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Abstract

In the present work, a digital quantum simulation scheme is proposed for the construction of
lattice gauge theories in 3+1 dimensions, including dynamical fermions. All interactions are
obtained as a stroboscopic sequence of two-body interactions with an auxiliary system, there-
fore allowing implementations with ultracold atoms using atomic scattering as a resource for
interactions. Compared to previous proposals, the four-body interactions arising in models with
2+1 dimensions and higher, are obtained without the use of perturbation theory, resulting in
stronger interactions. The algorithm is applicable to generic gauge theories, with gauge groups
being either compact Lie groups or finite groups. To back up the validity of this approach,
bounds on the error due to the trotterized time evolution are presented.

Furthermore, using ultracold atoms in optical lattices, an implementation of a lattice gauge
theory with a non-abelian gauge group, the dihedral group Ds, is described employing the
aforementioned simulation scheme. We show how the different parts of the Hamiltonian of this
lattice gauge theory can be mapped to a Hamiltonian accessible in ultracold atom experiments.
This extends current quantum simulation proposals of non-abelian gauge theories with dynam-
ical matter to more than 1+1 dimensions, thus, paving the way towards the quantum simulation

of non-abelian gauge theories in regimes otherwise inaccessible to any numerical methods.



Contents

(L__Introduction|

2 Ultracold atoms in optical lattices|

2.1 Optical lattices| . . . . . .. ... .. .. . e
2.2 Periodic potentials| . . . . ... ... ..
[2.3  Scattering of ultracold atoms| . . . . . . ... oo oo
2.4 Second quantization and the Bose-Hubbard model|. . . . . . . . ... ... ..

2.5 Multiple species|. . . . . . ...

[3 Lattice gauge theories|

[3.1 Gauge theories in the Continuum| . . . . . . ... ... ... ..........

[3.2  Euclidean formulation of lattice gauge theories| . . . . . ... ... ... ...

(3.3 Hamiltonian formulation of lattice gauge theories| . . . . . . . ... ... ...

[3.3.1 General description| . . . . . ... ... ... ... ... ... ... .
3.3.2 CompactQED| . . . . .. .. ..

....................................

334 OQ2) . . oo
[3.3.5 Dihedral group Don| . . . . . o 0 oo

{4 Digital quantum simulation of lattice gauge theories|

4.2 Quantum simulation of lattice gauge theory in three dimensions| . . . . . . ..

4.3  The implementation|. . . . . . . .. ... ... ... ... .

4.3.1 Plaquette interactions|. . . . . . . . . . .. ... .. .. ... ..

4.3.2  Gauge-Matter interactions| . . . . . . . . .. ...
4.4  Shaping of the lattice] . . . . . ... ... ...

Error nds for trotterized tim lutions| . . ... ... ... ... ...

“4.5.1  Error bounds for general trotterized time evolutions| . . . . . . .. . ..

4.5.2  Error bounds for trotterized time evolutions 1n lattice gauge theory| . . .

“.5.3 Specialcases . . . .. ... .

12
12
14
15
17
19

23
23
26
28
28
34
35
36
41

43
43
45
47
48
51
55
59
59
62



[S  Implementation of lattice gauge theories with a dihedral gauge group|

5.1 Simulating system|. . . . . .. ... ... ... ...

[5.2  Implementation of the digital sismulation| . . . . . . .. .. .. ... ... ...

[5.2.1 Standard configuration of the lattice| . . . . . . ... ... ... ...

[Acknowledgements|

[Declaration of Authorship|

67
67
71
71
72
73
78
81
85
86

88

90

102

111

112



1 Introduction

The physics of the microscopic scale is governed by the laws of quantum mechanics. Although
they are mathematically well understood, solving the dynamical equations for a system consist-
ing of many particles is a very difficult task as the Hilbert space dimension grows exponentially
with the system size. One approach to this problem - first proposed by Feynman in 1982 [1]
- is to build a highly controllable system obeying the laws of quantum mechanics itself and
therefore simulating the system in a much more efficient way compared with classical simula-
tions [2]].

Various platforms can serve as quantum simulators, reaching from atomic systems such as ul-
tracold atoms [3-5]] and trapped ions [6,/7] to solid-state devices such as quantum dots [8,9] and
superconducting qubits [[10,/11].

According to the simulation scheme, quantum simulators can be divided into analog and dig-
ital simulators. The former relies on an analogous quantum system whose Hamiltonian can
be exactly or approximately mapped into the Hamiltonian of the system to be simulated. The
latter, however, is based on a highly controllable quantum system which can be manipulated
to an extent that its dynamics can obey different Hamiltonians for different time intervals. The
quantum operation for a single time step is called a quantum gate. The time evolution of the
system is then approximated by a stroboscopic sequence of quantum gates given by Trotter’s
formula e~ = limy_, (][] ; e~tH;/NYN [112]. If the set of these gates is universal we refer to
the quantum simulator as a quantum computer [13].

From the experimental point of view, a quantum computer - outperforming classical computers
- is still a long-term goal. Nevertheless, great progress has been made over the last decades in
the manipulation of microscopic quantum systems as those mentioned above. This has led to
the fact that, when such systems are tailored to a specific problem, they can serve as quantum
simulators which are capable of unveiling interesting physics. Some prominent examples are
the realization of the Bose-Hubbard model [14]], the Tonks-Girardeau gas [|15]] or topologically
non-trivial models like the Haldane model [16].

The implemented Hamiltonians mainly originate from condensed matter physics, including the
aforementioned ones. Quantum simulations of high energy physics are equally possible but
more demanding, since additional constraints have to be taken care of. A particular active field
in that regard is the quantum simulation of gauge theories.

The concept of gauge invariance lies at the core of fundamental physics. The standard model



of particle physics - describing electromagnetic, weak and strong interactions - is built upon
this principle [17]. We distinguish abelian gauge theories, e.g. quantum electrodynamics
(QED) with gauge group U(1), and non-abelian ones like quantum chromodynamics (QCD)
with gauge group SU(3) describing the strong interactions. Local gauge invariance requires
introducing additional degrees of freedom, the gauge fields, which are the force carriers of
the theory. If the force’s coupling is small enough, perturbative expansions allow calculations
up to arbitrary accuracy. Since the coupling in quantum field theories depends on the scale
(running coupling) [18]], there are regimes where this assumption does not hold. This concerns
in particular the low-energy sector of QCD, where the quarks are subject to confinement [19]
which prevents the existence of free quarks. If we are in such a non-perturbative regime where
the coupling is too strong for perturbation theory, only very few methods can produce meaning-
ful results.

The most common approach is lattice gauge theory [19,20]. The idea is to discretize space
(and sometimes time as well) to construct a framework in which numerical tools can be applied
- with Monte Carlo methods being the most prominent ones [21]. In spite of their success,
there are limitations which are inherent to Monte-Carlo simulations of lattice gauge theory. A
major one is the sign problem, which prevents investigations in fermionic systems with a finite
chemical potential [22]]. As a consequence, corresponding phases in quantum field theories still
remain relatively unexplored, e.g. the quark-gluon plasma or the color-superconducting phase
of QCD [23,24]. Another drawback of these simulations is that they take place in euclidean
spacetime, i.e. the time coordinate is rotated from real to imaginary time. This obviously makes
real-time dynamics inaccessible and thereby e.g. preventing the study of non-equilibrium prop-
erties of quantum field theories [25]. Quantum simulation of lattice gauge theories [26,27]
could overcome these obstacles and provide new insights into these questions. However, as
mentioned earlier, special care has to be taken of the symmetries present in lattice gauge theo-
ries but naturally not present in a typical candidate system for a quantum simulator like ultracold
atoms or trapped ions. The two symmetries are Lorentz symmetry and local gauge invariance.
In the context of ultracold atoms, the former can be achieved by putting the atoms on a lattice.
It is known that in the continuum limit fermionic lattices can give rise to both spin and linear
dispersion relations typical for relativistic theories [28,29]. This is not uncommon in condensed
matter systems with graphene being the most prominent example [30]. There, around certain
energy levels, the so called Dirac points, the system is described by the Lorentz invariant Dirac

equation. On the other hand, local gauge invariance can either be obtained as a low-energy



effective symmetry [31.[32]] or by an exact mapping to an internal symmetry, like e.g. hyperfine
angular momentum conservation [33}34].

Quantum simulations of lattice gauge theory have been proposed using various quantum de-
vices, such as ultracold atoms in optical lattices, trapped ions or superconducting qubits. The
simulated models can be distinguished by different features, for example, the gauge group
(abelian and non-abelian), the matter content (dynamical or static) or the simulation scheme
(analog or digital) [31-55]]. Ultracold atom experiments are starting to realize simple proposals,
with one experiment being set up to study the Schwinger model, (1+1) dimensional quantum
electrodynamics [56]]. Using trapped ions, a digital quantum simulation of a lattice gauge theory
was already implemented in 2016 [57], allowing the observation of real-time dynamics in the
Schwinger model.

Compared to other quantum devices, ultracold atoms do not rely on Jordan-Wigner transfor-
mations (mapping a spin-1/2 chain to a chain of spinless fermions [38]) to realize fermionic
degrees of freedom since they arise naturally by using a fermionic atomic species. Thus, they
are not restricted to one dimension and are suitable candidates to study lattice gauge theories
in higher dimensions (higher-dimensional versions of Jordan-Wigner transformations exist but
would require nonlocal interactions [59]]). As the dimension is a crucial parameter and might
change the qualitative behavior of the theory, three-dimensional schemes for quantum simula-
tions are desirable. Another important step is the implementation of lattice gauge theories with
non-abelian gauge groups in more than 1+1 dimensions including dynamical fermionic matter
since numerically inaccessible regimes of quantum field theories (e.g. in QCD) are precisely of
that nature.

This thesis aims at tackling these problems. Using ultracold atoms in optical lattices, a digi-
tal algorithm, based on the concept of stators [60], is proposed to enable quantum simulations
of lattice gauge theories in three dimensions. By mediating the four-body interactions of the
magnetic Hamiltonian via an auxiliary degree of freedom, we can avoid fourth order perturba-
tion theory as compared to previous proposals. Moreover, an implementation of a lattice gauge
theory with a non-abelian gauge group, the dihedral group Dg, in 2+1 and 3+1 dimensions is
suggested.

In the first chapter, the basic ingredients for quantum simulations with ultracold atoms in op-
tical lattices are presented, in particular scattering theory required as a resource to implement
interactions. Secondly, a background in lattice gauge theory will be provided, with an emphasis

on the Hamiltonian formulation used later on in the quantum simulation. The third chapter is
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devoted to the digital algorithm enabling quantum simulations of lattice gauge theories includ-
ing fermionic matter in three dimensions. Since the digital quantum simulation scheme is an
approximated one, the validity of this approach will be backed up by giving exact bounds on
the trotterization error in lattice gauge theories. The fifth and last chapter will discuss an im-
plementation of a lattice gauge theory with a dihedral gauge group, presenting a novel idea to
realize non-abelian gauge groups with ultracold atoms which takes advantage of the semidirect

product structure of the gauge group.

11



2 Ultracold atoms in optical lattices

Over the last decades experimental techniques to control atomic systems have been developed
to an extent that allows to manipulate and observe quantum systems in regimes that were not
accessible before. This has in particular led to the emergence of a new field, the field of ultracold
atoms [3,5,61]. Neutral atoms are trapped and cooled down to almost absolute zero temperature,
revealing their quantum mechanical behavior. The groundbreaking achievement of creating a
Bose-Einstein condensate [[62]] of bosonic atoms allowed the study of collective phenomena in
the quantum degenerate regime. One direction of research in the field is aiming at simulating
many-body systems - from condensed matter physics as well as from high energy physics -
by emulating the corresponding dynamics with ultracold atoms. Various quantum simulations
have already been successfully performed [14-16,57]. In this chapter we review the main
ingredients to perform a quantum simulation with ultracold atoms. We present the trapping of
ultracold atoms in optical lattices and their physics in periodic potentials arising from that. Also

scattering as a source of interactions will be addressed.

