Using this expan-

sion, one finds for the commutation relations with the entries of Un,k [136][
Lan,k ,

(
Un′ ,k′

)
jl

]
= δnn′δkk′ (t

a)ji(Un,k)il ,[
Ran,k ,

(
Un′ ,k′

)
jl

]
= δnn′δkk′ (Un,k)ji(t

a)il ,
(2.30)

indeed showing that the set of operators {Lan,k} ({Ran,k}) are nothing but the gen-
erators of left (right) transformations for Un,k. Moreover, they fulfill the alge-
bra of the group [57, 96][

Lan,k ,L
b
n′ ,k′

]
= −iδnn′δkk′f abcLcn,k ,

[
Ran,k ,R

b
n′ ,k′

]
= iδnn′δkk′f

abcRcn,k ,[
Lan,k ,R

b
n′ ,j

]
= 0.

(2.31)

From the definition of Ln,k and Rn,k it is apparent that

Ln,k =Un,kRn,kU
†
n,k , Rn,k =U†n,kLn,kUn,k , (2.32)

and, thus, tr(L2
n,k) = tr(R2

n,k) where the trace is understood in group space.
Hence, a suitable candidate for the lattice analog to the color-electric energy
from Eq. (2.15) is given by

Hel =
a2−dg2

2

∑
n,k

tr(L2
n,k) =

a2−dg2

2

∑
n,k

∑
a

Lan,kL
a
n,k =

a2−dg2

2

∑
n,k

J2
n,k ,

where we have used the expansion in terms of the generators of the group and
defined the Casimir operator J2

n,k =
∑
aL

a
n,kL

a
n,k =

∑
aR

a
n,kR

a
n,k. The operators
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Chapter 2 Lattice gauge theory

Lan,k and Ran,k can be interpreted as the components of the left and right color-
electric field on a gauge link (see Fig. 2.2).

Besides the color-electric contribution, we also would like to add the lattice
analog to the color-magnetic field to the Hamiltonian. Hence, we are looking
for a pure gauge term that reduces in the limit of vanishing lattice spacing to
Eq. (2.16). A possible term we can add to the Hamiltonian is the trace of a
product of the matrices Un,k around a closed loop. Locality leads us to take the
smallest loops possible, which are plaquettes on the lattice (see Fig. 2.2). Thus
a suitable candidate for the lattice analog of the magnetic part is [112]

Hmag = cmag

∑
�p

(
1− 1

2

(
tr

(
Up

)
+ h.c.

))
,

with a constant cmag. The
∑
�p

indicates a sum over all possible plaquette terms
given by

Up =Un,kUn+ek ,jUn+ek+ej ,−kUn+ej ,−j =Un,kUn+ek ,jU
†
n+ej ,k

U†n,j .

To see that the naive continuum limit of this expression reduces to the color-
magnetic energy contribution let us expand the group parameters for small
lattice spacing [115]

Λa
n+ek ,j

= Λa
n,j + a�kΛ

a
n,j +O(a2)

Λa
n+ej ,k

= Λa
n,k + a�jΛ

a
n,k +O(a2).

Plugging this back into the expression for the plaquette terms, using the Baker-
Campbell-Hausdorff identity and the algebra of the group generators we find
[115]

Up ≈ tr
(
eia

(
�jΛ

a
n,k−�kΛ

a
n,j

)
ta+if abcΛb

n,kΛ
c
n,j t

a
)

≈ 1 +
1
4

(
ia

(
�jΛ

a
n,k − �kΛ

a
n,j

)
+ if abcΛb

n,kΛ
c
n,j

)2

= 1− 1
4
a4g2

�jΛa
n,k

ag
− �k

Λa
n,j

ag
+ gf abc

Λb
n,k

ag

Λc
n,j

ag


2

,

where we have expanded the exponential up to second order and used that
the generators are traceless and normalized according to Eq. (2.2) in the sec-
ond line and merely rewritten the expression in the third line. Looking at the
correspondence between Λa

n,k and the continuum gauge field in Eq. (2.26),
we see that the expression in brackets reduces to Fa,kjFakj . Thus, if we choose

cmag = ad−4/g2, Hmag approaches the continuum expression for the magnetic
contribution to Hamiltonian in the limit of vanishing lattice spacing.
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2.2 Lattice formulation

Figure 2.2: Illustration of a two dimensional lattice. The fermionic fields are
located at the vertices of the lattice indicated by blue circles. The black lines
are the gauge links connecting two vertices, where the arrows indicate the ori-
entation. The yellow ovals indicate where the entries of the matrices Un act.
The light red (green) oval corresponds to the left (right) electric field on a link.
The red square illustrates a plaquette term, where the arrows indicate along
which direction the links are traversed. The gray square shows an example of
a vertex and the associated left and right electric fields where the generators
for gauge transformations act.

Taking all the different contributions together, we obtain the final form of
the gauge invariant lattice Hamiltonian which reads

H =εd
∑
n,k

(
ψ†nUn,kψn+eke

iθk + h.c.
)

+m
∑
n

(−1)
∑
k nkψ†nψn

+
ad−4

g2

∑
�p

(
1− 1

2

(
tr

(
Up

)
+ h.c.

))
+
a2−dg2

2

∑
n,k

Jn,k .
(2.33)

Besides the Hamiltonian we still need to find the discretized form of the gen-
erators for gauge transformations. In the derivation above we have already
seen that due to Eq. (2.30) the operators Lan and Ran are the generators of left
and right transformations for Un,k. Similarly, since we are working with com-
pact Lie groups, we can also define generators Qan for the transformation of
the fermion fields from Eq. (2.23) which can be interpreted as dynamical
charges [57]. Consequently, the generators for time-independent gauge trans-
formations, and thus components of the lattice version of Gauss’ law, are given
by

Gan =
∑

ek outgoing from site n

Lan,k −
∑

ek ingoing to site n

Ran−ek ,k −Q
a
n, (2.34)
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Chapter 2 Lattice gauge theory

where Qan acts on the vertex n and the operators Lan,k and Ran−ek ,k on the left
and right electric field on the links surrounding the vertex (see also Fig. 2.2).
Since the Hamiltonian is by construction gauge invariant, it commutes with
the generators of gauge transformations, [H,Gan] = 0 ∀n, a. Thus, the physical
states, |Ψ 〉, of the lattice Hamiltonian from Eq. (2.33) are eigenstates of the
generators for gauge transformations

Gan|Ψ 〉 = qan|Ψ 〉 ∀a,n

where {qan} can be interpreted as a static, external charge distribution.4 As a
result, the physical Hilbert space of the theory decomposes into the direct sum
of sectors with different static charge configuration {qan}.

Notice that in the derivation above we argued how the gauge invariant lattice
formulation should look like on the basis of recovering the continuum Hamil-
tonian from Eq. (2.14) in the limit of vanishing lattice spacing. However, there
is a great amount of freedom involved and one could in principle add more
or different terms to the Hamiltonian without changing the naive continuum
limit. This freedom can be exploited to obtain improved Hamiltonians for
which the discretization errors decay faster [137, 138].

Our presentation of the lattice formulation focused on the Hamiltonian frame-
work, as it is the more natural one to work with in the context of TN and quan-
tum simulation. However, it is of course possible to obtain a lattice formulation
for the Lagrangian from Eq. (2.10) in a similar fashion, where the temporal di-
rection is usually discretized, too, as spatial and temporal components are not
treated differently in the continuum Lagrangian [8, 105, 112, 115, 139, 140].
Moreover, similar to the continuum case it is also possible to recover the dis-
cretized Hamiltonian from the Lagrangian lattice formulation: after taking the
continuum limit of the temporal direction and choosing Weyl gauge, a Legen-
dre transformation yields the discretized lattice Hamiltonian [105, 115].

2.3 Examples in 1+1 dimensions

In order to illustrate the discussion above, let us consider some examples with
one spatial and one temporal dimension. For that case, there are no transversal
directions, hence, there is no magnetic field, which means that there are no
plaquette terms in the lattice Hamiltonian.

4These external charges are not explicitly considered in the Hamiltonian. Since they are
static, they only contribute a constant mass term which leads to an overall shift of the
energy scale and thus can be dropped.
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2.3 Examples in 1+1 dimensions

2.3.1 The lattice Schwinger model

Let us first look at the lattice formulation of the Schwinger model [101], or
QED in 1+1 dimensions, as an example for the Abelian case. Due to the
Abelian nature of the group U(1) the structure constants vanish and we only
have a single generator which is trivial:

f abc = 0, ta = 1.

Hence, the group elements Uk are simply phases eiΛk , and we choose to work
with a compact formulation where Λk is restricted to [0,2π]. The Kogut-Susskind
Hamiltonian for the Schwinger model with F flavors of fermions is given by [121]

H =− i
2a

∑
k

F∑
f =1

(
ψ†k,f e

iΛkψk+1,f −h.c.
)

+
∑
k

F∑
f =1

(
(−1)kmf +κf

)
ψ†k,f ψk,f

+
ag2

2

∑
k

L2
k ,

(2.35)

where mf and κf are the mass and the chemical potential for flavor f .5 As we
have seen above, for the Abelian case we do not have to distinguish between
left and right electric field and the operators Lk and Λj fulfill the commutation
relation [Λj ,Lk] = iδkj . Hence, the operator Lk is nothing but the z-component
of an angular momentum operator for a quantum rotor with integer eigenval-
ues and exp(iΛk) acts as a rising operator for the electric flux. A suitable basis
for the Hamiltonian is thus given by |n1,1, . . . ,n1,F〉⊗|`1〉⊗|n2,1, . . . ,n2,F〉⊗|`2〉 . . . ,
where nk,f corresponds to the fermionic occupation for flavor f on site k, and
|`k〉 to an eigenstate of the angular momentum operator acting on link k:

Lk |`k〉 = `k |`k〉, eiΛk |`k〉 = |`k + 1〉, `k ∈ Z.

Notice that the spectrum of the operators Lk is unbounded and given by the
entire range of the integers. As a result, the Hilbert space of a single link is
already infinite dimensional. The Gauss law from Eq. (2.34) for the Abelian
case reads

Gk = Lk −Lk−1 −Qk , (2.36)

where Qk =
∑F
f =1

(
ψ†k,f ψk,f −

1
2(1− (−1)k)

)
is the staggered Abelian charge [57].

The physical states, |Ψ 〉, of the Hamiltonian (2.35) are given by Gk |Ψ 〉 = qk |Ψ 〉
∀k where {qk} is an external, static charge distribution.

5Notice that for the single-flavor case the density term corresponding to the chemical poten-
tial is just a constant energy offset, since due to the global U(1) symmetry of the model the
total particle number is conserved. Hence, for the single-flavor case it can be dropped.
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Chapter 2 Lattice gauge theory

In the strong-coupling limit, g � 1, the electric field term dominates and
the hopping can be neglected, hence allowing for an analytical solution of the
Hamiltonian. The Gauss law fulfilling ground state in the sector of vanish-
ing external charges is then given by the lattice analog of the Dirac sea with
occupied odd sites, empty even sites and the links carrying no flux [121, 141]

|Ψsc〉 = |1, . . . ,1〉 ⊗ |0〉 ⊗ |0, . . . ,0〉 ⊗ |0〉 ⊗ . . . . (2.37)

In the expression above, the numbers in bold face represent the fermionic oc-
cupation.

For the case of finite systems it is also possible to integrate out the gauge field
and to obtain a lattice Hamiltonian directly restricted to the physical subspace
of the theory. Assuming open boundary conditions (OBC) and an electric field
value of l0 on the left boundary, the Gauss law can be solved explicitly yielding

Lk = l0 +
k∑
l=1

(Ql + ql) .

Plugging this back into the Hamiltonian (2.35) for the case of N sites, and
applying a residual gauge transformation [141], we obtain

H =− i
2a

N−1∑
k=1

F∑
f =1

(
ψ†k,f ψk+1,f −h.c.

)
+

N∑
k=1

F∑
f =1

(
mf (−1)k +κf

)
ψ†k,f ψk,f

+
ag2

2

N−1∑
k=1

l0 +
k∑
l=1

(Ql + ql)


2

.

(2.38)

Notice that the charge Qk only depends on the fermionic content of the sites,
hence, the gauge field is removed completely in the formulation above. Com-
pared to the original Hamiltonian, the formulation after integrating out the
gauge fields is nonlocal.

2.3.2 SU(2) lattice gauge theory

As a second example, let us look at a non-Abelian SU(2) LGT. For this case, we
have two “colors” of fermions, hence, at each vertex k there is a two component
spinor ψ†k =

(
ψ†−1/2,k ψ†1/2,k

)
taking into account the two different colors.6 The

structure constants are the Levi-Civita symbols εabc, and the three generators

6Here we label the color components ψl,k of the spinor at vertex k with l = ±1/2 to make the
related z-component of the angular momentum explicit. For simplicity, we sometimes also
refer to the different color components as “red” (l = −1/2) and “green” (l = 1/2) whenever
the explicit angular momentum value is not relevant.

26



2.3 Examples in 1+1 dimensions

for the fundamental representation are essentially given by the Pauli matrices
σ a,

f abc = εabc, ta =
1
2
σ a, a ∈ {x,y,z},

where the prefactor 1/2 is due to our choice of normalization condition from
Eq. (2.2). Thus, the operators Uk are SU(2) matrices whose entries, (Uk)ll′ ,
act on the link between the fermionic sites k and k + 1 and change the corre-
sponding color-electric flux. The Kogut-Susskind Hamiltonian for the SU(2)
case reads

H =− i
2a

∑
k

(
ψ†kUkψk+1 −h.c.

)
+m

∑
k

(−1)kψ†kψk +
ag2

2

∑
k

J2
k ,

=− i
2a

∑
k

1/2∑
l,l′=−1/2

(
ψ†l,k (Uk)ll′ ψl′ ,k+1 −h.c.

)
+m

∑
k

1/2∑
l=−1/2

(−1)kψ†l,kψl,k

+
ag2

2

∑
k

J2
k ,

(2.39)

where in the second line we have made the color degrees of freedom explicit.
For the SU(2) case, the commutation relations from Eq. (2.31) for the left and
right electric field from Eq. (2.31) are nothing but an angular momentum al-
gebra, hence the operators Lak and Rak correspond to the components of two
angular momentum operators. Moreover, the operators Uk can be interpreted
as rotation matrices as they are nothing but SU(2) matrices in the fundamental
representation. Hence, Eq. (2.32) shows that the two angular momentum op-
erators are related to each other by a rotation and the total angular momentum
J2 =

∑
aL

aLa =
∑
aR

aRa is the same. Consequently, the Hilbert spaces for the
gauge links can be described by those of a spherical symmetric quantum rigid
rotor with total angular momentum j [9] with the corresponding angular mo-
mentum operators for the body-fixed frame (La) and the space-fixed inertial
frame of reference (Ra). The basis states can be labeled by the total angular
momentum, j, and the two z-components `, `′ for both frames

J2|j``′〉 = j(j + 1)|j``′〉, Lz|j``′〉 = `|j``′〉, Rz|j``′〉 = `′ |j``′〉.

The entries of the matrix U then change the angular momentum according to
the proper composition rules for angular momenta [9, 142, 143]

(U )ll′ |j``′〉 = C
1
2 j j−

1
2

l ` l+` C
1
2 j j−

1
2

l′ `′ l′+`′ |j − 1/2, ` + l, `′ + l′〉

+C
1
2 j j+

1
2

l ` l+` C
1
2 j j+

1
2

l′ `′ l′+`′ |j + 1/2, ` + l, `′ + l′〉,
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Chapter 2 Lattice gauge theory

where Cj1 j2 J`1 `2 M
= 〈J,M |j1`1; j2, `2〉 are the usual Clebsch-Gordan coefficients for

coupling two angular momenta j1, j2 to a total angular momentum J . Thus, a

suitable basis for addressing the Hamiltonian is |n−
1
2

1 ,n
1
2
1 〉⊗|j1`1`

′
1〉⊗|n

− 1
2

2 ,n
1
2
2 〉 . . . ,

where nlk is the fermionic occupation number for color l at vertex k. The gen-
erators for gauge transformations for the SU(2) case are given by

Gak = Lak −R
a
k −Q

a
k , a ∈ {x,y,z} (2.40)

with the non-Abelian charge componentsQak =
∑1/2
l,l′=−1/2

1
2ψ
†
l,k(σ

a)ll′ψl′ ,k. Again,
the physical states, |Ψ 〉, of the Hamiltonian have to be eigenstates of the Gauss
law, Gak |Ψ 〉 = qak |Ψ 〉 ∀k,a.

Similar to the Schwinger case, the strong-coupling limit of the Hamiltonian
can be solved analytically, as the hopping term can be neglected. The gauge
invariant ground state for vanishing external charges is then again given by the
lattice analog of the Dirac sea corresponding to odd sites occupied by a fermion
of each color, empty even sites and vanishing color flux on the links [144]:

|Ψsc〉 = |1,1〉 ⊗ |000〉 ⊗ |0,0〉 ⊗ |000〉 . . . . (2.41)

In the formula above the numbers in bold face represent the fermionic occu-
pation numbers while |000〉 represents a link carrying no flux.

Notice that for the SU(2) case it is not straightforward to integrate out the
gauge degrees of freedom for the case of finite systems with OBC and to obtain
a formulation restricted to the physical subspace. This problem is addressed
in detail in Chapter 7.

2.4 Quantum simulation of lattice gauge theories

In spite of the great success of LGT, there are also some limitations. The con-
ventional MC approach to LGT in the Lagrangian formulation suffers from
the sign problem in certain parameter regimes which limits its applicability.
In particular, many problems at at finite fermion density as well as real-time
dynamics are intractable with the method (although recently techniques have
been developed that enable the simulation of dynamics in restricted regimes
[145–147]). Methods originating from quantum information theory, might of-
fer an alternative route to overcome these limitations and, on the basis of the
Hamiltonian lattice formulation which we presented above, there have been
several of those approaches to LGT during recent years. On the one hand it
can be addressed with TN methods, as we will discuss further in Chapter 3.
On the other hand the Hamiltonian lattice formulation is the starting point for
a vast majority of proposals to quantum simulate gauge theories [55, 57, 60,
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2.4 Quantum simulation of lattice gauge theories

78–90, 92–98, 100, 148, 149] (albeit there also exist proposals directly address-
ing quantum field theories in the continuum [77, 150, 151]). Here we briefly
review the prospects and challenges of such quantum simulators.

In general, the problem we would like to solve is the following: given the
Hamiltonian, H , of the system and some initial state, |Ψ (0)〉, we want to ob-
tain some of the physical properties from |Ψ (t)〉 at a certain time t. Quantum
simulators [64, 152–155] are controllable quantum systems that can emulate
the evolution of |Ψ (0)〉while exploiting quantum effects of the simulation plat-
form. Hence, for a system to be a viable candidate for a quantum simulator,
one has to be able to initialize it in a suitable initial state at the beginning of the
simulation, evolve the prepared state in time and finally extract the desired in-
formation via a measurement at the end of the simulation. There are two basic
types of such simulators, digital quantum simulators and analog quantum sim-
ulators [152, 154]. In the analog approach, the Hamiltonian of the system is
directly mapped to an experimentally controllable system (see Fig. 2.3(a)). In
contrast, the digital approach is based on the circuit model of quantum com-
putation [156]. The unitary evolution is generated by decomposing the evolu-
tion operator in a quantum circuit and applying it to the desired initial wave
function encoded in the computational basis (see Fig. 2.3(b)).

Figure 2.3: (a) Illustration of an analog quantum simulator. The Hamiltonian
of the system, H , is mapped to an experimentally controllable system which
allows to emulate the unitary time evolution. At the end of the evolution a
measurement reveals the desired properties. (b) Sketch of a digital quantum
simulator. The initial wave function of the system is encoded in the compu-
tational basis ⊗i |wi〉, wi ∈ {0,1}, and the evolution is simulated by applying a
sequence of quantum gates. At the end of the computation a measurement
yields the desired information.

Quantum simulation is a particularly promising approach for the future, as
it is free from the purely numerical limitations faced in simulations on classi-
cal computers, and there has been a variety of proposals for analog [78–82, 85–
87, 89, 90, 92, 100, 148, 149, 157–160] and digital quantum simulators [60, 84,
93, 99, 161] for LGT problems and even combinations of both techniques [97,
98]. Recently, the first digital quantum simulator for the Schwinger model has
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Chapter 2 Lattice gauge theory

been realized in a small system of trapped ions [102], showing that the first ex-
perimental implementations are coming into reach with nowadays remarkable
level of experimental control.

Despite these promising prospects, quantum simulation of LGT also poses
a number of particular challenges. As the examples in the previous Section
illustrate, continuous gauge symmetries lead to infinite-dimensional Hilbert
spaces for the gauge degrees of freedom. In contrast, the systems that can be
controlled experimentally are typically finite dimensional. Hence, many pro-
posals for quantum simulation of LGT correspond to truncated versions of the
original theory [78, 80–82, 99, 100, 149, 157] or quantum link models [162–
164], where the link variables are replaced by finite-dimensional spins [60, 79,
84–87, 89, 90, 93, 148]. Since the original theory is only recovered in the limit
of infinite-dimensional links, it is an important question how such a truncation
might affect the predictive power of future experimental realizations.

Furthermore, the gauge symmetry of the model to be simulated is typically
not a fundamental symmetry of the simulation platform. In many proposals
it is ensured via an energy penalty on the noninvariant states and the desired
gauge Hamiltonian arises as an effective theory in the low-energy limit [78,
79, 82, 85, 92, 157]. Even if the gauge symmetry can be mapped to a more
fundamental conservation law of the simulation platform [80, 81, 86, 87, 149]
or protected by other means [89], it is likely that experimental imperfections
nevertheless lead to noninvariant terms in a practical realization. Hence, a
further crucial question is how the nonfundamental character of the gauge
symmetry affects the expected performance of future quantum simulators.

Additionally, to asses the practical feasibility of quantum simulation schemes,
it is essential to analyze the physical requirements, too. This concerns the
minimal system sizes for observing interesting phenomena, the time scales re-
quired for preparing relevant states of the theory and the necessary level of
noise control to obtain credible results. In particular, quantum simulation is
only advantageous over a simulation on a classical computer, if those resources
do not scale exponentially with the size of the system to be simulated.

As we are going to see in the following Chapter, numerical techniques based
on TN are not only a promising alternative to approach LGT problems, but
they also allow for investigating some of these questions relevant for quantum
simulation of LGT.
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Matrix product states

In the previous Chapter we introduced the lattice formulation of gauge theo-
ries and discussed the perspectives and limitations of potential quantum simu-
lators for gauge models. In order to examine certain gauge models and propos-
als for potential quantum simulators numerically, we use a particular kind of
one-dimensional TN, the MPS. In the following we summarize the basic con-
cepts of MPS with a particular focus on the numerical techniques we employ
in the later part of the thesis. In Sec. 3.1 we introduce the ansatz and show why
it is suitable to approximate the physically relevant states for many Hamilto-
nians before we review the numerical methods we employ for our simulations
in Sec. 3.2. Finally, we discuss the application of TN to LGT in Sec. 3.3.

3.1 The matrix product state ansatz

Let us consider a quantum lattice system composed of N individual systems
(e.g. spins), with local Hilbert space dimension d <∞.1 Any pure state of the
system can then be written as

|Ψ 〉 =
d∑

i1,i2,...,iN=1

ci1,...iN |i1〉 ⊗ · · · ⊗ |iN 〉, (3.1)

with a tensor ci1,...iN having dN complex entries. From this consideration the
“curse of dimensionality” for numerical calculations taking into account the
full Hilbert space is already apparent: after choosing a basis, the state is fully
characterized by dN complex numbers and storing those would require an ex-
ponential amount of memory. Consequently, even if one is only interested in
the low-lying spectrum and makes clever use of symmetries, one is in general
limited to small N [165, 166].

1For simplicity we assume that all systems have the same physical dimension. This does not
necessarily have to be the case and the arguments presented here would also apply if each
system has a different dimension, dk , k = 1, . . . ,N .
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Chapter 3 Matrix product states

An efficient ansatz for the many-body wave function is given by the matrix
product states with OBC which are given by

|Ψ 〉 =
d∑

i1,i2,...iN=1

Ai11 A
i2
2 . . .A

iN
N |i1〉 ⊗ · · · ⊗ |iN 〉. (3.2)

In the expression above the Aikk are complex D ×D matrices for k = 2, . . . ,N −
1 and Ai11 (AiNN ) is a D dimensional row (column) vector. Hence, we have a
family of states for which, instead of a single tensor ci1,...iN with dN entries, the
coefficients are parametrized by a product of matrices for every combination
of indices i1, . . . , iN . The number of parameters in the ansatz is given O((N −
2)dD2 + 2Dd) = O(ND2d), where D is called the bond dimension of the MPS.2

Obviously, the scaling of the number parameters for a fixed bond dimension is
only polynomial in system size.

Before we continue our discussion, it is convenient to introduce a graphical
notation, in which each tensor is represented as a box and each index as a
leg sticking out of the box. Connected legs between two tensors indicate a
contraction of the corresponding index meaning that it is summed. Hence, the
tensor ci1,...iN and the MPS from Eq. (3.2) can be represented graphically as
shown in Fig. 3.1.

Figure 3.1: Illustration of the graphical notation described in the text for a
system with 6 sites. (a) The tensor ci1,...,i6 , each of the legs corresponds to a
single index. (b) Graphical notation for the MPS from Eq. (3.2), the connected
legs correspond to contracted indices.

From Eq. (3.2) it also apparent that the MPS representation is not unique,
one can always insert a pair of invertibleD×D matrices YkY

−1
k = 1 at each bond

and obtain an equivalent MPS representation with tensors Bikk = Y −1
k−1A

ik
k Yk and

Bi11 = Ai11 Y1 (BiNN = Y −1
N−1A

iN
k ) on the left (right) boundary, as shown in Fig. 3.2(a).

This gauge freedom can be used to obtain the left canonical form of a MPS in

2It is also possible to allow for a varying bond dimension between different sites. In that
case Aikk ∈ C

Dk−1×Dk for k = 2, . . . ,N − 1 and Ai11 (AiNN ) is a D1 dimensional row vector (DN
dimensional column vector. The bond dimension is then defined as D = maxkDk . Here we
consider for simplicity a homogeneous D.
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which the matrices fulfill the condition [167]
d∑
ik=1

(
B
ik
k

)†
B
ik
k = 1,

d∑
ik=1

B
ik
k Λk

(
B
ik
k

)†
= Λk−1, (3.3)

where Λk is a diagonal matrix with positive entries fulfilling tr(Λk) = 1 and
Λ0 = 1 = ΛN . In the graphical notation this corresponds to the conditions
shown in Fig. 3.2(b)-(c). Similar to the left canonical form, we can also use the
gauge freedom to obtain the right canonical form, where the tensors fulfill

d∑
ik=1

B
ik
k

(
B
ik
k

)†
= 1,

d∑
ik=1

(
B
ik
k

)†
Λk−1B

ik
k = Λk . (3.4)

Especially the possibility to achieve an identity in the partial contraction of
two tensors turns out to be crucial for the efficiency and the stability of the
numerical algorithms, as we are going to discuss later.

Figure 3.2: (a) Equivalent MPS representation after inserting a pair of invert-
ible matrices at each bond. The green dashed boxes indicate the new tensors
B
ik
k . Panels (b) and (c) illustrate the conditions for the left canonical gauge from

Eq. (3.3). (b) The first condition ensures that the partial contraction of two ten-
sors yields the identity. (c) The second condition ensures a contraction with the
diagonal matrix Λk−1 yields another diagonal matrix Λk.

So far we have introduced MPS as an ansatz for the many-body wave func-
tion and it is not yet clear which states they parametrize. To get more insight
into the set of states corresponding to MPS with fixed bond dimension, let us
bipartition the system into a subsystem A containing the sites 1, . . . , r and its
complement Ā containing the rest of the sites from r + 1, . . . ,N . Using this
bipartition, we can rewrite Eq. (3.1) as

|Ψ 〉 =
d∑

iA,iĀ=1

ciA,iĀ |iA〉 ⊗ |iĀ〉,
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Chapter 3 Matrix product states

where iA (iĀ) is a multi-index referring to all ik for k ∈ A (k ∈ Ā). We can now
interpret ciA,iĀ as the entries of a dr × dN−r dimensional complex matrix and
compute its singular value decomposition3 which yields

|Ψ 〉 =
d∑

iA,iĀ=1

Dr∑
α=1

UiA,αSα,αV
†
α,iĀ
|iA〉 ⊗ |iĀ〉. (3.5)

In the expression above UiA,α, V †α,iĀ are the entries of two unitary matrices U ,

V † and S = diag(s1, s2, . . . , sDr ) is a diagonal matrix of rank Dr ≤ min(dr ,dN−r),
with the real, positive singular values in decreasing oder, si ≥ si+1 > 0. Due
to the unitarity of the matrices U and V †, the vectors |rα〉 =

∑d
iA=1 UiA,α |iA〉

(|r̄α〉 =
∑d
iĀ=1 V †α,iĀ

|iĀ〉) are pairwise orthonormal and this form is known as
Schmidt decomposition of the state. The singular values are called the Schmidt
values and Dr is the Schmidt rank. Since the Schmidt vectors are orthonormal,
it is particularly easy to compute the reduced density matrix (RDM) of the
subsystem A which yields

ρA = trĀ
(
|Ψ 〉〈Ψ |

)
=

Dr∑
α=1

s2α |rα〉〈rα |

where trĀ refers to the partial trace over the subsystem Ā. Moreover, as the
reduced density matrix is diagonal in the Schmidt vectors, we can directly
compute the entanglement entropy for the bipartition A, Ā which is given by
the von Neumann entropy of the reduced density matrix

S(ρA) = −tr
(
ρA log2 (ρA)

)
= −

Dr∑
α=1

s2α log2(s2α). (3.6)

As one can show, the entanglement entropy is maximized if the reduced den-
sity matrix for the subsystem has a flat spectrum, meaning that s2α = 1/Dr ,
α = 1, . . . ,Dr , resulting in S(ρA) = log2(Dr) [168]. Hence, we see that the entan-
glement entropy between the two subsystems is upper bounded by the loga-
rithm of the Schmidt rank.

Instead of just taking a single bipartition, we can use the decomposition
from above sequentially starting from the left and iteratively applying it to the
resulting tensors V †. In a first step, we decompose the tensor according to Eq.
(3.5) where we bipartition the system into the first site and the rest (see also

3We use the compact singular value decomposition and only keep the columns of U and the
rows of V † corresponding to nonzero entries of S.
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3.1 The matrix product state ansatz

Fig. 3.3(a)-(b))

ci1,...,iN = ci1,(i2,...,iN ) =
D1∑
α1=1

U
(1)
i1,α1

S
(1)
α1,α1V

(1)†

α1,(i2,...,iN ).

In a second step, we interpret V (1)†
α1,(i2,...,iN ) as a tensor c(α1i2),(i3...,iN ) and decom-

pose it again, hence yielding (see Fig. 3.3(c))

ci1,...,iN =
D1∑
α1=1

D2∑
α2=1

U
(1)
i1,α1

S
(1)
α1,α1U

(2)
(i2,α1),α2

S
(2)
α2,α2V

(2)†
α2,(i3,...,iN ).