2.1 Optical lattices

In this section we shall discuss how off-resonant lasers are used to trap neutral atoms and nat-
urally create optical potentials resembling a lattice. The following formalism will be semi-
classical, i.e. the laser field will be treated classically. This is justified since the influence of
the atom on the laser field can be neglected. The trapping mechanism will be explained by
considering a single atom in the laser field. For simplicity we assume the atom to be a two-level
system with a ground state |g) and an excited state |e) (see figure I). The Hamiltonian of the

atom has the form

Ha=® le) (e] 1)

2m
where the first term corresponds to the kinetic energy and the second one to the internal en-
ergy levels. The laser is generating a classical electrical field of the form (assuming a time-

independent amplitude)

E(x,t) = E(x)e” ™ + E*(x)e™" 2)
The laser induces a dipole moment d in the atom creating an interaction of the form

12



Figure 1: The two energy levels of the atom, |e) and |g), are coupled non-resonantly with a laser
of frequency w. The difference to the frequency w, of the level separation is called the detuning

J

Hap = —d-E(x, 1) (3)

under the condition that the dipole approximation holds which requires a sufficiently low strength
of the laser field and that the field is varying slowly compared to the atomic size. The atom has
a vanishing dipole moment if it is in an energy eigenstate, so (e|d|e) = (g|d|g) = 0. Thus, we

can write the dipole moment operator as

d = degle) (g| +d;, |g) (el )

with d., := (e|d|g). After transforming to the rotating frame of the laser - determined by the
unitary transformation U (¢) = |g) (g|+e ™" |e) (e| - we perform a rotating wave approximation,

neglecting highly oscillating terms. The resulting Hamiltonian - including H 4 - is of the form:

2

|y
H:%+5|e)(e|—<

Q(x)
2

le) (g| + h.c.) (5)

with § = w, — w the detuning and the Rabi frequency €2(x) defined as

Q(x) = 2d,, - E(x) (6)

The laser frequency w is chosen to be off-resonant so that transitions from the ground state to
the excited state are very unlikely. However, virtual second-order processes to the excited level

and back are possible. This allows to apply adiabatic elimination for the excited state which

13



results in an effective Hamiltonian for the ground state of the form

p
H = % + ‘/Op(X) (7)
with the optical potential
Q)]
Vop(x) = — 3 8)

By choosing the detuning sufficiently large and applying adiabatic elimination we basically
traced out the Hilbert space of the internal levels and got in return an optical potential for the
ground state. The Hilbert space of the atoms can therefore be considered to act only in configu-
ration space. The large detuning has the additional advantage that we can neglect spontaneous
emission of the excited state whose lifetime we implicitly assumed to be infinite. Moreover, we
see that the optical potential is proportional to |EE(x)|? and thus the intensity of the laser. This
opens up the possibility to design the desired potential by choosing an appropriate configuration

of the lasers.

2.2 Periodic potentials

The desired structure for the optical potential is typically a lattice. This section will therefore
be devoted to the physics of an atom moving in a periodic potential. The starting point of the

discussion is the corresponding Schrdinger equation

[ﬁ i vm] $(r) = E(x) ©)

2m

with V being periodic, i.e. V (r) = V(r + d) where d can be any lattice vector. The solution to
it is given by Bloch’s theorem [63]]. It states that the space of solutions is spanned by a basis of

wave functions, labeled by n, which are all of the form

() = e®ru(r) (10)

where u has the same periodicity as the potential V. The wave functions @bl({”) are called Bloch
waves and their energy levels El((n) Bloch bands. All Bloch waves are spread out over the whole
lattice. However, one can choose another basis, the Wannier basis, whose wave functions are

localized. They are related to the Bloch waves by a Fourier transform:

14



1 .
war = 1) = == 3 ek (r) (11)
k

where M is a normalization constant and r; denoted the lattice site where the atom is localized.
The Wannier basis can be used to express a Hamiltonian in second quantized form using oper-
ators acting only on lattice sites. Ultracold atom experiments are nowadays able to cool atoms
down to temperatures where only the lowest Bloch band has to be considered. They typically
reach microkelvin temperatures (p1/), using a combination of several techniques. In the first
step the atoms are usually trapped and pre-cooled by lasers in a magneto-optical trap. To get
to the lowest temperatures accessible at the moment, evaporative cooling is applied in a second
step [[64]]. Thus, defining the lowest Bloch band as ¢;(r) = wy(r — r;), a bosonic wave function
®(r) in second quantization can be expanded in terms of single particle annihilation operators

Qi

O(r) = Zaicbi(r) (12)

The annihilation operators a; corresponding to the bosonic species obey the commutation rela-

tions

[CLi, CLT] = 51‘]‘ (13)

However, the same expansion is possible for a fermionic wave function. The only difference

are the fermionic annihilation operators ¢; which obey the anticommutation relations
{Ci,C}L} = 5@']‘ (14)

2.3 Scattering of ultracold atoms

In the classical sense one may think of scattering events as rather chaotic processes which are
not well suited to mediate a specific interaction as required for quantum simulations. However,
in the ultracold regime things are much different due to the quantum behavior of the particles.
We consider two asymptotically free particles in their center of mass frame interacting through
a spherically symmetric potential V() [65]. An incoming particle from the z-direction can be

described after sufficiently large times after the scattering process in the asymptotic form

15



6zkr

U~ e*= 1 f(0) "

(15)

where the factor f(6) in front of the spherical wave is the scattering amplitude. It can be
expressed in terms of Legendre polynomials characterized by different values [ of angular mo-

mentum (partial wave expansion) [65]:

F(6) = 5 D021+ 1) (k) Picos ) (16)

where P, is a Legendre polynomial and f;(k) the partial wave amplitude. In the low-energy

limit f;(k) scales as

fim K (17)

Hence, all amplitudes are negligible apart from [ = 0, the s-wave scattering term. The ultracold
regime is defined by this approximation, i.e. if the lowest partial wave governs the scattering.
One has to be a bit careful here since the lowest accessible partial wave is not always the s-wave.
For bosons and unidentical fermions this holds true, for identical fermions, however, it is the
p-wave with [ = 1 due to Pauli’s exclusion principle [5]. Focusing on the s-wave channel since
we will not deal with scattering of identical fermions, we can characterize the scattering process

by a single quantity, the scattering length a. It is defined as

a = —lim Jo(k)
k=0 k

(18)

The total scattering cross section

o= /dﬂ|f<9>|2 (19)

takes then the form

o = 4ra® (20)

Another valid approximation we can make in this regime concerns the form of the scattering

A/ ki—”T is much larger than the effective range

of the potential, it can be described by the pseudopotential [5./66]:

potential. Since the de-Broglie wavelength App =

16



Vix—x')= 27T—aé(x —x') =

- d(x —x') 21

RS

So far only two-body processes were considered. This has to do with the diluteness of ultracold
atomic gases. Typical densities n of atoms are 10'? to 10'%¢m 3. In these regimes three-body
interactions are negligible. Another consequence is that the interparticle distance n~/? (of
the order of micrometers pm) is larger than the scattering length (of the order of nanometers
nm [5]). This allows the assumption that the atoms occupy the ground state of the gas. This

regime is therefore called the weak interaction regime.

2.4 Second quantization and the Bose-Hubbard model

With the previous sections at hand we can formulate the Hamiltonian of a single species in
second quantized form. We start from the Hamiltonian density with the pseudopotential already
inserted:
i v 9t it
H=0Nx) ( —5— + Vop(x) + Vr(x) | 2(x) + 50" (x)¢' (x)o(x)d(x) (22)
where V7 is an external trapping potential. In the next step the wave functions are expanded in

terms of Wannier functions according to eq. (12)). Defining the overlap integrals

V2
€, = /d% o5 (x) (—% + Vop(x) + VT(X)) On(x) (23)
V2
o = [ 265,00 (= Vil + Vel ) 0,00 9
Unnit =9 [ 26,06, (x)01(x)61(x) 25)
we can write the Hamiltonian in its most general form
H= Z enaLan + Z Jmnainan + Z Umnklajnaiakal (26)
n m,n m,n,k,l

where we chose the creation and annihilation to be bosonic for this demonstration because of
the following discussion of the Bose-Hubbard model. However, similar Hamiltonian terms

may be written for fermionic creation and annihilation operators, as well as for boson-fermion

17



interactions.

In the following, we will specify the parameters €,,, Jy, Upnii to the case of the Bose-Hubbard
Hamiltonian, one of the simplest many-body Hamiltonians and the first one that was realized
experimentally [ 14]. The first assumption of the model is that the energies of all lattice sites are
the same, i.e. ¢, = €. The Wannier functions are considered to be well localized, i.e. the optical
potential is sufficiently deep, but only to an extent that the wave functions of neighboring sites
still overlap and are equal throughout the lattice, 1.e. .J,,,,, = —.J. For the interaction term these
contributions are negligible and only on-site interactions will be present, i.e. U,y = U. The

resulting Hamiltonian is of the form

Hpp =e€» ala,—J Y ala,+UY Ny(N, 1) (27)
n <m,n> n
where < m,n > indicates the sum over nearest neighbors and N, = al a, is the particle

number operator at site n. The important quantity of the model is the ratio J/U which can
be controlled in experiments by varying the depth of the optical potential. As demonstrated
in experiment [[14], by tuning this ratio a phase transition between the two quantum phases
of the Bose-Hubbard model can be induced. If the tunneling is much smaller than the on-
site interactions (J < U), a Mott-insulator ground state appears. This is characterized by the
presence of n localized particles per lattice site. It can be described by a product state of the

form
[War) ~ [ J(al)" 10) (28)
where the |0) state stands for an empty lattice. On the other hand, if the tunneling dominates

the on-site interactions (J > U), the ground state of the system behaves as a superfluid. In this

case the atom is delocalized over the whole lattice and can be expressed as

(Usp) ~ (Z a!) 0) (29)

which in the limit of vanishing on-site interactions (U = 0) becomes just a product of coherent

states in each lattice site.
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2.5 Multiple species

The discussion of the previous sections can be generalized by considering multiple species. One
possibility to realize this is by taking the internal structure of the atoms into account. We will
focus in the following on different atomic hyperfine levels [61,/66-68], in particular on alkali
atoms possessing a single electron in the outer energy level. The hyperfine angular momentum

is defined as

F=S+L+1I (30)

where S denotes the valence electron’s spin, L the electron’s orbital angular momentum and I
the nuclear spin. Since the valence electron of an Alkali atom is in an s-orbital, its orbital angular
momentum is zero, i.e. L = 0. The hyperfine angular momentum F' fulfills the commutation

relations

[Fz,Fg] = iEz‘ijk (31)

The states can be characterized by two quantum numbers F' and mp, the eigenvalue of the

squared angular momentum operator

F? |F;mp) = F(F + 1) |F;mp) (32)

and the eigenvalue of the z-component

Labeling the different internal levels by Greek indices and taking into account that different

species might experience different optical potential V!

op> W can express the second quantized

Hamiltonian density for multiple species in the form:

(63 v2 (0% o
Y = Z P! (x) <5 A (—% + Vo (x) + VT(x)) +Q 5(x)> Dp(x)
7 (34)
+ ) / &' B (X ) 0L (%) Vi 5,5 (x — X)) Do (x) D5 (x)

a,B,7,0
where %7 (x) accounts for a possible coupling (Rabi coupling) between different atomic levels

induced by external lasers. The two- body scattering potential for different species V,, 5..5(x —
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x’) will be discussed now. The first atom shall have angular momentum F; and the second
atom F5,. The scattering can occur via different intermediate states depending on the total an-
gular momentum F7. Each one can have a different scattering length resulting in the following

scattering potential:

2ma

Vaprs(x —X) = 75 (x=%)> " ar(Pry)apns (35)
Fr

where «, 3, v, 6 denote the different in and outgoing states, Pr,. the projection operator on the
subspace of total angular momentum F7- and p the reduced mass of the two species. For later
purposes it will be advantageous to express the projection operators Pp,, by a function of F; - F.
This is possible since the total angular momentum depends on the relative orientation of F; and

F,. Mathematically speaking, this corresponds to the equation

1
Fy-Fy = (F7 - F{ - F}) (36)
with F# and F3 being fixed. If the total angular momentum operator Fr can take n different

values, then the projection operator Pr, can be obtained as a polynomial of F; - Fy:

n—1
Pp, =Y Gpp(Fy - Fo) (37)
k=0

with an appropriate choice of the coefficients {Gp, x}. Thus, the scattering potential can be

written in terms of F'; - Fy:

Vaprs(x—x') = —6 (x —x') ng )aBo.6 (38)

where the g;, coefficients are simply functions of G, and ap,. Hence, the corresponding

Hamiltonian density takes the form

2
Hecatd = — > ng 0,576 (X) 1 ()@, () D5 (x) (39)

a,B,7,0 k=0

To obtain the time evolution of this interaction we have to integrate the Hamiltonian density
over space and time. Assuming for simplicity that the wave functions of all internal states of the

two atoms have the same spatial overlap O(t) throughout the interaction, we can write down

20



the unitary for the scattering process

Useyy = ¢~ S OWALTEZ0 01 (F1-F2)") (40)

This scattering process is a key ingredient to perform quantum simulations with ultracold atoms.
One can even tailor this interaction by, for example, tuning the overlap in a way that only certain
internal levels overlap. To illustrate the process of going from the projection operators Pp,.
to F; - Fy, we will explicitly calculate all the relevant quantities for the scattering processes
which will be discussed in later chapters. In the first one both scattering partner have angular
momentum F' = 1, i.e. F; = F, = 1. Since we will consider unidentical particles the total
angular momentum can take the values /' = 0, 1,2. Hence, we need to express the projection
operators Py, P, and P, in terms of F; - Fy and (F; - F5)?. We obtain

1
Poz—g(]l—(FlFQ)Q)
1
P1:H—§(F1-F2+(F1-F2)2) 41)
1.1 1
Py= -1+ -F, -F, + =(F, - Fy)?
2= 3 +2 1 2+6( 1-Fy)

From the above expressions we can read off the coefficients {g; } as a function of the scattering

lengths ag, a; and as:

go — —g&o + aq + §CL2
1 1
g1 = —§a1 + 5(12 (42)
1
g2 = 300 — 5M + 6

The second process required for the implementation later on is the scattering process between
two unidentical atoms of angular momentum F; = F; = 1/2. The Projection operators P, and

P, can be written as

1
POZ—]I—Fl'FQ

3 (43)
Plzz]l—f—Fl'FQ

The coefficients gy and g, are consequently
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Jgo = Zao + Z_lal a4)

g1 = —ag+ ay

The last scattering process involves an F; = 1 atom and an F;, = 1/2 atom. The projection

operators for the total angular momentum P/, and P/, can be expressed as

1 2

Pijp=s1—-2-F - F,

g g (45)
Pyo=-1+-F,-F
3/2 3+31 2

The corresponding coefficients gy and g; are (depending on the scattering lengths a; /5 and as/»):

1 2
go = Q172 + 5a3/2

2 3
9 5 (46)

g1 = _§a1/2 + §a3/2
Finally, a comment on the scattering lengths which were assumed to be given. However,
there are experimental techniques which allow to tune it via a scattering resonance called
Feshbach resonance [5,/68,69]. The underlying idea consists of two coupled scattering chan-
nels, one open and the other one closed. Even though the closed channel does not directly
contribute to the scattering process, it can influence the scattering length due to its coupling to
the open channel. The coupling between the channels is usually tuned with a magnetic field,
although there exist optical Feshbach resonances [70]. For a magnetic Feshbach resonance the
resonant scattering length can be calculated in terms of the magnetic field and the off-resonant

scattering length ay:

AB
a:a0<1+B_BO> @7)

where A B denotes the width of the resonance and By the position of the resonance.

Realizing Feshbach resonances in experiments requires some effort. First of all, not all atomic
species exhibit a Feshbach resonance so that the choice of possible atomic species is reduced.
The resonances for the remaining species are different so that it is only possible to tune one
scattering length. Moreover, if a specific scattering length is supposed to be implemented, the
fluctuations of the magnetic field have to be well-controlled. This may be overcome by the use

of optical Feshbach resonances; however, their realization is very challenging and demanding.
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3 Lattice gauge theories

The principle of gauge invariance states that by locally changing a certain quantity of a the-
ory the observables will remain unchanged. Theories exhibiting this property are called gauge
theories. They are particularly relevant for high-energy physics as they explain the dynamics
of elementary particles. These theories, such as quantum electrodynamics (QED) or quantum
chromodynamics (QCD), are based on vector fields, e.g. the electromagnetic field, that mediate
the forces between elementary particles. Gauge invariance is incorporated in a way that certain
transformations of the field, called gauge transformations, still give rise to the same measurable
quantities like energy or charge. The study of these quantum field theories culminates in the
standard model of particle physics, a corner stone of modern physics as it quantizes all funda-
mental forces except gravity.

However, as most techniques in quantum field theories rely on a perturbative expansions in the
coupling, important quantities - especially in the non-perturbative regime - can not be computed
due to the running coupling [18]. One approach is therefore to put the quantum field theory on
a lattice, thus providing a natural regularization scheme (it can be viewed as introducing a UV-
cutoff). This allows to apply numerical methods - mainly Monte-Carlo simulations - what has
led to new insights into QCD, e.g. the calculation of the hadronic spectrum or a better under-
standing of the confinement of quarks.

In this chapter, we shall first review basic concepts of gauge theories in the continuum and use
them as an introduction to Wilson’s lattice gauge theory, a euclidean formulation involving a
discretization of space and time. The major part of this chapter will then be devoted to the
Hamiltonian formulation of lattice gauge theories as it will be present throughout the whole

thesis.

3.1 Gauge theories in the Continuum

The starting point of the discussion is a field theory described by a Lagrangian with a global
symmetry, i.e. the system is invariant under an application of the same transformation at each
point in space-time. This global symmetry can then be gauged, i.e. it is promoted to a local one.
As a consequence of requiring local gauge invariance, the gauge fields will emerge naturally.
To elucidate the concept of gauge invariance we will perform the usual gauging procedure

following the example of quantum electrodynamics.
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Let us consider the Dirac Lagrangian density

L(x) = (x)(iv"0, — m)y(x) (48)

where 9(z) is the free field of the electron, 9(z) its conjugate and v* the Dirac matrices. The
global symmetry is characterized by a phase transformation under which the Lagrangian is

invariant. With o € R, it is defined as:

(@) = ()
Y(@) = e P(x)

In contrast to a global phase transformation, a local one - where & = «(x) would depend on

(49)

spacetime - would change the Lagrangian. The reason for that is the derivative d,, which would
act on the phase factor ¢**(*) and create an extra term by means of the product rule. The typical
method to remedy that issue is by introducing an additional field A, the gauge field, which
compensates for the changes in «. It is incorporated into a new kind of derivative, the covariant

derivative D, replacing the ordinary derivative 0,,. It is defined as:

D, =0, —1ieA, (50)
where e is the coupling constant. Its main feature is the restoration of gauge invariance due to
the transformation of the additional field A, under gauge transformations:

A, — A+ e '0,a(x) (51)

Writing the new Lagrangian density £’ in terms of the old one, one sees that an additional
term appears, describing a coupling between the gauge field A, and the conserved current J#

associated to the global symmetry by Noether’s theorem:
L'(z) = L(x) + eb(z)y"P(z)A, = L(x) + eJ'A, (52)

This is usually referred to as minimal coupling since the term does not involve higher orders
of A,,. To make the gauge field dynamical a kinetic term is added to the Lagrangian. It has to

fulfill Lorentz invariance and gauge-invariance. Moreover, as a kinetic term it needs to be of
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second order. The simplest expression taking all that into account is the term

1
*Ckin,A = _ZFMVFMV (53)

where the factor —% is the correct normalization factor when added to £'. The tensor F),, is the

electromagnetic field strength tensor defined as

F,=0,A,—0,A, (54)

Thus, the complete Lagrangian of quantum electrodynamics takes the form:

- 1
Loep = L(x) + ep(x)y" () A, — ZFWFW (55)

The above gauging procedure was performed for a local phase transformation corresponding to
the gauge group U(1). However, in principle any Lie group can be chosen. The most common
generalizations are the Lie groups SU(N). The associated theories are called Yang-Mills theo-
ries with quantum chromodynamics (QCD) being the most prominent example, corresponding
to the gauge group SU(3). As a consequence of the non-abelian nature of these theories the
matter fields form representations under the transformation of the gauge group. Hence, unlike
in quantum electrodynamics, the matter spinor will have several ’color” components, mixed
by gauge transformations. These fields will form a tuple depending on the dimension of the

representation. Assuming it to be n-dimensional, i.e.

V:G— GL(n,C)

(56)
9= Vig)
the multiplet of fields, ¥ (z) = (¢1(x), ¥2(x), ..., ¥, (z)), transforms as:
W(z) = V(g)(z)¥(x) (57)

Starting again from the Lagrangian £(¥, 0W) in eq. which is invariant under global trans-
formations, i.e. the above transformations is fixed for all spacetime points x, one can gauge the
symmetry in a similar fashion. The ordinary derivative is replaced with the covariant derivative
according to eq. with the difference that the gauge field A, will now take values in the Lie
algebra su(V). It can be expressed in terms of the generators 7 of the Lie algebra:
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A, = Aee (58)

(summation on the group indices a assumed). Hence, the number of gauge fields is character-
ized by the dimension of the Lia algebra su(/N). The kinetic term of the gauge fields is of a
similar form compared to QED:
1 a uva 1 2
Lym = _ZLF“”F = —§Tr(F ) (59)

A novel feature, however, lies in the different form of the field strength tensor:

F.,=0,A, —0,A, —ilA,, A (60)

because the extra term at the end gives rise to three and fourth order terms in the Lagrangian
resulting in interactions between the gauge fields. This is a crucial difference compared to
photons in quantum electrodynamics. It also has the consequence that the equations of motion

become nonlinear and thus makes such theories hard to solve.