Iterating the procedure until we arrive at the right boundary, we obtain a de-
composition of the form

ci1,...,iN =
D1∑
α1=1

D2∑
α2=1

· · ·
DN−1∑
αN−1=1

U
(1)
i1,α1

S
(1)
α1,α1U

(2)
(i2,α1),α2

S
(2)
α2,α2 . . .S

(N−1)
αN−1,αN−1U

(N )
iN ,αN−1

.

where S(k)
αk ,αk are the entries of the diagonal matrices Sk arising from the singu-

lar value decompositions. This can be cast into a simple form, if we interpret
the rank three tensors U (k)

(ik ,αk−1),αk
for a fixed ik, k = 2, . . . ,N −1, as the entries of

matrices U ik
k in CDk−1×Dk , too. Correspondingly, the rank two tensors at bound-

ary U (1)
i1,α1

(U (N )
iN ,αN−1

) can be seen as the entries of a D1-dimensional row vector

U i1
1 (DN -dimensional column vector U iN

N ). As a result, we arrive at a state of
the form [169]

|Ψ 〉 =
d∑

i1,i2,...,iN=1

U i1
1 S1U

i2
2 S2 . . .SN−1U

iN
N |i1〉 ⊗ · · · ⊗ |iN 〉, (3.7)

where instead of a single tensor ci1,...iN , we have now a product of matrices for
every combination of indices i1, . . . , iN (see Fig. 3.3(d) for the graphical nota-
tion). The diagonal matrices Sk contain the Schmidt values for the correspond-
ing bipartition of the system, hence, one can immediately read of the entan-
glement properties for any subsystem of contiguous sites. Alternatively, if we
contract the tensors carrying the Schmidt values into the matrices to the right
and set Ai11 =U i1

1 , Aikk = Sk−1U
ik
k , k = 2 . . . ,N , we obtain a MPS in right canonical

form4 (see Eq. (3.4)) and the matrices Λk are given by S2
k . Our considerations

above show the following:

4Correspondingly, one can also contract the matrices to left and obtain a MPS in left canonical
form.
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Figure 3.3: (a) The original tensor ci1,...,i6 . (b) We apply a singular value de-

composition and obtain the first tensor U i1
1 carrying a physical index and the

matrix S1. (c) After reshaping and decomposing cα1,i2,i3,i4,i5,i6 , we obtain the

second tensor U i2
2 carrying another physical index and S2. (d) The result after

iterating the decomposition procedure until reaching the right boundary.

1. Since we have merely rewritten Eq. (3.1) to arrive at Eq. (3.7), every state
can be a cast to a MPS form. However, the resulting bond dimension
necessary to do so scales in general exponentially in the system size, as
the maximum Schmidt rank for a system ofN sites can reach up to dxN/2y.

2. The MPS ansatz from Eq. (3.2) represents states with Schmidt rank at
most D for any bipartition and, hence, as we have seen in the derivation
above, the entanglement entropy for a subsystem is upper bounded by
log2(D). Thus, MPS correspond to a subset of states of the full Hilbert
space having limited entanglement, and by increasing the maximally al-
lowed bond dimension, one obtains a strictly larger set which contains
all MPS of smaller bond dimension (see Fig. 3.4).

Figure 3.4: Full Hilbert space of the system (blue outer oval) and the set of
states parametrized by MPS with fixed bond dimension (red and yellow inner
ovals). The set of states parametrized grows with increasing bond dimension
and strictly includes all states with smaller bond dimension.

The MPS from Eq. (3.2) can also be derived in a different way using the va-
lence bond picture [170, 171]. To this end, we introduce for every site a virtual
system consisting of two D-dimensional qudits such that two neighboring qu-
dits on different sites form a maximally entangled pair (see also Fig. 3.5). The

36



3.1 The matrix product state ansatz

resulting state of the virtual system is then

|ΨVB〉 = |ω1〉 ⊗ |ω2〉 ⊗ · · · ⊗ |ωN−1〉

with the maximally entangled pairs |ωk〉 = 1√
D

∑D
l=1 |bk = l,ak+1 = l〉. If we now

Figure 3.5: Illustration of the valence bond picture. The blue circles corre-
spond to the virtual qudits sitting on a site indicated by the orange ovals. The
wiggly line indicates two qudits forming a maximally entangled pair. After ap-
plying the linear map Pi on each site, we obtain the physical system indicated
by a red sphere.

apply locally the linear map

Pk =
d∑
ik=1

D∑
ak ,bk=1

A
(k)
ik ,ak ,bk

|ik〉〈ak ,bk |

at each of the middle sites and

P1 =
d∑

i1=1

D∑
b1=1

A
(1)
i1,b1
|i1〉〈b1|, PN =

d∑
iN=1

D∑
aN=1

A
(N )
iN ,aN
|iN 〉〈aN |

at the left and right boundary, we obtain a state

|Ψ 〉 = P1 ⊗ P2 ⊗ · · · ⊗ PN |ΨVB〉

=
d∑

i1,i2,...iN=1

Ai11 A
i2
2 . . .A

iN
N |i1〉 ⊗ · · · ⊗ |iN 〉.

which is exactly the MPS we have already found previously, if we again con-
sider the A(k)

ik ,ak ,bk
as the entries of a complex matrix Aikk for each value of ik,

k = 2, . . . ,N − 1, and A
(1)
i1,b1

(A(N )
iN ,aN

) as the entries of a row vector Ai11 (column

vector AiNN ).

37



Chapter 3 Matrix product states

The valence bond picture again shows that MPS with a fixed D carry limited
entanglement. For every bipartition in a left and a right part of the system,
there is exactly one maximally entangled pair of D-dimensional qudits shared
by the two subsystems. Hence, the entanglement entropy is upper bounded
by the entropy of this pair. Moreover, the valence bond picture presented here
can be immediately generalized to two and higher spatial dimensions yielding
the projected entangled pair states (PEPS) [172].

Historically, this construction has been adopted to describe the exact ground
state of an extension of the spin-1 Heisenberg model introduced by Affleck,
Kennedy, Lieb and Tasaki [173] which can be obtained by projecting two vir-
tual spin-1/2 particles onto the spin-1 subspace. The construction was gen-
eralized in Ref. [170] which formally introduced translational invariant MPS
under the name of finitely correlated states.

In our considerations we focused on systems with OBC, however, it is easy
to generalize the MPS ansatz to periodic boundary conditions. In the valence
bond picture this corresponds to putting another virtual particle in the first
and last site which form a maximally entangled state, too [171]. The resulting
state after projecting then reads

|Ψ 〉 =
d∑

i1,i2,...iN=1

tr(Ai11 A
i2
2 . . .A

iN
N )|i1〉 ⊗ · · · ⊗ |iN 〉,

where contrary to the OBC case Ai11 and AiNN are now matrices as well. Further-
more, there exist generalizations for continuous systems [174] as well as a class
of states which can be considered as MPS with infinite bond dimension [175].

3.1.1 Efficient approximation with matrix product states

So far, we have introduced MPS as a theoretical concept and it is not yet clear
if they can be used to efficiently approximate physically relevant states. A key
concept for assessing if a state can be efficiently approximated with a MPS, is
the area law [176]. A state is said to fulfill the area law, if the entropy for a
subsystem A described by the reduced density matrix ρA scales as the surface
area of the boundary �A of the subsystem:

S(ρA) ∝ |�A|.

For the one-dimensional case, the surface area of the boundary is simply a con-
stant, independent of the subsystem size. As we have seen before, the entan-
glement entropy for a MPS with a fixed bond dimension D is upper bounded
by log2(D), independent of the subsystem size, thus, MPS fulfill the area law
by construction.
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3.1 The matrix product state ansatz

States fulfilling the area law are very nongeneric. A random state drawn
from the Hilbert space is typically expected to have a volume law behavior,
meaning that the entanglement entropy of a subsystem is extensive in its vol-
ume [177–179]. Nevertheless, it turns out that ground states of a large class of
physically relevant one-dimensional systems fall into this category. For Hamil-
tonians with local interactions of finite strength, unique ground state and a
finite energy gap to the first excited state, it can be shown that the ground
state fulfills the area law [180]. In particular, for these systems one can show
that the area law also implies that the Schmidt values decay fast and, thus,
ground states of local, gapped Hamiltonians can be efficiently approximated with
MPS [180].

In a more general setting, it was shown that MPS allow for efficiently ap-
proximating any state, for which all Rényi entropies

Sα(ρA) =
1

1−α
log2

(
tr

(
ραA

))
(3.8)

for 0 < α < 1 fulfill the area law up to logarithmic corrections [181, 182]. More
specifically, if there exist constants c,c′ such that Sα(ρA) ≤ c log2(LA) + c′ for
α ∈ (0,1) for arbitrary contiguous regions A with corresponding length LA,
the state can be efficiently approximated with MPS. Efficiently approximated
means that given a fixed error, the bond dimension necessary to obtain an ap-
proximation with at most this error scales at most polynomially with the sys-
tem size N . Notice that this does not generalize to higher dimensions: for
two and more spatial dimensions there exist states for which all Rényi en-
tropies fulfill an area law, nevertheless they cannot be efficiently approximated
by PEPS. These states are, however, not the ground states of local Hamiltoni-
ans [183].

In particular, in one dimension the states that can be efficiently approxi-
mated also encompass ground states of critical systems, for which arguments
from conformal field theory suggest a logarithmic scaling of the Rényi en-
tropies with respect to the subsystem size [184]. In that case, the bond di-
mension required to obtain a MPS approximation for a given state with a fixed
error scales polynomially in the system size [181]. Moreover, there exist TN
which have the logarithmic corrections to the area law built in such as tree ten-
sor networks [185] and the multi-scale entanglement renormalization ansatz [186],
hence, having a more efficient scaling in bond dimension for critical systems.
Similar to MPS, these can also be generalized to higher dimensions [187, 188]
and continuous systems [189].

3.1.2 Matrix product operators

Up to now we have only considered states. For the numerical calculations we
also need the form corresponding to Eq. (3.2) for operators such as the Hamil-
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tonian describing the system. Similar to a quantum state, any operator

O =
d∑

i1,...,iN=1

d∑
j1,...,jN=1

c
j1,...,jN
i1,...,iN

|i1〉〈j1| ⊗ · · · ⊗ |iN 〉〈jN | (3.9)

can be written as matrix product operator (MPO) [190–193]

O =
d∑

i1,...,iN=1

d∑
j1,...,jN=1

M
i1,j1
1 . . .M

iN ,jN
N |i1〉〈j1| ⊗ · · · ⊗ |iN 〉〈jN |, (3.10)

whereM ik ,jk
k are again complex matrices for k = 2, . . . ,N−1 andM i1,j1

1 (M iN ,jN
N ) is

a row (column) vector. In the graphical notation, a MPO is a MPS in an opera-
tor basis and, hence, has an additional physical leg (see Fig. 3.6(a)). Again, any
operator can be cast into MPO form, if one allows for matrices of exponential
size in N . Provided the Hamiltonian of a system is local, one can always find

Figure 3.6: (a) Example of a MPO for a system with 6 sites. (b) Application of
a MPO to an MPS results again in a MPS with the tensors indicated by the blue
dashed boxes.

an efficient MPO representation for it [192, 194]. Moreover, also for certain
types of long-range interactions it is possible to find an efficient MPO repre-
sentation [193]. In general, it can be shown that every operator of the form of
Eq. (3.9) corresponds to a complex weighted finite automaton and the finite
automaton allows for finding a MPO representation with a bond dimension
related to the number of states of the automaton [194].5

From the graphical notation it is apparent that applying a MPO to a MPS
yields again a MPS (see Fig. 3.6(b)). The bond dimension of the resulting MPS
is in general the product of the bond dimension of the initial MPS and the
MPO, as the new matrices Bikk have entries of the form

B
(k)
ik ,(αk−1,βk−1),(αkβk) =

d∑
jk=1

M
(k)
ik ,jk ,βk−1,βk

A
(k)
jk ,αk−1,αk

,

5Notice, since operators can be interpreted as states in an operator basis, this is also true
for states. Hence, every quantum state can be expressed as finite automaton which allows
for finding an MPS representation with a bond dimension proportional to the number of
internal states of the automaton.
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and the vectors Bi11 and BiNN at the boundaries are given by

B
(1)
i1,(α1,β1) =

d∑
j1=1

M
(1)
i1,j1,β1

A
(1)
j1,α1

, B
(N )
iN ,(αN−1,βN−1) =

d∑
jN=1

M
(N )
iN ,jN ,βN−1

A
(N )
jN ,αN−1

.

3.2 Numerical algorithms

Besides being a viable theoretical tool, the MPS formalism allows the effi-
cient computation of ground-state approximations [195, 196] and time evolu-
tion [190, 197–200]. In particular, MPS are the underlying variational ansatz of
the highly successful density matrix renormalization group (DMRG) [201, 202].
Here we briefly review the two main algorithms we use throughout the rest of
the thesis to examine different gauge models and proposals for quantum sim-
ulating those. Detailed reviews explaining the computational techniques in
depth can be found in Refs. [168, 198, 203, 204].

3.2.1 Variational ground-state search

Given the Hamiltonian of the system in MPO form, we can use the family
of MPS with fixed bond dimension D,MD , as variational ansatz to efficiently
determine an approximation for the ground state of the system. To this end, we
would like to find the MPS which minimizes the energy E = 〈Ψ |H |Ψ 〉/〈Ψ |Ψ 〉
which according to the Rayleigh-Ritz variational principle is given by [204]

min
|Ψ 〉∈MD

〈Ψ |H |Ψ 〉
〈Ψ |Ψ 〉

. (3.11)

If we plug the MPS ansatz from Eq. (3.2) into this expression and directly try to
find the set of tensors Aikk minimizing it, this would in general turn into a com-
plicated high-dimensional nonlinear optimization problem which is numeri-
cally hardly tractable. Instead, we choose a different approach and minimize
the expression iteratively by updating the tensors one by one while keeping
the others fixed [171]. The optimal tensor for a site k while keeping the others
fixed is then found by extremizing Eq. (3.11) with respect to this tensor:

min
A
ik
k

〈
Ψ

[
A
ik
k

] ∣∣∣∣H ∣∣∣∣Ψ [
A
ik
k

]〉
〈
Ψ

[
A
ik
k

] ∣∣∣∣Ψ [
A
ik
k

]〉 = min
~Ak

~A†kHeff,k ~Ak
~A†kNk

~Ak
. (3.12)

Here Ψ
[
A
ik
k

]
refers to a MPS with all tensors fixed except for the tensor at site

k, Aikk . In the second step, we have used that with Eqs. (3.2) and (3.10) one
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can explicitly compute this expression and cast it to a matrix form, where ~Ak is
the dD2-dimensional vectorization of the tensor components of Aikk , Heff,k is a
dD2×dD2 effective Hamiltonian matrix describing the interaction of site k with
its environment and Nk a dD2 × dD2 matrix obtained by partially contracting
〈Ψ |Ψ 〉 up to site k. Thus, the new tensor at every step can found by solving the
generalized eigenvalue problem [171]

Heff,k ~Ak = λNk ~Ak ,

and is given by the eigenvector corresponding to the smallest eigenvalue. The
smallest eigenvalue is in turn the energy of the state at the current step [168,
171]. In the graphical language this can be expressed as shown in Fig. 3.7.

Figure 3.7: Illustration of the eigenvalue problem for updating a single site.
The dark boxes correspond the MPO tensors of H , the white boxes to the
tensors of the state |Ψ 〉. The left part represents Heff,k ~Ak, where the effective
Hamiltonian (indicated in blue) is obtained by contracting the tensor network
corresponding to 〈Ψ |H |Ψ 〉 up to site k. The right part represents Nk ~Ak where
the matrix Nk (indicated in red) corresponds to the partial contraction of the
TN representing 〈Ψ |Ψ 〉 up to site k. The green box indicates the tensor Aikk
which is determined after proper vectorization and solving the generalized
eigenvalue problem Heff,k ~Ak = λNk ~Ak.

The algorithm to find the ground state then works as follows:

1. Start with a random set of tensors Ai11 , . . . ,A
iN
N or an initial guess if avail-

able.

2. Starting on the left boundary we sweep to the right and sequentially up-
date the tensors by solving the eigenvalue problem described above at
every site.

3. After reaching the right boundary we continue sweeping to the left again
and update tensor by tensor until reaching the left boundary.
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4. After each full sweep we check the stopping criterion (e.g. if the variance
of the energy is below a certain threshold and the current wave function
is sufficiently close to an eigenstate or the relative change in energy is
below a certain tolerance or simply if the number of sweeps exceeds a
certain maximum). If this is fulfilled we stop, otherwise we continue
with steps 2. - 4.

The problem can even be further simplified by making use of the gauge con-
ditions from Eqs. (3.3) and (3.4). Looking at the graphical representation of
the gauge condition in Fig. 3.2 it is apparent that the matrix Nk is the identity,
if we keep the tensors in mixed gauge: all the tensors to the left of site k in
left canonical gauge and all the tensors to the right in right canonical gauge.
Hence, the generalized eigenvalue problem can be turned into a conventional
one6 which can be solved efficiently [205, 206]. If we keep the tensors in ev-
ery step in the proper mixed gauge to simplify the computation of the matrix
Nk and reuse the partial contractions, the algorithm can be implemented with
leading cost O(D3) [168].

Moreover, it can also easily be extended to low-lying excitations [35]. After
obtaining the ground state, |Ψ0〉, with energy E0, one can project the Hamil-
tonian on a subspace orthogonal to the ground space using the projector P0 =
1− |Ψ0〉〈Ψ0| which results in

H = P0HP0 =H −E0|Ψ0〉〈Ψ0|.

Assuming that all the energy eigenvalues of the low-lying states are strictly
smaller than zero,7 the first excited state, |Ψ1〉, is now the ground state of H
which can be found by applying the ground-state algorithm to the projected
Hamiltonian. Subsequently, one can iterate this procedure to compute higher
excited states. In general, given the states up to level l, we apply the projector
Pl = 1−

∑l
k=0 |Ψk〉〈Ψk | to the Hamiltonian and obtain the (l + 1)-th excited state

by running the algorithm for the projected Hamiltonian

H = PlHPl =H −
l∑
k=0

Ek |Ψk〉〈Ψk |.

The leading cost of the algorithm for all the l levels using the projected Hamil-
tonian is O(l2D3) which is the same as for finding the ground state up to a
quadratic prefactor [35].

6Notice that besides simplifying the computation, this also improves the stability of the al-
gorithm, as otherwise the matrix Nk can have a very large condition number leading to an
amplification of numerical errors [168, 203].

7If this is not the case, we can always subtract a large enough constant from the Hamiltonian
to ensure that.
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3.2.2 Time evolution

The time-evolution algorithm we are using in our simulations is based on the
one presented in Ref. [197]. The key idea here is to break the total evolution
time in small intervals for which we can find an efficient (approximate) MPO
representation for the time-evolution operator and to compute the evolution
as sequential application of those operators to the initial MPS. In Sec. 3.1.2
we saw that applying a MPO to a MPS results again in a MPS, however, with
a bond dimension given by the product of the bond dimension of the MPO
and the initial MPS. Hence, if we compute the evolution as series of small time
steps, the bond dimension of the resulting MPS would grow exponentially in
the number of steps. To render the problem numerically feasible, we have to
approximate the resulting MPS with one of smaller bond dimension. In the
following we address these two questions.

Matrix product operator form for the time-evolution operator

Let us for the moment consider only time independent Hamiltonians, hence
the time-evolution operator is simply T = exp(−iHt). In general, it will not
be possible to find an efficient MPO representation for T , even if we have an
efficient MPO representation for the Hamiltonian.8 Dividing the time interval
t in n intervals of size ∆t we can compute the evolution as

|Ψ (t)〉 =
(
exp(−iH∆t)

)n
|Ψ (t = 0)〉.

For small ∆t, we can find an (approximate) MPO representation for the opera-
tor exp(−iH∆t), as we are going to show in the following.

One obvious way to approximate exp(−iH∆t) is a simple Taylor expansion
up to first order

exp(−iH∆t) = 1− iH∆t +O
(
(∆t)2

)
.

Provided one has an efficient MPO representation for the Hamiltonian of the
system, it is straightforward to find a MPO representation for this expression.
Additionally, this way of approximating the time-evolution operator preserves
all symmetries of the original Hamiltonian. However, it is nonunitary and one
has to normalize the state after every time step. Furthermore, the bond dimen-
sion of the resulting MPO grows fast with the order of the Taylor expansion,
thus preventing to go to higher orders in practice.

A more elaborate method for local, nearest-neighbor Hamiltonians, which
easily allows for obtaining higher order approximations, was shown in Ref. [197].
To illustrate the method, let us assume that H is the sum of nearest-neighbor

8One can, however, always find a MPO representation with exponentially growing bond di-
mension in system size, as we discussed in Sec. 3.1.2.
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terms H =
∑N−1
i=1 hi,i+1, where hi,i+1 acts on sites i and i + 1. We can divide the

Hamiltonian in two parts, one containing the two-body terms starting at even
sites, and one containing the terms starting at odd sites, H =Hodd +Heven with
Hodd =

∑N−1
i=1,3,...hi,i+1 and Heven =

∑N−1
i=2,4,...hi,i+1. Using a first-order Suzuki-

Trotter decomposition [207], we can approximate the time-evolution operator
as

exp(−iH∆t) = exp(−iHeven∆t)exp(−iHodd∆t) +O
(
(∆t)2

)
(3.13)

Since hi,i+1 has support on two sites only, all the two-body terms inHodd (Heven)
mutually commute. Thus, we can write

Todd = exp(−iHodd∆t) = exp

−i∆t N−1∑
i=1,3,...

hi,i+1

 =
N−1∏
i=1,3,...

exp
(
−ihi,i+1∆t

)
and similarly for Teven = exp(−iHeven∆t), without further approximation. The
resulting operators consist of a product of local, nonoverlapping terms as il-
lustrated in Fig. 3.8(a). This can be used to obtain a MPO form of the time-

Figure 3.8: (a) Illustration of the decomposition in local terms starting on odd
and even sites. (b) Splitting a local term in MPO form. (c) Resulting MPO
for Todd, where the tensors having the same color represent the MPO decom-
position of a single nearest-neighbor term. The dashed lines indicate bonds
with bond dimension 1 between the MPO representations for different nearest
neighbor terms.

evolution operator: the local terms with disjoint support appearing in Todd
(Teven) can always be written as MPO with bond dimension at most d2. Hence,
after decomposing all the local terms appearing in Todd (Teven) we obtain a
MPO form for the entire operator (see Fig. 3.8(b)-(c)).

The approach is not restricted to the nearest-neighbor case and can also be
generalized to more complicated situations. However, for those cases it is in
general necessary to divide the Hamiltonian in more than two parts to ob-
tain sums of mutually commuting terms, thus resulting in a larger number of

45



Chapter 3 Matrix product states

different MPOs to approximate the evolution operator for a single step. The
maximum bond dimension for each of those MPOs grows exponentially with
the maximum range of the interactions present in the corresponding part of
the Hamiltonian. Hence, for practical numerical simulations one is typically
restricted to local, short-ranged interactions. Moreover, to minimize the error
in the Suzuki-Trotter decomposition, one can use higher-order decomposition
formulas [207]. The approximation may nevertheless introduce errors, as for
example components in the wave function in the wrong symmetry sector. This
can be (partially) corrected by projecting it back into the desired subspace after
every few time steps.

From the considerations above, it is apparent that the method also applies to
time-dependent Hamiltonians. Since we compute the time evolution as series
of steps for small time intervals of length ∆t, we can simply take the Hamilto-
nian constant on every interval [207] and proceed the same way as described
above.

Approximating a matrix product state with one of smaller bond

dimension

In the previous Section we demonstrated how the evolution operator can be
represented as a MPO for a small time step. Hence, we could compute the evo-
lution of a MPS by repeatedly applying this MPO. However, as we have seen in
Sec. 3.1.2, the resulting MPS after applying a MPO has in general a bond di-
mension given by the product the bond dimension of the MPO and the initial
MPS. Consequently, this approach would lead to an exponential growth of the
bond dimension with the number of steps. To render the computation numer-
ically feasible, the resulting MPS has to be approximated by one with smaller
bond dimension. Here we show how this can be done using an algorithm sim-
ilar to the one for the variational ground-state search.

Given a MPS |Ψ 〉 with bond dimension D and tensors Bi11 , . . . ,B
iN
N , we want

to find a MPS |Ψ ′〉 with bond dimension D ′ < D and tensors Ai11 , . . . ,A
iN
N which

maximizes the overlap with the original MPS or equivalently minimizing the
norm distance [168]

∥∥∥|Ψ 〉 − |Ψ ′〉∥∥∥2
2

= 〈Ψ |Ψ 〉 − 〈Ψ |Ψ ′〉 − 〈Ψ ′ |Ψ 〉+ 〈Ψ ′ |Ψ ′〉.

To find |Ψ ′〉 we can use the same approach we took for finding a MPS approxi-
mation for the ground state: starting from a certain |Ψ ′〉 we update the tensors
sequentially using an alternating least squares scheme to maximize the over-
lap. The optimal tensor in every step is found by minimizing the norm distance
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with respect to each component of the tensor Aik∗k
�

�~A†k

∥∥∥|Ψ 〉 − |Ψ ′〉∥∥∥2
2

=
�

~A†k

(
〈Ψ |Ψ 〉 − 〈Ψ |Ψ ′〉 − 〈Ψ ′ |Ψ 〉+ 〈Ψ ′ |Ψ ′〉

)
= 0.

where ~A†k is the vectorization of the tensor components. Since 〈Ψ |Ψ 〉 and

〈Ψ |Ψ ′〉 do not depend on Aik∗k , the derivative vanishes. The other terms result,
after proper reshaping, in a system of D2d linear equations, Nk ~Ak = ~vk, which
can be seen by looking at the graphical representation of the equation above in
Fig. 3.9. Again, we can use the gauge condition to simplify the expression and

Figure 3.9: Linear equation system for updating a single site. The left part
corresponds to �/�~A†k〈Ψ

′ |Ψ ′〉, where the hole in the upper part is due to the
derivative with respect to ~A†k. The matrixNk is obtained by contracting the ten-
sor network corresponding to 〈Ψ ′ |Ψ ′〉 up to site k. The right part corresponds
to �/�~A†k〈Ψ

′ |Ψ 〉 where the hole arises again from the derivative with respect
to ~A†k and the darker tensors correspond to |Ψ 〉. The vector ~vk is obtained by
contracting the network and vectorizing the result. The green box indicates the
tensorAikk which is determined after proper vectorization by solvingNk ~Ak = ~vk.

ensure that the matrixNk is the identity. Similarly to ground-state case, sweep-
ing left and right and iteratively updating the tensors until the relative change
of the norm distance is below a certain tolerance yields |Ψ ′〉. The algorithm
can again be implemented with leading computational cost O(D3) [168].

The time evolution for an initially given MPS, |Ψ (t = 0)〉, can now be com-
puted as a sequence of applying the MPOs approximating exp(−iH∆t) and
subsequently truncating the result after a certain number of steps to a MPS
of smaller bond dimension D ′. A crucial question is how large D ′ has to be
to be able to find a good approximation. The answer is related to the evolu-
tion of the entanglement in the state. In a MPS with bond dimension D ′ the
entanglement is upper bounded by S ≤ log2(D ′), as we have seen at the begin-
ning of the Chapter. In situations far from equilibrium, the entanglement can
grow linearly in time [208–210], hence, D ′ has to grow exponentially and only
short time scales are available, although there exist improved algorithms for
these situations [211]. As long as the system stays close to the ground state the
method works well with moderate D ′ [182].
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Switching to imaginary time t→−iτ , the time-evolution algorithm can also
be used to obtain a MPS approximation for the ground state, |Ψ0〉, which is
formally given by [203]

|Ψ0〉 = lim
τ→∞

exp(−Hτ)|Ψ (τ = 0)〉
‖exp(−Hτ)|Ψ (τ = 0)‖

with some initial state |Ψ (τ = 0)〉 having nonvanishing overlap with the ground
state. Thus, in practice, if we evolve the initial state long enough in imaginary
time, the result should be close to the ground state. Within the formalism
presented above, this can be done by computing a large number of small time
steps. While the numerical cost for computing a single of those steps is smaller
than the one of the variational algorithm, this approach is typically less effi-
cient then the variational one due to the large number of steps required. Nev-
ertheless, it can be advantageous, as it allows for targeting a certain symmetry
sector of the Hamiltonian by appropriately choosing an in initial state in the
desired sector without having to implement these symmetries in the algorithm.
In addition, it is less prone to get trapped in local minima which renders it fa-
vorable for computing ground states with TN in higher dimensions [212–214].

3.3 Application to lattice gauge models

The numerical techniques presented above have been highly successful for the
study of strongly correlated quantum many-body systems, and with the ac-
curacies that can be achieved in nowadays numerical calculations, they are
considered as quasi exact for many one-dimensional problems [215]. In par-
ticular, TN methods do not suffer from the sign problem and hence are suited
for both, bosonic and fermionic systems [213, 216, 217]. This also renders
them to promising candidates for the numerical exploration of LGT, as they
offer the possibility to access parameter regimes and questions which cannot
be tackled with the conventional Monte Carlo approach.

In the context of LGT, they can be used to approximate the partition function
in the Lagrangian formulation [25–34], however they are particularly suited
for addressing the Hamiltonian framework. Our discussion of the numeri-
cal methods working in the Hamiltonian formulation in the previous Section
shows that they enable access to the wave function at any stage of the algo-
rithm. Hence, contrary to the MC approach, it is straightforward to compute
all kinds of (local) observables. Moreover, as we discussed at the beginning of
the Chapter, the MPS formalism also allows for easy access to the entangle-
ment structure in the state. Thus, the TN approach to LGT also opens up new
possibilities to characterize LGT problems. In recent years, there has been a
variety of works demonstrating the suitability of MPS and more general TN
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to describe the relevant states for gauge theories by computing spectral prop-
erties [35–38, 41, 42, 49, 53], thermal states [39, 40, 45, 46, 49, 50], phase
diagrams at finite matter density [47, 52] and real-time evolution for Abelian
as well as non-Abelian gauge models [37, 41, 43, 44, 51]. Some of these works
even achieved precisions beyond the reach of MC calculations for the consid-
ered models in one spatial dimension. Besides these numerical results, there
has been a steady progress in the more formal approach, in particular in the
development of gauge invariant TN suitable for LGT problems [37, 55, 56, 59,
62, 63].

In addition, MPS and TN in general are a well suited tool to investigate ex-
perimentally relevant questions for quantum simulators which we discussed
in Sec. 2.4. Spectral calculations with TN can help to explore the effects and
limitations of truncating the gauge degrees of freedom to a finite dimension
in a systematic manner. Moreover, the possibility to simulate real-time evolu-
tion allows for investigating ground-state preparation protocols, and the effect
of noise therein, as within the TN framework it is straightforward to consider
gauge-invariance-breaking noise terms in the Hamiltonian. Furthermore, nu-
merical simulations with TN can also provide benchmarking data for quantum
simulators that might help to test and validate future experimental realiza-
tions.

Throughout the rest of this thesis, we use the MPS methods discussed above
to investigate both, questions related to certain 1+1 dimensional LGTs and the
quantum simulation thereof.
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Chapter 4

The Schwinger model: potential

candidates for a future quantum

simulator

In Sec. 2.4 we discussed the prospects and challenges of potential future quan-
tum simulators for LGT. In this Chapter, we address some of these questions
concerning the practical feasibility of such a simulation for the Schwinger
model, which is presumably the simplest nontrivial gauge theory with dynam-
ical fermions. Despite its simplicity, the lattice formulation shares some in-
teresting features with more complicated gauge theories such as confinement,
an anomalous U(1) current in the massless limit and a nonvanishing chiral
condensate [143, 218]. Hence, it is an interesting candidate for the implemen-
tation in future quantum simulation experiments. The content of this Chapter
has been published in Ref. [91] and is a modification thereof.

4.1 Introduction

In this Chapter, we address some of the issues affecting quantum simulation of
LGT by studying two possible realizations of the Schwinger model that might
be suitable for an implementation with ultracold atoms. We focus on proposals
which have a built-in gauge symmetry, but where the gauge degrees of freedom
are represented by a system with a Hilbert space of small dimension. For these
models we numerically address three questions using MPS with OBC to reflect
a possible experimental realization:

1. We investigate how the truncation of the gauge degrees of freedom to
a finite-dimensional Hilbert space affects the nature of the ground state
and reveal that even a small dimension allows quite accurate predictions
for the ground-state energy.

2. We examine the resources needed for the adiabatic preparation of the
ground state. We give evidence that the first part of the adiabatic evolu-
tion is crucial and, for the systems we study, with up to hundred sites,
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the total time required for a successful preparation is practically inde-
pendent of system size. Our results also show that the Hilbert space di-
mension of the gauge degrees of freedom hardly affects the success of the
preparation procedure.

3. We analyze the effect of imperfect gauge symmetry by studying the adi-
abatic preparation in the presence of noninvariant noise terms, as those
might occur in an experimental realization. We quantify the level of noise
up to which the results for the ground-state energy are still reasonably
close to the noiseless case.

The rest of the Chapter is organized as follows. In Sec. 4.2 we briefly review
the Schwinger model and explain the two particular discrete versions studied
here. Furthermore, we comment on the numerical methods we use. In Sec.
4.3 we present our results on how the finite-dimensional Hilbert space for the
gauge degrees of freedom affects the ground state. Subsequently we examine
one possible scenario for the adiabatic preparation of the ground state in Sec.
4.4 and study the effect of gauge invariance breaking noise during this proce-
dure in Sec. 4.5. Finally we conclude in Sec. 4.6.

4.2 Models and methods

The model we are studying is the compact Hamiltonian lattice formulation of
the Schwinger model with Kogut-Susskind staggered fermions from Sec. 2.3.
We focus on the single-flavor case without chemical, and after making it di-
mensionless, the Hamiltonian from Eq. (2.35) for a system of N sites reads

W =
2H
ag2 = −ix

N−1∑
n=1

(
ψ†nUnψn+1 −h.c.

)
+µ

N∑
n=1

(−1)nψ†nψn +
N−1∑
n=1

L2
n, (4.1)

where the adimensional parameters in units of the coupling, g, are given by
x = 1/(ag)2, µ =

√
xm/g with m the fermion mass. As we have seen, for the full

model the link operators are given by Un = exp
(
iΛn

)
, with Λn and Ln fulfilling

the commutation relation [Λn,Lm] = iδnm, Λn ∈ [0,2π], and the Gauss Law is
given in Eq. (2.36).

There are several proposals to quantum simulate the Schwinger model [77–
80, 82, 85–87, 89, 149, 157]. Since the dimensions of quantum systems avail-
able for quantum simulation are finite, most proposals focus on models with
finite-dimensional variables on the links that recover Hamiltonian (4.1) in the
limit dlink →∞. One way is to simulate a quantum link model, in which the
gauge variables are represented by finite-dimensional quantum spins [162–
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164], another is to truncate the dimension of the link variables.1 These ap-
proaches can lead to a Hamiltonian with a gauge symmetry which is different
from the one of the Schwinger model.

Here we consider two particular models, one which has the same gauge sym-
metry as the Schwinger model despite the finite-dimensional links, and one
which has a different gauge symmetry due to the finite dimension.

4.2.1 Truncated cQED model

The first model we examine corresponds to the proposal for the simulation
of compact QED (cQED) from Ref. [80], using fermionic and bosonic atoms
trapped in an optical superlattice. The fermions are sitting in the minima of
one lattice forming the sites. The links are populated by an (even) number of
particles N0 = a†nan + b†nbn, consisting of two bosonic species A and B, sitting
between the fermions in the minima of another lattice (see Fig. 4.1). The oper-

Figure 4.1: Illustration of the optical superlattice. The shallow wells corre-
spond to the fermionic sites, which can either be occupied by a single fermion
(indicated by a green circle) or empty. The deeper wells correspond to the
gauge links which are populated by a fixed, even number of particles consist-
ing of two bosonic species A and B (indicated by the red and blue circles).

ators an, bn (a†n, b†n) are the annihilation (creation) operators for species A and
B on link n, fulfilling the usual commutation relations. This model gives rise
to a Hamiltonian of the form (4.1) with link operators

Un = i
a†nbn√
l(l + 1)

, Ln =
1
2

(a†nan − b†nbn), (4.2)

where l =N0/2, so that the link operators are angular momentum operators in
the Schwinger representation. As a†nan+b†nbn is a constant of motion, the num-
ber of particles on a link, N0, is conserved. The dimension of the Hilbert space
for each link is given by dlink = N0 + 1, and in the limit N0 → ∞ the link op-
erators become pure phases that coincide with those from the Kogut-Susskind
Hamiltonian. In this realization, the angular momentum conservation in the
scattering between the fermions and bosonic species ensures Gauss law, which
does not have to be imposed effectively via a penalty term.

1A similar truncation of the Hilbert space dimension for the gauge degrees of freedom is also
used in many DMRG [219, 220] and TN simulations [37, 38, 41–44, 50–53, 55, 221] of LGT.
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The Hamiltonian in this case is invariant under local transformations that af-
fect the annihilation operator for one fermion on site n and its adjacent bosons
as

ψn→ eiαnψn, bn−1→ eiαnbn−1, an→ e−iαnan, αn ∈R,

while the operators acting on other sites and links are unchanged. The model
has then the same U(1) symmetry as the untruncated Schwinger model and
we will refer to it as truncated cQED model. The Hamiltonian of this model
commutes with the Gauss law generators from Eq. (2.36)

GcQED
n = Ln −Ln−1 −ψ†nψn +

1
2

(
1− (−1)n

)
,

where the Ln-operators are given by Eq. (4.2).

4.2.2 Zd model

Another possibility to represent the links with finite-dimensional objects is to
substitute the infinite dimensional U(1) gauge operators in Eq. (4.1) by Zd
operators. This can be realized with the following link operators

Un =
J∑

k=−J
|ϕk+1
n 〉〈ϕkn|, Ln =

J∑
k=−J

k|ϕkn〉〈ϕkn|, (4.3)

where one needs to identify |ϕJ+1
n 〉 with |ϕ−Jn 〉. Consequently the dimension of

the Hilbert space of a link is given by dlink = 2J + 1. As shown in Ref. [222],
these operators approach in the limit dlink→∞ the link operators of the Kogut-
Susskind Hamiltonian.

The resulting Hamiltonian is invariant under local transformations of the
fermions and adjacent links2 as

ψn→ eiαnψn, |ϕkn−1〉 → e−ikαn |ϕkn−1〉, |ϕkn〉 → eikαn |ϕkn〉,

with αn = 2πq/dlink, q ∈ Z. Different from the truncated cQED case, here only
discrete phase transformations leave the Hamiltonian invariant, hence we refer
to the model as Zd model in the following.3 Correspondingly the Gauss law is

2For simplicity we show here the effect of the transformation on the basis states for the links
and not the operators. One should also note that one has the freedom to add arbitrary
constant phase factors to the transformation for the basis states.

3We call the model presented here Zd model because of this discrete symmetry. However,
one should note that it does not correspond to a Zd LGT [223], as we use a different kinetic
term for the gauge field in the Hamiltonian.
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only fulfilled modulo dlink and the operators that commute with the Hamilto-
nian are actually

UZdn = e
i 2π
dlink

(Ln−Ln−1−ψ†nψn+ 1
2 (1−(−1)n))

, (4.4)

where the Ln-operators are given by Eq. (4.3).
In the following we restrict ourselves for both models to the massless case,

m = 0, and the subspace of vanishing total charge,
∑
n

(
ψ†nψn − 1

2 (1− (−1)n)
)

= 0,
for which analytical results are available [101]. No big qualitative changes are
expected for the massive case.

4.2.3 Numerical approach

We study the model Hamiltonians using the standard MPS techniques to com-
pute the ground state and simulate the time evolution introduced in Chapter 3.
For convenience of the simulations, we use an equivalent spin formulation of
each Hamiltonian [121], which can be obtained via a Jordan-Wigner transfor-
mation on the fermionic degrees of freedom (see App. A.1 for details).

In our simulations, we are interested in different aspects:

1. Quantum simulation protocol
To analyze the performance of a possible quantum simulation protocol,
we investigate the following questions:

• First, we would like to determine the effect of using finite-dimen-
sional Hilbert spaces for the gauge degrees of freedom. Thus, we
compute the ground state for each of the models by variationally for
a series of different truncations to study the effect in a systematic
manner.

• Second, we analyze the performance of a possible adiabatic prepara-
tion protocol for the interacting vacuum of the theory. We simulate
the evolution and quantify the resources needed for the protocol.

• Third, we investigate the effect of gauge-invariance-breaking noise
on the performance of the adiabatic preparation scheme. To do so,
we again simulate the time evolution, but this time in the presence
of noise sources.

2. Numerical errors
Potential errors in our numerical calculations may originate from two
main sources.

• As described in Sec. 3.2, both in the ground state and in the dynam-
ical simulations, the bond dimension employed is limited. Never-
theless, this source of error is controlled by choosing a sufficiently
large D.
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• In order to compute the evolution numerically we use a second order
Suzuki-Trotter decomposition to split the time-evolution operator in
Todd and Teven as shown in Sec. 3.2. This error can be controlled via
the time step size used for the splitting (a more detailed analysis
of our numerical errors for the results presented in the following
Sections can be found in App. B.1).

4.3 Effect of the finite dimension

In order to analyze the effect of using finite-dimensional systems to represent
the gauge degrees of freedom, we study the ground states of the truncated
cQED and Zd models for different (odd) values of dlink ranging from 3 to 9 and
compare them to the case of the lattice Schwinger model.

In a lattice calculation, in which the goal is to extract the continuum limit,
simulations need to be run at different values of the lattice spacing. Hence,
we also explore the effect of the finite dlink for various lattice spacings, ga,
and for several system sizes. As a figure of merit, we analyze the ground-state
energy density, ω = E0/2Nx, and compare the values in the thermodynamic
limit obtained in each case to those from finite-size extrapolations of the lat-
tice Schwinger model. In the previous expressionN is the number of fermionic
sites in the chain, x is related to the lattice spacing as x = 1/(ga)2 and E0 de-
notes the ground-state energy of the dimensionless Hamiltonian.4 To get the
energy density in the thermodynamic limit, we first compute the ground-state
energy, E0, for each set of parameters (N,dlink,x) for various bond dimensions
D, which allows us to extrapolate D →∞ and estimate our numerical errors.
Subsequently, we extrapolate N →∞ for each combination of (x,dlink) which
yields the values for ω in the thermodynamic limit (details about the extrapo-
lation to the thermodynamic limit can be found in App. B.1).

In our simulations we explore system sizes such that N ranges from 50 to
200, and lattice spacings corresponding to values of x ∈ [50,100]. Our results
are shown in Fig. 4.2.5 We observe that the truncated cQED model converges
to the values of the Schwinger model with increasing value of dlink. By contrast,
the Zd model already yields very accurate results even for low values of dlink
and the level of accuracy practically stays constant for larger dlink.

4The quantities ω, E0, and x are frequently used in lattice calculations for the Schwinger
model [35, 121, 141, 143, 224] and we adapt to this convention for better comparability

5Here we show the energy density as this quantity allows an extrapolation to the thermo-
dynamic and to the continuum limit for the range of parameters studied. We observe that
also other quantities like the chiral condensate approach the values of the Schwinger model
with increasing Hilbert space dimension of the links. However, the extrapolation process
for the condensate is a lot more delicate and it is not expected to yield very accurate results
in the parameter regime we have explored, even for the full model [36].
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Figure 4.2: Thermodynamic limit for the energy density for various values of x.
Crosses show the values for the truncated cQED model for dlink = 3 (blue) and
dlink = 9 (red). Circles show the values for the Zd model for dlink = 3 (blue) and
dlink = 9 (red) which are almost identical. Values obtained for the Schwinger
model are shown in gray. The inset shows the values obtained by extrapolating
x→∞ for the continuum energy density for the truncated cQED model (blue
5’s) and the Zd model (red asterisks). The horizontal gray line represents the
value for the Schwinger model in the massless case, −1/π. In both cases the
error bars from the extrapolation procedure are smaller than the markers.

In our range for x, we can also attempt a continuum limit extrapolation for
each set of values (see inset in Fig. 4.2) [224, 225]. Here we observe that the
truncated cQED model rapidly approaches the exact value for increasing dlink,
whereas for theZd model the continuum extrapolation is already quite close to
it for dlink = 3 and there is almost no change for larger dlink. This is consistent
with our observations for the thermodynamic limit, where the results in the
Zd case are already very accurate for each lattice spacing, even for small dlink.
However, one should take into account that the values of x used in this work
are relatively small to extrapolate to the continuum [35], which is likely the
source of larger systematic errors not taken into account here (a more detailed
description of the extrapolation procedure and error estimation can be found
in App. B.1). Hence, the level of error due to the finite-dimensional Hilbert
spaces is expected to be already smaller than that of the extrapolation.

4.4 Adiabatic preparation of the ground state

Given a physical system which effectively implements one of these models, the
nontrivial vacuum state could, in principle, be constructed using an adiabatic
step [153, 154]. In this step one starts with an initial state, which is the ground

57



Chapter 4 Quantum simulation of the Schwinger model

state of a simpler Hamiltonian and easy to prepare. Subsequently the interac-
tions are slowly switched on to reach the desired model.

For both models considered here, a valid initial state could be the strong
coupling ground state (x = 0) in the physical (i.e. Gauss law fulfilling) subspace
from Eq. (2.37), which for the single-flavor case reads [121, 141, 143, 224]

|Ψsc〉 = |1〉|0〉|0〉|0〉|1〉|0〉|0〉 . . . .

The coupling strength can be tuned by changing x from 0 to xF. Since the cQED
(Zd) Hamiltonian commutes withGcQED

n (UZdn ) independently of the value of x,
and our initial state is in the physical subspace, the Gauss law will be fulfilled
at any time during the preparation procedure. Provided the change is slow
enough, the adiabatic theorem ensures that the final state will be close to the
ground state for xF.

The resources required to successfully perform this preparation are domi-
nated by the total time T needed for an evolution close enough to adiabaticity,
which depends on the inverse gap of the Hamiltonian. As our model Hamilto-
nians are of the form of Eq. (4.1), it can be directly seen that the gap vanishes
in the massless case for x = 0. For finite values of x, Fig. 4.3 reveals that the
gap starts to grow with increasing x, and the growth in the region of small x
is almost independent of system size N and Hilbert space dimension dlink for
both models. Thus the change of the Hamiltonian at early times (or while x is
small) needs to be very slow, whereas it is rather unimportant after reaching
larger values of x.

To analyze the performance of a quantum simulation that runs this adiabatic
preparation, we simulate a ramping of the parameter x from 0 to a value of
xF = 100 which corresponds to the smallest lattice spacing used in the previous
Section. In our evolution simulations, we use a function x(t) = xF×(t/T )3, which
turns out to be flat enough at the beginning.

In order to probe the scaling of the required time with system size and
other parameters, we deem an evolution successful if the overlap with the ex-
act ground state is above a certain threshold. Since we are only interested in
the overall scaling of the required resources, the value of the threshold can be
chosen arbitrarily and in our simulations we set it to 0.99. We monitor the
overlap between the evolved state and the exact ground state for various val-
ues of t, where the exact ground state is computed using the same methods as
in the previous Section.6 The results obtained by the preparation procedure
described above can be seen in Fig. 4.4. We find that for the chosen parame-
ters, we can obtain overlaps higher than 0.99 for both models around a total
evolution time of T = 60 and the results still improve until T = 80, where we
reached an overlap close to one and the error bars are already smaller than the

6To compute the ground state variationally, we use a significantly higher bond dimension of
D = 100 than for the evolution to make sure we have a quasi-exact state.
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4.4 Adiabatic preparation of the ground state

Figure 4.3: Gap between the ground state and the first excited state in the
Gauss law fulfilling sector for the Zd model and the truncated cQED model.
Open symbols represent the values for the Zd model for N = 50 (triangles) and
N = 100 (circles). Values for the truncated cQED model are represented by
the crosses (N = 50) and dots (N = 100). Red markers indicate dlink = 3; blue
markers dlink = 9. The inset shows the region for small values of x in greater
detail. All data points were computed with a bond dimension D = 60.

markers. The relative error, ε, in the energy with respect to the exact ground-
state energy (see insets in Fig. 4.4) shows a similar behavior. Remarkably, for
the range of parameters we have studied, the results are almost independent
of the system size, N , and the Hilbert space dimension, dlink, as can be checked
from Fig. 4.4, where data are shown for N = 50 and 100. This is in accordance
with our observation that the gap does not depend on the system size and the
Hilbert space dimension for small values of x (see Fig. 4.3).

A comment on the possible numerical errors is in order. The discussion in
Sec. 3.2 showed that the employed splitting of the time-evolution operator can
in principle induce components of the wave function in the wrong symme-
try sector. As a consistency check for the numerics, we monitored whether
the simulated state stays in the physical subspace with total charge equal 0,
which is characterized by UZdn = 1 (GcQED

n = 0) for the Zd (truncated cQED)
model. Therefore a violation results in a finite expectation value of the ob-

servable PZd =
∑
n

(
UZdn −1

)† (
UZdn −1

)
(P cQED =

∑
nG

cQED†
n GcQED

n ) in the Zd
(truncated cQED) case that can be detected during the evolution. For all the
data presented in this Section, we checked that the expectation values of P ν

during the evolution indeed stay down to zero up to machine accuracy, where
ν = cQED,Zd labels the appropriate model.
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Figure 4.4: Final overlap with the variationally computed ground state at the
end of the adiabatic preparation as a function of total evolution time for the
truncated cQED model (left) and the Zd model (right) with D = 50. The blue
5’s represent the data forN = 50, dlink = 3; blue triangles forN = 100, dlink = 3;
red circles for N = 50, dlink = 9; and red squares for N = 100, dlink = 9. Error
bars were obtained from the difference in results with bond dimension D = 50
and D = 30. The inset is showing the relative error of the energy with respect
to the exact ground state.

4.5 Effect of broken gauge invariance

One crucial question for the quantum simulation of LGTs is whether the non-
fundamental character of the gauge invariance will limit the power of the
method. Even though it has been shown that it is possible to have models
where the invariance is ensured at the level of interactions among the quan-
tum systems [80, 81, 87, 89], external sources of noise that do not fulfill the
gauge symmetry will likely be present in an experiment.

In order to study the effect of such nongauge symmetric contributions, we
add a noise term to the Hamiltonian, which is given by

∑
nλx(t)(Un+U†n ) for the

Zd case and by
∑
nλx(t)(a†nbn + b†nan) for the truncated cQED case. This could

represent some noise that occurs in the experimental setup implementing the
interactions, and is thus proportional to their strengths, x. The parameter λ
would then be the relative strength of the noise. We simulate the same adi-
abatic protocol of the previous Section, for a total time T = 100 that ensures
success of the evolution as described earlier, under different levels of noise and
for the same values of the other parameters (N,dlink,xF) studied before. In ad-
dition to the overlap with the exact ground state, we quantify the violation of
Gauss law per particle P ν/N for each case. The results are shown in Fig. 4.5.
Notice that due to the noise terms in the Hamiltonian, the violation of Gauss
law in that case is of physical origin and not an effect of the numerics.

We observe that even small levels of noise (λ = 5× 10−4) result in finite val-
ues of P ν/N and a drastic reduction of the final overlap with the ground state.
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4.5 Effect of broken gauge invariance

Figure 4.5: Penalty energy per site at the end of the noisy adiabatic preparation
as a function of the noise strength for the truncated cQED model (left) and the
Zd model (right). The blue (green) 5’s represent the values for N = 50, dlink =
3; the blue (green) triangles the N = 100, dlink = 3 case; the red (magenta) dots
the N = 50, dlink = 5 case; and the red (magenta) squares the N = 100, dlink = 5
case. Error bars were computed the same way as in the noiseless case. The
inset shows the overlap (blue and red markers) and the relative error in energy
(green and magenta markers) with respect to the noise-free exact ground state.
As a guide for the eye, the data points are connected.

Nevertheless the relative error in the energy stays below 2% for both mod-
els. Consequently, if the noise can be controlled relatively to the value of x,
the predictions for some ground-state observables may still be quite accurate
although the gauge invariance is broken.

Figure 4.5 also shows that the quantity P ν/N does not show a strong depen-
dence on the system size. To get an idea of how the violation of the Gauss law
scales in the case of the noisy evolution, we compute the lowest order contri-
bution to 〈Ψ (t)|P ν |Ψ (t)〉 using perturbation theory following Ref. [226]. For
clarity we simply write P and suppress throughout the calculation the index
labeling the model. Starting from the dimensionless Hamiltonian with the
noise term

W̃ (t) =W (t) +
∑
n

λx(t)
(
Ūn + Ū†n

)
,

where Ūn refers to Un for the Zd model and to a†nbn for the truncated cQED
model, we can treat the noise term as perturbation to the Hamiltonian W (t)
small times t and small values of λ. The contributions to 〈Ψ (t)|P |Ψ (t)〉 are
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given by subsequent commutators of P with the Hamiltonian

〈Ψ (t)|P |Ψ (t)〉 = 〈Ψ0|P |Ψ0〉

+
1
i

∫ t

0
dt′〈Ψ0|[P ,W̃ (t′)]|Ψ0〉

+
1
i2

∫ t

0
dt′

∫ t′

0
dt′′〈Ψ0|

[
[P ,W̃ (t′)], W̃ (t′′)

]
|Ψ0〉

+ . . .

(4.5)

where |Ψ0〉 is the initial state, in our case this is a product state fulfilling the
Gauss law. As the unperturbed Hamiltonian commutes with UZdn (GcQED

n ) in
the Zd (truncated cQED) case and Ūn|Ψ0〉, Ū†n |Ψ0〉 are still eigenstates of UZdn −
1 (GcQED

n ) which are orthogonal to |Ψ0〉, it is immediately clear that the first
contribution occurs at second order and the double commutator reduces to

〈Ψ0|
[
[P ,W̃ (t′)] , W̃ (t′′)

]
|Ψ0〉 =−λ2x(t′)x(t′′)

×
∑
n,m,k

(
〈Ψ0|ŪmΘ†nΘnŪ

†
k |Ψ0〉+ 〈Ψ0|Ū†mΘ†nΘnŪk |Ψ0〉

+ 〈Ψ0|ŪkΘ†nΘnŪ
†
m|Ψ0〉+ 〈Ψ0|Ū†kΘ

†
nΘnŪm|Ψ0〉

)
=− 2λ2x(t′)x(t′′)

×
∑
n

(
〈Ψ0|Ū†nΘ†nΘnŪn|Ψ0〉+ 〈Ψ0|ŪnΘ†nΘnŪ

†
n |Ψ0〉

)
.

Here we have introduced Θn which refers to UZdn − 1 (GcQED
n ) in the Zd (trun-

cated cQED) case, to keep the equations short.
In the second step we have used that Ūm|Ψ0〉 and Ū†m|Ψ0〉 are eigenstates

of Θn, with nonzero eigenvalue iff m = n and that 〈Ψ0|Ū†k Ūm|Ψ0〉 = cmδk,m
(〈Ψ0|ŪkŪ†m|Ψ0〉 = c̄mδk,m) with constants cm, c̄m. Thus, there are only contri-
butions if n = k =m and we are left with a single sum. The two different matrix
elements appearing in the sum are simply giving two constants, hence the sum
can be estimated as cN with a constant c. Plugging this back into Eq. (4.5), we
obtain

〈Ψ (t)|P |Ψ (t)〉 ≈ 2λ2cN

∫ t

0
dt′x(t′)

∫ t′

0
dt′′x(t′′).

Hence we see that P ν ∝ N,λ2 for fixed T ,xF independently from the ramping.
For our choice of ramping, x(t) = xF × (t/T )3, the integrals can be easily solved
yielding

〈Ψ (t)|P |Ψ (t)〉 ≈ 2(λxF)2 t8

32T 6 cN. (4.6)
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Consequently, independent of the system size, P ν/N is proportional to λ2 for
a fixed value of t, consistent with our data in Fig. 4.5.

In order to analyze the scaling with t and λ further, we plot P ν/N as a func-
tion of time in Fig. 4.6 for the three smallest values of noise. The time interval
is chosen as close as possible to the beginning of the evolution but late enough
to ensure that the values for P ν/N are above the machine accuracy. These plots
reveal that P ν/N indeed shows a power law behavior in t which is independent
fromN . Extracting the slope from the curves yields values between 7.5544 and
7.5589 for all cases presented in Fig. 4.6, which is in good agreement with our
calculations. Additionally, we can investigate the scaling with λ. From Eq.
(4.6) we obtain for the offset ∆ between two curves with different noise levels
λ1 and λ2

∆ =
∣∣∣log10(λ2

1)− log10(λ2
2)
∣∣∣ = 2×

∣∣∣log10(λ1)− log10(λ2)
∣∣∣ .

For the values of λ used here (1 × 10−4, 5 × 10−4 and 1 × 10−3) this yields ∆1 =
1.3979 and ∆2 = 0.6021. The values extracted from our numerical data for both
models with various N and dlink show a relative deviation of at most 10−4 from
these predictions, which indicates again that there is almost no dependency
on system size and Hilbert space dimension, in excellent agreement with our
theoretical calculation.

4.6 Conclusion

There are several proposals for quantum simulation of the Schwinger model [77,
79, 80, 82, 85–87, 89, 149]. MPS techniques allow us here to address impor-
tant questions that affect the feasibility of those and also for quantum simula-
tion of more general LGTs. Our results give evidence that although the finite
dimension of the physical systems that represent the gauge variables on the
links may affect the ground state of the model, the results converge rapidly as
this dimension is increased. In particular, for the truncated cQED model, we
observed fast convergence to the exact ground state of the Schwinger model
for dlink ranging from 3 to 9. For the Zd model, the results with dlink = 3 are
already extremely close to the ones of the full model. Our observations for
the ground state are consistent with those recently reported in another study
with TN for the Schwinger model using a different truncation for the gauge
links [53].

In addition, our study of the adiabatic preparation protocol for the ground
state starting from a simple product state suggests that the preparation is fea-
sible and that the initial part of the evolution is crucial for its success. With
a suitable choice of x(t), we can obtain an overlap of more than 0.99 with the
exact ground state for both models. Most remarkably, the required total time
(for a given final value xF) is practically insensitive to the system size and the
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Figure 4.6: Penalty energy per site as a function of time for the cQED model
(upper row) and theZd model (lower row) for dlink = 3 (left column) and dlink =
5 (right column) (both axes are on a logarithmic scale). The gray line indicates
the point in time where we determined the offsets ∆1 and ∆2. The red (N = 50)
and cyan (N = 100) lines show the values for λ = 1 × 10−4, the green (N = 50)
and the black (N = 100) lines show the values for λ = 5 × 10−4 and the blue
(N = 50) and yellow (N = 100) lines show the values for λ = 1× 10−3.

physical dimension of the gauge variables, in accordance with the observed
gap.

Moreover, our results for the procedure for adiabatic preparation of the
ground state in the presence of noise give evidence that it is to some extent
robust to noninvariant terms, as the energy can still be reliably determined up
to a certain noise level. This is promising, as it demonstrates that even if the
gauge invariance is broken, which could happen due to noise or at the fun-
damental level of interactions among the basic ingredients, the proposals do
not immediately lose their predictive power. Furthermore, the scaling of our
results is in good agreement with a perturbative calculation.

In our simulations, we proposed a polynomial ramp for x, slow enough
to achieve the desired preparation. However, with the observation that the
gap opens with increasing values of x and the results from the perturbative
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calculation, one could think about designing an optimized ramp x(t). Fur-
thermore optimal control concepts could also be helpful to design optimized
ramps [227]. On the one hand, this could allow shorter total evolution times
while keeping the same level of overlap with the exact ground state in the
noise-free case. On the other hand, one could possibly achieve a better scaling
of the Gauss law violation with time in the presence of noninvariant terms and
therefore improve the robustness of the preparation scheme proposed.
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Chapter 5

The multiflavor Schwinger model

at nonzero chemical potential

Quantum simulators for LGT, as the examples we studied in the previous
Chapter, are in the long run arguably the most promising approach to over-
come the limitations faced in MC simulations. However, despite nowadays
unprecedented level of experimental control, the practical implementation is
technically challenging. Although recently a first realization in a small system
has been demonstrated [102], it will still take some time until a fully fledged
quantum simulator being able to address interesting problems and system size
is available. On the other hand, classical simulations are not yet exhausted
with currently used methods. TN represent a tool that can take classical com-
putations to regimes and problems beyond those amenable with conventional
numerical approaches to LGT. One clear example is that of scenarios with a
sign problem. In this Chapter we illustrate this potential using the multiflavor
Schwinger model as a benchmark and explore the phase structure for the two-
flavor case at finite chemical potential, a regime intractable with conventional
MC methods. Moreover, we also study the position resolved chiral condensate
in the different phases and address the question of spatial inhomogeneities in
the ground state of the model. Regarding the simulations in this Chapter, we
decide to proceed different to the previous one. There we used a formulation,
where the link Hilbert spaces were truncated to a finite dimension. While
this approach can be generalized to higher dimensions and more complicated
gauge groups [60, 78, 80, 83, 84, 87, 88, 90, 93, 96, 98, 148, 160, 228], here
we take advantage of the fact that for 1+1 dimensional systems with OBC the
gauge degrees of freedom can be integrated out, as we showed in Sec. 2.3. The
results presented in this Chapter have been published in Refs. [47–49] and the
rest of the Chapter is a modification of Refs. [47, 48].

5.1 Introduction

The TN approach should provide a very general solution in regimes where MC
simulations suffer from the sign problem. This is most apparent in the PEPS
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construction for fermionic systems in 2 or higher dimensions [213, 216, 217].
Even for the one-dimensional case, we can already demonstrate this feature, a
task that we tackle in this Chapter. A simple example is offered by the mul-
tiflavor Schwinger model at nonzero chemical potential. For the two-flavor
case with equal masses for both flavors, on which we focus here, the model has
an SU(2) isospin symmetry between the flavors and is in many aspects sim-
ilar to QCD as it shows confinement, a nonvanishing chiral condensate and
an anomalous U(1) current in the massless limit. The phase structure for two
flavors of massless fermions was determined analytically in Refs. [229, 230],
where it was found that at zero temperature the model supports an infinite
number of phases characterized by the isospin number and separated by first-
order phase transitions. Moreover, there is an ongoing discussion about spatial
inhomogeneities in the ground state of the model. Similar to the large Nc limit
of QCD at high density [231], the chiral condensate for the two-flavor case is
predicted to have an oscillatory behavior, too [232].

Here, we numerically study these aspects with MPS using the Hamiltonian
lattice formulation of the model. First, we analyze the phase structure and
perform a full calculation in regimes where MC simulations would suffer from
a sign problem. We go through the full extrapolation procedure to recover
the continuum limit, to explicitly show the power of TN approaches for over-
coming the sign problem. As a first necessary step, we reproduce the ana-
lytical prediction for massless fermions from Refs. [229, 230] with great pre-
cision. Furthermore, our calculation can be readily extended to the massive
case, where no analytical computations are available. For the massive case we
observe that the phase structure of the model changes significantly. Using the
MPS approach, and considering the case of vanishing background field, we
are able to map out accurately the phase diagram of the model in the mass -
chemical potential plane for a fixed volume. Our results thus constitute an ex-
plicit demonstration that MPS allow reliable numerical simulations in a regime
where the MC approach would suffer from the sign problem.

Second, taking advantage of the fact that the MPS approach to the Hamil-
tonian formulation also explicitly yields the ground-state wave function, we
can also compute the spatially resolved chiral condensate within the phases
and address the question of spatial inhomogeneities in the ground state for the
massless case. We find that the condensate shows sinusoidal oscillations, con-
sistent with analytical calculations for the fermion bilinears in the two-flavor
case [232], and we quantify the dependence of their amplitude and their fre-
quency on the isospin density.

The rest of the Chapter is organized as follows. In Sec. 5.2 we briefly intro-
duce the formulation we are using and comment on the numerical methods we
are applying. In Secs. 5.3 and 5.4 we present our results for the phase structure
and the spatially resolved chiral condensate before concluding in Sec. 5.5.
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5.2 Model and methods

We again adopt the compact lattice formulation with Kogut-Susskind stag-
gered fermions from Sec. 2.3. The physical states, |Ψ 〉, in the sector of van-
ishing external charge have to satisfy the Gauss law, Gn|Ψ 〉 = 0 ∀n, where Gn
are the generators for gauge transformations, given by Eq. (2.36). For OBC,
this allows us to integrate out the gauge fields, as we showed in Sec. 2.3. As-
suming zero electric field on the left boundary and applying a rescaling that
makes it dimensionless [121], the Hamiltonian from Eq. (2.38) reads1

W =− ix
N−2∑
n=0

F−1∑
f =0

(
ψ†n,f ψn+1,f −h.c.