3.2 Euclidean formulation of lattice gauge theories

In this section, Wilson’s formulation of lattice gauge theories shall be briefly reviewed [|19].
The underlying idea is to put a Yang-Mills theory in d + 1 dimensions on a lattice and rotate
to euclidean spacetime (Wick rotation). The advantage of working in such a framework is that
the dynamics of the theory is transformed into an additional spatial dimension. It reduces there-
fore to a static problem that can be studied by means of classical techniques like the partition

function. In order to do so, one has to do the following transformations:

/dd+1x£(x) — a® Z L(an)

0u(an) = o [(a(n + 1)) — Ylaln - )

t— T

(61)

After this discretization of spacetime combined with a Wick rotation, we will have the matter
degrees of freedom placed on the vertices of the d 4+ 1 dimensional lattice and the gauge fields
will reside on the links. They will no longer be represented by an element of the Lie algebra but

an element of the Lie group. The gauge field on the link between vertex n and vertex n + /i is
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Figure 2: The gauge fields are represented by group elements Uy, , residing on the links, whereas
the matter fields, represented by spinors ¢/, are located on the vertices

denoted as Uy, (see Fig.(2) . It can be written in terms of the generators of the Lie algebra:

Up, = €%l (62)

M

where 0} , are the parameters corresponding to the group element Uy, ,,. To obtain gauge invari-
ance for all lattice spacings @ € R a new action is defined which is invariant under the gauge

transformations of Uy, ,,,

Uny — V(an)Uy, Vi(a(n + 1)) (63)

where V' (an) € G are group elements varying throughout the whole lattice. Wilson’s approach
to that problem was based on the observation that oriented products of group elements U, ,
along closed paths are gauge invariant. It is therefore natural to take the shortest of such paths
as a building blocks for the action. Choosing appropriate constants to recover Yang-Mills theory

in the continuum limit, one obtains the Wilson action:

d
S Wilson —

(UniUnsislUbin U3, + Hee (64)

XV
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where g is the coupling constant. One can show that this action indeed resembles the action of
Yang Mills theory in the limit a — 0 [92]:
1 d+1 %
Sym = —5 A xTr (F,, F*) (65)

3.3 Hamiltonian formulation of lattice gauge theories

3.3.1 General description

Lattice gauge theories may also be formulated in a Hamiltonian framework exhibiting a con-
tinuous time coordinate, first proposed by Kogut and Susskind [28]. The lattice consists of d
spatial dimensions, where the matter fields are placed on the vertices and the gauge fields reside
on the links. For a detailed description we first pick some compact or finite group G. We label
its irreducible representations by j and introduce a Hilbert space spanned by a basis of the form
|7m) with m a label for the states within the representation j. The action of a group element on
this representation space can be described by a unitary operator 6, leaving the representation

invariant and acting on the internal states with the matrix D? (g):

Oy |m) = D} (9) [7) (66)

If we relate the state |jm) to fermionic creation operators 17/ they obey the transformation rule:

Oqu}i05 = ¥l D1, (9) (67)
In the case of a compact group we can expand 6, in terms of charges (),:

0, = €' (68)

with the charges

Qa = @birf (Tg)mnd}% (69)

Here 77 is the matrix representation of the a-generator. These matter fields /7 will reside, as
mentioned, on the vertices (the 7 will be omitted in the following as we assume that we will use
only one fixed representation j, although this does not necessarily have to be the case). They

are expressed in second quantized form as they will be allowed to tunnel so that the number
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of fermions is only globally conserved but not locally. The states on the vertices are then Fock
states building upon the Fock vacuum |0). A natural choice for the Hamiltonian is then (ignoring

local gauge invariance for the moment):

H= ZM +EZ¢T Vm(x + k) + h.c. (70)

where the sum of x = an goes over all n € Z%, k € {1, ..., d} labels the lattice’s directions and
k is the corresponding unit vector.

This naive discretization procedure, however, gives rise to a problem called fermion doubling
[71,/72]. It has its origin in the different behaviors of the dispersion relation in the continuum
and on the lattice. Deducing them from the Dirac equation, one obtains (for simplicity in one

dimension)
E?2 —m?2, —00 < p <0 (71)

for the continuum and

sin(pa)
a

=+HE?2—m?  —rw/a<p<m/a (72)

on the lattice. Taking the limit a — 0 of the dispersion relation for the lattice around p = 0, one
recovers the dispersion relation for the continuum. The problem occurs when considering the
corners of the Brillouin zone, e.g. momentum p = 7/a where - in the massless case - no energy
is required to create a particle and the dispersion relation has the same behavior like it has
around p = 0 (up to an irrelevant minus sign). In the continuum limit this corresponds to a pole
in the fermionic propagator on the lattice and one recovers the single-particle Green’s function
of the continuum. Since there are 2¢ such momenta in the Brillouin zone of d dimensions, a
single fermionic field on the lattice gives rise to 2¢ fermionic fields in the continuum. Hence,
the name fermion doubling.

Several methods have been developed to resolve that problem, one of the most prominent being
Wilson fermions [[73|]] where additional terms are introduced (vanishing in the continuum limit)
to remove the zeros in the Brillouin zone. Other techniques are for example Ginsparg-Wilson
fermions [74]] or domain wall fermions [[75]. The focus of this thesis will lie, however, on
Staggered fermion, invented by Kogut and Susskind [76]. The basic idea is to distribute the

spinor components of the fermionic field over the lattice in a way that the effective lattice
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spacing for each of the components will be increased. This can be understood as a cutoff for
higher momenta and thus removing the undesired zeros in the corners of the Brillouin zone.
Neighboring sites with different components will then form the spinor in the continuum limit.
One can formulate a Hamiltonian in terms of a single component spinor which incorporates this

concept:

H=M Z DYl (%) (%) + € Y el (X)h(x + k) + hoc. (73)

x,k

where the phases «j; must be carefully chosen to obtain the correct (Dirac) continuum limit.
However, for U(1) gauge theories or theories with a gauge group that contains U (1) as a sub-
group, one can set ay, = 0 as the later inclusion of gauge fields will allow to gauge these phases
away. Note that the component m of ¢ refers to the gauge group (as discussed earlier) and not
the Lorentz group. The factor (—1)* assigns a positive mass M to fermions on even sites and
negative mass M to odd sites. This can be interpreted as the Dirac Sea: Occupied even sites
correspond to particles whereas vacant odd sites correspond to anti-particles. The energetically
most favourable configuration is therefore an occupation of all odd sites and vacancies at all
even sites. This state, the fermionic vacuum, is called the Dirac state, denoted as | D).

We will now turn the focus on the gauge degrees of freedom located at the links which are
characterized by (x, k). For the Hilbert space on the links, representing the gauge fields, we can
choose the group element basis or the representation basis. The group G can act on the group

element basis in two ways, corresponding to left and right transformations:

Oy |h) = |hg™") (74)
O, |h) = [g~"'h) (75)

We define an operator U/, a matrix of operators in Hilbert space:

mn?

/D 9)19) (9] dg (76)

It obeys the following transformation rules:

Q.U el =U’l D’ (g)

mng

(77)

@gUTZm@g :Dgn ( )UJ

m/n
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If G is a compact Lie group, we can expand the matrix operator U’ as:

Ul = eiéaTi (78)

where ¢, are operator-valued group parameters. We may also expand the transformations O,
and (:)g:

99 — ei¢aRa
- ‘ (79)
(._.)g — 61¢aLa
where R, and L, are right and left generators fulfilling the commutation relations
[Rm Rb] = 7;fabcRc
[Lm Lb] = _ifabch (80)

Lo, Ry =0

One can think of the group parameters ¢, as the color components of the vector potential.
Thus, one may refer to the group element basis as magnetic basis. The conjugate degrees
of freedom can be identified with the generators, hence representing the electric field. The
corresponding basis is the representation basis, denoted as |jmn). We have two components m
and n identifying the components within the representation j. The reason for that is the non-
abelian nature of the gauge group so that one has to distinguish left and right transformations.
m will be chosen as the eigenvalue of the left generators and n for right transformations. The

two basis are connected by the relation (also valid for finite groups):

Hmid) b, o) (81)

(alimn) =\ 71

where |G| is the order of G. A singlet state is given by |000). Then, it follows straightforwardly
that

ljmn) =/dim(j)U},, [000) (82)

A useful property for calculations carried out later on is the connection between the hermitian

conjugate of U7 in Hilbert space and in Matrix space. It has the form:
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(Ui, = / dg19) 9] D2, (g) = / dg19) (91 D1, (9) = (U91) (83)

Since all matrix elements of U commute, one can treat the matrix elements as numbers and
define functions of the matrix /. One object that will turn out to be useful later on is the

logarithm of U in matrix space:

Zmn = _i(logmat<Uj>)mn (84)

where [0g,,,; 1s understood as the logarithm only in matrix space. As a consequence,

(Z)' =27, (85)

where the hermitian conjugate is taken in Hilbert space. The representation indices j shall be
omitted in the following. With these definitions at hand we can define a local gauge transfor-
mation which acts on all Hilbert spaces intersecting at a vertex. It depends on a group element
which itself can depend on the position.

~ ~ ~ ~

O4(x) = O,(x,1)0,4(x,2)0,(x, 3)@;(}( —1, 1)@;(7( -2, 2)@;(}( —3,3) (86)

A state |1)) is therefore said to be gauge-invariant if

O (X) [¥0) = [¥),  ¥x (87)

We can now define the singlet state for the whole lattice, including matter and gauge fields:

0) = [D) (X) 1000) (88)

links
All other gauge invariant states can be obtained by acting with gauge invariant operators on
this singlet state. There are four such types of gauge invariant Hamiltonians which shall be

discussed in the following.

1. The Magnetic Hamiltonian
As already discussed in the section on Wilson’s formulation of lattice gauge theories,
one can obtain gauge invariant operators by taking products of U-operators along closed
paths. The most natural choice is therefore to take this product along a plaquette resulting

in the Hamiltonian:
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Hp=Xp > Te(Gip)U)U(p)UI(P)) + He. (89)

plaquettes p

This term is often called magnetic Hamiltonian as it gives rise to the magnetic interactions
in the case of QED (G = U(1)).

2. The Electric Hamiltonian

Hp=Xg »_ hp(x,k) (90)
x,k
with
he(x, k) =Y f(j)|jmn) (jmn| 1)
jmmn

It is diagonal in representation space and thus gauge invariant. The correspondence with
the electric field becomes clear for the case of G = U(1) where - if we set f(j) = j* -
the Hamiltonian is just a sum over the electric field of all links. The same holds true for
SU(2) where f(j) is replace by the Casimir operators J2, i.e. f(j) = j(j + 1)

The two terms above only involve the gauge fields. In the case of compact Lie groups
they both add up to the Kogut-Susskind Hamiltonian

Higs = Hp+ Hg, 92)

a Hamiltonian formulation of a Yang-Mills theory on the lattice.

3. The fermionic mass Hamiltonian
To solve the problem of fermion doubling we introduced staggered fermions which give

rise to the following Hamiltonian

Hy = MY (=19 (x)i(x) (93)

where the alternating minus comes from the Dirac sea picture: particles on even sites and

anti-particles on odd sites.

4. The gauge-matter Hamiltonian
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The other term coming from the staggered fermion discussion was a hopping term. How-
ever, this term would not be locally gauge invariant which is why it needs to be coupled

to the gauge field in form of the operator U. The resulting interaction is:

Hon = A Y 0 (%) U (X, k) (x + k) + H.c. (94)
x,k

In the following we want to look at some concrete examples of lattice gauge theories. We will
start with one of the most canonical examples, compact QED (G = U(1)). Afterwards its
truncation Zy will be discussed. The same procedure will then be repeated for O(2) and its

truncation Doy .