)
+
N−1∑
n=0

F−1∑
f =0

(
µf (−1)n + νf

)
ψ†n,f ψn,f

+
N−2∑
n=0

 n∑
k=0

F−1∑
f =0

ψ†k,f ψk,f −
F
2

(1− (−1)k)




2

,

(5.1)

where the adimensional parameters of the problem in units of the coupling,
g, are x = 1/(ag)2, µf = 2

√
xmf /g and νf = 2

√
xκf /g. In the following, we will

focus on the case of two flavors in the sector of vanishing total charge, for which
the conventional MC approach in general suffers from the sign problem.2

To study the phase structure of the model, we use the MPS ansatz introduced
in Chapter 3, and compute the ground state of the Hamiltonian variationally.
In order to show that MPS allow for reliable calculations with proper contin-
uum limit in the regime of the sign problem, we first reproduce the analytical
predictions for the massless case from Refs. [229, 230], which studied the con-
tinuum model in a fixed volume. To compare to these results, we consider
lattices of constant volume, Lg = N/

√
x. The isospin number on the lattice

is defined to be ∆N = N0 −N1, with Ni =
∑N−1
n=0 ψ

†
n,iψn,i . As we are going to

show in the following Section, the Hamiltonian (5.1), up to a constant, only
depends on the difference between the chemical potentials, ν1 −ν0, commonly
called the isospin chemical potential in the literature. Thus we study ∆N in the
ground state as a function of the difference between the chemical potentials.
Following Refs. [229, 230], we define the rescaled isospin chemical potential
µI /2π = N (ν1 − ν0)/4πx, and hereafter we fix ν0 = 0 and only vary ν1. We are
thus studying the model in a situation where MC suffers from the sign prob-
lem.

1Contrary to Sec. 2.3, we label the sites and flavors starting with a 0 instead of a 1, because
this turns out to be favorable for the later spin formulation.

2It has been noticed that in the special case ν0 + ν1 = 0 and in certain restricted parameter
regimes the sign problem can be circumvented for massless fermions [20, 21, 229]. How-
ever, here we adopt a general prescription, common for massless and massive cases, where
this does not apply.
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Chapter 5 The multiflavor Schwinger model at nonzero chemical potential

In order to be able to extrapolate to the continuum limit, we consider several
lattice spacings corresponding to x ∈ [9,121]. Moreover, to probe for possible
finite volume effects, we explore several volumes, Lg = 2,6,8. As we have seen
in Sec. 3.2, MPS calculations are subject to a truncation error due to the limited
bond dimension reachable, bounded by the computational cost of treating too
large matrices in the variational ansatz. To control this truncation error, we
repeat the computation for each combination of (Lg,x,µI /2π) for several bond
dimensions, D ∈ [40,220], and extrapolate to D →∞ (see App. B.2 for details
on the extrapolation procedure). For the numerical simulations we again map
Eq. (5.1) to a spin chain by a Jordan-Wigner transformation (details about the
spin formulation are given in the App. A.1).

5.3 Phase structure

5.3.1 Exact dependence on the isospin number

Before turning to our numerical results, let us briefly discuss the dependence
of the phase structure on the isospin number. A short calculation shows that
the Hamiltonian from Eq. (5.1) conserves N0 and N1 as well as N = N0 +N1 in
the sector of vanishing total charge, in which we work. Hence it is block diag-
onal and the blocks can be labeled with (N,∆N = N0 −N1). Inside a block the
chemical potential terms are proportional to the identity and the Hamiltonian
can be written as

W = ν0N0 + ν1N1 +Waux,

where Waux sums up all remaining terms that are independent of the chemical
potential. The ground-state energy of this Hamiltonian is given by

E(N,∆N )(ν0,ν1) = ν0N0 + ν1N1 +Emin(Waux|(N,∆N )) (5.2)

=
N
2

(ν0 + ν1)− ∆N
2︸︷︷︸

p(N,∆N )

(ν1 − ν0) +Emin(Waux|(N,∆N )). (5.3)

where Emin(Waux|(N,∆N )) is a block dependent, i.e. isospin number dependent
constant. From the equation above, one can immediately see that having a
single value for E(N,∆N )(ν0,ν1) available inside each block is enough to deter-
mine this constant. Moreover, Eq. (5.3) reveals that for fixed N the energy
inside each block only depends linearly on ν1 − ν0, up to a (chemical potential
dependent) constant, with a slope proportional to ∆N (see Fig. 5.1).

A first-order (discontinuous) quantum phase transition, and hence a discon-
tinuity in the isospin number, occurs, if it is energetically favorable to go from
one block characterized by (N,∆N ) to a neighboring block characterized by
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5.3 Phase structure

(N,∆N = ∆N ± 2). Thus, the value of ∆N exhibits discontinuous changes, by
two units as the isopsin chemical potential is increased (see Fig. 5.1). Hence
the phase transitions and consequently the discontinuities in ∆N correspond
to the intersection points of the two linear functions describing the energy in-
side these blocks, as can be seen in Fig. 5.1.
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Figure 5.1: Ground state energy (left) and isospin number (right) and as a
function of the chemical potential difference for m/g = 0, Lg = 8, x = 16, and
D = 160. The different symbols in the left panel correspond to ∆N = 0 (circles),
∆N = 2 (triangles) and ∆N = 4 (squares). The lines represent linear functions
with slope p(N,∆N ).

The intersection points can be computed analytically by solving the equa-
tion E(N,∆N )(ν0,ν1) = E(N,∆N )(ν0,ν1). Plugging the explicit expressions from
Eq. (5.3) into the relation, we obtain the following expression for the location
of the discontinuities in the isospin number

(ν1 − ν0)|jump =
Emin(Waux|(N,∆N ))−Emin(Waux|(N,∆N ))

p(N,∆N ) − p(N,∆N )
(5.4)

=
E(N,∆N )(ν̄

∗
0, ν̄
∗
1)− ν̄∗0N0 − ν̄∗1N1 −E(N,∆N )(ν∗0,ν

∗
1) + ν∗0N0 + ν∗1N1

N 0 −N0
.

(5.5)

In the second line we have explicitly substituted p and used the observation
that Eq. (5.2) allows us to determine Emin(Waux|(N,∆N )) (Emin(Waux|(N,∆N ))) at
arbitrary values ν∗0, ν∗1 (ν̄∗0, ν̄∗1). In our simulations we can extract the isospin
number as well as the ground-state energies, where the former can be deter-
mined exactly as the Hamiltonian conserves N0 and N1, which enables us to
compute the location of the phase transitions using Eq. (5.5). The overall pre-
cision we can achieve for (ν1 − ν0)|jump only depends on the precision for the
ground-state energies extracted from our simulations. Assuming a systematic
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Chapter 5 The multiflavor Schwinger model at nonzero chemical potential

error of ∆E in the energies due to the truncation error in our simulations, one
obtains for the error of the location of the phase transition

∆(ν1 − ν0)|jump =

∣∣∣∣∣∣ �(ν1 − ν0)|jump

�E(N,∆N )(ν̄
∗
0, ν̄
∗
1)
∆E(N,∆N )(ν̄

∗
0, ν̄
∗
1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ �(ν1 − ν0)|jump

�E(N,∆N )(ν∗0,ν
∗
1)
∆E(N,∆N )(ν

∗
0,ν
∗
1)

∣∣∣∣∣∣
=

1∣∣∣∣p(N,∆N ) − p(N,∆N )

∣∣∣∣
(∣∣∣∣∆E(N,∆N )(ν̄

∗
0, ν̄
∗
1)
∣∣∣∣+

∣∣∣∆E(N,∆N )(ν
∗
0,ν
∗
1)
∣∣∣).
(5.6)

5.3.2 Numerical results

Phase structure for the massless case

In order to determine the phase structure for the massless case, we repeat the
calculation for several lattice spacings and select for every spacing a single data
point inside of each of the phases, where we determine N0 and N1. To estimate
the corresponding exact energy value and our numerical error for a given lat-
tice spacing, we extrapolate our data in bond dimension, as described in App.
B.2. Subsequently, we extract for every value of x the location of the phase
transition and estimate the error using Eqs. (5.5) and (5.6), as described in the
previous Section. In a final step, we extrapolate these values to the continuum
limit corresponding to 1/

√
x = ag → 0 (see App. B.2 for details). The results

for the phase structure after extrapolating to the continuum are shown in Fig.
5.2 and Tab. 5.1. For the first two transitions, our continuum estimates do
not show any volume dependence, in agreement with Refs. [229, 230]. How-
ever, for transitions between phases with larger ∆N , we can see that for volume
Lg = 2 there are deviations due to finite volume effects, which disappear for a
larger volume, Lg = 6, for which we recover the analytical results in the en-
tire parameter regime under study. We conclude that the transitions occur for
µI /2π values which are odd multiples of 1/2, in agreement with the analytical
results. The finite volume effects found in our MPS calculation for small Lg
can be explained because the total fermion number coincides with the number
of sites, N0 +N1 = N . Hence, the system size ultimately upper bounds Ni and
larger values for ∆N at fixed volume would require larger system sizes and
correspondingly larger values of x to reach the correct continuum limit.

Phase structure for the massive case

While the analytical calculation in Refs. [229, 230] is limited to the massless
case, the MPS formalism can deal with (arbitrary) mass values. Repeating the
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Figure 5.2: Inset: Continuum estimate of the location of the phase transition
versus inverse volume for the first (red 5’s), second (green crosses), third (blue
asterisks) and fourth (magenta dots) transition. Main plot: Continuum esti-
mate for ∆N as a function of µI /2π, for volumes 2 (red solid line), 6 (green
dashed line) and 8 (blue dash-dotted line). The (dotted) vertical lines indicate
the theoretical prediction for the phase transitions in the massless case.

Volume 1. transition 2. transition 3. transition 4. transition
Lg = 2 0.499960(88) 1.513345(47) 2.617208(11) 3.716041(12)
Lg = 6 0.499(21) 1.501(23) 2.504(22) 3.511(20)
Lg = 8 0.497(49) 1.501(60) 2.502(55) 3.505(51)

Table 5.1: Continuum estimates for the locations of the first four phase transi-
tions for the massless case m/g = 0.

same calculations and extrapolation procedure for m/g = 0.5, we obtain the
results shown in Fig. 5.3. Comparing Figs. 5.2 and 5.3, we observe that the
new energy scale introduced by m/g leads to a change in the phase structure,
as the locations of the first-order phase transitions are not equidistantly spaced
anymore. The continuum estimates show a clear dependence on the volume,
even for the first phase transition, and the size of the plateaus is no longer
equal.

Computing the phase structure for several masses, we can map out the phase
diagram for the model in the (m/g, µI /2π)-plane for a fixed volume. Fig. 5.4
shows the results for volume Lg = 8. One can see that for larger masses the
phase characterized by ∆N = 0 survives up to noticeably larger values of µI /2π
and the size of the region for the ∆N = 2 phase shrinks for larger masses. The
regions describing phases with larger values for ∆N are less affected and only
slightly bend towards higher values of the chemical potential difference. Tabs.
5.2 - 5.4 reveal that also for a smaller volume of Lg = 6 the effect of the nonzero
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Figure 5.3: Inset: Isospin number as a function of µI /2π for Lg = 8, x = 121,
m/g = 0.5 and D = 220. Main plot: Continuum estimate for ∆N as a function
of µI /2π, for volumes 2 (red solid line), 6 (green dashed line) and 8 (blue dash-
dotted line).
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Figure 5.4: Phase diagram in the (m/g, µI /2π)-plane for volume Lg = 8. The
different colors indicate the regions for the different phases characterized by
different values of ∆N . The black 5’s mark the data points obtained after the
extrapolation procedure.

mass is similar. For increasing values ofm/g the phase transitions are displaced
to larger values of µI /2π and again the transition from the ∆N = 0 phase to the
∆N = 2 phase is most affected. For Lg = 2 we again observe the trend that the
phase transitions shift to larger values of the isospin chemical potential with
increasing mass, however, the effect is less pronounced compared to the larger
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volumes as Tabs. 5.2 - 5.4 show.

Volume 1. transition 2. transition 3. transition 4. transition
Lg = 2 0.522620(86) 1.515910(40) 2.620237(14) 3.716558(20)
Lg = 6 0.711(19) 1.538(26) 2.519(23) 3.520(20)
Lg = 8 0.831(42) 1.575(65) 2.532(57) 3.523(52)

Table 5.2: Continuum estimates for the locations of the first four phase transi-
tions for m/g = 0.125.

Volume 1. transition 2. transition 3. transition 4. transition
Lg = 2 0.554897(76) 1.522594(40) 2.624794(14) 3.720370(19)
Lg = 6 0.938(16) 1.617(26) 2.558(23) 3.546(20)
Lg = 8 1.165(39) 1.728(66) 2.606(57) 3.571(52)

Table 5.3: Continuum estimates for the locations of the first four phase transi-
tions for m/g = 0.25.

Volume 1. transition 2. transition 3. transition 4. transition
Lg = 2 0.643234(66) 1.548542(35) 2.644094(11) 3.732926(20)
Lg = 6 1.402(12) 1.874(23) 2.703(22) 3.647(20)
Lg = 8 1.816(24) 2.168(53) 2.871(55) 3.752(49)

Table 5.4: Continuum estimates for the locations of the first four phase transi-
tions for m/g = 0.5.

This behavior can be understood qualitatively as follows. Since the only
mass dependent contribution to the energy is given by Emin(Waux|(N,∆N )) (see
Eqs. (5.2) and (5.3)), a nonvanishing mass leads to a shift, ∆Emin, in this quan-
tity with respect to the massless case:

Emin(Waux|(N,∆N )) = Emin(Waux|(N,∆N ))|m/g=0 +∆Emin.

Equation (5.4) reveals that these energy shifts affect the locations of the phase
transitions, as soon as they are distinct for every phase. Extracting ∆Emin/N
inside each phase for our smallest lattice spacing for several masses, we ob-
tain the results shown in Fig. 5.5, which show that the values for the shifts are
indeed different for each phase. In particular, we see that for the phase charac-
terized by ∆N = 0, the energy shift is a lot more pronounced than for the phase
characterized by ∆N = 2, thus explaining the significant displacement towards
higher values of µI /2π for the location of the first phase transition with respect
to the massless case. For phases with larger isospin number, the energy shifts
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Chapter 5 The multiflavor Schwinger model at nonzero chemical potential

differ less, consistent with the observation that the locations of the phase tran-
sitions between these phases are less affected. Although for all three volumes
studied we observe similar energy shifts, Fig. 5.3 as well as Tabs. 5.2 - 5.4
show that for Lg = 2 the locations of the phase transitions are less affected by
a nonzero fermion mass. This is likely due to the finite volume effects arising
from the fact that the total fermion number corresponds to the number of sites,
as we have seen for the massless case.
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Figure 5.5: Energy shift per site ∆Emin/N as a function of m/g for x = 121 and
volumes Lg = 2 (a), Lg = 6 (b) and Lg = 8 (c). The different markers indicate the
different phases characterized by the isospin number, blue crosses represent
∆N = 0, red 5’s ∆N = 2, green asterisks ∆N = 4, magenta dots ∆N = 6 and
cyan triangles ∆N = 8. As a guide for the eye the data points are connected
with dotted lines.
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5.4 Chiral condensate

A further advantage of the MPS method is that not only it is free from the sign
problem, but at the end of the computation it also yields the ground-state wave
function, hence giving easy access to any observables that can be expressed as
a MPO. An interesting observable is the chiral condensate. For the single-
flavor Schwinger model analytical computations show that the condensate at
any finite density has the form of a standing wave [233–235], 〈ψ̄(y)ψ(y)〉 =
〈ψ̄ψ〉0 cos(2κy), where ψ is a two component Dirac spinor, 〈ψ̄ψ〉0 the (spatially
homogeneous) zero-density expectation value for the chiral condensate and
κ is the chemical potential. A possible explanation for the oscillations, put
forward in Ref. [236], linked the phenomenon to the breaking of translational
invariance due to the introduction of a uniform background charge. For the
multiflavor case, which was addressed in Ref. [232], it was also found that
fermion bilinears show spatial inhomogeneities.

In order to address this question, we compute the spatially resolved con-
densate in the ground state. In our lattice formulation the condensate cor-
responds to C(y = 2n/

√
x) =

∑1
f =0(Cn,f + Cn+1,f ), n = 0,2,4, . . . , where Cn,f =

√
x
N (−1)nψ†n,f ψn,f . To account for the staggered formalism, the condensate is

summed over each pair of even and odd neighboring sites.3 We focus on the
massless case, m/g = 0, at fixed volumes Lg ranging from 2 to 16. Different
to the simulations for the phase structure, we use a very fine lattice spacing,
corresponding to x = 1024, for which lattice effects are very small and do not
extrapolate to the continuum limit. Moreover, we fix D = 160 for all the rest
which is sufficiently large to control truncation errors well enough.

To assess the effect of the chemical potential (and hence different isospin
number) on the condensate, we choose a point in every phase and compute the
position dependent condensate, 〈C(y)〉, for each case. The results are shown
in Fig. 5.6. For ∆N = 0, the condensate is homogeneous, except close to the
edges, what we interpret as small finite size effects. For ∆N > 0, by contrast, we
observe sinusoidal oscillations with an amplitude close to the condensate value
at vanishing ∆N . At a fixed volume, the frequency of the oscillations increases
with the isospin number, ∆N , and we observe ∆N/2 oscillation periods inside
our system.

Our data suggest that the oscillations for ∆N > 0 are of the form 〈C(y)〉 =
Acos(ωy +θ) +B and thus we fit it to this function to extract the amplitude A,
frequency ω, phase shift θ and offset B. Determining these parameters for sev-
eral system sizes and several phases, we obtain the results shown in Figs. 5.7
and 5.8, where the error bars correspond to 1σ confidence intervals for the fit

3For convenience in the visualization, we also sum both flavors for each site. However, we
observe the same behavior for each individual flavor.
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Figure 5.6: Expectation value of the chiral condensate as a function of position
for Lg = 10. The different curves correspond to different phases characterized
by different ∆N , black triangles represent ∆N = 0, red crosses ∆N = 2, green
5’s ∆N = 4, blue asterisks ∆N = 6 and magenta dots ∆N = 8.

parameters.4 The frequency, depicted in Fig. 5.7(a), shows a clear dependence
on the isospin density, ∆N/Lg. For Lg > 2 we see a linear decrease with in-
creasing volume for each phase, as inside every phase we always have ∆N/2
oscillation periods, independently of volume. The deviations for volume 2 are
likely due to remaining lattice effects, which become increasingly important
for small volumes and large ∆N , as observed in the previous Sections. As
Fig. 5.7(b) reveals, the amplitudes of the oscillations are close to the expecta-
tion value of the condensate in the ∆N = 0 phase, 〈C〉0. We observe that for
∆N > 2, the values obtained for A deviate less from 〈C〉0 than those for ∆N = 2
and that there is hardly any change with volume, except for the smallest vol-
ume Lg = 2.

The phase shift, θ, depicted in Fig. 5.8(a), shows a similar behavior. While
for ∆N > 2 the data approaches zero for increasing volume, there is no clear
trend towards zero for ∆N = 2. Finally, the offset, B, converges to zero for large
volumes, with the smallest values found for ∆N = 2. For ∆N > 2 there is hardly
any difference between the offset for different phases anymore.

4Notice that we have not performed a continuum extrapolation, different to our simulations
for the phase structure, but the results presented correspond to a fixed (albeit very small)
lattice spacing.
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Figure 5.7: Frequency ω (left) and amplitude A in units of the zero density
expectation value (right) as a function of inverse volume for different phases,
where the red crosses represent ∆N = 2, the green 5’s ∆N = 4, the blue aster-
isks ∆N = 6 and the magenta dots ∆N = 8.

0 0.1 0.2 0.3 0.4 0.5

−0.1

0

0.1

0.2

0.3

1/Lg

θ
/
π

(a) Phase shift

0 0.1 0.2 0.3 0.4 0.5

−1.5

−1

−0.5

0

x 10
−3

1/Lg

B

(b) Offset

Figure 5.8: Phase shift θ (left) and offset B (right) as a function of inverse vol-
ume for the different phases, where the red crosses represent ∆N = 2, the green
5’s ∆N = 4, the blue asterisks ∆N = 6 and the magenta dots ∆N = 8.
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5.5 Conclusion

This Chapter illustrates a successful lattice calculation with TN in a regime,
where the conventional MC approach suffers from the sign problem. Our re-
sults for the phase structure for the massless case in a sufficiently large vol-
ume agree with great precision with the analytical calculations from Refs. [229,
230], and we recover the predicted locations of the phase transitions after ex-
trapolating to the continuum limit. Furthermore, our calculations can be im-
mediately extended to the massive case, where no analytical results are avail-
able. In this case, the observed phase structure is significantly different, and
the locations of the phase transitions are no longer independent of Lg. We can
map out the phase diagram of the model at a fixed volume in the (m/g, µI /2π)-
plane, and we see that the transition from ∆N = 0 to ∆N = 2 is significantly
shifted towards higher values of the chemical potential at the expense of the
phase characterized by ∆N = 2. Phases with larger values of ∆N are appar-
ently less affected and only slightly shifted towards higher values of µI /2π for
increasing mass.

Regarding the spatial structure of the ground state, our results for the con-
densate show a standing wave structure similar to the theoretically predicted
behavior for the single-flavor case [233–235] and consistent with analytical
calculations for the multiflavor case [232]. We fitted the results to an oscilla-
tory function and analyzed the behavior of the various parameters in terms of
isospin number and volume. For a fixed volume, we find that the frequency
of the oscillations increases when the isospin number, which characterizes the
phase, increases. Inside a phase with a given isospin number ∆N , we see ∆N/2
oscillation periods of the condensate over the spatial extension of the system.
Consequently, the frequency shows a linear decrease with the isospin density,
∆N/Lg, except for the smallest volumes considered, which presumably suffer
from enhanced lattice effects. The amplitudes of the oscillations are approxi-
mately given by the expectation value of the homogeneous condensate at van-
ishing isospin number, independently of volume. The observed offsets show
a clear tendency towards zero for increasing volume, whereas for the phase
shifts this tendency is less clearly visible. For phases characterized by ∆N > 2
we observe that the shift is getting closer to zero, however for ∆N = 2 there is
no clear trend recognizable.

In our study, we focused on zero background field and temperature, with
nonvanishing chemical potential, in order to explore a regime that suffers from
the sign problem in conventional MC calculations. Notice, however, that the
model also exhibits interesting features in other parameter regimes. In par-
ticular, in the absence of chemical potential and background field, it has been
shown to have a second order phase transition for zero fermion mass at Tc = 0
[10, 237]. It might also show a transition, similar to the single flavor case, at
nonvanishing background field, as has been argued in Ref. [238]. Adding a
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background field as well as a generalization to nonzero temperature [40, 46,
50] is straightforward, hence these regimes are also amenable to tensor net-
work studies.

Although we studied the two-flavor case, the MPS approach can be easily
extended to an arbitrary number of flavors as shown in the App. A.1. Further-
more, with the MPS approach it is to some extent feasible to simulate real-time
evolution [37], thus making it possible to address also dynamical aspects of the
model. Moreover, our results can serve as a test bench for other methods trying
to overcome the sign problem.
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Chapter 6

Non-Abelian string breaking

phenomena with matrix product

states

In the previous Chapters we demonstrated the suitability of MPS for exploring
Abelian gauge models and questions related the quantum simulation thereof.
However, TN and in particular MPS are not limited to the Abelian case and are
also adequate for studying non-Abelian gauge models. To illustrate that, we
investigate the phenomenon of string breaking in a non-Abelian SU(2) LGT,
where the gauge degrees of freedom are truncated to a finite dimension. In
the spirit of a potential future quantum simulator, we consider systems of fi-
nite size and with a finite lattice spacing. The results presented here have
been published in Ref. [43] and the rest of the Chapter is a slight modification
thereof.

6.1 Introduction

The phenomenon of string breaking, as a consequence of confinement, is one of
the most fundamental aspects of the Standard Model. While a comprehensive
understanding in many cases, such as QCD, is still lacking, a lot of insight has
been gained thanks to LGT [239–244]. Such studies are typically restricted
to static properties or consider partly nondynamical scenarios, as for example
the ground state in the presence of static external charges, whereas the TN
approach does not suffer from such limitations.

In this Chapter, we consider dynamical aspects of the string breaking phe-
nomenon for a non-Abelian LGT with dynamical charges in one spatial dimen-
sion. The Hamiltonian we simulate realizes an exact SU(2) gauge symmetry us-
ing a finite-dimensional representation for the bosonic degrees of freedom [57,
96]. This model is hence a suitable candidate for the design of an atomic quan-
tum simulator of SU(2) LGT. The finite dimension of the link Hilbert spaces
allows the simulation of the model via direct application of MPS techniques,
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which we employ here in order to numerically explore the statical and dynam-
ical aspects of the string breaking phenomenon.

Even if these scenarios can be realized in a future quantum simulator, mea-
suring the string breaking phenomenon in an experiment is not trivial, espe-
cially for the dynamical case. In order to detect and characterize the breaking
of the string, we propose three different observables. They can be monitored
during the MPS simulation, and should in principle also be accessible in an ex-
periment, so that our results will be measurable in a potential future quantum
simulator.

More specifically we study three different scenarios.

1. Ground state in the presence of static external charges
First, we consider the static aspects of string breaking by determining the
ground state of the system, which includes fully dynamical fermions, in
the presence of two additional external static charges. This calculation
relates closely to the ones traditionally accessible by lattice MC methods.
We show that we can reliably determine if the string is present, and there-
fore identify the regions where we expect string breaking to occur. These
calculations additionally demonstrate the suitability of the proposed ob-
servables for the detection of string breaking in dynamical scenarios.

2. Dynamics in the presence of static external charges
In the second place, we investigate the dynamics of string breaking by
introducing the external static charges on top of the interacting vacuum
and evolving the state in real time. When the string breaks, we can ex-
plicitly observe the screening of the charges via the creation of dynamical
particles.

3. Real-time dynamics with fully dynamical charges
Finally, we analyze how the picture changes when the charges added to
the vacuum are themselves dynamical, a scenario which is closer to more
realistic out-of-equilibrium situations. Also in this case we can recognize
the string breaking if the fermion mass is small enough.

The rest of the Chapter is organized as follows. In Sec. 6.2 we briefly review
the model and our numerical methods. In Sec. 6.3 we present our results
for the static calculations. Section 6.4 contains the results for the real-time
dynamics of string breaking with two static external charges. In Sec. 6.5 we
present the results for the real-time dynamics of string breaking when a pair
of dynamical charges is added to the interacting vacuum. To conclude, we
summarize our findings in Sec. 6.6.
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6.2 Model and methods

6.2.1 Truncated theory

The model we consider is the Hamiltonian formulation of a 1+1 dimensional
SU(2) LGT with dynamical fermions, in which the gauge symmetry is exactly
realized with finite-dimensional link variables [96, 245]. It can be understood
as a truncation of the complete SU(2) gauge theory presented in Sec. 2.3. For
convenience, we work in units of lattice spacing a = 1 and use an equivalent
formulation of Eq. (2.39) which is related to the original one by a phase trans-
formation on the fermion fields [144] and given by

H =ε
N−1∑
n=1

(
ψ†nUnψn+1 + h.c.

)
+m

N∑
n=1

(−1)nψ†nψn +
g2

2

N−1∑
n=1

J2
n. (6.1)

As we have seen previously, the physical states, |Ψ 〉, have to be eigenstates of
Gauss Law from Eq. (2.40), i.e. Gan|Ψ 〉 = qan|Ψ 〉 for all sites, n, where a nonzero
value for qan indicates a nonvanishing static external charge.

Starting from the strong-coupling state in Eq. (2.41), the application of the
gauge invariant string operator

Snl = ψ†nUn . . .Un+l−1ψn+l (6.2)

or its adjoint, S†nl , for odd l,1 generates a particle-antiparticle pair at sites n
and n+ l, connected by a flux tube of length l. Such configurations will have an
excess of energy of 2m due to the particle-antiparticle pair, plus a flux energy
proportional to the string length, l. Consequently, from a certain length on,
it will be energetically favorable to reduce the flux energy by creating extra
particle-antiparticle pairs, leading to configurations with a broken string.

As we discussed in detail in Sec. 2.3, for the complete SU(2) model the flux
on a link is not bounded, and the dimension of the Hilbert space for each link
is infinite. It is nevertheless possible to consider a theory truncated in a gauge
invariant manner, where the maximum flux a link can carry is limited and the
Hilbert spaces of the links are finite dimensional. Following the method in
Ref. [57], each matrix element (Un)ll′ can be decomposed as a sum over all
irreducible representations, which may be separated to summands that are
gauge invariant themselves. Here we consider the model corresponding to the
simplest nontrivial truncation of the full theory, meaning that only the trivial
and the fundamental representation are kept, resulting in dimension 5 for the
links. This would be the simplest nontrivial physical model for a quantum
simulator following the proposals from Refs. [57, 80, 81].

1As we are working with a staggered formulation the odd (even) sites correspond to antipar-
ticles (particles), consequently l has to be odd to create a string between an antiparticle and
a particle.
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6.2.2 Numerical approach

The string breaking phenomenon can be studied statically or dynamically.
Here, we employ simulations of time evolution where the evolution operator is
approximated via a first order Taylor expansion. This allows us to access both,
the static and the dynamic scenarios, by respectively using imaginary or real
time as explained in Sec 3.2. Additionally, the Taylor expansion preserves the
symmetries of the Hamiltonian, such as gauge invariance. Then it is possible to
explore a specific sector of the external charge distribution without explicitly
implementing symmetries in the tensors.

The numerical simulations have three main sources of error, each of them
controllable by a suitable choice of parameters. The first one is due to the ap-
proximation of the evolution operator via a Taylor series. This error can be
controlled by choosing the time step suitably small. Another source of error is
due to the limited bond dimension. By obtaining results with different bond
dimensions, the size of this truncation error can also be estimated and con-
trolled. As we are working with finite systems, a third source of error arises
from finite-size effects which can be avoided by using sufficiently large sys-
tems.

Although TN and in particular MPS can be formulated in terms of fermionic
degrees of freedom, we again choose to translate the fermionic degrees of free-
dom in Hamiltonian (6.1) to spins via a Jordan-Wigner transformation for our
numerical simulations (details about the procedure and the relevant operators
in spin formulation can be found in App. A.2) and in the following we work
with the spin formulation.

6.2.3 Detection of string breaking

Detecting the presence or absence of the flux string during the evolution re-
quires observables that are suitable for the dynamical case. The Wilson loop
and more general correlation functions, widely used in lattice calculations to
determine the static potential, are typically evaluated in the limit of large Eu-
clidean time and therefore not suitable for our setup [112, 240, 243]. Instead,
to detect strings and string breaking in the dynamical setup, we propose three
different observables.

1. Spin and flux configuration
In the first place, the spatially resolved spin and flux configurations in
the system allow us to visualize the change with respect to the initial
configuration (see e.g. Fig. 6.3).

2. Local color imbalance
A second observable is the local imbalance between the different colors
of fermions, also spatially resolved. A string operator from Eq. (6.2)
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changes the fermionic content of the sites at its end-points, such that,
on the strong-coupling vacuum, it will produce a superposition of states
having a single red or a single green fermion at the beginning or at the
end of the string. This can be detected by the operator Qan

2 = 1
4(nr,n −

ng,n)2, where nr,n and ng,n are the occupation numbers for the two fermionic
species2 on site n.3

3. Statistics of string lengths
A third observable can be proposed that looks only at the flux content of
the links. Applying a string of length l, starting at site n, on the strong-
coupling vacuum produces a state in which links between sites n and n+l
carry nonvanishing flux, whereas outside the region there is no flux. We
can construct projectors Pnl on this kind of configurations. However, we
are not interested in a single string but rather in the statistics of string
lengths in a (time-dependent) state |Ψ (t)〉. Thus, we bin all strings of a
certain length together and normalize by the number of possible strings
of length l:

Pl =
∑N−l
n=1〈Ψ (t)|Pnl |Ψ (t)〉

N − l
.

In this way we can obtain histograms for the distribution of the string
lengths in the state at a given time t.