3.3.2 Compact QED

The Hilbert space of the gauge fields residing on the links is described in terms of the group
representation basis which in the case of U(1) can be characterized by an angle ¢ and the
corresponding operator ngS Alternatively, one can use the eigenbasis of its conjugate operator,

the angular momentum operator L. They fulfill the commutation relation

[0, L] = i (95)

One can identify 45 as the vector potential and L as the electric field operator. It has an un-
bounded integer spectrum

Lim)=m|m) (meZ) (96)

where the states |m) have a clear interpretation as electric flux states. The U operators are in

this case not matrices as the group is abelian. It takes the form:

U = ¢i® (97)

The U operator is therefore a flux raising operator. With these definitions at hand the Hamilto-
nian of compact QED can be defined. As already mentioned, the electric Hamiltonian can be

expressed in terms of L:
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Hg=X\) L*(x,k) (98)

The magnetic Hamiltonian has the form:

Hp =205 Y. cos(61(p)+ba(p) — do(p) — du(p)) 99)

plaquettes p

The mass Hamiltonian:

Hy = MZ ¢! (x)e(x) (100)

and the gauge-matter Hamiltonian:

Her = Mo 3 T (x)eCRp(x + k) + Hec. (101)
x,k

333 Zn

The importance of the gauge group Zy comes from its large N limit (N — o0), where Zy
converges to U(1). Thus, it can be viewed as a truncation of U(1). So is the Hilbert spaces of
the gauge fields on the links not an integer spectrum from —oo to co but truncated such that
only N states remain. They are labeled by |m) and we define unitary operators P and () on

them:

NN =
PQP = % Q
Q|m)=|m+1) (cyclically)
Plm) = %™

(102)

Like in the U(1) case - since the group is abelian - there are single fermionic species, 1f, on the

vertices. We can now define the Hamiltonian of the Zy lattice gauge theory.
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Hp=Xp» 1—P(x,k)— Pi(x,k)

Hp=Xp Y, @Qi(p)Q:p)Qip)Qk(p)+ H.ec

plaquettes p (103)
Hy =M Z 10 (%) (x)

M = AaMm ZW(X)Q(X, k)(x + /Af) + H.c.

334 0(2)

A crucial difference to the previous examples is that the group O(2) is non-abelian. That has a
lot of consequences for the corresponding lattice gauge theory since the representations of the
group become non-trivial and thus a lot of terms more complicated. Therefore, we will start by
discussing the most important group properties and the irreducible representations of O(2).

O(2) is the symmetry group of rotations in a two-dimensional plane and reflections along a
certain axis (any axis passing through the center of rotations is possible). We identify pure rota-
tions by an angle R(6) and we identify reflections along the x-axis with S. Any other reflection

can be obtained by composing S with some rotation. We can write the group as

G={g=(0,m)=R(0)S™0 € [0,2r) andm € {0,1}} (104)

The structure of the group is defined by the composition rules which are originating from the

usual composition rules for rotations R(6) and reflections S:

R(O)R(¢) = R(6 + ¢)
SR(0)S = R(—0)

(105)

Thus, the neutral element is e = R(0)S? and the composition rules for O(2) follow straightfor-

wardly:

R(O)S™R(¢)S™ = R(6 + (—1)"¢)S™ " (106)

Written in the group notation (6, m):

@,m)-(p,n) =0+ (—1)"p,m+n) (107)
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where the addition of m and n is understood as modulo 2. The inverse element of (6, m) is:

(R(0)S™)" = S™R(—0) = R((—1)"™+0)S™ (108)

The representation theory is characterized by the three irreducible representations of O(2)

shown in the following table:

Trivial (dimension 1) D'(f,m) =1
Sign (dimension 1) D30, m) = (—1)™
k-th (dimension 2) D*(0,m) = eiko=0gm

The operator U is chosen to be in the two-dimensional representation

U = ¢ g (109)

xT

This implies that the fermionic fields located on the vertices will have two color components,

denoted by 1/11[ and w;. This allows us to write down the pure matter Hamiltonian:

Hyg = M3 (160000 = M 31 (w1090 () + wh00at) 110

Moreover, we can explicitly give the gauge-matter interactions

Hon = Aaw D (w10, (x)) €707 (x, k) (WX;) + H.c. (111)

2(X

and the plaquette interactions

Hy=Xp > Te(Gip)U)U(R)UI(P)) + He. (112)

plaquettes p

The last part, the electric Hamiltonian, can easily be given in the representation basis. However,
since this form of the Hamiltonian is not very feasible for later purposes we will bring it to
another form involving the group representation basis. This will have the additional advantage
that the electric Hamiltonian for the dihedral group can easily be obtained as a truncation. The
interactions corresponding to the electric Hamiltonian act on the gauge degrees of freedom

residing on the links of the lattice. Since they act on every link independently, they are of the
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form:

Hp = )\EZhE(Xv k) (113)
x,k

On each link Hilbert space they act diagonally in representation space:

= > f(G) limn) (jmn] (114)

J,mmn

where j labels the different irreducible representations. By summing over m and n, the term is
automatically gauge-invariant. The coefficients can be chosen arbitrarily which is why we will
keep them general in the following discussion. As we will use the group representation basis in

our implementation, we transform the electric Hamiltonian accordingly:

ZZf ) |g) (gljmn) {gmnlg’) (¢

- Y f6) 1) di(gﬁj )i (9) d@';gjf )5 ()]
9,9’ jmndlm | (115)
Z Z 19) D(9) Dl (9) (9]

23 % ) (DY (9)D71(4) (g

To specify this expression for O(2) we need to calculate the trace from above for all irreducible
representations.

Trivial representation:
Tr(D'(g) D' (¢)) = Te(D* (0, m)D"(¢',m/)) = 1 (116)
Sign representation:

i

Te(D* (8, m) D™ (8, m')) = Te((—1)" (—1)™) = (—1)"+" (117)
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k-th representation:

Tr(D*(0, m)D*(0', m')) = Tr(eik"zeam(eik"za/am/ﬁ)

T x

. ro_ ’
— Tr(ezkozeo_;n—o—m e iko,0 )

. , (118)
= 5mm/Tr(eZk”Z(9_9 ))

_ 5mm/(eik(9—0’) + 6—ik(6—6’))

Inserting this into (eq. [I15]) we obtain:

1 / . / ; /
hip(x, k) = / / dgde’ > " [6,m) (6, m'| ( Fot Fo (D)™ 42 LB (€070 4 7 MO0

k>0

(119)
The expression simplifies if we go from the basis characterized by the angles 6 to the angular
momentum basis characterized by the eigenvalues [ of the angular momentum operator L. The

new basis |/, m) is completely defined by the relation

1 )
L,m|o,n) = —=06mne 2. 120
(L, m|o,n) Nor (120)
L can then be defined as
L=> 1[l,m)(l,m| (121)
lym
where [ = —o0, .., —1,0, 1, ..00. We can see that L really generates rotations:
. R 1. > 1.
—iL6O _—iL#o —il¢ __ —il(p+6) __
e ,ny =e Iin) —e "% = lin)y —e =0+ o,n 122
|6, 1) ZZ_:OO! ) 7o ZX_;O\ ) 7o 0 +¢,n)  (122)

Transforming to the angular momentum basis, eq. (119) takes the form
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//d@de/ Z Z\l m) (I, m|0, m) (ft+fs ymEm +2ka o (€500 1 ¢ k(e—e'))>

o L k>0
< 9 /|l/ />< m|
// dgdg/ Z Z |l m ( il@eil'Q/ +fse_ilgeil/9/(_1>m+m/
m,m’ Ll
k>0

1 / / / /
=3 Z Z |1, m) <ft5l,051’,0 + fs010000(—1)™™ + 22 FiOmme (0k 10k, 1 4 65,10k, —l’)) (I, m']

m,m! Ll k>0

1 1
=32 (;; 0,m) (0, + fu(=1)"*" 0, m) (0,m/| + 2> fy |1, m) <z,m’>
m,m/’ 1+
0 (123)

where the coefficients f; have to satisfy the constraint f; = f_;VI. If we define redefine the
coefficient for the trivial and sign representation as fy := f; — fs and fy := fs we can simplify

the expression further:

hi(x, k) = % 2. (ft' 0,m) (0,0 + fo (14 (=)™ ) 0,m) (0,m'| +2 > fi 1, m) <z,m\>
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m,m/’

:_Z (ft/ 10, 11) (0,7 | + 020 0,m) (0,10| +2 ) fill,m) (1, ml)

10
:_th/|0m (0, m'| + ZZlelm (1,m|

l=—0c0 m

(124)
We see that the second term only depends on [, i.e. only the part corresponding to rotations
makes a non-trivial contribution. For this reason, we can identify it with the electric energy for
U(1) if we consider O(2), or Zy for the dihedral groups Doy. The first term, however, takes
into account reflections but only for the [ = 0 eigenstate of the angular momentum operator.
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3.3.5 Dihedral group D,y

The dihedral group can be viewed as a truncation for O(2) where the angle ¢ characterizing the

rotations only takes discrete values. The set describing the group can be defined as

Don ={9=(p,m)=R27/N)*S"|p€ [0, N —1)andm € {0,1}} (125)

However, not all dihedral groups inherit their properties from O(2). The structure of the irre-
ducible representations is only the same for NV being odd and N > 3. Dihedral groups with
even N have two additional sign representations. Therefore, we will focus in the following on
the former. Since the irreducible representations are the same, the U operator will have the same
form as in the case of O(2) with the substitution § = %’rp. The same calculations from above for
the electric energy hold true for the dihedral group (under the restriction that N has to be odd
and N > 3). The only difference is that the rotations are finite which implies a finite maximal
value for the angular momentum operator. Thus, for Dy - which consists of N rotations - the
sum over [ in the final expression only contains /N terms. Thus, the electric Hamiltonian for

D5,y can be written as:

1
hE(x,k):§th/ 10, m) <o,m’y+ Z > fillum) (1,m| (126)

m,m/’ 1)/2 m

In particular, the relevant group for implementation later on, Dg, has the electric link Hamilto-

nian:

Zfﬂ()m Om|+ZZfl|lm (I, m| (127)

l=—1 m

The other Hamiltonians have exactly the same form as for O(2) with the substitution § = 2% p

HM_MZ MZ P (21 () + vhx)va(x))

Hon = Aon 3 (91(x), wi(x)) ¥ 02 (x, ) (Zl(x)> + H.c. (128)
x,k

Hp=Xs > T (Ui(p)Ua(p)U(p)UL(P)) + Hec:

plaquettes p
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The dihedral group Dg will be of particular interest later on as it is the smallest non-abelian
group. It is symmetry group of the triangle and isomorphic to the symmetric group Ss. It can
be viewed as a subgroup of SO(3) and its double cover SU(2) in the following way: Every
rotation R € SO(3) can be written in terms of the Euler angles «, /3,y

R(a, B,7) = ez ¢iBJz i (129)

where J, is the generator for rotations in z-direction and J, the one for rotations in x-direction.

The group Dg can then be obtained by restricting the parameter space to a = {0, %”, 4%} (cor-

responding to %f—rotations around the z-axis), § = {0, 7} (reflections along the x-axis) and

v =0.
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4 Digital quantum simulation of lattice gauge theories

In this chapter, we will first review basic ingredients required for a simulation of lattice gauge
theories with ultracold atoms, in particular the concept of a stator, used for mediating three- and
four-body interactions, will be explained. Afterwards, an algorithm for the simulation of lattice
gauge theories in three dimensions will be proposed. To back the validity of this simulation

scheme, bounds on the trotterization error will be provided.

4.1 Stators

A natural method to realize interactions in systems of ultracold atoms is given by atomic col-
lisions. Under typical conditions in ultracold atom experiments, i.e. low densities and low
energies, these are dominated by elastic two-body scattering. Its theory is well understood
and the Hamiltonian can be calculated exactly (see section 2). Three-and four body processes,
however, are suppressed and at the same time only allow for an approximate mathematical de-
scription, which makes it much harder to map the Hamiltonian from ultracold atoms to the
system one would like to simulate. For the purpose of quantum simulation it makes therefore
sense to design a scheme in which interactions involving three or more atoms can be rewritten
as a sequence of only two-body collisions. This is particularly relevant for lattice gauge theo-
ries since gauge-matter interactions and plaquette interactions are three, respectively four body
terms (see section 3).

One approach to this problem is the concept of a Stator which will be presented briefly in this
section (a detailed discussion can be found in [60]. It is based on the idea of using an auxiliary
degree of freedom to mediate interactions via entanglement. Putting it in more mathematical
terms, we consider a Hilbert spaces H 4 representing the physical d.o.f., where the interaction is
supposed to be implemented, and a Hilbert space Hp for the auxiliary d.o.f. (sometimes called
control in the following). We denote the operators acting on the Hilbert space H by O(H). A
stator S can then be defined as an element which acts on a state in H 4 but is itself a state in Hpg,
i.e. S € O(Ha) x Hp. Thus the name ”Stator”, a mixture of a state and an operator. It can be

prepared by acting on some initial state |ing) € Hp with a unitary Uap € O(Ha X Hpg):

S =Uap |ZTLB> < O(HA) X Hp (130)
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Mathematically speaking, a stator is an isometry that maps a state [1)4) € H, to the tensor
product Uap(|tva) ® |ing)) € Ha x Hp. This can be viewed as an entangling operation
between the physical state |1)4) and the auxiliary state |ing).

If this entangling procedure is chosen in a certain way operations acting on the physical Hilbert
space can implemented by acting only on the auxiliary state. Assume we want to realize a
Hamiltonian H € O(H ,4) in the physical Hilbert space. For that, we need to design a stator S
and a hermitian operator H' € H g in the auxiliary Hilbert space in such a way that the following

eigenoperator relation [60] holds:

H'S=SH (131)

An analogue relation for the time evolution follows directly, since H and H’ are hermitian

operators:

e H'tg — geiflt (132)

Therefore, by creating such a stator of the physical and auxiliary Hilbert spaces, we can obtain

time evolution of the physical state:

e Yy [0a) ling) = e S [hy) = Se 4 4) (133)

i.e. we end up with the desired time evolution of the physical state |1)4). However, it is still
entangled with the auxiliary state which means that one can either perform another operation
using the stator .S or disentangle both states. This would lead to a product state with the auxiliary

state going back to its initial state:

U pe™ ™ Unp (Ja) ® ling)) = ling) @ e [14) (134)

In the upcoming sections, for the purpose of quantum simulation of lattice gauge theories, the
physical and auxiliary Hilbert spaces will be represented by ultracold atoms. A sequence of two
body collisions between the auxiliary atoms and the physical atoms will create the stator that

allows realizing the full time evolution by acting locally on the auxiliary Hilbert space.
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4.2 Quantum simulation of lattice gauge theory in three dimensions

Next, we shall focus on the quantum simulation of lattice gauge theories in three dimensions.
So far, there have been digital proposals in one or two dimensions [42,43,50,/57]], one building
upon the concept of a stator [42]. The motivation for increasing the dimension is obvious since
we ultimately want to simulate phenomena in nature which still lack a complete understanding.
Although investigations in lower dimensions have revealed lots of interesting physical effects,
the behavior of a system can crucially depend on the dimension. That makes quantum simula-
tions in three dimensions a reasonable next step.

First of all, we will briefly present the Hamiltonian of lattice gauge theory in three dimensions
(following chapter 3) and split it into the individual parts which will be implemented indepen-
dently. Notation will be used according to figure |3l A fermion residing at lattice site x will
be denoted by 77 (x) where j indicates the representation under gauge transformations and m
the specific component of the representation. Since the representation j remains fixed it will
be neglected later on for convenience. A gauge field residing on the link pointing from site
x in direction k will be denoted by U7 (x,k) . j again characterizes the representation and
its components under left and right transformations are denoted m, respectively n. In this no-

tation the locally gauge invariant Hamiltonian in three dimensions involves four different terms:

1. The plaquette interactions, the magnetic part, diagonal in the group representation basis:

Hp= Y  Hp(p)=Xs Y T(UxDU(x+1,2)UT(x+2, 1)U (x,2)) + h.c.

plaquette p
+ Tr(U(x,3)U(x + 3, 1)UT (x + 1,3)UT(x,1)) + h.c.
+ Tr(U(x,2)U(x + 2,3)UT (x + 3,2)UT(x,3)) + h.c.

= HB,le + HB,Qe + HB,Se + HB,lo + HB,20 + HB,SO
(135)

It is important to mention that all the different magnetic terms commute. Thus, even a

trotterized time evolution will lead to an exact time evolution for the magnetic Hamilto-
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Y (x) x

Figure 3: Notation of matter d.o.f. at lattice sites and gauge d.o.f. on the links in a unit cube

nian.

2. The electric part, diagonal in the representation basis:

Hg =AY he(x,k) (136)
x,k
with
hp(x,k) =Y f(j) |jmn) (jmn| (137)
j,mmn

The first two interactions are pure gauge interactions and constitute the Kogut-Susskind

Hamiltonian.

3. The fermionic mass term:

Hy = MYy (=1)"724 T (x)(x) (138)
The alternating minus sign comes from the staggering of the fermions.
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4. The gauge-matter interactions:

HGM = Z Z HGM(X, k’)

x k=1
3
=dam D Y Uk () U (X, k)b (x, k) + hoc.
x k=1
= > Hom(x, 1)+ Hau(x,2) + Houn(%,3) + Y Houn (%, 1) + Hon (%, 2) + Han(x, 3)
X even x odd

=: Home + Haomoe + Hamze + Hano + Hanv2o + Ha 3o
(139)

Compared to the magnetic Hamiltonian, the different terms of the gauge-matter Hamiltonian do
not commute if they share the same fermion.
Summing up, we obtain the Hamiltonian of lattice gauge theory in three dimensions in full

generality, split into the parts which are implemented independently:

H=Hp+Hgp+ Hy+ Hou
= Hpie+ Hpoe + Hpse + Hp 1o+ Hpoo + Hp o+ Hp + Hy (140)
+ HGM,le + HGM,Qe + HGM,B& + HGM,lo + HGM,20 + HGM,SO

4.3 The implementation

In this section we want to discuss the implementation of the individual parts of the Hamiltonian.
To create plaquette and gauge-matter interactions by means of a stator - as described in section
4.1 - we introduce an auxiliary degree of freedom in the middle of every second cube (either
all even or odd ones) and assign to it a Hilbert space H similar to the Hilbert spaces on the
links (see Fig[). The reason for not placing them in every cube is that the interactions can not
be implemented in neighboring cubes at the same time. This is a consequence of the fact that
stators can not share a degree of freedom. The plaquette between two neighboring cubes, for
example, can only be entangled with one of the ancillas to generate the magnetic interactions.

Thus, the Hamiltonian needs to be realized for even and odd cubes separately.

47



o—0—0—0—0

A A7
A

Figure 4: The physical system consists of the gauge fields residing on the links (blue) and the
matter fields on the vertices (red). The auxiliary degrees of freedom (green) are located in the

center of every second cube (either even or odd) and can be rigidly moved to the center of the
neighboring cube without affecting any other degree of freedom.

4.3.1 Plaquette interactions

For the plaquette interactions, the basic stator we will use is the so called group element stator,

5 = / 198) (9l ® [3) dg (141)

where the first Hilbert space belongs to the gauge field residing on link 7 and the second one to
the aforementioned auxiliary d.o.f. in the center of the cube. The resulting entangled state can

be created by the unitary

U = / 19:) {g:| ® ©F dg (142)

acting on the initial state |in) = |¢). We repeat a similar entangling operation /; for the three
other links of the plaquette (e.g. the links 1,2,3,4 of cube x) and obtain a plaquette stator of the

form

SEBY(x) = U (x) |in) = Uy (X)Us (x)US (x)U] (x) |in) (143)
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The crucial part is that it fulfills the relation

Te(U + UM Sy = SoTe(U ULUL UL + hec.) (144)

i.e. acting locally with Hp(x) = AgTr(U(x) + h.c.) on the control of the cube enables us to

realize the magnetic time evolution for this plaquette. The required sequence for that is

Up 1 (x) = USBH (x) e T 1123 (x) (145)

whose action on the plaquette state |1)1934), the tensor product of the four link states, and the

auxiliary state |in) is a pure time evolution of the physical state:

Up1(X) [th1934) |in) = |in) e HECIT |4h1934) (146)

We can create the other two plaquette terms by choosing the appropriate stators and applying
the above sequence. To describe them conveniently, we first define some abbreviations for the

gauge field operators in a unit cube according to Fig. [3

Ul = U9 (x,1)
Ul Ul =U'(x+1,2)
Ul = U7 (x +2,1)
- Ul = U'(x,2)
’ Ul = U7 (x,3)
U Ul = Ui (x +3,1)
Ul = U7 (x +1,3)
//’/);—{—i ngUj(x—I—f’),Q)
T U = U7 (x + 2, 3)

Figure 5: The different plaquettes of a unit cube and their corresponding gauge field operators
Using this notation, we create the stator used already in the example above

SL24(x) = Y2 (x) |in) (147)
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corresponding to the red plaquette in the figure below. The sequence Up(x) gives us the
time evolution under the Hamiltonian Hp ;(x). If we do it for all even cubes we obtain Hp .,

respectively Hp j, for the odd cubes. In the same fashion we can use the stator
SET (x) = U (x) |in) (148)

corresponding to the green plaquette, to perform the sequence Ug »(x). This would result in an
effective implementation of Hp o, and Hp o, if applied to all even or odd cubes. Finally, the
stator

B (x) = U (x) |in) (149)

corresponding to the blue plaquette, allows the implementation of Hp 3. and Hp 3, by the se-
quence Up 3(x) for all cubes.
Summarizing, we can formulate an algorithm to implement the plaquette interactions. We start

with one control atom placed in the center of every even cube and do the following three steps:

1. Create the stator: Move all controls to the gauge fields on link 4 and create the unitary

ul, = 1] ulx) (150)

X even

Bring the controls back to the center of every cube. We repeat the same process with link

3 to obtain the unitary

uj, = [ uix) (151)
Finally, for the links 2 and 1:

Upe = [ ] te(x) (152)

Uie = H U (x) (153)

So in total we get:
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Upie = Ul Ui UL, = [] Usa(x) (154)

X even

2. For the controls we turn on the Hamiltonian Hp, = Y. __  Hp(x) for a period 7 result-

ing in the time evolution

Vge = e~ BT (155)

3. In the last step we have to undo the stator by creating the inverse of the first step, i.e.
T
Z/{B,le‘

The above procedure is applied to a state [¢/(t)) |in) at time t. Thanks to relation (144) we get:

6t + 7)) [in) = Uy 1, Vadds e [0(0)) [im) = Wi e [(0)) |im) (156)

with

WB,le — eszx even HBJT o eleB,leT (157)

Since our magnetic Hamiltonian consists of three parts we have to repeat the procedure with
the two stators from eq.(148) and (149). We can thus create Wp o, = e *#52¢7 and Wp 3, =

eiiHB,SeT'
Now we move the control atoms to the odd cubes. Here we repeat the steps for the even cubes
so that we can implement W 1,, Wg 2, W 3,. This gives us then the whole magnetic time
evolution.
It is important to note here that the different parts of the magnetic Hamiltonian commute with

each other so that we can really implement them independently.