As we show in the next Section, these three observables allow us to reliably
determine whether our system still contains the initially imposed string or the
string is broken. Taking advantage of the fact that in our MPS simulations we
have access to wave function at all times, we can monitor their values through-
out the entire evolution.

6.3 Ground state with static external charges

The usual way of probing for string breaking in lattice MC studies is the analy-
sis of the static quark-antiquark potential. Using the MPS method, we can also
determine the energy of an extra pair of external charges as a function of their

2In Sec. Sec. 2.3 we referred to the different color components of the spinor as ±1/2 to
make the z-component of the angular momentum related to them explicit. Since for the
considerations in this Chapter the explicit values of the different z-components are not
important, we instead refer to them as r and g (“red” and “green”) for illustrative purposes.

3One should note that the index a in Qan
2 is not summed. This might look puzzling at first,

as it seems that we are using a non color-neutral object as observable. However, a little cal-
culation shows (see App. A.2) that Qan

2 is identical for all a. Therefore summing the group
index would only yield an additional factor of 3 which we are not taking into account.
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distance by simply computing the ground state in a sector, where two external
static charges are placed at the desired separation.

In particular, we choose two static external charges qy = ±1/2, located in
the central region of the system (to minimize finite-size effects) at a distance
l. Gauge invariance requires that there is a flux tube connecting them. In
the strong-coupling vacuum the charge at each site is zero, as well as the left
and right electric field on each link. Consequently, we can prepare a state
with the desired external charge distribution by applying the (noninvariant)
operator Un . . .Un+l−1 on the strong-coupling ground state. This operator only
acts on links from n to n+ l −1, on which it creates a finite electric field. Hence
the Gauss Law at the beginning and the end of the string yields a nonzero
value corresponding to a state with qyn = ±1/2 and qyn+l = ∓1/2. Subsequently
we evolve this state in imaginary time to determine the ground state of the
Hamiltonian for a chosen set of parameters, (ε,m,g).

In Fig. 6.1 we compare the ground-state energy E for ε = 3.0, g = 1.0 and
various masses, where we subtracted the energy of the interacting vacuum
without external charges Evac. For m = 3.0 and m = 5.0 we observe three re-
gions as functions of the string length. For short strings the energy grows
linearly with the string length, indicating the stretching flux tube between the
charges, namely the presence of the string in the ground state. From a certain
length lc on, the ground-state energy does not depend on l. This is the signa-
ture for string breaking, as after reaching the threshold for creating particle-
antiparticle pairs, reducing the flux is energetically favorable, the string breaks
and the energy is independent of the initial string length. Finally we observe
a third region, when the string length is already close to the system size, and
finite-size effects become noticeable. In our plots we clearly see that the values
of lc, where one transitions from the string region to the breaking region, are
independent of the system size. For m = 10.0 the mass is large enough that
one does not leave the linear scaling region, even if we create the longest string
that fits in our system. Hence, we do not expect string breaking to occur in a
system of this size.

5 15 25

4

6

8

l

E
−

E
v
a
c

5 15 25

4

6

8

10

12

l
5 15 25

5

10

15

20

25

l

Figure 6.1: Ground-state energy for N = 22 (red crosses) and N = 30 (blue 5’s)
as a function of the initial separation of the external charges for m = 3.0 (left
panel), m = 5.0 (central panel) and m = 10.0 (right panel).
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The difficulty of numerically detecting string breaking with MC techniques
has been traced back to the mixing of two-meson states being hard to capture
by Wilson loops [240, 241, 246]. With our method we can explicitly see this
mixing happening, as illustrated by Fig. 6.2. The figure shows the energy as
a function of imaginary time for several cases in the breaking region. At the
beginning of the imaginary-time evolution, we observe the energy going down
until it reaches a metastable plateau, corresponding to the interacting string
state, evidenced by the spin and flux configurations at that point, shown in
the left inset panels. For later times there is then again a significant decrease
in energy corresponding to the breaking of the string. This can also be seen
in the spin and flux configuration (right inset panels of Fig. 6.2), where the
region of high flux between the static charges is going away after the decrease
in energy, and only a peak in the flux around the external charges remains.

We illustrate the breaking and the nonbreaking scenario with two masses,
m = 3.0 and 10.0, for which we monitor the spin, flux and charge square config-
urations throughout the whole imaginary-time evolution. Moreover, to probe
for possible finite-size effects, we use different system sizes of N = 22 and 30.
The results for these cases are shown in Fig. 6.3. The flux configuration is giv-
ing an indication that the particle-antiparticle pairs created during the break-
ing process are clustering around the heavy external charges and screen the
electric flux. Furthermore Fig. 6.3 reveals that there is essentially no differ-
ence between both system sizes, thus showing that finite-size effects for this
particular case are negligible.

In Fig. 6.4 we plot the charge squared Qan
2 and the histograms Pl for the

initial configuration and for the final ground state respectively. Since the
interacting vacuum in the sector without external charges of the theory also
contains string configurations with a certain probability distribution, we sub-
tract this configuration in order to better visualize the difference. As one can
see, in the breaking case two peaks around the external charges form in the
charge square configuration, thus verifying that the particles created during
the breaking process indeed cluster around the external charges and screen the
flux. By contrast, in the nonbreaking case the charge square configuration only
changes slightly. The histograms for the string lengths show a similar picture.
In the nonbreaking case the clear initial peak at l = 11 is preserved, whereas
for m = 3.0 it vanishes and peaks emerge around smaller string length.

For all the results presented in this Section we used a time step ∆t = 1.0× 10−3

and a bond dimension D = 100, parameters which turn out to be sufficient to
avoid noticeable numerical errors (see App. B.3 for a more detailed error anal-
ysis).
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Figure 6.2: Energy as function of imaginary time for N = 30, m = 3.0, l = 11
(red solid line) and l = 21 (blue dashed line). The insets show the difference of
expectation values for σ zr,n (red lines, left y-axes), σ zg,n (green lines, left y-axes),
and J2

n (blue lines, right y-axes) with respect to the interacting vacuum, shortly
before and after the drop in energy (left upper panel: l = 21, t = 0.75, right
upper panel: l = 21, t = 1.25; left lower panel: l = 11, t = 0.5, right lower panel:
l = 11, t = 1.25).

6.4 Real-time evolution with static external

charges

From Fig. 6.1 we can identify the parameter regions in which we expect string
breaking to occur. To study the real-time dynamics of the string breaking we
select two distinct situations. We choose l = 11, which is deeply in the breaking
region for m = 3.0 but still far enough from the point where finite-size effects
are noticeable, and for which we do not expect any string breaking with m =
10.0. For all the following real-time cases we set ε = 3.0 and g = 1.0, as in the
imaginary-time setup.

MPS methods give us access not only to the static properties, but also to
the real-time dynamics of the system. We may then investigate how the string
breaking process manifests dynamically when the static charges are introduced
in the interacting vacuum. To this end, we first compute a MPS approximation
to the interacting vacuum of the theory using the variational energy minimiza-
tion discussed in Sec. 3.2. Starting from this state, we apply again the non
gauge invariant operatorUn . . .Un+l−1, which effectively creates two static exter-
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Figure 6.3: Imaginary-time evolution of a string with length l = 11 between
two external static charges, in a system of size N = 22 (upper three rows) and
N = 30 (lower three rows), for dynamical fermion massesm = 3.0 (left column)
and 10.0 (right column). Shown are the site resolved expectation values for
σ zr,n, σ zg,n (first and fourth row), J2

n (second and fifth row) and Qan
2 (third and

sixth row) as a function of imaginary time.

91



Chapter 6 Non-Abelian string breaking phenomena with matrix product
states

5 10 15 20

−0.05

0

0.05

n

〈Q
α n
2
〉
−

〈Q
α n
2
〉 v

a
c

(a)

5 10 15 20
n

(b)

5 10 15 20

−15

−10

−5

0
x 10

−3

n

(c)

5 10 15 20
n

(d)

5 10 15 20

−0.1

−0.05

0

0.05

l

P
l
−

P
l,
v
a
c

(e)

5 10 15 20
l

(f)

5 10 15 20

−0.02

0

0.02

0.04

0.06

0.08

l

(g)

5 10 15 20
l

(h)

Figure 6.4: Charge square configuration (upper panels) and histograms of
string lengths (lower panels) at the beginning and the end of the evolution
for a system of size N = 22 and l = 11, the vertical lines in the upper panels
indicate the position of the external charges. Panel (a) and (e) show the data
for m = 3.0 at the beginning, panel (b) and (f) for m = 3.0 at the end, panel (c)
and (g) for m = 10.0 at the beginning and panel (d) and (h) for m = 10.0 at the
end of the evolution.

nal charges qy = ±1/2 separated by a distance l = 11, in a gauge invariant man-
ner, thus starting the connecting flux tube. Subsequently we evolve this state
in real time with ∆t = 1.0× 10−4, D = 100 and determine the time-dependent
spin, flux and charge square configurations along the chain, as shown in Fig.
6.5. As in the imaginary-time case, one can see that a system sizeN = 22 is suf-
ficient to avoid finite-size effects. In order to better appreciate the dynamics,
we show the details of the three proposed observables at fixed times in the evo-
lution, t = 0, 0.25, 0.5 and 2, for each mass in Figs. 6.6 and 6.7, where we again
subtracted the interacting vacuum configuration to visualize the difference to
the ground state without external charges.

For m = 3.0 the plots in Fig. 6.6 reveal that between t = 0 and t = 0.25
particle-antiparticle pairs are created inside the string region, leading to a sig-
nificant increase in Qan

2 there. This is accompanied with a considerable de-
crease of the initial peak in the string length histogram around l = 11 and a
change in the spin and flux configurations. This growth is continuing up to
t = 0.5 where there has been a large amount of particles created in the string
region and the peak in the histogram at l = 11 is already gone. At later times,
t = 2.0, these particles are clustering around the region of the external charges
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Figure 6.5: Real-time evolution of a string with length l = 11 between two
external static charges, in a system of size N = 22 (upper three rows) and N =
30 (lower three rows), for dynamical fermion masses m = 3.0 (left column) and
10.0 (right column). Shown are the site resolved expectation values for σ zr,n,
σ zg,n (first and fourth row), J2

n (second and fifth row) and Qan
2 (third and sixth

row) as a function of time.

and, as the flux configuration reveals, the external charges are screened, lead-
ing to a reduction of flux in the center region of the original string. Form = 10.0
the picture is significantly different, as there is essentially no change during
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Figure 6.6: Real-time snapshots for a system with external static charges at a
distance l = 11, dynamical fermion mass m = 3.0 and size N = 22. The upper
row shows the charge square configuration, 〈Qan2〉 − 〈Qan2〉vac, the central row
the spin, 〈σ zr/g,n〉−〈σ

z
r/g,n〉vac (red and green lines, left y-axes), and flux configu-

ration, 〈J2
n〉−〈J2

n〉vac (blue lines, right y-axes), and the lower row the histograms
for the string lengths, Pl − Pl,vac. The vertical red lines in the upper row indi-
cate the position of the external charges. Each column corresponds to a time
instant, t = 0, 0.25, 0.5 and 2.0.

the evolution in neither the charge, spin and flux configurations nor the string
length histograms, which show a single dominant peak at l = 11 at all times,
therefore indicating that the initial string is preserved during the evolution.
The minor changes over time present in Fig. 6.7 result from the fact that the
starting state of the evolution is not an eigenstate of the Hamiltonian, and con-
sequently it is not perfectly steady.

6.5 Real-time evolution with dynamical charges

The scenarios with external static charges allow us to isolate and study the
string breaking phenomenon. Contrary to the MC approach, MPS techniques
make it also possible to study a more realistic scenario, in which the charges
added to the vacuum are themselves dynamical. This enables additional con-

94



6.5 Real-time evolution with dynamical charges

−10

−5

0
x 10

−3

−0.05

0

0.05

n

5 10 15 20

n

5 10 15 20

n

5 10 15 20

n

5 10 15 20
0

0.2

0.4

0.6

5 10 15 20
−0.02

     

0.02 

     

0.06 

l
5 10 15 20

l
5 10 15 20

l
5 10 15 20

l

Figure 6.7: Real-time snapshots for a system with external static charges at
a distance l = 11, dynamical fermion mass m = 10.0 and size N = 22. The
upper row shows the charge square configuration, 〈Qan2〉−〈Qan2〉vac, the central
row the spin, 〈σ zr/g,n〉 − 〈σ

z
r/g,n〉vac (red and green lines, left y-axes), and flux

configuration, 〈J2
n〉 − 〈J2

n〉vac (blue lines, right y-axes), and the lower row the
histograms for the string lengths, Pl − Pl,vac. The vertical red lines in the upper
row indicate the position of the external charges. Each column corresponds to
a time instant, t = 0, 0.25, 0.5 and 2.0.

figurations, in which the charges can move, to also play a role in the evolution,
so that the string breaking phenomenon may be displayed differently.

Using the same MPS techniques, we can also explore this setup. Thus we
repeat the simulations described in Sec. 6.4 but applying the gauge invariant
string operator from Eq. (6.2) on the interacting vacuum to construct our ini-
tial state. This again results in a state with a string between two charges. Dif-
ferent to the systems studied earlier, the charges are not external, but they are
now created on a site and are fully dynamical. Again, we study the time evo-
lution of the spin, flux and charge square configurations for different fermion
masses and system sizes, as shown in Fig. 6.8, where we use ∆t = 1.0× 10−4 and
D = 100 as in the previous Section. We compare the case m = 10.0, in which
the string does not break (see also Fig. 6.11), with m = 3.0. In the latter case,
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which exhibited clear breaking for static external charges, the fully dynamical
situation shows differences (compare Figs. 6.6 and 6.10). To better identify the
features of string breaking, we look at an even smaller fermion mass, m = 1.0,
shown in Fig. 6.9.

In all cases we see a clear initial peak in the charge square configuration at
the beginning and at the end of the string. For m = 1.0 and 3.0 new charges
emerge especially in the string region and these peaks are quickly decaying.
Also the flux in the string region is decaying while two small peaks are pre-
served roughly around the start and end point of the original string. The his-
tograms for the distribution of string lengths show a similar picture: at the
beginning of the evolution there is a clear peak at around l = 11 which is gone
at around t = 0.25. In them = 1.0 case the initial peak at l = 11 is less dominant
as in the m = 3.0 case, due to the fact that in this case the interaction strength
ε is more important, leading to a state less close to a strong-coupling string.
For later times one sees that in both cases smaller string lengths are dominat-
ing in the system, therefore indicating that the string is broken. By contrast,
in the case of m = 10.0 the dominant peak at l = 11 is preserved during the
entire evolution. Although the magnitude decreases, one can see from the flux
and charge square configurations that there is not a lot of change, which indi-
cates that the original string is still present. The slight changes have the same
origin as in the previous cases. As we are not starting with an eigenstate of
the Hamiltonian but rather do a local quench, the state is not perfectly steady.
Furthermore in this case the charges are fully dynamical, what leads to richer
dynamics.

6.6 Conclusion

The scenarios analyzed in this Chapter correspond to potentially realizable
quantum simulators of SU(2) lattice gauge models. Using MPS and simulat-
ing real-time dynamics, it is possible to predict how the string breaking phe-
nomenon can be observed in such a context. Moreover, we proposed different
observables, notably the charge square, the flux configuration and the statis-
tics of string lengths, to detect and characterize string breaking in statical and
dynamical scenarios which should also be accessible in an experimental setup.

We calculated the ground state in the sector with two static external charges.
This allows us to clearly pick up the static signature of string breaking, and
to identify parameter regions where we expect string breaking to occur. Fur-
thermore our calculation shows that the string state is metastable during the
imaginary-time evolution, until configurations with a broken string mix in and
reduce the energy, as expected. We also showed that the particle-antiparticle
pairs resulting from the breaking string cluster around the external charges
and subsequently screen the electric field. This can be detected with the spin
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Figure 6.8: Real-time evolution of a string with length l = 11 between fully
dynamical fermions, in a system of size N = 22 (upper three rows) and N =
30 (lower three rows), for dynamical fermion masses m = 1.0 (left column),
m = 3.0 (central column) and 10.0 (right column). Shown are the site resolved
expectation values for σ zr,n, σ zg,n (first and fourth row), J2

n (second and fifth row)
and Qan

2 (third and sixth row) as a function of time.
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Figure 6.9: Real-time snapshots from the evolution of a string with length l =
11 between fully dynamical fermions, for m = 1.0 and system size N = 22.
The upper row shows the charge square configuration, 〈Qan2〉 − 〈Qan2〉vac, the
central row the spin, 〈σ zr/g,n〉 − 〈σ

z
r/g,n〉vac (red and green lines, left y-axes), and

flux configuration, 〈J2
n〉 − 〈J2

n〉vac (blue lines, right y-axes), and the lower row
the histograms for the string lengths, Pl − Pl,vac. The vertical red lines in the
upper row indicate the initial position of the charges added to the vacuum.
Each column corresponds to a time instant, t = 0, 0.125, 0.5 and 1.5.

and flux configuration as well as in the charge square and the distribution of
string lengths in the system.

Neither quantum simulations nor our MPS computations are restricted to
the static case, and using real-time simulations, we also explored the dynamics
of string breaking in a setup with two static external charges. With the observ-
ables proposed before, the breaking and nonbreaking cases are clearly distin-
guishable. We can explicitly see that, in case the string is breaking, dynamical
fermions are created that cluster around the external charges and screen them,
therefore reducing the flux in the system. In principle, this could also be di-
rectly observed in a future quantum simulator by measuring the observables
we analyzed in our simulations.

Finally, we also simulated the time evolution of a string between fully dy-
namical fermions. We also identify situations in which the string breaks in
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Figure 6.10: Real-time snapshots from the evolution of a string with length
l = 11 between fully dynamical fermions, for m = 3.0 and system size N = 22.
The upper row shows the charge square configuration, 〈Qan2〉 − 〈Qan2〉vac, the
central row the spin, 〈σ zr/g,n〉 − 〈σ

z
r/g,n〉vac (red and green lines, left y-axes), and

flux configuration, 〈J2
n〉 − 〈J2

n〉vac (blue lines, right y-axes), and the lower row
the histograms for the string lengths, Pl − Pl,vac. The vertical red lines in the
upper row indicate the initial position of the charges added to the vacuum.
Each column corresponds to a time instant, t = 0, 0.25, 0.5 and 2.0.

this case. In particular, the decay of charges and the reduction of the flux in
the middle of the string region indicate string breaking. Due to the fact that the
initially created particle-antiparticle pair is now dynamical, we do not observe
the clustering of the dynamically created charges, but rather a distribution
along the system.

The study described here is focused on the particular case of SU(2) trun-
cated to the smallest set of irreducible representations, however, the truncation
method used from Ref. [57] works for arbitrary finite or compact Lie groups
and is not limited to the case of one spatial dimension. Therefore also other
gauge groups could be studied.
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Figure 6.11: Real-time snapshots from the evolution of a string with length
l = 11 between fully dynamical fermions, for m = 10.0 and system size N = 22.
The upper row shows the charge square configuration, 〈Qan2〉 − 〈Qan2〉vac, the
central row the spin, 〈σ zr/g,n〉 − 〈σ

z
r/g,n〉vac (red and green lines, left y-axes), and

flux configuration, 〈J2
n〉 − 〈J2

n〉vac (blue lines, right y-axes), and the lower row
the histograms for the string lengths, Pl − Pl,vac. The vertical red lines in the
upper row indicate the initial position of the charges added to the vacuum.
Each column corresponds to a time instant, t = 0, 0.25, 0.5 and 2.0.
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Chapter 7

Efficient basis formulation for 1+1

dimensional SU(2) lattice gauge

theories

In Chapter 2 we reviewed how the gauge degrees of freedom in the Schwinger
model can be integrated out, resulting in a formulation for the physical sub-
space of the theory. In general, for two space-time dimensions the gauge de-
grees of freedom are not truly independent, and, in principle, it should be
possible to proceed similarly also for the non-Abelian case. In this Chapter
we show a concrete formulation that realizes this for the lattice version of a
non-Abelian SU(2) gauge theory and develop a basis for the physical subspace
of the model. Our formulation, which is completely general and can be used
with any numerical or analytical method, is especially suited for TN. Moreover,
it enables to restrict calculations to a sector of the physical subspace, in which
the color-electric flux implied by the fermionic content is upper bounded by
an arbitrary finite value, thus effectively truncating gauge degrees of freedom
of the model. Combining this possibility with the MPS approach, we study the
low-lying spectrum and the scaling exponents of the vector mass gap for a fam-
ily of truncated SU(2) models. Moreover, recent developments in the context
of the holographic principle have suggested a deep connection between entan-
glement and emergent geometry [247, 248], and have rekindled the interest in
understanding the peculiarities of entanglement in gauge theories [249–253].
Being especially well-suited to compute entanglement entropies, TN allow us
to study how the truncation of the flux alters the entanglement of the vac-
uum in the approach to the continuum. The truncation effects we investigate
might also affect future quantum simulators and our MPS approach enables us
to explore them systematically. The results shown in this Chapter have been
published in Ref. [254] and the rest of the Chapter is a modification of this
reference.
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7.1 Introduction

The local symmetry in gauge theories is ensured by introducing additional de-
grees of freedom in form of a gauge field, as we have seen in Chapter 2. How-
ever, this also leads to redundant degrees of freedom in the theory. As the
physical observables are strictly gauge invariant, the only relevant subspace
is the one spanned by the gauge invariant states, which is in general much
smaller than the full Hilbert space of the model given by the tensor product of
the individual Hilbert spaces for the fermionic sites and the gauge links. Due
to the absence of transversal directions for the special case of 1+1 dimensions,
the gauge fields are not genuinely independent degrees of freedom, but it is
possible to remove them by integrating the Gauss law. This long known fact,
to the best of our knowledge, has only been explicitly exploited in practice for
the Abelian case of the Schwinger model [141, 218, 255].

Although this renders 1+1 dimensional gauge theories seemingly simple,
nevertheless, they often cannot be solved analytically, in particular in the non-
perturbative regime. Despite the encouraging prospects due to quantum sim-
ulation and classical simulations with TN, there are also some limitations. In
particular, as we have seen in Chapters 2 and 3, the link Hilbert spaces are in-
finite dimensional for continuous gauge symmetries and thus, unless they can
be integrated out, typically have to be truncated to a finite dimension to al-
low for a TN approach or a potential implementation in a quantum simulator.
Previous works therefore resorted to the truncation methods from Refs. [57,
245] to achieve a finite dimension while simultaneously preserving gauge in-
variance. A different type of finite dimensional gauge models explored in that
context are quantum link models [162–164], where the gauge degrees of free-
dom are replaced by discrete spins. However, these truncated models do not
necessarily correspond to the continuum theory in the limit of vanishing lattice
spacing, or might not have a continuum limit at all [256].

Here, we address these questions for a 1+1 dimensional SU(2) lattice gauge
theory. In a first step, we show how, starting from a color-neutral basis de-
veloped in Ref. [144], the gauge degrees of freedom can be integrated out on
a lattice with OBC. The resulting basis efficiently describes the physical sub-
space and can in principle be used with any analytical or numerical method.
The corresponding, abelianized, Hamiltonian is nonlocal, similar to the one
recently realized in trapped ions for the Schwinger model [102]. Hence it
might have potential applications for the design of future quantum simula-
tors. Moreover, our formulation allows for truncating the color-electric flux at
an arbitrary value. These truncated models can be efficiently addressed with
TN. In principle, since the maximum flux on a finite lattice with OBC is up-
per bounded, it is possible to treat the model exactly. In practice, to solve the
model with MPS, we cut the number of color-flux sectors and compute the
low-lying spectrum for this family of truncated SU(2) gauge models. Due to
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the vastly reduced number of basis states in our formulation, we are able to
explore much larger values for the maximum color-electric flux than achieved
in previous TN studies of the model [43, 52], and we can investigate trunca-
tion effects in a systematic manner. In particular, here we explore such effects
in the closing of the mass gaps as we approach criticality, and in the entangle-
ment entropy of the ground state.

The rest of the Chapter is organized as follows: In Sec. 7.2 we introduce
the model we are studying. After a brief review of the color-neutral basis de-
veloped in Ref. [144], we present our new formulation for systems with OBC
where the gauge field is integrated out in Sec. 7.3. Furthermore, we explain
how this formulation readily allows for a truncation of the link Hilbert spaces
in a gauge invariant manner to a finite dimension. In Sec. 7.4 we briefly review
the MPS methods we are applying and present our results for the low-lying
spectrum and the entanglement properties of the ground state while approach-
ing the continuum limit in Secs. 7.5 and 7.6 . Finally, we conclude in Sec. 7.7.

7.2 Model

The model we are studying is a 1+1 dimensional SU(2) lattice gauge theory
which we have introduced in Sec. 2.3. As we have seen there, a suitable basis

for addressing the Hamiltonian is given by |n−
1
2

1 ,n
1
2
1 〉 ⊗ |j1`1`

′
1〉 ⊗ |n

− 1
2

2 ,n
1
2
2 〉 ⊗ . . .

where n`k is the fermionic occupation number for color ` on site k.
For the following spectral calculations it is convenient to use a dimensionless

formulation of Hamiltonian (2.39), W = xV +W0, where

V =
N−1∑
k=1

1/2∑
l,l′=−1/2

(
ψ†l,k(Uk)ll′ψl′ ,k+1 + h.c.

)
, (7.1)

W0 = µ
N∑
k=1

1/2∑
l=−1/2

(−1)kψ†l,kψl,k +
N−1∑
k=1

J2
k , (7.2)

and we have again applied a phase transformation on the fermion fields as in
the previous Chapter [144]. The adimensional parameters of the problem in
units of the coupling, g, are x = 1/(ag)2 and µ = 2

√
xm/g.

The basis we considered in Sec. 2.3 contains all the information about the
color degrees of freedom and, in particular, states which are not color singlets.
However, the physical states consist of color-neutral superpositions of basis
states satisfying the Gauss law. As we show in the next Section, a suitable
choice of basis ensures the color-singlet character, and restricts calculations to
the physically relevant subspace of these color-neutral superpositions with a
significant reduction of the superfluous degrees of freedom.
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7.3 Integrating out the gauge field

7.3.1 Color-neutral basis

A first step towards a physical basis was made by Hamer in the context of
a strong-coupling expansion of the model [144]. Here we briefly review the
basis formulation developed there. As shown in Refs. [142, 144], the phys-
ically relevant states can be generated by applying the operator V from Eq.
(7.1) repeatedly to a certain color-neutral initial state having the desired quan-
tum numbers. This operator has no uncontracted color indices, thus, it can
locally only generate or annihilate excitations consisting of color-neutral su-
perpositions of quark-antiquark (antiquark-quark) pairs connected by a color-
flux string, as it is illustrated in Fig. 7.1(a)-(b). The resulting superposition
has a well defined value of J2

k on the links and fermionic occupation number

nk = n
− 1

2
k + n

1
2
k . In particular, applying V to such a color-singlet characterized

by nk, nk+1 and jk results in general again in a superposition of different color-
singlets with n′k, n

′
k+1 and j ′k. In Ref. [144] all possible transitions were worked

out and the matrix elements of the operator V for each of those vertices are
shown in Fig. 7.1(c).

Looking at Eq. (7.2), one can easily see that the states generated in that man-
ner are eigenstates of the mass term, as it only depends on the total occupation
number, and of the color-electric energy, as it only depends on jk. Thus, W0
acts identically on all those states. Consequently, instead of working in the
basis containing the full color information, we can restrict ourselves to a basis
formed by those color-singlet states, characterized by the fermionic occupation
number of each site and by the color-electric flux j carried by a link

|Ψ 〉 = |n〉 ⊗ |j〉 ⊗ |n〉 ⊗ |j〉 . . . .

Here n ∈ {0,1,2}, as we are not distinguishing between fermions of different
colors anymore. Gauss law in this color-singlet basis simply reduces to the fact
that the electric flux jk+1 can only differ from the one on the previous link by
one quantum, if the site is occupied by a single fermion:

jk+1 =

jk if nk+1 = 0,2
jk ± 1

2 if nk+1 = 1.
(7.3)

In addition to reducing the degrees of freedom significantly compared to the
full basis, the color-singlet basis also offers the possibility to trivially truncate
the color-electric flux at a certain value of jmax in a gauge invariant manner.
Taking into account only states with j ≤ jmax results in a truncated model with
Hilbert spaces of dimension dlink = 2jmax + 1 for the gauge links. Compared
to the full basis, where for jmax = 1/2, 1, 3/2, 2 one would have link Hilbert
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Figure 7.1: (a) Strong coupling configuration with an odd site filled with two
fermions, one of every color, and its neighboring empty even site. (b) Resulting
color-neutral superposition of four states after applying the operator V . Each
of the four states has a single fermion per site and a color-electric flux of j = 1/2
on the intermediate link, with a different combination of z-components. The
corresponding state in the color-neutral basis for those two cases are written
below. (c) Transitions induced by the operator V in the color-neutral basis. The
left block represents the possible gauge invariant starting configurations |Ψi〉,
the right block the final states |Ψf 〉 after application of the operator V . The
arrows show the gauge links, where the black arrows indicate a color-electric
flux of j and the red arrows a value of j ′ = j ± 1/2. The sites are represented by
ovals, where the small blue dots indicate the number of fermions sitting on the
site. The numbers to the right show the matrix element 〈Ψf |V |Ψi〉.

spaces of dimension 5, 14, 30, 55, one only has to deal with spaces of dimension
dlink = 2, 3, 4, 5.

7.3.2 Removing the gauge fields

The color-singlet basis reviewed in the previous paragraph still contains re-
dundant information which can be (partially) removed. While the discussion
above still applies to both, open and periodic boundary conditions, we restrict
ourselves from now on to OBC.

Realizing that due to Eq. (7.3) the flux jk+1 only depends on jk and nk+1,
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one can reconstruct the color-electric flux at every link from the value j0 at
the left boundary by recursive application of the Gauss law. However, for the
case of a site occupied by a single fermion the SU(2) non-Abelian Gauss law
allows a change of the color-electric flux by ±1/2. To deal with this ambiguity,
we use two states |1+〉, |1−〉 to describe the singly occupied site, which encode
if the electric flux is increasing (|1+〉) or decreasing (|1−〉) with respect to the
link to the left. As a result, the basis for a single fermionic site is again four
dimensional and consists of the set of states {|0〉, |1−〉, |1+〉, |2〉}. The expense of
increasing the basis for the fermionic sites by one allows us to integrate out the
gauge links from the Hamiltonian, as the jk can now be reconstructed solely
from the fermionic content via

̂k = j0 +
k∑
p=1

1
2

(
|1+〉〈1+|p − |1−〉〈1−|p

)
, (7.4)

where j0 is the color-flux value at the left boundary. Hence, a suitable basis for
a system with N sites is given by

|Ψ 〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉 (7.5)

with |αk〉 ∈ {|0〉, |1−〉, |1+〉, |2〉}. Similar to the (Abelian) Schwinger model, in
this basis the configuration of the sites uniquely determines the content of the
gauge links, thus effectively abelianizing the model.1 Additionally, one can im-
mediately see that this construction leads to long-range interactions in Hamer’s
color-electric energy term. Moreover, as some of the matrix elements for the
hopping term in Fig. 7.1(c) also depend on the color-electric flux, the hopping
term becomes nonlocal, too (the Hamiltonian in this basis is shown in detail in
the App. C.2).

It is instructive to study the dimension of the physical subspace compared
to the tensor product Hilbert space. Without further constraint, our basis still
contains unphysical states implying negative values of jk,2 e.g. |Ψ 〉 = |1−〉... im-
plies a value of j1 = −1/2. For vanishing background field, j0 = 0, the case on
which we focus on in our numerical calculations, physical basis states are char-
acterized by a simple condition: the number lk,− of sites with |1−〉 up to a site
k can never exceed the corresponding number lk,+ of sites with |1+〉, lk,+ ≥ lk,−
∀k = 1, . . . ,N . The dimension of the physically relevant subspace fulfilling this
condition is given by dN,phys = 4N (1 −

∑N
k=1Ck/4

k), where Ck = (2k)!/(k + 1)!k!
is the Catalan number (for details see App. C.1). In Fig. 7.2 we show a
comparison between the scaling of our basis and the color-neutral basis from
Ref. [144] which has dimension dN,Hamer = 3N (2jmax + 1)N−1. As the figure

1In principle one could also treat arbitrary gauge groups SU(Nc) with Nc ≥ 2 in a similar
fashion after obtaining the matrix elements for the vertices.