4.3.2 Gauge-Matter interactions

After expressing the four-body plaquette interaction as a sequence of two-body interactions, we
want to obtain the three-body interactions of the matter with the gauge field in a similar way.

Its Hamiltonian for a link emanating from the vertex x in direction % has the form
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Henr (%, k) = Aanrthl, () Upn (X, E) U (x + k) + hec. (158)

An important ingredient to split this interaction in two-body terms is the following unitary

operator between the fermion at vertex x and the gauge field on link (x, k):
Uy (x, k) = ¢ %mn k)i () () (159)
with Z,,,, defined by eq.. Its meaning gets more apparent if we assume the gauge group G
is compact; then, we obtain
Uy (x, ) = " 0RPh0Tm(0 = id"Q” (160)

an interaction of the “vector potential ngﬁa with the fermionic charge ()*. It can therefore be
interpreted as a fermionic transformation whose parameter is an operator. The idea is now to
use this transformation to map a pure fermionic tunneling term into the desired gauge-matter
interactions. This can be done by means of the Baker-Campbell Hausdorff formula which

underlies the following relation:

U (x, k)l Uy (x, k)T = 8 Uy (%, k) (161)

Thus, defining the fermionic tunneling Hamiltonian as

Hy(x, k) = Aanr (W (%) (x + K) + h.c.) (162)

allows writing the Hamiltonian H¢), as a sequence of two-body interactions:

Hen(x, k) = U (x, k) Hy(x, K)U}, (%, k) (163)

Similarly to the plaquette interactions, we have to be careful with the implementation of Hg),
since every fermion must not interact with more than one link. As every fermion is connected
to six links in three dimensions we have to split up the process in six steps. We start by realizing

Hgz,1 but only for even links (see Figure [6). We apply the sequence:

1. Move gauge degrees of freedom to the beginning of the link and let them interact with the

fermion to obtain the unitary
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Uy, = I ul(x1) (164)

X even

Then we bring the link degrees of freedom back to their original position.

2. Allow tunneling on these links for time 7:

Upe = ] U(x,1) (165)

with
Uy (x, k) = e HixR)T (166)

3. According to eq.(163)) we move the link degrees again to the fermion and let them interact

to generate

Z/{W,le = H uw(X, 1) (167)

X even

This gives us in total

Umlel/lmeu[}/, L = € Exeven HaMODT — py (168)

In the same way we can create Waas 2e, Wanrze, Want 10, Want 20, Want 30-

Using stators, there is an alternative way of realizing the gauge-matter interaction. It requires
more steps but on the other hand doesn’t require moving the physical degrees of freedom as in
the procedure above. This might be beneficial since we have to move the controls anyway to

create the plaquette interactions. The sequence goes as follows:

1. We start by letting the controls - initially placed in all even cubes in the state |in) = |é) -

interact with the the gauge links U; = U(x, 1) according to ([141])

e =[] thx) (169)

X even

to create the group element stator 5.
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X+ 2

Ui (x)

Figure 6: Link belonging to Hgas, for which the implementation sequence is exemplarily
shown

2. Then we move the control from the link to the fermion at vertex x and realize the inter-

action

U= [ thiy(x.1) (170)

X even
which is the same interaction as Uy (x, 1) but between the control and the fermion v (x)
and not between fermion and gauge link. Due to the property of the group element stator
S the interaction from the control with the fermion will be translated in an interaction

between the fermion and the link.
3. Afterwards we can allow for pure tunneling between the fermions which gives rise to

Ue = [] U(x,1) (171)

with
Us(x, 1) = e~ Aam W (tm (et the)r (172)

4. Following eq. lb we have to apply Z;{gv(x, 1) for all even cubes which is again realized
by an interaction between the control and the fermion (x).
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Upie = [ Uw(x,1) (173)

5. Finally, we have to undo the group element stator between the auxiliary state and the

gauge field on the link:

ul, = [ ulx) (174)

X even

The resulting sequence is:

UL Uyl Uy U [0 [in)

= ufeawleut,led&/,lesn |v)

= U S1lhwa s 1 Uy, 1) (175)
= |in) e~ HoMe |y)

= |in) Wanrie [¥0)

We repeat this procedure for the link U, and Us which gives us Wgas 2. and Weay 3. After that
we move the controls to the odd cubes and repeat the whole procedure which gives us the full
gauge matter interaction.

The electric part Wy = e 57 and the matter part Wy, = e *#M7 are local terms of our
Hamiltonian which is why we can implement them just by acting locally on the physical degrees
of freedom.

We can now write down the whole sequence for a time step 7 combining commuting terms:
W(T> = WMWEWG’M,30WGM,20WGM,loWGM,3eWGM,26WGM,leWB (176)

4.4 Shaping of the lattice

Although we managed to formulate the complete Hamiltonian in terms of two-body interac-
tions, some care has to be taken when realizing the sequence with ultracold atoms in optical
lattices. The gauge-matter interactions require a pure tunneling term between neighbouring

fermions, i.e. the link atoms - which are normally located between the two - are not allowed
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to interact. Therefore, we do not have to construct the lattice in the usual naive way but rather
to shift the link atoms away from the tunneling path between the fermions. It is important to
emphasize here that in the digitization framework the fermions will only be allowed to tunnel
in one direction at a time. This means that in the direction of tunneling the Wannier functions
will overlap between neighbouring sites. In the other directions, however, they can be localized
by increasing the lattice depth. This has to be done to an extent that it will no longer overlap
with the wave function of the link atoms. Thus, we can optimize the shift of the link atoms and
the intensity of the laser trapping the matter fermions.

One way to construct such a lattice would be to pick the atomic species representing our matter,
gauge and auxiliary degrees of freedom and the trapping frequencies in such a way that each
optical potential is visible for only one them. The lattice for the atomic species corresponding
to matter is a standard cubic lattice which can be designed by three pairs of counterpropagating

lasers leading to a potential of the form (choosing orthogonal polarizations):

27 LT ? Y 2
— mat.z COS
)\mat Y 2 " >\mat

(177)
The lattice spacing s is therefore s := % Since we have full control over the amplitudes

9 2
Vmat(xv Y, Z) = Vmat,x COS ()\ t T+ g) + Vmat,y COS (
mat

Vinat by varying the laser intensity we can easily prevent any tunneling or allow tunneling in
only one direction which is necessary for the simulation scheme.

But to implement tunneling for even vortices only (resp. odd) and the staggering of the fermions
we need an additional potential which can unbalance even and odd lattice sites. One possibility
for that is:

m 2
Vistag(2, Y, 2) = Vitag cOS (2—S(x +y+2)+ ¢(t)) (178)

This can be realized with a pair of counterpropagating lasers pointing in direction \/ig( 1,1,1)
ﬁ J— 2)\mat
V3 T V3

Hamiltonian term is realized, is reached if we set V,,, = 0 and increase the intensity of the

with a wavelength A\, = ~ 1.15\,,4+- The standard configuration, where no
other lasers to a point where no tunneling occurs. Starting from this configuration, the individual
Hamiltonians are implemented as follows:

For realizing the staggering of the fermions, we need to smoothly increase the intensity

Vistag Of the staggering potential as this will create an energy difference between even and odd
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minima. We then let the system evolve for some time and finally reduce V,, until we reach
again the standard configuration.

For tunneling along x-direction at even sites we smoothly lower V},,; , while keeping V.4t 5
and V},,.: . high to allow for tunneling in x-direction only and tune ¢(t) to the value 7/4 such
that tunneling will only occur at even sites. For tunneling along y- and z-directions we apply
similar procedures with V.. , replaced by V., and V. . respectively. The difference in
implementing tunneling at odd instead of even lattice sites is to tune the phase ¢(t) not to 7/4
but —7 /4. The smoothness of all this operations is required to ensure that the atoms remain in
the lowest Bloch band at all times.

Constructing the lattice for the link atoms is a bit more difficult compared with two dimensions
where it is just a rotated square lattice. In 3D, the spacing in all three directions is not the same
anymore. Therefore, the lattice is not just a cubic one but has a more complex elementary cell.
Thus, the setup becomes a bit more complicated. One solution to the problem is to use 4 pairs
of counterpropagating lasers of wavelength 2sA/3 along the directions k; := \/ig(l, 1,1), kg =
\/ig(l, —1,1), k3 := \/%(1, 1,—1) and ky := \/lg(l, —1,—1). Choosing the same polarization for
all of them, we can ensure constructive interference between all of them which will lead to a
deepening of the optical potential. The interference terms are very beneficial because it allows
for a stricter separation between the link lattice and the other lattices and therefore reduces
disturbances during e.g. the tunneling of the matter fermions. The resulting potential is of the

following form:

Viink (%, Y, 2) = Viinko(cos(m(z +y + 2))* + cos(m(z — y + 2))*
+ cos(m(x +y — 2))? + cos(m(z —y — 2))?
+ 2cos(m(z +y+ z))cos(m(x —y + 2)) + 2cos(m(z +y + 2)) cos(m(z +y — 2))
+2cos(m(x +y+ z)) cos(m(x —y — z)) + 2cos(m(x —y + 2)) cos(m(x +y — 2))
(

y—2))+2cos(m(z+y—z))cos(nm(z —y — 2)))
(179)

As mentioned earlier, it is necessary to move the link atoms out of the tunneling path between

(
+ 2 cos(m(x — y + z)) cos(m(x

the fermions. Thus, we move the whole link lattice along the (1, 1, 1)-direction to ensure pure

tunneling along all three directions. The desired shift we want to realize is:
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S
T — T+ a—
T

s
y—y+ oz; (180)

s

Z—=zZ+a—

7
for some phase v with —7 < o < 7. The minimum distance for the link atoms from the lattice

|‘/% The optimum value for « in that regard is —7 /4 with a minimum distance of

is then |«
2. Any of these shifts can be achieved by introducing phases to the pairs of lasers. They
have to be —3« for the k;-direction, —« for ko, —a for k3 and « for k4. The resulting amplitudes

of their standing waves are proportional to:

ky : cos(m(z 4+ y + 2) — 3a)
ko : cos(m(x —y + 2) — )
)
)

(181)
ks : cos(m(z +y—2) — )
ky:cos(m(x —y — 2) + «)
resulting in an optical potential of the form:
Viink (2,9, 2) = Viigo(cos(m(z + y + 2) — 3a)? + cos(n(x — y + 2) — a)?
+ cos(m(x +y — 2) — a)* + cos(m(z — y — 2) + a)?
+2cos(m(x +y+ 2) — 3a) cos(m(x —y + z) —a)
+2cos(m(x +y+ 2) — 3a)cos(m(x +y — 2) — a) (182)
+2cos(m(z + y + 2) — 3a) cos(m(x —y — 2) + )
+2cos(m(x —y+2) —a)cos(m(z +y — z) — )
+2cos(m(x —y+2) —a)cos(m(z —y — 2) + )
+2cos(m(x +y —2) —a)cos(m(z —y — 2z) + a))

The lattice for the auxiliary atoms is again a cubic lattice of spacing 2s. It can be set up in
the standard way by three counterpropagating lasers of wavelength \,,, = 4s = 2\,,,;. The
challenge here is to do it in a way that it is moveable in all three dimensions as the auxiliary
atoms mediate the interactions by atomic collisions. This can be done, for example, by tuning

the phase shift of the lasers.
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4.5 Error bounds for trotterized time evolutions

Apart from experimental errors, the previously described simulation scheme will also involve
errors coming from its digital nature. In this section, we shall analyze these errors in detail.
We will first derive bounds for a general Hamiltonian consisting of several terms which are
implemented independently. In the second part these bounds will be applied for the case of
lattice gauge theories in arbitrary dimension and with an arbitrary gauge group. Finally, we will

adapt these results to some cases of relevance.