2Notice that for physical states the values of jk represent the total angular momentum corre-
sponding to the quantum rigid rotor on that link and, thus, are positive.
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Figure 7.2: Dimension of the physical subspace dN,phys (blue solid line), the
total number of basis states 4N in our formulation (red dashed line) and the
dimension of the basis from Ref. [144], 3N (2jmax + 1)N−1, for the simplest non-
trivial truncation jmax = 1/2 (green dash-dotted line) as a function of system
size. Inset: Fraction of the physical subspace with respect to the total number
of states in our basis.

reveals, for systems with OBC our basis offers a vast improvement over the
one from Ref. [144] already for the case of the simplest nontrivial truncation
jmax = 1/2. Even though the fraction of physical states in our basis, dN,phys/4N ,
quickly decreases with system size, the total number of states is still exponen-
tially smaller. Compared to formulations for the physical subspace for the U(1)
case with dynamical fermions [56, 141], we observe that the number of basis
states in our formulation is exactly the square.

Notice that our reduced basis formulation is completely general and contains
the entire information about the physical subspace. Hence, it lends itself to any
analytical or numerical method.

7.3.3 Relation between our basis and the tensor product

basis

The states in our basis formulation and the ones in the full basis are related by
a simply isometry. Here we explicitly show this transformation, which sequen-
tially reconstructs the color flux on each link from the fermion content, and
prepares a suitable combination of states in the full basis such that the state is
a color singlet.
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The corresponding iometric map is given by

Mloc =
jmax∑

j=0, 12 ,...

∑
α

j∑
`,`′=−j

|qα |∑
s=−|qα |

C
|qα | j j+qα
s `′ `′+s√

2(j + qα) + 1
|j``′;nαs; j + qα, `′ + s〉〈j`;α|. (7.6)

where Cj1 j2 J`1 `2 M
= 〈J,M |j1, `1; j2, `2〉 are again the usual Clebsch-Gordan coeffi-

cients for coupling two angular momenta j1, j2 with z-components `1, `2 to a
total angular momentum J with z-component M. The numbers nα and qα are
the respective eigenvalues of the operators

n̂ = |1−〉〈1−|+ |1+〉〈1+|+ 2 |2〉〈2|, (7.7)

q̂ =
1
2

(
|1+〉〈1+| − |1−〉〈1−|

)
. (7.8)

when applied to the state |α〉. The states |nαs〉 correspond to a relabeling of
the full basis |n− 1

2 ,n
1
2 〉, where, different to the previous Sections, we use the

total occupation number and the z-component of the related angular momen-
tum, nα = n−

1
2 + n

1
2 , s = (n−

1
2 − n 1

2 )/2, to make the dependence explicit. The
effect of the map is to introduce extra degrees of freedom, `′ for the incoming
link and j, ` on the outgoing link, by simultaneously respecting the proper
SU(2) composition rules, which is ensured by the Clebsch-Gordan coefficients
(see Fig. 7.3(a)). Notice that for empty or doubly occupied sites qα = 0 and
the Clebsch-Gordan coefficients are trivial. In the case of singly occupied sites
|qα | = 1/2 and the spin-1/2 of the single fermion couples to the angular mo-
mentum of the previous link to ensure a color-neutral superposition. The pref-
actors 1/

√
2(j + qα) + 1 ensure proper normalization of the resulting state and

have to be chosen such thatM†locMloc is the projector on the physical subspace
as we are going to show in the following. A straightforward calculation yields

M†locMloc =
∑
j,α,`

1
2(j + qα) + 1

∑
`′ ,s

C
|qα | j j+qα
s `′ `′+s

2
 |j`;α〉〈j`;α|. (7.9)

The sum inside the bracket over the squares of the Clebsch-Gordan coefficients
can be simplified as follows:

j∑
`′=−j

|qα |∑
s=−|qα |

(
C
|qα | j j+qα
s `′ `′+s

)2
=

j∑
`′=−j

|qα |∑
s=−|qα |

j+qα∑
t=−(j+qα)

(
C
|qα | j j+qα
s `′ t

)2

=
j+qα∑

t=−(j+qα)


j∑

`′=−j

1/2∑
s=−1/2

(
C
|qα | j j+qα
s `′ t

)2


=
j+qα∑

t=−(j+qα)

1 = 2(j + qα) + 1,
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where in the first line, we have used that the Clebsch-Gordan coefficients van-
ish, if the resulting z-component differs from the sum of the individual z-
components and hence we can sum over t. To arrive at the last line we have
used the orthogonality relations. Thus, we see that Eq. (7.9) is the identity on
the physical subspace andMloc is indeed an isometry.

Considering a system with N sites, we can recover the full state after fixing
the link on the left boundary, |j0`0〉, via a sequential application ofMloc,M =
M(1)

locM
(2)
loc . . .M

(N )
loc . As sketched in Fig. 7.3(b), the sequential application of the

map corresponds to a quantum circuit of depthN [257]. In all our calculations,

Figure 7.3: (a) Schematic representation ofMloc that locally maps the reduced
basis to the full one. Different line styles are used to indicate the different
spaces where j̄ = j + qα and ¯̀ = `′ + s. (b) Mapping a MPS in the reduced basis
to the full one by applyingM =M(1)

locM
(2)
loc . . .M

(N )
loc .

we work in the sector j0 = 0, hence the left electric field necessarily has to
vanish and the input left link is |00〉 (thus not explicitly shown in Fig. 7.3(b)).

7.4 Numerical approach

While the formulation derived in Sec. 7.2 can in principle be approached with
any numerical method, it is well suited for MPS. In order to demonstrate that,
we compute the ground state and the vector state of the theory at vanishing
background field, j0 = 0, in the sector of vanishing total charge, jN = 0. More-
over, the MPS approach also allows us to access the entanglement entropy, and
we can also study the scaling of the von Neumann entanglement entropy in
the ground state while approaching the continuum limit.
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For our numerical simulations we use the MPS ansatz with OBC presented
in Chapter 3. Using the methods from Sec. 3.2, we variationally compute MPS
approximations for the ground state and the vector state. In the continuum,
the vector candidate is the lowest lying zero-momentum mesonic excitation
of the ground state with charge conjugation quantum number −1 and parity
−1. On the finite lattices with OBC we are working with, however, charge
conjugation as well as the momentum are no longer good quantum numbers
due to the broken translational invariance. Nonetheless, the remnants of these
symmetries allow us to properly identify the vector state (see App. C.3 for
details).

In addition, to be able to address the problem with MPS, it is advantageous
to express the Hamiltonian as a MPO. This can be done exactly with the bond
dimension of the MPO representation growing linearly with the maximum
color-electric flux, jmax, present in the system (for details see App. C.2). In
the sector j0 = 0 = jN , on which we focus in our calculations, jmax is upper
bounded by N/2× 1/2 for a system with N sites. Hence, it is possible to work
efficiently with the exact MPO representation of the Hamiltonian, since the
leading cost only grows polynomially in the system size. Nevertheless, for the
ground state and the low-lying excitations, which we are interested in, the con-
tribution of states having a high color flux is very small, and it is possible to
truncate jmax to smaller values. With our basis formulation we can easily reach
maximum values for the color-electric flux far beyond those amenable in pre-
vious numerical studies with TN [43, 52] and systematically study the effect of
the truncation, thus controlling the error introduced by it. Additionally, this
also allows us to explore the effects of truncating the gauge degrees of freedom
to a finite dimension as might be necessary for a potential future quantum
simulator [57, 80, 81, 84, 86, 87, 96].

In our calculations, we target the physical states in the low-energy sector of
the Hamiltonian with specific properties. In particular, we are interested in
the ground state and the vector state in the sector of vanishing total charge. To
ensure the right sector in our calculations, we choose to add penalty terms to
the Hamiltonian.3 In order to remove the unphysical states we use the follow-
ing penalty which has a nonvanishing contribution at sites with negative value
of jk:

P1 = λ1

N∑
k=1

Θ

−j0 − k∑
l=1

q̂l

 ,
where Θ(x) is the Heavyside step function. The constant λ1 has to be chosen
large enough to shift states with a negative value for j high enough in the spec-
trum such that they do not mix into the low-energy sector we are interested

3Notice that some of these properties could also be implemented as symmetries directly on
the level of the tensors [37, 56].
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in. Moreover, since we are focusing on the vector meson states, we avoid any
baryon states by restricting the total fermion number to the number of sites in
the system which is achieved by the penalty term

P2 = λ2

 N∑
k=1

n̂k −N


2

.

Again, λ2 again has to be chosen large enough to shift the states high enough
in the spectrum to prevent them from mixing with the low-lying ones we are
interested in. In addition, to ensure that we are in the sector of vanishing total
charge j0 = 0 = jN , we add another energy penalty of the form

P3 = λ3

 N∑
k=1

q̂k


2

,

where λ3 is again a constant that has to be chosen large enough to penalize
unwanted states sufficiently. For our calculations presented in the following,
we checked the expectation values for all three penalties and found that they
are negligible for λi = 1000, i = 1,2,3.

7.5 Low-lying spectrum

We compute the ground state and the vector state of the model for a range of
masses, m/g ∈ [0.1,1.6], using the basis we developed in the previous Sections.
To probe for truncation effects, we explore a family of models with maximum
color-electric flux jmax = 1/2, 1, 3/2, 2. Moreover, we consider for each com-
bination of (m/g, jmax) several system sizes N ∈ [100,200] with lattice spacings
corresponding to x ∈ [50,150] to be able to extrapolate to the continuum. Com-
pared to a conventional lattice calculation, we have an additional source of er-
ror due to the limited bond dimension that can be reached in the numerical
simulations. To control this error, we repeat the calculation for each combina-
tion of parameters (m/g, jmax,x,N ) for several bond dimensions D ∈ [50,200].
To estimate the exact ground-state energy values, E0(N,x), and vector mass
gap values, ∆vec(N,x) = E1(N,x)−E0(N,x), we first extrapolate our data to the
limit 1/D → 0, as illustrated in Fig. 7.4(a)-(b) (details about the extrapolation
procedure are given in App. B.4). Subsequently, we can proceed in a stan-
dard manner and estimate the continuum values by first extrapolating to the
thermodynamic limit and then to the limit of vanishing lattice spacing.

Figure 7.4(c)-(d) shows examples for the extrapolation to the thermodynamic
limit for jmax = 2. Even for this case with the largest color-electric flux, for
which we expect the error due to the finite bond dimension to be most pro-
nounced, the error bars resulting from the extrapolation in D are small and
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we can obtain precise estimates for the ground-state energy density and vector
mass gap in the thermodynamic limit.

0 0.01 0.02

−0.5

0

0.5

1

1.5
(a)

E
−
E

D
m
a
x

1/D

0 0.01 0.02

−5

0

5

10

15
(b)

∆
v
ec
−
∆

v
ec
,D

m
a
x

1/D

0 0.005 0.01

−0.637

−0.635

−0.633 (c)

E
/
2
N
x

1/N

0 0.5 1

x 10
−4

0.9

0.92

0.94

0.96
(d)

∆
v
ec
/
2
√

x

1/N2

Figure 7.4: Upper row: Extrapolation in bond dimension for the ground-state
energy (a) and the vector mass gap (b) for m/g = 0.3, jmax = 2, N = 150, and
x = 150. The central value is determined with a linear fit through the largest
two bond dimensions represented by the blue dots. Lower row: Extrapolation
to the thermodynamic limit for the ground-state energy density (c) and the
vector mass gap (d) for jmax = 2, and x = 150.

In the final step, we extrapolate the data obtained in the previous step to the
continuum limit, ag = 1/

√
x → 0, by fitting a polynomial in ag. To estimate

our systematic error, we compare different fits up to quadratic order using
different ranges of ag (details about the error estimation procedure are given
in App. B.4). For the ground state, we observe that in general lattice effects
are well under control, independently of the truncation, and we can reliably
extrapolate to the continuum limit, as can be seen in Fig. 7.5. The values
obtained for the ground-state energy density, shown in Fig. 7.6, deviate at most
at the percentage level from the result for the continuum theory, even for the
simplest nontrivial truncation jmax = 1/2. For larger jmax our data are closer
to the analytic solution for the untruncated lattice Hamiltonian in the limit
ag = 1/

√
x→ 0, especially for smaller masses. In particular, the data obtained

for the largest two values of jmax show hardly any difference. The dip around
m/g = 0.35 for jmax = 3/2, 2 is due to the fact that for form/g < 0.4 our estimates
for the ground-state energy are lower than the exact results, whereas form/g ≥
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Figure 7.5: Continuum extrapolation for the ground-state energy density for
m/g = 0.3 and jmax = 1/2 (a), jmax = 1 (b), jmax = 3/2 (c) and jmax = 2 (d). The red
line shows the quadratic fit through all data points used to extract the central
value. The dashed green line shows a quadratic fit omitting the largest lattice
spacing to estimate the systematic error of the central value.

0.4 we obtain values slightly above the analytical prediction. For jmax = 1/2, 1
the values are consistently larger than the exact continuum solution, hence, in
these cases there is no dip. Notice that here we extrapolated the results for
each fixed value of jmax to the continuum limit. Nevertheless, the only case for
which we know that the theory has a continuum limit is the full SU(2) lattice
model in the absence of a truncation.

Looking at the continuum extrapolation for the vector mass gaps, we observe
a noticeably different behavior. While the ground-state energy densities do not
show any significantly different behavior for small jmax, the vector mass gaps
do, as Fig. 7.7 reveals. In particular, for jmax = 1/2 our data suggests that higher
than quadratic order corrections in ag are still relevant which results in large
χ2

d.o.f. in our fits. With the range of lattice spacings available, we do not seem to
control lattice effects well enough to give a reliable error estimate for that case.
For jmax = 1 our data is reasonably well described with a quadratic function
in ag (χ2

d.o.f. around 1), nevertheless the error of the continuum estimate is
still large. In contrast, for jmax = 3/2 and 2 quadratic corrections in ag are
irrelevant and our data is well described by a linear fit in the range of lattice
spacings we study (for details see App. B.4). The final results obtained after the
extrapolation for various masses and truncations are shown in Fig. 7.8. As the
figure reveals, there is a considerable difference between the values obtained
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Figure 7.6: Relative deviation of the ground-state energy density with respect
to the continuum solution of the full theory −2/π, ∆ω0, as a function of m/g.
The markers indicate different values for jmax, where blue circles represent
jmax = 1/2, red triangles jmax = 1, green squares jmax = 3/2 and magenta dia-
monds jmax = 2. Inset: Ground state energy density as a function of jmax for
m/g = 0.1 (blue circles),m/g = 0.8 (red triangles) andm/g = 1.6 (green squares).
The horizontal dashed line indicates the analytic solution for the ground-state
energy, −2/π, for the full lattice Hamiltonian without truncation in the limit
ag = 1/

√
x→ 0 [144]. The error bars are smaller than the markers.

for jmax = 1/2,1,3/2. Only for values of jmax ≥ 3/2 our data agrees well with
the numerical results obtained by a strong-coupling expansion in Ref. [144].
In particular, for the largest mass, m/g = 1.6 the data for jmax = 3/2,2 and from
Ref. [144] are already close to the nonrelativistic limit,m/g→∞, for which the
vector mass gap is given by ∆vec = 2m/g. On the contrary, the values obtained
for jmax = 1/2, 1 severely differ from the nonrelativistic prediction.

The fact we do not recover the continuum limit for the full theory for jmax =
1/2, 1 might be due to several reasons. On the one hand, the truncation to a
small value of jmax might lead to enhanced lattice effects. While the extrap-
olations to the bulk limit are in general unproblematic for all truncations we
study, for the continuum extrapolations we observe that higher than linear
order corrections are relevant for small jmax, whereas this is not the case for
jmax = 3/2, 2. This could indicate that one would need smaller lattice spacings
for truncations to a small color-electric flux, to control lattice effects properly.
On the other hand, this might be a hint that the continuum limit for small
jmax does not exist, similar to quantum link models [164, 256]. These differ-
ent types of truncated gauge models, in which the gauge links are replaced by
spins, are known to approach the continuum limit by dimensional reduction
of an extra dimension.

Contrary to the Abelian Schwinger model, in the SU(2) case the chiral sym-
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Figure 7.7: Continuum extrapolation for the vector mass gap for m/g = 0.3
and jmax = 1/2 (a), jmax = 1 (b), jmax = 3/2 (c) and jmax = 2 (d). The red line
shows the fit used to extract the central value. The dashed green line shows
the same fit omitting the largest lattice spacing to estimate the systematic error.
The values indicate the χ2

d.o.f. of the two fits, where the upper one corresponds
to the red solid line and the lower one to the green dashed line. Notice the
different scales of the y-axis between panels (a), (b) and (c), (d) showing that
systematic errors are much larger for jmax = 1/2 and 1.

metry is restored in the limit m/g → 0 and hence the vector mass gap goes to
zero and the theory becomes critical. From our data we can extract the critical
exponent for the vector mass gap, too. In order to obtain the critical exponent,
we fit our data to a power law γ(m/g)ν in the region of small masses m/g ≤ 0.4,
for which the model is still far away from the nonrelativistic limit. The final re-
sults obtained for the critical exponents are shown in Tab. 7.1. For jmax = 3/2, 2

jmax ν

1 0.781(93)stat(65)sys
3/2 0.700(29)stat(11)sys
2 0.700(29)stat(12)sys

Table 7.1: Critical exponent for various values of jmax, the first error is the
fitting error with respect to a 1σ confidence interval, the second one the sys-
tematic error (for more details see App. B.4).

our estimates for the critical exponents essentially agree, within error bars,
with 2/3, obtained for the large Nc limit of the model [258]. The central value
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Figure 7.8: Vector state mass gap as a function of m/g for jmax = 1 (red trian-
gles), jmax = 3/2 (green squares) and jmax = 2 (magenta diamonds) on double
logarithmic scale. The yellow stars represent the numerical values obtained
from the strong-coupling expansion [144]. The dotted lines represent the best
fit of the form γ(m/g)ν to the data obtained on the interval [0.1;(m/g)max] with
0.25 ≤ (m/g)max ≤ 0.4. For completeness, we also show the data for jmax = 1/2
(light gray circles), although in this case our lattice spacings do not allow for a
reliable estimate.

for jmax = 1 is not so close to 2/3, nevertheless, within the relatively large er-
ror bars it is still compatible. In the case of the simplest nontrivial truncation,
jmax = 1/2, a fit to our data yields 0.639 for the critical exponent. However, due
to the large lattice effects in the vector mass gaps, the value is not reliable and
we cannot confidently estimate the uncertainty, which we expect to be large,
too.

These observations also have important implications for a potential future
quantum simulator. Our data show that the ground-state energy densities ob-
tained from our family of truncated models already give a good estimate for
the one of the full model in the continuum, even with the simplest nontrivial
truncation. In contrast, the vector state is much more sensitive to truncation
effects. Although with our data it is not possible to fully rule out that for
small jmax one suffers from enhanced lattice effects, they might indicate that
the model does not have a proper continuum limit in those cases.
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7.6 Entanglement entropy

7.6.1 Entanglement entropy in lattice gauge theories

There is a renewed interest in understanding the structure of entanglement in
the gauge invariant scenario, motivated in part by a deep connection between
entanglement and space-time geometry that has been suggested in the context
of the gauge/gravity duality [247, 248]. However, the definition of entangle-
ment entropy for the vacuum of a LGT entails some subtleties since the gauge
constraints do not respect the locality of a chosen bipartition [249–253].

Recently it has been shown that the gauge symmetry acts as a superselection
rule and the RDM for a subsystem can be written as a direct sum of terms sup-
ported on sectors corresponding to different flux configuration of the boundary
links [250–252]. Specifically for the 1+1 dimensional case, we can decompose
the RDM for the leftmost L sites and links as ρ = ⊕j ρ̂j , where j labels the flux
on the (outgoing) L-th link (see Fig. 7.9). Hence, the von Neumann entropy

Figure 7.9: Illustration of a bipartition in the first L sites and links (light blue
shaded area) and the rest (light red shaded area). The fermionic sites are indi-
cated by blue circles, the black lines with the yellow ovals represent the gauge
links connecting two sites, where the arrows show the orientation. The red
(green) ovals correspond to the left (right) electric field on a link. The gray
dashed squares indicate the gauge constraints.

can be written as

S(ρ) = −tr
(
ρ log2(ρ)

)
= −

∑
j

pj log2(pj) +
∑
j

pjS(ρj).

Here ρj is the (normalized) RDM corresponding to sector j and pj = tr(ρ̂j). For
non-Abelian theories, the second term can be further simplified. For a given
sector, j, the Gauss law fixes the sum of the charge and the incoming flux in the
last vertex (see Fig. 7.9). As a consequence, ρj has a block diagonal structure
ρj = ρ̄j ⊗ 1j , where 1j is the identity on on the subspace corresponding to j
for the combined incoming flux plus vertex charge. Specifically for SU(2), the
identity for the sector j is 2j + 1 dimensional which finally yields

S(ρ) = −
∑
j

pj log2(pj) +
∑
j

pj log2(2j + 1) +
∑
j

pjS(ρ̄j), (7.10)

Looking at Eq. (7.10), we can identify three contributions to the entangle-
ment entropy. The last part, Sdist :=

∑
j pjS(ρ̄j), represents the physical entropy
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which can be distilled from the system by means of local operations and clas-
sical communication (LOCC). The first two terms, Sclass := −

∑
j pj log2pj and

Srep :=
∑
j pj log2(2j + 1), which we respectively call the classical and the rep-

resentation part, have their origin in the Gauss law, implying that the physical
subspace is not a direct product of the Hilbert spaces for the links and the sites.
They cannot be extracted with LOCC and appear due to the embedding of the
physical subspace in the larger space spanned by the basis states discussed in
Sec. 7.2 supporting a tensor product structure [250–252].

Our reduced gauge invariant formulation, together with TN techniques, al-
low us not only to determine the mass spectrum of the theory, but also to
compute the different contributions to the entanglement entropy of the cor-
responding ground state and to analyze the behavior of this quantity as we
approach the continuum limit, as well as to tell to what extent these features
are sensitive to a truncation in the gauge degrees of freedom. Looking at a state
in the full basis, we can compute the RDM for the L leftmost sites in the sector
j by simply applying a local projector Π(L)

j on link L projecting it onto flux j. In
our reduced formulation the gauge degrees of freedom are integrated out, but
the value of j can be read out from the fermionic content, and the RDM ρ̃ for
the corresponding state in our basis is still block diagonal. Thus we can write

S(ρ̃) = −
∑
j

p̃j log2(p̃j) +
∑
j

p̃jS(ρ̃j),

where p̃j = tr(ρ̃j). Similarly to the full basis, we can obtain ρ̃j by applying
the corresponding projector Π̃j . In our formulation the model is effectively
abelianized, hence, compared to the full basis, the last term cannot be further
simplified and does not give rise to a representation contribution. Since the
quantum circuit which takes a state from our basis to the full one does not
change j, the weights for the different sectors of the reduced density matrices
are equal in both bases, pj = p̃j . Moreover, one can prove that S(ρ̄j) = S(ρ̃j),
the distillable entropy is also equal in both bases (see App. C.4 for the formal
argument). Thus, we can directly compute the different contributions Sdist,
Sclass and Srep and therefore the total entropy in the full basis from our formu-
lation. Notice, however, that the calculation in the reduced basis is much more
efficient, because of the smaller physical dimensions we need to manipulate.

In 1+1 dimensions, a massive relativistic quantum field theory corresponds
to a spin model off criticality in the scaling limit, for which the correlation
length in lattice units, ξ̂, is large. For such a system the entanglement entropy
for the RDM describing half of the system is given by S ∝ (c/6)log2(ξ̂) [259],
where the parameter c is the central charge of the underlying conformal field
theory describing the system at the critical point. Taking the continuum limit
of the lattice formulation, ag = 1/

√
x→ 0, corresponds to approaching the limit

of diverging correlation length in lattice units [112]. Consequently, for the full
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theory without truncation, we expect the entropy for the RDM for half of the
system to be logarithmically UV divergent as

S = − c
6

log2 (ag) + c2 × ag + c3 +O
(
(ag)2

)
, (7.11)

where c2, c3 are constants and we take into account finite lattice corrections as
in Ref. [41]. If the color flux is truncated at a finite value jmax, both Sclass and
Srep are upper bounded by a finite quantity for any value of the lattice spac-
ing. Therefore, the logarithmic divergence can only originate from the physical
entropy. Considering our results from the previous Sections, we observe con-
vergence for small values of jmax at all lattice spacings we use, consistent with
similar studies in the Schwinger model [53], thus indicating that contributions
with large j are negligible. Consequently, we also expect the logarithmic diver-
gence for the full model to be caused only by Sdist, although when taking the
continuum limit and going to increasingly small lattice spacings, we may need
larger jmax to observe the saturation of Sclass and Srep.

7.6.2 Numerical results

With our numerical data, we can check if the entropy in the ground state for
our family of truncated models diverges, too. To this end, we look at the dif-
ferent contributions to the entanglement entropy for a cut along the center of
the system in the same range of values for (jmax,m/g,x,N ,D) as in the previous
Sections and study the scaling of S for ag = 1/

√
x→ 0. In general, we observe

that none of the different contributions to the entropy shows strong finite size
effects for bipartitions that are far away from the boundaries (see Fig. 7.10(a)
for an example). Nevertheless, we may expect an oscillating contribution to
the entropy that becomes smaller as the system size increases [260, 261]. To
minimize these effects, we average over the values obtained for 4 bipartitions
around the center to estimate the different entropy contributions for the half-
chain. As Figs. 7.10(b)-(c) indicate, these averaged values are essentially con-
verged in bond dimension and their dependence on the system size is negligi-
ble. Hence, we simply take the values obtained for D = 200 as central value
for every combination of (jmax,m/g,x,N ) and estimate our error as the differ-
ence with respect to the value obtained for D = 150. Additionally, we take into
account a systematic error due to the finite precision in our simulations (see
App. B.4 for details). To compensate for residual finite size effects, we take the
weighted average for every (jmax,m/g,x) for the largest two system sizes avail-
able. In a final step, we extrapolate the total entropies, obtained from the sum
of the different contributions, to the limit ag = 1/

√
x→ 0 by fitting our data to

Eq. (7.11). Figure 7.10(d) shows an example for the continuum extrapolation.
We clearly observe a curvature in the data, thus indicating that the logarithmic
term contributes and the entropy is indeed UV divergent. The final results for
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Figure 7.10: (a) The different contributions to the entanglement entropy, Sdist
(blue circles), Sclass (red triangles) and Srep (green squares) for the RDM of the
leftmost L sites for N = 200, D = 200, m/g = 0.8 and jmax = 2. (b) Entropy
contributions averaged over 4 bipartitions close to the center as a function of
bond dimension. (c) Averaged entropy contributions for D = 200, m/g = 0.8
and jmax = 2 as a function of system size. (d) Continuum extrapolation for the
total entropy. In panels (b)-(d) the error bars of the data points are smaller
than the markers.

c for different truncations as a function of the bare fermion mass are shown
in Fig. 7.11. Notice that for the full theory, i.e., without a jmax truncation, we
expect a central charge c = 2, corresponding to the two Dirac fermions that
constitute the independent degrees of freedom of the theory. We see that our
numerical results for jmax = 3/2, 2 follow Eq. (7.11) well (χ2

d.o.f. � 1 in all
our fits), and the values for c are close to the one for the full theory (see Fig.
7.11). Again, there is hardly any difference between the data for jmax = 3/2 and
jmax = 2. For the smallest two truncations jmax = 1/2, 1, instead, the picture
is significantly different. In these cases our data is not very well compatible
with a logarithmic divergence for m/g ≥ 0.2 (resulting in χ2

d.o.f.� 1 in our fits).
In the region of small m/g, for which our data follows Eq. (7.11) reasonably
well, the central charges we obtain differ noticeably from 2. Hence, although
the ground-state energy densities are rather insensitive to the truncation, the
entanglement entropies of the same states show another sign that we do not
recover the proper continuum limit for a small jmax truncation.
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Figure 7.11: Central charges extracted from the scaling of the entanglement
entropy as a function of m/g for jmax = 1/2 (blue circles), jmax = 1 (red trian-
gles), jmax = 3/2 (green squares), and jmax = 2 (magenta diamonds).

7.7 Conclusion

In this Chapter, we introduced an efficient physical basis for a 1+1 dimen-
sional SU(2) lattice gauge theory on a finite lattice with OBC. Building on a
color-neutral basis used for the strong-coupling expansion of the model [142,
144], we showed how to remove the gauge degrees of freedom. Moreover, our
formulation allows us to truncate the maximum color-electric flux at a finite
value jmax in a gauge invariant manner, yielding a family of SU(2) gauge mod-
els with finite dimensional Hilbert spaces, that coincide with a SU(2) lattice
gauge theory in the limit jmax →∞. While general methods exist to truncate
arbitrary gauge models with discrete finite or continuous compact Lie groups
to a finite dimension [57], the truncation achieved for this particular case is a
lot more efficient.

The basis we developed is completely general and can in principle be used
with any numerical technique. Here we combined the use of MPS with an
efficient truncation for the color-electric flux to explore different limits. Due
to the reduced number of degrees of freedom, we are able to reach values for
jmax far beyond those ones reached in previous numerical work with TN [43,
52]. To systematically study truncation effects, we computed the ground-state
energy density, the entanglement entropy in the ground state, the vector mass
gap and its critical exponent for a family of truncated SU(2) models with a
maximum color-electric flux of jmax = 1/2,1,3/2,2.

In general, our findings for the ground state in the SU(2) case are consistent
with those recently reported for the Schwinger model with truncated gauge
links [53]. There it was observed that truncating the maximum electric field
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to a modest value yields a ground state close to the one of the full model in a
wide range of bare fermion masses and lattice spacings. In our calculations we
also see that the continuum estimates for the ground-state energy density are
rather insensitive to the truncation. Even for the simplest nontrivial trunca-
tion, the deviation between the values obtained from our family of truncated
model with respect to the continuum result of the full theory is only at the per-
centage level. Moreover, the results converge quickly with increasing jmax such
that between results for jmax = 3/2 and 2 we observe hardly any difference. This
is also encouraging for future quantum simulators for which it might be nec-
essary to truncate the gauge degrees of freedom to allow for an experimental
realization.

However, truncating the model has also observable effects. The vector mass
gap is a lot more sensitive to a truncation of the maximum color-electric flux.
For the simplest nontrivial truncation, jmax = 1/2, we cannot control lattice ef-
fects in the extrapolations well and reliably estimate the errors. The final value
obtained for the mass gap in this case differs significantly from previous nu-
merical results. For jmax = 1 lattice effects are becoming smaller, thus allowing
for a reliable error estimate. Nevertheless, they are still pronounced and again
the continuum estimate for the vector mass gap is not compliant with previous
numerical results within error bars. On the contrary, for jmax = 3/2, 2 the con-
tinuum extrapolations are unproblematic and we obtain precise values for the
vector mass gap which agree with the ones from Ref. [144]. Although our data
for jmax = 1/2, 1 do not allow us to rule out with certainty that for finer lattices
the results would approach the continuum result of the full model, the pro-
nounced lattice effects in those cases might indicate that the continuum limit
for these truncated models does not exist, as it is the case for quantum link
models [256]. Our findings for the critical exponents for the vector mass gap
are essentially in agreement with a calculation in the large Nc limit [258].

Looking at the scaling of the bipartite entanglement entropy in the ground
state towards the continuum limit, we observe similar effects as for the vector
mass gap. The central charges for the two simplest nontrivial truncations differ
noticeably from the expected value of 2 for two Dirac fermions and, in partic-
ular, for large bare fermion masses our data do not follow the expected loga-
rithmic UV divergence well. On the contrary, for jmax = 3/2, 2 our numerical
values show a clear indication of a logarithmic divergence and we find values
close to 2 throughout our entire regime of bare fermion masses we study. Thus,
although the ground-state energy densities extracted for jmax = 1/2, 1 are close
to the values for the continuum model, this is giving a further indication that
for these truncations we do not recover the continuum theory in the limit of
vanishing lattice spacing.

Finally, regarding the applicability of MPS and more general TN for LGT cal-
culations, it is also possible to target other masses in the theory, such as scalar
mass gap or baryon masses, which can be computed in a similar fashion with
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the basis we have developed. Moreover, our formulation is not restricted to
static problems and can be used to compute time evolution, hence also giving
access to dynamical properties.
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Chapter 8

Summary and outlook

In this thesis, we have numerically investigated several 1+1 dimensional lat-
tice gauge models using a particular kind of one-dimensional TN, the MPS.
Our studies are focused around two specific models, the (Abelian) Schwinger
model, or quantum electrodynamics in 1+1 dimensions, and a (non-Abelian)
SU(2) LGT. We have used these studies as a testbench for different aspects of
quantum and classical simulations of LGT.

On the one hand we we have shown that MPS are an adequate tool to ex-
plore the feasibility of quantum simulations proposals and to investigate the
limitations arising from the necessary approximations to allow for an exper-
imental implementation. To this end, we have examined two proposals for
quantum simulating the Schwinger model for the single-flavor case, where the
gauge degrees of freedom are truncated to a finite dimension. Using variational
methods based on TN, we have shown that the ground-state energy density is
relatively insensitive to the truncation of the gauge degrees of freedom and the
results converge rapidly with increasing dimension for the link Hilbert spaces.
Moreover, taking advantage of the fact that TN enable the simulation of real-
time dynamics, we have also explored a possible adiabatic preparation protocol
for the interacting vacuum of theory starting from the strong coupling ground
state. In the parameter regime under consideration, our simulations show that
the initial part of the evolution is crucial for the success of the preparation, as
the energy gap is small in this region. Furthermore, our results give evidence
that this protocol is to some extent robust to gauge-invariance-breaking noise.
Although the overlap with the exact wave function for the noise-free case de-
cays fast with increasing noise level, local quantities, such as the ground-state
energy of the model, can still be estimated with a small error in the presence
of noninvariant terms.

The MPS approach is not limited to the Abelian case, and we have also stud-
ied a suitable candidate for the implementation of a quantum simulator for
a SU(2) lattice gauge theory. Simulating the evolution in imaginary and real
time, we have investigated static as well as the dynamical properties of string
breaking in this system. Our simulations in imaginary time allow us to deter-
mine the static potential between two heavy external charges, similar to the
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conventional Monte Carlo approach, and to identify the parameter regions for
which string breaking occurs. Moreover, exploiting again that MPS give ac-
cess to all kinds of local observables, we can clearly locate the signatures of the
string breaking process in the site resolved flux and charge square configura-
tion as well in as in the statistics of string lengths, which are in principle also
accessible in an experimental realization. Using real-time simulations, we can
also access the dynamical aspects of string breaking. In a first setup, we have
studied the dynamics of a string between two heavy external charges. With
the observables proposed before, we can clearly distinguish between the non-
breaking and the breaking case and observe the creation of dynamical fermions
which over time start clustering around the external charges in the latter. In a
second setup, we have investigated the dynamics of a string between two fully
dynamical charges placed inside the system. Also for this case we can identify
the breaking case and the associated creation of dynamical particles which are
spreading through the system due to the absence of external charges. In par-
ticular, the real-time scenarios we have analyzed should be directly realizable
in a quantum simulation experiment.

On the other hand, we have demonstrated precise lattice calculations using
classical simulations with MPS, also in regimes which are intractable with the
conventional MC approach. First, we have analyzed the phase structure for
the two-flavor Schwinger model in the presence of a (isospin) chemical poten-
tial at a fixed physical volume, a regime where the conventional MC approach
suffers from the sign problem. For sufficiently large volumes, our results for
the massless case after extrapolating to the continuum limit are in agreement
with the analytical predictions from Refs. [229, 230]. The MPS formalism
also readily extends to the massive case, for which no analytical predictions
are available, and we observe that the location of the phase transitions be-
comes volume dependent. Using the MPS approach, we are able to map out
the phase diagram of the model in the mass – chemical potential plane, thus
explicitly giving an example of TN overcoming the sign problem in a LGT cal-
culation. Furthermore, using the fact variational methods based on TN yield
the wave function at the end of the computation, we have also computed the
spatially resolved chiral condensate within the different phases. Our study for
the condensate in the massless case reveals spatial oscillations, similar to those
predicted for the single-flavor case [233–235] and compliant with analytical
predictions for the spatial dependence of fermion bilinear in the multiflavor
case [232]. The amplitude of the observed oscillations is essentially given by
the homogeneous condensate for vanishing isospin number, independently of
the volume, whereas the oscillation frequency inside each phase shows a linear
decrease with volume.

Furthermore, we have developed a formulation for the physical subspace
of a SU(2) LGT, similar to the one which we employed in our simulations for
the two-flavor Schwinger model. Our formulation is completely general and,
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thus, suitable for any numerical or analytical method. In addition, with our
formulation it is straightforward to truncate the color flux in a gauge invariant
manner at arbitrary values. Combining MPS methods with the possibility to
efficiently truncate the color-electric flux, we have studied the low-lying spec-
trum, the scaling exponents for the vector mass and the scaling of the bipartite
entanglement in the ground state towards the continuum limit for a family of
truncated models. Due to the great reduction of degrees of freedom in our
formulation, we can reach much larger values for the maximum color-electric
flux then previous studies with TN, thus allowing us to explore truncation ef-
fects in a systematic manner. Comparable to the Schwinger case, we observe
that the ground-state energy density is relatively insensitive to the truncation
and close to the value for the full theory in the continuum, even for the sim-
plest nontrivial truncation. In contrast, the vector mass gaps and the scaling of
the bipartite entanglement in the ground state are much more sensitive to the
truncation, but the results converge again quickly with increasing value for the
maximum color flux. In addition, the formulation we have developed is simi-
lar to the one already realized experimentally for the single-flavor Schwinger
model in a small system of trapped ions [102]. Hence, it might also have po-
tential applications for the design of future quantum simulators and possibly
allow for simpler realizations due to reduced number of basis states compared
to other truncation methods.

In our numerical studies we have focused on the case of zero temperature.
However, the TN approach to LGT also allows for simulating thermal states
as has been demonstrated in Refs. [40, 45, 46]. Moreover, our results are
promising for a TN approach to higher-dimensional gauge models. For the
same reasons MPS with small bond dimension provide a good ansatz for the
one-dimensional case, we expect that the low-lying spectrum for the two-di-
mensional case can be efficiently described by PEPS [172]. Extending the suc-
cess of MPS simulations to higher dimensions is not an immediate task, as the
computational cost for PEPS simulations is much higher, thus making them
much harder to handle numerically. However, in recent years there has been
remarkable progress in both, the theoretical and the computational techniques
for PEPS: on the one hand gauge invariant formulations suitable for LGT sim-
ulations have been developed [58, 59, 62], on the other hand there has been
a steady improvement in the numerical algorithms [214, 262–266] for PEPS.
Hence, TN simulations of higher-dimensional LGTs models are coming into
reach [221].

The findings from our studies have also import implications for potential
future quantum simulators for gauge theories. Our results give evidence that
even if the gauge degrees of freedom have to be truncated to a small, finite
dimension to allow for an experimental realization, one could obtain good es-
timates for ground-state energy with such a simulator. Although other quan-
tities are more sensitive to the truncation, we observe in general a fast conver-
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gence with increasing values for the maximum (color) electric flux allowed on
the links. Moreover, our numerical results can also serve as benchmarking data
that could help to test and validate future quantum simulation experiments.
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Appendix A

Spin formulation

In general, MPS and TN can describe fermionic degrees of freedom with essen-
tially no additional cost in the numerical algorithms [213, 216, 217]. For our
simulations it is nevertheless convenient to map the models to a spin chain via
a Jordan-Wigner transformation, as for the one-dimensional case this mapping
preserves the locality properties of the original Hamiltonian. Here we show
how to obtain the spin formulation for the lattice Hamiltonians we explored in
the main text.

A.1 Spin formulation for the Schwinger model

The spin formulation can be obtained via the Jordan-Wigner transformation
[121]

ψk =
∏
l<k

(iσ zl )σ−k , ψ†k =
∏
l<k

(−iσ zl )σ+
k ,

where in case of multiple fermion flavors we choose to order the fermions in-
side each site according to their flavor such that ψk,f = ψkF+f . In the formula
above σ zj and σ±j are the usual Pauli matrices acting on spin j. Applying this
transformation the Hamiltonian from Eq. (4.1) for the single-flavor case we
obtain

W = −x
N−1∑
n=1

(σ+
nUnσ

−
n+1 + h.c.) +

µ

2

N∑
n=1

(−1)n (1+ σ zn) +
N−1∑
n=1

L2
n.

For the multiflavor case with chemical potential, we integrated out the gauge
field which for vanishing background field and external charges corresponds
to replacing Ln =

∑n
k=0

(∑F−1
f =0ψ

†
k,f ψk,f −

F
2 (1− (−1)k)

)
. The resulting spin for-
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mulation for Eq. (5.1) after the transformation then reads

W =− x
NF−1∑
p=0

(
σ+
p (iσ zp+1) . . . (iσ zp+F−1)σ−p+F + h.c.

)
+
N−1∑
n=0

F−1∑
f =0

(
µf (−1)n + νf

)1 + σ znF+f

2

+
N−2∑
n=0

F2
n∑
k=0

(−1)k +
1
2

n∑
k=0

F−1∑
f =0

σ zkF+f


2

.

(A.1)

Hence, in this case a system with N sites and F flavors of fermions results in
a spin chain of length NF after the transformation. Notice that the nonlocal
term has already been present in the original Hamiltonian and did not arise
due to the Jordan-Wigner transformation.

In both cases, we are targeting the sector with vanishing total charge. In
principle this could be ensured by implementing this constraint directly at
the level of the tensors in the MPS simulations. Here we choose a simpler
method and enforce it in our variational calculations by adding a penalty term

P = λ
(∑N−1

n=0 Qn
)2

to the Hamiltonian. The staggered charge, Qn, in spin for-
mulation is given by

Qn =
F−1∑
f =0

1
2

(
σ znF+f + (−1)n

)
.

The spin Hamiltonian including the penalty term for vanishing total charge
can be implemented efficiently as MPO for both, the single and the multiflavor
case, despite the long-range interactions for the latter.

For our calculations presented in Chapter 5, we chose λ = 1000 and checked
the expectation value of P , where we found that it is negligible for all our
simulations.

A.2 Spin formulation for the SU(2) lattice gauge

theory

For the SU(2) case we use the particular transformation from Ref. [267] and
make the different colors explicit:

ψr,n = i

∏
l<n

(
iσ zr ⊗ iσ zg

)
l

 (σ−r ⊗1)n , ψg,n = −

∏
l<n

(
iσ zr ⊗ iσ zg

)
l

(σ zr ⊗ σ−g )n .
(A.2)

130



A.2 Spin formulation for the SU(2) lattice gauge theory

The σ -matrices are the usual Pauli matrices, where the subscript indicates on
which color on site n they are acting. This labeling is convenient for practical
purposes and completely equivalent to ordering the fermions as ψr,1, ψg,1, ψr,2,
ψg,2 . . . and doing a usual Jordan-Wigner transformation on a single fermionic
field ψ̃n which is related to original ones as ψ̃1 = ψr,1, ψ̃2 = ψg,1, ψ̃3 = ψr,2, . . . .

Using the transformation from Eq. (A.2), the Hamiltonian can be expressed
in spin language as follows:

H =ε
∑
n

[(
σ+
r ⊗ σ zg

)
n

(Un)− 1
2 ,−

1
2

(
σ−r ⊗1g

)
n+1

+ h.c.

+
(
iσ+
r ⊗ σ zg

)
n

(Un)− 1
2 ,

1
2

(
σ zr ⊗ σ−g

)
n+1

+ h.c.

−
(
1r ⊗ iσ+

g

)
n

(Un) 1
2 ,−

1
2

(
σ−r ⊗1g

)
n+1

+ h.c.

+
(
1r ⊗ σ+

g

)
n

(Un) 1
2 ,

1
2

(
σ zr ⊗ σ−g

)
n+1

+ h.c.
]

+
m
2

∑
n

(−1)n
[((
σ zr ⊗1g

)
n

+ 1
)

+
((
1r ⊗ σ zg

)
n

+ 1
)]

+
g2

2

∑
n

J2
n.

The charge operators Qan = 1
2ψ
†
nσ

aψn can then be expressed in spin language as

Qxn =
1
2

[(
−iσ+

r ⊗ σ−g
)
n

+
(
iσ−r ⊗ σ+

g

)
n

]
,

Q
y
n = −1

2

[(
σ+
r ⊗ σ−g

)
n

+
(
σ−r ⊗ σ+

g

)
n

]
,

Qzn =
1
4

[(
σ zr ⊗1g

)
n
−
(
1r ⊗ σ zg

)
n

]
.

A simple calculation yields for the charge square components

Qan
2 =

1
8

[
1−

(
σ zr ⊗ σ zg

)
n

]
a = x,y,z.
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Appendix B

Analysis of the numerical errors

In this Appendix we provide details about the extrapolation procedures and
the estimation of the numerical errors we used to obtain the results presented
in Chapters 4 - 7.

B.1 Quantum simulation of the Schwinger model

For the ground-state calculations presented in Chapter 4, we run the varia-
tional ground-state search, which we reviewed in Sec. 3.2, for different system
sizes, N , lattice spacings, x, and several (odd) physical dimensions of the link
variables dlink = 3,5,7,9. For each combination of (N,dlink,x) we increase the
bond dimension until the ground-state energy converges up to a predefined
relative accuracy. For the truncated cQED case we find D = 100 together with
a relative accuracy 10−6 to be sufficient for all the studied parameters, while for
the Zd model we go up to D = 200 and a relative accuracy of 10−12. Our final
energy value is extrapolated linearly in 1/D using the two largest computed
bond dimensions and the error is estimated as the difference to the largest D
result.

To obtain the ground-state energy density in the thermodynamic limit for a
fixed lattice spacing (see Fig. 4.2), we perform a finite-size extrapolation for
each pair (x,dlink) using the same functional form as in Refs. [35, 141]

E0

2Nx
≈ω+

c1

N
+O

( 1
N 2

)
.

The continuum estimates for the ground state energy density are again ob-
tained following Refs. [35, 141], and we extrapolate our data from the previ-
ous step for each dlink by fitting it to a quadratic function in 1/

√
x = ga. The

results from this extrapolation are expected to be only of limited precision,
since the lattice spacings used in Chapter 4 correspond to x ∈ [50,100] and are
still far away from the continuum, which constitutes a source of error much
more important than that of the particular fit.

In our time-evolution simulations we have an additional source of error due
to the second order time dependent Suzuki-Trotter approximation [207] of the
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time-evolution operator. For the results presented in Sec. 4.4 and 4.5 we have
tried different time steps and a value of ∆t = 0.001 turns out to be sufficiently
small, so that the errors are much below the observed effects. The large error
bars in Fig. 4.5 for small T are due to the limited bond dimension. In these
cases the evolution is not close enough to adiabaticity and one ends up in a
superposition state which differs from the ground state and cannot be well
approximated by a MPS with our values ofD = 30,50. As one can see, for larger
total evolution times, for which one stays close to ground state throughout the
entire evolution, this effect vanishes and the simulations converge with a small
D.

B.2 The multiflavor Schwinger model at nonzero

chemical potential

Our discussion of the multiflavor Schwinger model in Chapter 5 shows that
the precision that can be obtained for the phase transition locations crucially
depends on the precision of the ground-state energies (see Eq. (5.6)). To get
precise estimates for the exact energy, we extrapolate our numerical data to the
limitD→∞. To do so, we repeat the calculation for each data point for a given
combination of volume Lg, lattice spacing x and chemical potential difference
µI /2π for several bond dimensions until the energy approximately scales lin-
early in 1/D. For the data presented in the Chapter 5, we find that for x ∈ [9,36]
a maximum bond dimension of D = 160 is enough to enter the linear scaling
region, whereas for larger values of x we have to increase the bond dimension
up to 220. Once we enter this regime, we take the last three data points to
extrapolate linearly (see Fig. B.1 for an example). As an estimate for the exact
energy we take the mean value of our data point computed with the largest
bond dimension, EDmax

, and ED=∞ obtained by our extrapolation. The error is
estimated as ∆E = 1

2(EDmax
−ED=∞). Subsequently, we plug these estimates for

the exact energies in Eqs. (5.5) and (5.6) to obtain the location of the phase
transition and the corresponding systematic error for a fixed combination of
(Lg, x).

In a final step we can now extrapolate the extracted locations for the phase
transitions to the continuum. We proceed analogously to the single-flavor case
and fit a second order polynomial in 1/

√
x and take the intersection point with

the y-axis as estimate for the continuum value (see Fig. B.2 for an example).
As an error estimate for the continuum value, we take the fitting error where
we use a 1σ confidence interval. The final results for the location of the phase
transitions obtained after the full extrapolation procedure are shown in Chap-
ter 5 in Tabs. 5.1 - 5.4.
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Figure B.1: Extrapolation in bond dimension for m/g = 0, µI /2π = 0.8, x = 121
and Lg = 8. The blue data points are the ones used for the extrapolation to the
limit D→∞ and the red line shows the linear fit through the blue data points.
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Figure B.2: Extrapolation of the phase transition points to the continuum for
Lg = 8 in the massless case for the first (left) and the third (right) phase tran-
sition. The red line represents a second order polynomial fit in 1/

√
x and the

continuum limit is estimated by taking the value of the fit function at 1/
√
x = 0.

B.3 Non-Abelian string breaking phenomena with

matrix product states

In this Appendix we analyze the numerical errors of the results presented in
Chapter 6. In the main text we have already presented data for different system
sizes, thus showing that N = 22 is enough to avoid noticeable finite-size effects
for the considered range of parameters. Here we focus on the influence of the
time-step size and the bond dimension on our results.

135



Appendix B Analysis of the numerical errors

B.3.1 Ground state with static external charges

In Fig. B.3 we show how the spin and the flux configuration changes for a
system of size N = 22, if a larger bond dimension or a smaller time step is
used. As the figure shows, there is no significant improvement with larger
bond dimension. Reducing the time step by a factor of two to ∆t = 0.5× 10−3

leads to a slightly different spin and flux configuration on the order of 10−2

for m = 3.0. However, these changes are predominantly at an early stage of
the evolution and the difference in the final configuration is much smaller. For
m = 10.0 the picture is qualitatively similar, at a very early stage there are small
differences which are roughly one order of magnitude less than in the m = 3.0
case. All in all, the variations for reduced time step and larger bond dimension
are rather small compared to the data for ∆t = 1.0× 10−3, D = 100 presented in
Fig. 6.3, hence justifying our choice of time step and bond dimension.

B.3.2 Real-time evolution with static external charges

Also for the real-time evolution case with static external charges, we analyze
our error analogous to the imaginary-time case. The difference in results for a
smaller time step ∆t = 0.5× 10−4 and larger bond dimension D = 130 is pre-
sented in Fig. B.4. A reduction of the time step shows an effect rather similar
to the imaginary-time scenario and leads to variations on the order of 10−3 for
m = 3.0 and 10−4 for m = 10.0. For m = 3.0, the differences compared to results
with enlarged bond dimension are more pronounced than in the imaginary-
time case, whereas for m = 10.0 there is essentially no change up to machine
accuracy. Overall, we see the same picture as in the imaginary-time setup: our
choice of time step and bond dimension controls the error well enough to avoid
considerable influences on the effects observed in Fig. 6.5.

B.3.3 Real-time evolution with dynamical charges

For the real-time evolution with dynamical charges the same error estimation
as in the previous cases yields the results in Fig. B.5. A reduction of the
time step from ∆t = 1.0× 10−4 to 0.5× 10−4 leads to variations in the spin and
flux configuration on the order of 10−2. Contrary to the scenarios with static
charges, the difference is more pronounced for a large fermion mass m = 10.0,
whereas for smaller fermion masses there is less deviation. For the bond di-
mension, however, we see again the same effect as in the static setups that the
variations are more pronounced if the mass is smaller, whereas there is al-
most no difference for larger mass. Nevertheless, also for this case the absolute
changes in the spin and flux configuration are rather small compared to the
data presented in Fig. 6.8, thereby showing that the errors due to our choice of
time step and bond dimension are negligible.
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Figure B.3: Difference in the site resolved expectation values for the spin (first
and third row) and the flux (second and fourth row) for a system of sizeN = 22
and dynamical fermion mass m = 3.0 (left column) and 10.0 (right column).
The upper two rows show the difference between results computed with a time
step ∆t = 1.0× 10−3 and 0.5× 10−3 for D = 100, the lower two rows the differ-
ence between results computed with D = 100 and 130 for ∆t = 1.0× 10−3.

B.4 Efficient basis formulation for 1+1

dimensional SU(2) lattice gauge theories

Here we give more details on the extrapolation procedure for our data and
the analysis of our numerical errors we used to obtain the results presented in
Chapter 7.
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Figure B.4: Difference in the site resolved expectation values for the spin (first
and third row) and the flux (second and fourth row) for a system of sizeN = 22
and dynamical fermion mass m = 3.0 (left column) and 10.0 (right column).
The upper two rows show the difference between results computed with a time
step ∆t = 1.0× 10−4 and 0.5× 10−4 for D = 100, the lower two rows the differ-
ence between results computed with D = 100 and 130 for ∆t = 1.0× 10−4.

B.4.1 Ground state energy and vector state mass gap

In a first step, we estimate the exact values for the ground-state energy and
the vector mass gap by extrapolating for each combination of (jmax,m/g,x,N )
to the limit D → ∞, analogous to the multiflavor Schwinger case. As the ex-
amples in Fig. 7.4(a)-(b) in the main text show, we plot our data versus 1/D
and fit a line through the two data points with the largest bond dimension.
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Figure B.5: Difference of the site resolved expectation values for the spin (first
and third row) and the flux (second and fourth row) for a system of sizeN = 22
and dynamical fermion mass m = 1.0 (left column), 3.0 (central column) and
10.0 (right column). The upper two rows show the difference between results
computed with a time step ∆t = 1.0× 10−4 and 0.5× 10−4 forD = 100, the lower
two rows the difference between results computed with D = 100 and 130 for
∆t = 1.0× 10−4.

As an estimate for the exact energy value (vector mass gap), we take the mean
value of our data point computed with maximum bond dimension E0,Dmax

(N,x)
(∆vec,Dmax

(N,x)) and the extrapolated value corresponding to infinite bond di-
mension, E0,D∞(N,x) (∆vec,D∞(N,x)). We estimate the error of the central value
in a standard manner by taking half of the difference between these two values
δEfit = (E0,Dmax

(N,x) − E0,D∞(N,x))/2. Additionally to the extrapolation error,
the central value obtained also has a systematic error due to the convergence
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tolerance of ε = 10−6 set in the simulations, δEsys = εE0,D∞(N,x). Taking into
account this error, too, the final error for the ground-state energy (vector mass

gap) is given by δEtot =
√

(δEfit)
2 +

(
δEsys

)2
.

With the estimates for the exact ground-state energies and the vector mass
gaps, we extrapolate to the thermodynamic limit for each combination of (jmax,
m/g, x), where we use the asymptotic behavior up to linear order [35, 141]

E0

2Nx
≈ω0 +

c1

N
+O

( 1
N 2

)
,

∆vec

2
√
x
≈ω1 +

c2

N 2 +O
( 1
N 3

)
,

and propagate our errors from the previous extrapolation in D. As an estimate
for the error we take the fitting error with a 1σ confidence interval.

In a final step, we extrapolate to the continuum limit ag = 1/
√
x → 0 by

fitting a polynomial in 1/
√
x up to second order. In general, we take the value

obtained by the lowest order statistically significant fit which achieves χ2
d.o.f. <

1 as central value. Statistically significant means that the errors for the fit
coefficients are smaller than the actual value of the coefficient. In addition to
the statistical error of the fit, we estimate the systematic error as the difference
between our central value and the next statistically significant fit of the next
highest order and/or omitting the largest lattice spacing. For the ground-state
energy density the central value is for all cases determined by a quadratic fit.
As an estimate for the systematic error we take the difference with respect
to the value obtained by a quadratic fit omitting the largest lattice spacing,
meaning in the region x ∈ [70,150].

Regarding the vector mass gap we observe largely enhanced lattice effects
for small values of jmax. In particular, for jmax = 1/2 quadratic fits have high
values for χ2

d.o.f. (see Fig. 7.7). However, as we only have 5 different lattice
spacings we cannot take higher order corrections into account. Thus, we again
determine the central value with a quadratic fit taking into account all lattice
spacings and again estimate the systematic error as the difference with respect
to the value obtained by a quadratic fit omitting the largest lattice spacing.
Consequently, in this case the error might be heavily underestimated as we are
neglecting higher order corrections. For jmax = 1, we find that for all m/g ≥ 0.3
quadratic corrections are sufficient and proceed the same way for estimating
the central value and its systematic error as for jmax = 1/2. For m/g = 0.25,
we estimate the central value via a linear fit taking into account the lattice
spacings corresponding to x ∈ [90,150]. The systematic error in this case is
estimated as the difference with respect to a quadratic fit in the region x ∈
[70,150]. For smaller masses m/g ≤ 0.2 we find that both, linear and quadratic
fits are statistically significant. Hence, we estimate our central value with a
linear fit through all available lattice spacings, and, the systematic error as the
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difference with respect to a quadratic fit in the same region. For the largest two
truncations, jmax = 3/2, 2, the quadratic correction loses significance and thus
we estimate our central value for those cases with a linear fit. The systematic
error is then determined as difference with respect to a linear fit discarding
the largest lattice spacing, corresponding to x = 50. The final results obtained
for the ground-state energy densities and the vector mass gaps following the
procedure described above are listed in Tabs. B.1 and B.2.

Ground-state energy density
m/g jmax = 1/2 jmax = 1 jmax = 3/2 jmax = 2
0.10 −0.621933(20) −0.636285(28) −0.636758(31) −0.636740(84)
0.15 −0.621878(17) −0.636275(36) −0.636782(53) −0.636773(24)
0.20 −0.621815(18) −0.636258(56) −0.636771(28) −0.636745(33)
0.25 −0.621743(25) −0.636255(45) −0.636721(18) −0.636716(22)
0.30 −0.621668(28) −0.636239(45) −0.636679(20) −0.636684(39)
0.35 −0.621582(31) −0.636210(40) −0.636625(17) −0.636650(22)
0.40 −0.621499(47) −0.636170(19) −0.636538(50) −0.636562(25)
0.80 −0.62070(11) −0.63548(10) −0.63570(11) −0.63569(13)
1.60 −0.61823(40) −0.63200(63) −0.63205(65) −0.63205(65)

Table B.1: Ground-state energy densities obtained for various values for m/g
and jmax. The errors represent the sum in quadrature of the fitting uncertainty
with a 1σ confidence interval and the systematic error.

Vector mass gap
m/g jmax = 1/2 jmax = 1 jmax = 3/2 jmax = 2
0.10 1.154(43) 0.521(81) 0.418(20) 0.418(20)
0.15 1.489(46) 0.67(14) 0.557(15) 0.555(15)
0.20 1.788(63) 0.81(16) 0.678(12) 0.675(13)
0.25 2.067(74) 1.01(13) 0.790(10) 0.788(10)
0.30 2.329(85) 1.260(57) 0.9020(85) 0.9001(84)
0.35 2.576(97) 1.389(58) 1.0108(71) 1.0100(79)
0.40 2.82(10) 1.508(59) 1.1180(56) 1.1168(76)
0.80 4.51(11) 2.391(88) 1.9329(28) 1.9322(28)
1.60 7.14(17) 3.954(97) 3.5196(11) 3.5191(10)

Table B.2: Vector mass gaps obtained for various values for m/g and jmax. The
errors represent the sum in quadrature of the fitting uncertainty with a 1σ
confidence interval and the systematic error.
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B.4.2 Critical exponents for the vector mass gap

The values for the critical exponents for the vector mass gaps (see Tab. 7.1)
are estimated in a similar fashion. Our data for jmax = 3/2, 2, which are close
to the ones from Ref. [144], reveal that for our largest fermion mass m/g = 1.6
we are already relatively close to the nonrelativistic limit. Hence, we restrict
ourselves to data for small fermion mass to estimate the critical exponent. For
each value of jmax, we fit our data to a power law, γ(m/g)ν , for every interval
[0.1, (m/g)max] with 0.25 ≤ (m/g)max ≤ 0.4. The central value is then determined
from the fit with the smallest χ2

d.o.f.. To estimate our systematic error we take
the difference between our central value and the fit giving the most outlying
value. The statistical error is again given by 1σ error bar for the fitting error.

B.4.3 Entanglement entropy in the ground state

To study the scaling of the entropy towards the continuum limit and obtain
an estimate for the central charges, we proceed as described in Sec. 7.6. First,
to minimize finite size effects, we average each of the different contributions
to the entropy for D = 200 and every combination of (jmax,m/g,x,N ) for 4 bi-
partitions close to the center. To estimate our systematic error, we take the
difference with respect to the values obtained with D = 150. Additionally, our
data has another systematic error due to the finite precision in our simulations
which has to be added on top. For the entropies we cannot give the same pre-
cise estimates for this systematic error as for the energies. To get nevertheless
a rough idea of the order of magnitude, we compare results with convergence
tolerance ε = 10−6 and ε = 10−10. Figure B.6 reveals that even for the largest
value of jmax, where we expect the largest differences between these results, it
is around 10−5. Hence, we simply assume a systematic error of 10−5 due to the
finite precision of our simulations in all cases.
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Figure B.6: Difference in the total entropy for the RDM for the leftmost L sites
between simulation results obtained with ε = 10−10 and ε = 10−6. The panels
show the results for N = 200, x = 50, m/g = 0.1 (a) and m/g = 0.3 (b). The blue
dots indicate jmax = 1/2, the green squares jmax = 2.
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Appendix C

Technical details for the efficient

basis formulation for 1+1

dimensional SU(2) lattice gauge

theories

C.1 Dimension of the physical subspace

Here we compute the dimension of the physical subspace contained in the basis
developed in Chapter 7. For all the following we focus on a system withN sites
and the case of vanishing background field, j0 = 0.

As shown in Sec. 7.3, an arbitrary basis state can be expressed as |Ψ 〉 =
⊗Nk=1|αk〉, |αk〉 ∈ {|0〉, |1−〉, |1+〉, |2〉}. To calculate the dimension of the physical
subspace, it is convenient to represent the 4N basis states as directed paths
from the root r to one of the leaves in a perfect quaternary tree of depthN . The
vertices at level k are labeled with the color-electric flux jk at link k, implied
by the fermionic states sitting at the edges along the path from the root to
the vertex due to Eq. (7.4) (cf. Fig. C.1). Unphysical states now correspond to
directed paths from the root to one of the leaves that contain at least one vertex
labeled by a negative number. Looking at a path starting from the root along
vertices with nonnegative labels to the vertex v at level k − 1, a vertex v′ with
negative label in level k can arise if and only if:

i) v is labeled by a 0,

ii) from v the path is continued along the edge corresponding to |1−〉 thus
ending up in a vertex v′ labeled by −1/2.

Hence, the first vertex v′ with negative label along a path corresponding to an
unphysical state is always one carrying a −1/2. Moreover, all paths containing
v′ necessarily correspond to unphysical states. The number of paths containing
v′ is simply the number of paths through the perfect quaternary subtree of
depthsN −k rooted by v′, 4N−k. Consequently, the number of unphysical states
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Figure C.1: The first three levels of the quaternary perfect tree representing
the basis states. The vertices represent the color-electric flux indicated by the
fermionic states on the edges along the path to each vertex using Eq. (7.4). The
circles in light blue color correspond those vertices, for which one encounters
for the first time a negative value, if the path leading to the vertex is continued
along the edge carrying |1−〉.

is given by
∑N
k=1 t̄k4

N−k =
∑N−1
k=0 t̄k+14N−(k+1). Here t̄k is the number of vertices

carrying label −1/2 at level k, for which the path starting from r did not yet
pass any other vertex with negative label. Due to observations i) and ii) t̄k
is equivalent to the number of paths tk−1 starting from r to a vertex at level
k − 1 with label 0 that did not yet pass any vertex with negative label. As
we are going to show in the following, tk−1 is exactly given by the Catalan
number Ck = (2k)!/(k + 1)!k!. As a result, the number of unphysical states is∑N−1
k=0 tk4

N−(k+1) =
∑N−1
k=0 Ck+14N−(k+1) =

∑N
k=1Ck4

N−k.
To compute the number of paths starting from the root to a vertex at level

k with label 0 that did not yet pass any vertex with negative label we use to
following observations:

1. As explained in Sec. 7.3, the number of edges lk,− passed with |1−〉 at any
level k′ < k must not exceed the ones with |1+〉, lk,+, to avoid encountering
any negative vertices along the path.

2. Looking at a path from the root with j0 = 0, to any vertex labeled by 0 at
level k, we immediately see that the condition lk,+ = lk,− has to be fulfilled
in order to compensate for the flux changes induced by |1−〉 and |1+〉. In
particular, this implies that 2lk,+ ≤ k or equivalently lk,+ ≤ xk/2y. The
other k −2lk,+ edges along the path have to carry |0〉 or |2〉, as those states
do not lead to a flux change while going from one layer to the other.

The number of paths of length 2lk,+ which contain at any point at least as many
|1−〉 as |1+〉 is exactly the number of Dyck paths and given by the Catalan num-
ber Clk,+ [268]. Hence, the number of path fulfilling the conditions 1 and 2 at
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level k is given by

tk =
xk/2y∑
lk,+=0

Clk,+

(
k

2lk,+

)
2k−2lk,+ = Ck+1,

where the factor
(
k

2lk,+

)
takes into account the number of ways that the 2lk,+

symbols |1+〉 and |1−〉 can be distributed among the k levels and 2k−2lk,+ the
possible ways of filling the remaining edges with |0〉 and |2〉. In the last step
we have used an identity for the Catalan numbers.

Thus, the dimension of the physical subspace is given by

dN,phys = 4N
1−

N∑
k=1

Ck
4k

 . (C.1)

C.2 Hamiltonian in the new basis

In this Appendix we show how the terms of the Hamiltonian given in Eqs. (7.1)
and (7.2) can be formulated in the basis presented in Sec. 7.3. As explained in
the main text, the mass term is straightforward as even in the original formu-
lation it only depends on the fermionic occupation number. The color-electric
energy term can also readily be formulated in the new basis using Eq. (7.4).
Hence, W0 is given by

W0 = µ
N∑
k=1

(−1)kn̂k +
N−1∑
k=1

j0 +
k∑
l=1

q̂l


j0 +

k∑
l=1

q̂l + 1

 , (C.2)

with the single site operators n̂k, q̂k that are given in Eq. (7.7) and Eq. (7.8) in
the main text. From Eq. (C.2) one can see explicitly that integrating out the
gauge field leads to nonlocal interactions in the color-electric energy term.

The hopping term can be obtained by translating the possible hopping pro-
cesses shown in Fig. 7.1(c) in the new basis. The possible hopping processes in
the new basis are listed in Tab. C.1. As the table reveals, the matrix elements
for certain transitions depend on the color-electric flux, too, thus also leading
to long-range interactions in the hopping term. The hopping term V can then
be expressed in the new basis by defining the operators Oi,k

O1,k = |0〉〈1−|k , O2,k = |0〉〈1+|k ,
O3,k = |1−〉〈2|k , O4,k = |1+〉〈2|k ,
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Initial state Final state Matrix element
|0〉 ⊗ |2〉 → |1−〉 ⊗ |1+〉

(−1)jk−jk−1−1/2

√
2jk + 1

2jk−1 + 1

|0〉 ⊗ |2〉 → |1+〉 ⊗ |1−〉
|1−〉 ⊗ |1+〉 → |0〉 ⊗ |2〉
|1+〉 ⊗ |1−〉 → |0〉 ⊗ |2〉
|1−〉 ⊗ |1+〉 → |2〉 ⊗ |0〉
|1+〉 ⊗ |1−〉 → |2〉 ⊗ |0〉
|2〉 ⊗ |0〉 → |1−〉 ⊗ |1+〉
|2〉 ⊗ |0〉 → |1+〉 ⊗ |1−〉
|1−〉 ⊗ |0〉 → |0〉 ⊗ |1−〉

+1
|1+〉 ⊗ |0〉 → |0〉 ⊗ |1+〉
|0〉 ⊗ |1−〉 → |1−〉 ⊗ |0〉
|0〉 ⊗ |1+〉 → |1+〉 ⊗ |0〉
|2〉 ⊗ |1−〉 → |1−〉 ⊗ |2〉

−1.
|2〉 ⊗ |1+〉 → |1+〉 ⊗ |2〉
|1−〉 ⊗ |2〉 → |2〉 ⊗ |1−〉
|1+〉 ⊗ |2〉 → |2〉 ⊗ |1+〉

Table C.1: Gauge invariant transitions induced by the hopping term from Fig.
7.1(c) expressed in the new basis. The value on the right hand side shows the
corresponding matrix elements for the hopping operator

and translating the possible transitions in from Tab. C.1 in operator form

V =
N∑
k=1

(
c−k−1O

†
1,kO4,k+1 + c+

k−1O
†
2,kO3,k+1 + c−k−1O

†
3,kO2,k+1 + c+

k−1O
†
4,kO1,k+1

+O†1,kO1,k+1 +O†2,kO2,k+1 −O†3,kO3,k+1 −O†4,kO4,k+1 + h.c.
)
,

(C.3)

where the h.c. refers to the hermitian conjugates of all terms appearing in the
formula above. The color flux dependent constants c±k are given by

c+
k =

√
2jk + 2
2jk + 1

, c−k = −

√
2jk

2jk + 1
,

and are nothing but the matrix elements shown in the transition table. In order
to compute these constants, the value for jk has to be reconstructed from the
fermionic occupation number via Eq. (7.4).
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C.3 Distinguishing vector and scalar states

Due to the fact that we are working with finite lattices with OBC the sym-
metries which enable to distinguish between the different meson states are no
longer preserved. Nevertheless, following the ideas from Ref. [35], the rem-
nants make it possible to separate the different type of states. However, in the
basis formulation presented in Sec. 7.3 it is not straightforward to write down
a pseudo-momentum operator as it was done in the reference. Thus, to iden-
tify the zero-momentum excitations of the ground state we use a simpler ap-
proach. On a lattice with periodic boundary conditions, the zero-momentum
states correspond exactly to the translational invariant states. For our finite
lattice this should still be approximately fulfilled as long as the system size
is large enough. Due to the staggered formulation a translational invariant
state should be invariant under a cyclic shift by two lattice sites. To assign a
pseudo-momentum to our states, we thus compute the expectation value of the
operator C(2), where C(k) describes a cyclic shift by k lattice sites to the right.
Moreover, to probe for the charge conjugation number, we proceed again sim-
ilar to Ref. [35], and apply a cyclic shift followed by exchanging the two states
|0〉 ↔ |2〉,

∑N
k=1 (|0〉〈2|k + |2〉〈0|k)C(1). While this lattice analog of charge conju-

gation is not a good quantum number in the case of OBC, the phase of this op-
erator allows for distinguishing between vector candidates (charge conjugation
number −1) and scalar candidates (charge conjugation number +1). For states
with charge conjugation number +1 we observe phases close to 0, whereas for
states with charge conjugation number −1 the observed phase is close to π.
Together with the dispersion obtained from the pseudo-momentum operator
this allows us to identify the different states as shown in Fig. C.2. Above the
ground state, we observe a vector candidate with 〈C(2)〉 ≈ 1. Subsequently we
discover the momentum excitations of the vector state which are characterized
by decreasing 〈C(2)〉 before we finally obtain a scalar candidate with 〈C(2)〉 ≈ 1
again.

C.4 Entanglement entropy in the full basis and our

formulation

In this Appendix we discuss the relation between the different contributions
to the von Neumann entropy in our reduced basis formulation and the full
basis. As we have seen in Sec. 7.3, one can recover the full basis state from the
reduced one by means of an isometry which can be written as a sequence of
N local isometries, and thus corresponds to a quantum circuit of depth equal
to the system size, N . Here, we formally argue why the weights of different
sectors, pj , are the same in both bases, and show the explicit relation between
the entanglement entropies computed in each basis.
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Figure C.2: Dispersion relation for m/g = 1.6, N = 50, x = 150, D = 50, jmax =
1/2 (a), jmax = 1 (b), jmax = 3/2 (c) and jmax = 2 (d). The blue dot indicates the
ground state, the red triangles the vector states and the green square the scalar
candidate.

C.4.1 Classical part of the entropy

Here we show that the weights of sectors with a particular value of j on a
certain link, pj , are identical in both, the full basis and our formulation. For
all the following, we assume a system of N sites in a physical state |Ψ̃ 〉 in the
reduced basis, corresponding, in the full one, to |Ψ 〉 =M|Ψ̃ 〉. We will consider
the bipartition of the system obtained by cutting at the L-th gauge link.

In the full basis, the RDM for the leftmost L sites has block diagonal struc-
ture thanks to the gauge constraints, and we can write

ρj = ΠjtrL+1,...,N (|Ψ 〉〈Ψ |)Πj = trL+1,...,N (Πj |Ψ 〉〈Ψ |Πj)

= trL+1,...,N

(
ΠjM|Ψ̃ 〉〈Ψ̃ |M†Πj

) (C.4)

where Πj is the projector on total flux j for the L-th link. In the full basis, this

projector acts locally on the link and thus can be written Πj = 1in ⊗Π
(L)
j ⊗ 1,

where the left factor is the identity on the inner part, i.e. the part where ρ is
defined (see Fig. C.3(a)).

The corresponding projection in our basis formulation is given by

Π̃j =
∑

qα1+...+qαL=j

|α1 . . .αN 〉〈α1 . . .αN |,

148



C.4 Entanglement entropy in the full basis and our formulation

where
∑
qα1+...+qαL=j takes into account all basis states, for which the sum of the

eigenvalues qαk , k = 1, . . . ,L, for the single site operators from Eq. (7.8) is equal
to j. The corresponding RDM thus reads

ρ̃j = Π̃jtrL+1,...,N (|Ψ̃ 〉〈Ψ̃ |)Π̃j = trL+1,...,N (Π̃j |Ψ̃ 〉〈Ψ̃ |Π̃j)

It turns out, as we will show next, that the action of the projector Πj on
a certain value of the flux link commutes with the isometry that changes the
basis, namely, ΠjM|Ψ̃ 〉 =MΠ̃j |Ψ̃ 〉. This implies the following

pj = tr(ρj) = tr
(
ΠjM|Ψ̃ 〉〈Ψ̃ |M†Πj

)
= tr

(
MΠ̃j |Ψ̃ 〉〈Ψ̃ |Π̃jM†

)
= tr

(
Π̃j |Ψ̃ 〉〈Ψ̃ |Π̃j

)
= p̃j .

To proof the statement ΠjM|Ψ̃ 〉 =MΠ̃j |Ψ̃ 〉, we proceed as sketched in Fig.
C.3. The individual steps are justified as follows:

• (a)=(b): In the full basis, the projector onto a flux value of j for link L
is the identity everywhere, except for the local basis of the link, where it
acts as Π

(L)
j =

∑j
`,`′=−j |j ` `

′〉〈j ` `′ |. Looking at Eq. (7.6) it is clear that its
action onMloc just fixes the value of j, and thus

(Π(L)
j ⊗1nαs,j`)M

(L)
loc =M(L)

loc(Π′(L)
j ⊗1α),

where Π
′(L)
j acts to the same effect on the link variables before the isome-

try, as Π′(L)
j =

∑j
`=−j |j `〉〈j `|.

• (b)=(c): The second step is guaranteed by gauge invariance, in partic-
ular by the form of Mloc in Eq. (7.6). It is immediate to see that (1 ⊗
Π
′(L)
j )M(L−1)

loc = M(L−1)
loc Π∗j

(L−1,L), where the projector Π∗j
(L−1,L) acts on the

degrees of freedom j, ` of the (L − 1)-th link and the decorated fermion
occupation number, α, of the L-th vertex, as

Π∗j
(L−1,L) =

∑
j ′

∑
α

j ′∑
`=−j ′

δj ′+qα , j |j
′ `; α〉〈j ′ `; α|.

• (c)=(d): The third equivalence can be formally expressed as

(1⊗Π∗j
(L−1,L))(M(L−1)

loc ⊗1(L)
α ) =

(
M(L−1)

loc ⊗1(L)
α

)
Π∗j

(L−2,L−1,L),
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Figure C.3: (a) The action of a projector onto a given sector of flux, j, for an
intermediate link on the full basis. For physical states, it can be pulled through
the basis changing isometries (b)-(d), and expressed in the reduced basis as a
projector onto the corresponding sum of qαk values for the vertices to the left
of the target link (e).
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with

Π∗j
(L−2,L−1,L) =

∑
j ′αα′

j ′∑
`=−j ′

δj ′+qα+qα′ , j |j
′ `; α;α′〉〈j ′ `; α; α′ |.

On the left-hand side, the only effect of the projector for a sector j̄ which
acts onMloc ⊗1

(L)
α is to restrict the sum over j in Eq. (7.6) to values such

that j + qα + q′α = j̄, which is precisely the effect of the projector on the
right-hand side.

• (d)=(e): Iterating the step above we can pull the projector through very
Mloc block, until the edge of the chain, where the input j is fixed to 0 and
can be ignored.

C.4.2 Distillable part of the entropy

Let us assume that for a physical state, in the reduced basis, the unnormalized
RDM for the L leftmost sites for the sector with (outgoing) flux j has spectrum
λσ , i.e.

ρ̃j =
∑
σ

λσ |σ〉〈σ |, p̃j = tr(ρ̃j) =
∑
σ

λσ ,

with the eigenvectors |σ〉 supported on the reduced basis for the L leftmost
sites.

We can use the relations discussed above to relate the density operators in
the full and reduced basis. The RDM in the full basis, given by Eq. (C.4), can
be computed from the RDM for L + 1 sites in the reduced basis, as sketched
in Fig. C.4(a), since the isometries acting to the right of the projector cancel
out in the trace. Thus, the RDM in the full basis is obtained by first apply-
ing the isometryML+1 =M(L+1)

loc M
(L)
loc · · ·M

(1)
loc to the RDM for L + 1 sites in the

reduced basis, ρ̃L+1, then projecting onto the sector j, and finally tracing out

the (L + 1)-th site and the gauge degrees of freedom introduced by M(L)
loc and

M(L+1)
loc . Following the above discussion, the projector can be pushed through

the local isometries (see Fig. C.4(b)) so thatM(L+1)
loc cancels and we finally ob-

tain ρj = tr(j `)L(M
(L)
locB

(j)M(L)
loc

†
) where B(j) :=ML−1ρ̃jM†L−1. Since B(j) is simply

an isometric transformation of ρ̃j , it has the same spectrum. We can write,

B(j) =
∑

kin`α,k
′
in`
′α′

Bkin`α,k
′
in`
′α′ |kin; j − qα, `;α〉〈k′in; j − qα′ , `′;α′ |,
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where we make the degrees of freedom of the (L−1)-th link and the L-th vertex
explicit, and represent all the others for the inner part with global indices kin,
k′in. Then

Bkin`α,k
′
in`
′α′ =

∑
σ

λσ Ukin`α,σU
†
σ,k′in`

′α′ ,

where Ukin`α,σ = 〈kin; j − qα, `;α|ML−1|σ〉.
Applying the local isometryM(L)

loc and tracing out the L-th link, we get

ρj =
1

2j + 1

∑
kin`α,k

′
in`
′α′

Bkin`α,k
′
in`
′α′

|qα |∑
s=−|qα |

|qα′ |∑
s′=−|qα′ |

j∑
r=−j

C
|qα | j−qα j
s r−s r C

|qα′ | j−qα′ j
s′ r−s′ r×

|kin; j − qα, `, r − s;nα s〉〈k′in; j − qα′ , `′, r − s′;nα′ s′ |.

We observe that defining

|v(kin; jr;α`)〉 =
|qα |∑

s=−|qα |
C
|qα | j−qα j
s r−s r |kin; j − qα, `, r − s;nα s〉,

we obtain a set of orthogonal vectors (with respect to all the labels), corre-
sponding to changing the basis of the (L − 1)-th link and the L-th vertex to a
basis of total angular momentum. As a result, if we use the unitary Ukin`α,σ to
express the internal degrees of freedom in the diagonal basis,

|w(σ ; jr)〉 =
∑
kin`q

U ∗kin`α,σ
|v(kin; jr;α`)〉,

the resulting vectors are also orthogonal, and

ρj =
1

2j + 1

∑
σ

j∑
r=−j

λσ |w(σ ; jr)〉〈w(σ ; jr)|. (C.5)

Thus ρj consists of 2j + 1 blocks, with identical spectrum {λσ /(2j + 1)}. Conse-
quently, the entropy is given by

S(ρj) = −
j∑

r=−j

∑
σ

λσ
2j + 1

log2
λσ

2j + 1

= −
∑
σ

λσ log2
λσ

2j + 1

= p̃j log2(2j + 1)−
∑
σ

λσ log2λσ

= p̃j log2(2j + 1) + S(ρ̃j).
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Putting this result together with the fact that each j sector has the same
weight in the reduced and the full representations, pj = p̃j , we have found that
the relation between the entropies is

S(ρ) = −
∑
j

pj log2(pj) +
∑
j

pjS(ρj)

= −
∑
j

pj log2(pj) +
∑
j

pj(log2(2j + 1) + S(ρ̃j))

=
∑
j

pj log2(2j + 1) + S(ρ̃). (C.6)

Figure C.4: RDM corresponding to a fixed flux sector, j, computed in the full
basis. (a) ρjL in the full basis. After pushing the projectors through as explained

in the text and using thatM(L+1)
loc is an isometry one obtains the equivalent form

depicted in (b).
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2.1 Dispersion relation obtained from the continuum Dirac equa-
tion (dashed blue and red lines) and the lattice discretization
(solid blue and red lines) in the first Brillouin zone. The red
lines correspond to the solution with chirality +1, the blue ones
to the solution with chirality −1. The dashed horizontal line
shows that for a given energy smaller then the maximum one al-
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moving particles (intersection in the region of positive slope)
and one to left moving particles (intersection in the region with
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2.2 Illustration of a two dimensional lattice. The fermionic fields
are located at the vertices of the lattice indicated by blue cir-
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dicate where the entries of the matrices Un act. The light red
(green) oval corresponds to the left (right) electric field on a link.
The red square illustrates a plaquette term, where the arrows
indicate along which direction the links are traversed. The gray
square shows an example of a vertex and the associated left and
right electric fields where the generators for gauge transforma-
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2.3 (a) Illustration of an analog quantum simulator. The Hamilto-
nian of the system, H , is mapped to an experimentally control-
lable system which allows to emulate the unitary time evolution.
At the end of the evolution a measurement reveals the desired
properties. (b) Sketch of a digital quantum simulator. The ini-
tial wave function of the system is encoded in the computational
basis ⊗i |wi〉, wi ∈ {0,1}, and the evolution is simulated by apply-
ing a sequence of quantum gates. At the end of the computation
a measurement yields the desired information. . . . . . . . . . . 29
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3.1 Illustration of the graphical notation described in the text for a
system with 6 sites. (a) The tensor ci1,...,i6 , each of the legs cor-
responds to a single index. (b) Graphical notation for the MPS
from Eq. (3.2), the connected legs correspond to contracted in-
dices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 (a) Equivalent MPS representation after inserting a pair of in-
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dition ensures that the partial contraction of two tensors yields
the identity. (c) The second condition ensures a contraction with
the diagonal matrix Λk−1 yields another diagonal matrix Λk. . . 33

3.3 (a) The original tensor ci1,...,i6 . (b) We apply a singular value de-

composition and obtain the first tensor U i1
1 carrying a physical

index and the matrix S1. (c) After reshaping and decomposing
cα1,i2,i3,i4,i5,i6 , we obtain the second tensor U i2

2 carrying another
physical index and S2. (d) The result after iterating the decom-
position procedure until reaching the right boundary. . . . . . . 36

3.4 Full Hilbert space of the system (blue outer oval) and the set of
states parametrized by MPS with fixed bond dimension (red and
yellow inner ovals). The set of states parametrized grows with
increasing bond dimension and strictly includes all states with
smaller bond dimension. . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Illustration of the valence bond picture. The blue circles cor-
respond to the virtual qudits sitting on a site indicated by the
orange ovals. The wiggly line indicates two qudits forming a
maximally entangled pair. After applying the linear map Pi on
each site, we obtain the physical system indicated by a red sphere. 37

3.6 (a) Example of a MPO for a system with 6 sites. (b) Application
of a MPO to an MPS results again in a MPS with the tensors
indicated by the blue dashed boxes. . . . . . . . . . . . . . . . . . 40
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3.7 Illustration of the eigenvalue problem for updating a single site.
The dark boxes correspond the MPO tensors of H , the white
boxes to the tensors of the state |Ψ 〉. The left part represents
Heff,k ~Ak, where the effective Hamiltonian (indicated in blue) is
obtained by contracting the tensor network corresponding to
〈Ψ |H |Ψ 〉 up to site k. The right part represents Nk ~Ak where
the matrix Nk (indicated in red) corresponds to the partial con-
traction of the TN representing 〈Ψ |Ψ 〉 up to site k. The green
box indicates the tensor Aikk which is determined after proper
vectorization and solving the generalized eigenvalue problem
Heff,k ~Ak = λNk ~Ak. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 (a) Illustration of the decomposition in local terms starting on
odd and even sites. (b) Splitting a local term in MPO form. (c)
Resulting MPO for Todd, where the tensors having the same color
represent the MPO decomposition of a single nearest-neighbor
term. The dashed lines indicate bonds with bond dimension 1
between the MPO representations for different nearest neighbor
terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Linear equation system for updating a single site. The left part
corresponds to �/�~A†k〈Ψ

′ |Ψ ′〉, where the hole in the upper part
is due to the derivative with respect to ~A†k. The matrix Nk is
obtained by contracting the tensor network corresponding to
〈Ψ ′ |Ψ ′〉 up to site k. The right part corresponds to �/�~A†k〈Ψ

′ |Ψ 〉
where the hole arises again from the derivative with respect to
~A†k and the darker tensors correspond to |Ψ 〉. The vector ~vk is
obtained by contracting the network and vectorizing the result.
The green box indicates the tensor Aikk which is determined after
proper vectorization by solving Nk ~Ak = ~vk. . . . . . . . . . . . . . 47

4.1 Illustration of the optical superlattice. The shallow wells corre-
spond to the fermionic sites, which can either be occupied by a
single fermion (indicated by a green circle) or empty. The deeper
wells correspond to the gauge links which are populated by a
fixed, even number of particles consisting of two bosonic species
A and B (indicated by the red and blue circles). . . . . . . . . . . 53
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4.2 Thermodynamic limit for the energy density for various values
of x. Crosses show the values for the truncated cQED model for
dlink = 3 (blue) and dlink = 9 (red). Circles show the values for
the Zd model for dlink = 3 (blue) and dlink = 9 (red) which are
almost identical. Values obtained for the Schwinger model are
shown in gray. The inset shows the values obtained by extrap-
olating x → ∞ for the continuum energy density for the trun-
cated cQED model (blue 5’s) and the Zd model (red asterisks).
The horizontal gray line represents the value for the Schwinger
model in the massless case, −1/π. In both cases the error bars
from the extrapolation procedure are smaller than the markers. . 57

4.3 Gap between the ground state and the first excited state in the
Gauss law fulfilling sector for the Zd model and the truncated
cQED model. Open symbols represent the values for the Zd
model for N = 50 (triangles) and N = 100 (circles). Values for
the truncated cQED model are represented by the crosses (N =
50) and dots (N = 100). Red markers indicate dlink = 3; blue
markers dlink = 9. The inset shows the region for small values of
x in greater detail. All data points were computed with a bond
dimension D = 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Final overlap with the variationally computed ground state at
the end of the adiabatic preparation as a function of total evolu-
tion time for the truncated cQED model (left) and the Zd model
(right) with D = 50. The blue 5’s represent the data for N = 50,
dlink = 3; blue triangles for N = 100, dlink = 3; red circles for
N = 50, dlink = 9; and red squares for N = 100, dlink = 9. Error
bars were obtained from the difference in results with bond di-
mension D = 50 and D = 30. The inset is showing the relative
error of the energy with respect to the exact ground state. . . . . 60
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tion as a function of the noise strength for the truncated cQED
model (left) and the Zd model (right). The blue (green) 5’s rep-
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the N = 100, dlink = 3 case; the red (magenta) dots the N = 50,
dlink = 5 case; and the red (magenta) squares theN = 100, dlink =
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with respect to the noise-free exact ground state. As a guide for
the eye, the data points are connected. . . . . . . . . . . . . . . . 61
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4.6 Penalty energy per site as a function of time for the cQED model
(upper row) and the Zd model (lower row) for dlink = 3 (left
column) and dlink = 5 (right column) (both axes are on a loga-
rithmic scale). The gray line indicates the point in time where
we determined the offsets ∆1 and ∆2. The red (N = 50) and
cyan (N = 100) lines show the values for λ = 1× 10−4, the green
(N = 50) and the black (N = 100) lines show the values for
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5.2 Inset: Continuum estimate of the location of the phase transi-
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crosses), third (blue asterisks) and fourth (magenta dots) tran-
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theoretical prediction for the phase transitions in the massless
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m/g = 0.5 and D = 220. Main plot: Continuum estimate for ∆N
as a function of µI /2π, for volumes 2 (red solid line), 6 (green
dashed line) and 8 (blue dash-dotted line). . . . . . . . . . . . . . 74
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5.7 Frequency ω (left) and amplitude A in units of the zero den-
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6.5 Real-time evolution of a string with length l = 11 between two
external static charges, in a system of size N = 22 (upper three
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2 (third and sixth

row) as a function of time. . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Real-time snapshots for a system with external static charges
at a distance l = 11, dynamical fermion mass m = 3.0 and size
N = 22. The upper row shows the charge square configuration,
〈Qan2〉−〈Qan2〉vac, the central row the spin, 〈σ zr/g,n〉−〈σ

z
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n〉vac
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the string lengths, Pl − Pl,vac. The vertical red lines in the upper
row indicate the position of the external charges. Each column
corresponds to a time instant, t = 0, 0.25, 0.5 and 2.0. . . . . . . . 94

6.7 Real-time snapshots for a system with external static charges at
a distance l = 11, dynamical fermion mass m = 10.0 and size
N = 22. The upper row shows the charge square configuration,
〈Qan2〉−〈Qan2〉vac, the central row the spin, 〈σ zr/g,n〉−〈σ

z
r/g,n〉vac (red

and green lines, left y-axes), and flux configuration, 〈J2
n〉−〈J2

n〉vac
(blue lines, right y-axes), and the lower row the histograms for
the string lengths, Pl − Pl,vac. The vertical red lines in the upper
row indicate the position of the external charges. Each column
corresponds to a time instant, t = 0, 0.25, 0.5 and 2.0. . . . . . . . 95

6.8 Real-time evolution of a string with length l = 11 between fully
dynamical fermions, in a system of size N = 22 (upper three
rows) and N = 30 (lower three rows), for dynamical fermion
masses m = 1.0 (left column), m = 3.0 (central column) and 10.0
(right column). Shown are the site resolved expectation values
for σ zr,n, σ zg,n (first and fourth row), J2

n (second and fifth row) and
Qan

2 (third and sixth row) as a function of time. . . . . . . . . . . 97

183



List of Figures
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7.1 (a) Strong coupling configuration with an odd site filled with
two fermions, one of every color, and its neighboring empty even
site. (b) Resulting color-neutral superposition of four states af-
ter applying the operator V . Each of the four states has a single
fermion per site and a color-electric flux of j = 1/2 on the in-
termediate link, with a different combination of z-components.
The corresponding state in the color-neutral basis for those two
cases are written below. (c) Transitions induced by the operator
V in the color-neutral basis. The left block represents the possi-
ble gauge invariant starting configurations |Ψi〉, the right block
the final states |Ψf 〉 after application of the operator V . The ar-
rows show the gauge links, where the black arrows indicate a
color-electric flux of j and the red arrows a value of j ′ = j ± 1/2.
The sites are represented by ovals, where the small blue dots in-
dicate the number of fermions sitting on the site. The numbers
to the right show the matrix element 〈Ψf |V |Ψi〉. . . . . . . . . . . 105

7.2 Dimension of the physical subspace dN,phys (blue solid line), the
total number of basis states 4N in our formulation (red dashed
line) and the dimension of the basis from Ref. [144], 3N (2jmax +
1)N−1, for the simplest nontrivial truncation jmax = 1/2 (green
dash-dotted line) as a function of system size. Inset: Fraction of
the physical subspace with respect to the total number of states
in our basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 (a) Schematic representation of Mloc that locally maps the re-
duced basis to the full one. Different line styles are used to in-
dicate the different spaces where j̄ = j + qα and ¯̀ = `′ + s. (b)
Mapping a MPS in the reduced basis to the full one by applying
M =M(1)

locM
(2)
loc . . .M

(N )
loc . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Upper row: Extrapolation in bond dimension for the ground-
state energy (a) and the vector mass gap (b) for m/g = 0.3, jmax =
2, N = 150, and x = 150. The central value is determined with a
linear fit through the largest two bond dimensions represented
by the blue dots. Lower row: Extrapolation to the thermody-
namic limit for the ground-state energy density (c) and the vec-
tor mass gap (d) for jmax = 2, and x = 150. . . . . . . . . . . . . . 112

7.5 Continuum extrapolation for the ground-state energy density
for m/g = 0.3 and jmax = 1/2 (a), jmax = 1 (b), jmax = 3/2 (c) and
jmax = 2 (d). The red line shows the quadratic fit through all
data points used to extract the central value. The dashed green
line shows a quadratic fit omitting the largest lattice spacing to
estimate the systematic error of the central value. . . . . . . . . . 113
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7.6 Relative deviation of the ground-state energy density with re-
spect to the continuum solution of the full theory −2/π, ∆ω0, as
a function ofm/g. The markers indicate different values for jmax,
where blue circles represent jmax = 1/2, red triangles jmax = 1,
green squares jmax = 3/2 and magenta diamonds jmax = 2. Inset:
Ground state energy density as a function of jmax for m/g = 0.1
(blue circles), m/g = 0.8 (red triangles) and m/g = 1.6 (green
squares). The horizontal dashed line indicates the analytic solu-
tion for the ground-state energy, −2/π, for the full lattice Hamil-
tonian without truncation in the limit ag = 1/

√
x→ 0 [144]. The

error bars are smaller than the markers. . . . . . . . . . . . . . . 114

7.7 Continuum extrapolation for the vector mass gap for m/g = 0.3
and jmax = 1/2 (a), jmax = 1 (b), jmax = 3/2 (c) and jmax = 2 (d).
The red line shows the fit used to extract the central value. The
dashed green line shows the same fit omitting the largest lattice
spacing to estimate the systematic error. The values indicate the
χ2

d.o.f. of the two fits, where the upper one corresponds to the red
solid line and the lower one to the green dashed line. Notice the
different scales of the y-axis between panels (a), (b) and (c), (d)
showing that systematic errors are much larger for jmax = 1/2
and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.8 Vector state mass gap as a function of m/g for jmax = 1 (red tri-
angles), jmax = 3/2 (green squares) and jmax = 2 (magenta dia-
monds) on double logarithmic scale. The yellow stars represent
the numerical values obtained from the strong-coupling expan-
sion [144]. The dotted lines represent the best fit of the form
γ(m/g)ν to the data obtained on the interval [0.1;(m/g)max] with
0.25 ≤ (m/g)max ≤ 0.4. For completeness, we also show the data
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