4.5.1 Error bounds for general trotterized time evolutions

In the following, a bound for the error between the time evolution of a quantum mechanical sys-
tem with Hamiltonian H = ) ; H; and its trotterized, approximate time evolution (in M steps)
is derived, where all Hamiltonians H; are implemented independently. To approximate the real
time evolution one can arrange the time evolutions of the different /; in various sequences. The
focus will be on the standard trotter formula (the first order formula) and the second order for-
mula which is still feasible for implementation. Higher order formulas, however, would require
more experimental effort in the sense that the tunability of the experimental parameters would
have to be more precise, and the number of operations required for a single time step would
increase exponentially with the order of approximation. Therefore these higher-order formulas

are neglected in the following discussion.

First order formula The standard approach to a trotterized time evolution U4y, (t) is a product

of all the individual time evolutions [[12]], i.e.

Uni(t) = ([ [ e rar)™ (183)
J

The difference to the physical time evolution ¢/(t) expressed in the operator norm has the form:

U (t) — Ups(1)]| = ||le™ ™ — (H e—iHjﬁ)M
J
= ||(e7 a2 H)M (H e~ Hinr )M
J

(184)

59



Setting g := e~ inr 25 Hj ,h = H e~ i1 and using the finite geometric series one obtains:

M _ M| _ - — m M—1-m
g™ = nM || = |l(g —n) Y h™g
m=0
185
—1lg - A Hngl 4 gM 2 _i_thlH (185)
<llg —h|| M

To find the upper bound for ||g — h|| we follow [[77] and use in addition the unitarity of ¢ and h.
Defining A := —it/M, we get:

o=l = o= 55— [Tk
p—1
— / dt/ dSZ AH; )\HQ ) )\Hk 1€tHk (t—s) 7 k:+1 [Z Hk
k+1
50

k+1

| /\

(186)
Combining the two estimates gives us the upper bound on the trotterization error:

e~ itH _ He JM |
t2 = ]
LZ H (187)

=k+1

< WZH[HJ H

j<k

[ (t) — Uni(B)]] =

Second order formula To get a better scaling with the number of time steps we can apply
trotterization sequence in reverse order after the usual trotterized time evolution [78], i.e.
. t . t . t . t . t M
Usvr = (e_’Hlﬁ...e_ZH”*We_’Hpﬁe_’HP*W...e_ZH1W> (188)

From an implementation point of view this decomposition can be realized straightforwardly
once we know how to obtain the sequence for the first order. Following again the proof in

[777] adjusted to unitary operators, an upper bound for the trotterization error of a Hamiltonian
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consisting of two terms is derived first to obtain the bound for the whole sequence recursively
N\ = —it/M):

He)\(H1+H2) o ()\/2)H1 )\HQ ()\/2)H1||

H /dt/ ds/ du et/ H gt H>

(2 U/Q)Hl[Hl,[Hl,HQH —(u/2)H —uH2[H2’[H17H2H qu) e(t/2)H1 o (A—t)(H1+Hz)

1 1
=3 (II[[Hl,Hz],HQ]H + EH[[Hl,HQ],Hl]H) =: A\y(H,y, Hy)
(189)
By applying this estimate now recursively, we obtain an error bound for an arbitrary number p

of Hamiltonians:

AXIHy (O SN2 Hy o MHp (V2 1 (\/2)Hy

_ | ATy 2 AT Hy (V2

4 VRS Hy (VD HL _ (O/DHL (N2 Hpo1 My (VD Hp1 (V/2)H:

< || i Hi _ O/ HI AT Hi (V2 H (190)

4 ||e/2yH (g Sh o Hj _ €<A/2>H2'_'€<A/2>Hp71BAH%(A/@HH‘_‘€<A/2>H2> N2 H

p
<A, ()\HL)\ZHJ') + H@ZLQ Hi _ WD | (N 2Hp—1 pAHp oA Hp—1 | (VD H:

Jj=2
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Thus, after recursion we arrive at the following inequality:

ASI_ Hy _ (O2HL (N2 Hpo1 MHp (N DHp1 (A/2H:

—

e
<Y As(AHp, AN(Hyg1 + .. + Hp))

=
w =

-1

AP S 1

== > [ Hes Hir + - + Hp), Hipr + .. + HJ|| + H, i+ .+ ), 1|
k=1

t3
1203

p—1

1
ST HR Hir + -+ Hyl, Hicer + o+ Hylll+ SN [Hs Hiy + .+ By, Hl|
k=1

(191)
With this inequality we can estimate the error for the full time evolution after M steps using the
bound from the first order formula (see eq. (183))):

[24(6) — Unag (1) = || — (e s _mitimraty it ith-saiy _¢~hzin )

-t : t . t : t . t . t
‘<e—zﬁ )D Hp M _ (6—1H1Wme—zHP,lme—szﬁe—sz,lmme—zHlm)MH

.t . t . t . t . t : t
=M He_lﬁ 2l _ o=ty | e=iHp-135 o3z o= iHp-15nr | iy

T R

~ 1202

k=1
(192)

4.5.2 Error bounds for trotterized time evolutions in lattice gauge theory

Having estimated the trotterization error in general, we can now specify this bound for lattice
gauge theories. This is an important task since we have to balance experimental errors and errors
caused by the digitization. The experimental errors increase with the number of trotterization
steps whereas the digitization errors decreases. Therefore, the more precisely we bound the
trotterization errors, the less steps are required for the implementation. This would significantly
reduce the experimental errors.

The Hamiltonian for a lattice gauge theory in d dimensions with an arbitrary gauge group can

be written in the form (see chapter 3 for details):

Hier=Hp+ Hg+ Hy + Houn (193)
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with the plaquette Hamiltonian

Hp=)g > Tr (U1 Us(p)US (p )Uj(p))+H.c. (194)

plaquettes p

the electric Hamiltonian

Hp = ZZf ) [gmn) (jmn| (195)

the matter Hamiltonian

Hy = MZ 1% (x)1)(x) (196)

and the gauge-matter Hamiltonian

Hen = Xm0 (%) U (%, k) (x + k) + H.c. (197)
x,k

Since the different parts of the Hamiltonian can not be implemented simultaneously, they are
split up in the digitized simulation scheme. The parts which can be implemented in one step
are the matter Hamiltonian and the electric Hamiltonian. The magnetic part has to be realized
in several steps but since these parts commute with one another, we can consider the magnetic
Hamiltonian as a whole. The gauge-matter interactions are implemented for each type of link
independently, i.e. 2d steps in total. They, however, have a non-zero commutator which is why
they need to be analyzed individually. Hence, for the computation of the trotterization error we

divide the Hamiltonian into the following pieces:

2d
Higr = Hp + Hg + Hy + Y How (198)

=1

First order formula By inspection of eq. we see that for an upper bound on the dig-
itization error of the standard trotter formula, the commutator among all different parts of the
Hamiltonian in eq. has to be computed and its operator norm has to be estimated. Since
the derivations are very lengthy we will refer the interested reader to the Appendix. With the

commutators from there we can obtain the trotterization error for the first order formula:
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[LA(t) — Uni (2]

_ ‘ e—itH _ (H e—iHjﬁ)M

J

2 2d-1  2d
Sm (H [Hg, Hg) || + ||[Haar, Hell| + |Haar, Harl) + Z Z I [Hensi, Hens) |
k=1 j=k+1
— UMZ k <)\B)\E4(d—1)mjax|f(])|+/\GM)\Emjax|f(])|+M)\GM+,\2GM 7

(199)

Second order formula To bound the error of the second order formula we need to calculate
nested commutators according to eq.(I92)). The calculations of them can be found in the Ap-
pendix. With all nested commutators at hand we can estimate the total trotterization error with

the second order formula:

(4 (2) — Us,ar (1))

t3Minkst . .
SW 16AgAB mjax lf(D)(d—=1) | 2Ag mjax |f()| + Apdy(d — 1)

(200)
+AaMAE Hl]aX |f(])‘ (2)\G’MdU(2(2d - 1) + 1) + Ap m?X |f(])‘)

1 1
T haarM (ddAgar + M) + Ny (2d — 1) (§(4d 4 5)1

If we assume a cubic lattice with L lattice sites per side we can express the number of links in

terms of this quantity L depending on the dimension d:

Nings = d(L —1)L*! (201)

Thus, the total trotterization error in terms of L is:
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LA (t) — U e (2]
<t3d(L — 1)Ld71dU
- 6M?

(202)
Ak max] )] (2Aawd(22d - 1)+ 1) + A max]£6)])

1 1
FAamM (4dhgar + M) + Ay, (2d — 1) (§(4d — 1)+ 5)}

It is noteworthy that the errors scale with system size and not with higher powers of the system
size which might be the case in a more general setting. The reason for that is that the interactions
are local. This is an indicator that the bounds are reasonable.

4.5.3 Special cases

In the last section, we want to apply the derived bounds from above to some special cases. The

first case is dimension two where the formula reduces to:

t3(L — 1) Ldy
_ < N7 TR
HZ/{(t) u2,M (t) H — 3M2

+AeMmAE max (1) {14 amdy + Mg max |f()I} (203)

17
+)\G’MM{8)\G’M + M} + ?)‘?C)?M)

If we also specify the gauge group the error bound will only depend on the coupling constant
and the volume of our lattice. One important gauge group for quantum simulations of lattice
gauge theories is Zy as a truncation of U(1). For finite N the electric Hamiltonian of Z y lattice

gauge theory has the form
Hgp=Xp» 1—P(x,k)— P'(x,k) (204)
x,k

where the P operator is unitary. Therefore, we can set max; | f(j)| = 2 (neglecting the constant
term). Since the gauge group is abelian the dimension of the representation is di; = 1. The

error bound then reduces to:
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t3(L —1)L
3M?2
FAamAeH{ T e + Ap} (205)

UE) — U ps(8)]] < (32X pAp{4A\g + A}

17
+)\GMM{8)\G’M + M} + ?)‘?C);M>

The same can be done for the dihedral groups Dy. Their significance comes from the approx-
imation of the orthogonal group O(2) in the limit N — oo. In chapter 3 it was shown that the
electric part of the Hamiltonian of Dy has a similar form as the one corresponding to Zy and
we can set max; | f(j)| = 2. The difference for the estimate is that the typical representation for
the U-operators under the gauge group Dy is two dimensional (dy = 2). The resulting error
bound is then:

2t3(L — 1)L
Ut) — Us e (1) < e

Fen A sd{14A e + Mg} (206)

(640 p A5 {2)p + Ap)

17
FAam M {8 e + M} + ?)‘BG’M)
The same error bounds can be derived in three dimensions. For Z  one obtains:

t3(L—1)L*
M2
+2>\GM>\E{11)\GM + )\E} (207)

U) — U 0 (2)]] < (64X\gAB{2 g + A}
1 125
For the dihedral group Dy one obtains:

2t3(L — 1) L*
M2
+2AamAe{22 qm + e} (208)

[U(t) — Us e (B)]| < (128 pAs{AE + A}

1 125
+FAan M {6 an + §M} + —2/\?&M)
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5 Implementation of lattice gauge theories with a dihedral
gauge group

Quantum simulations of lattice gauge theories with dynamical fermions and gauge fields in
more than 1+1 dimensions is a difficult task. One of the reasons being that the plaquette inter-
actions only come into play in dimension 2 and higher. Thus, we propose a way to implement
one of the simpler non-abelian gauge groups, the dihedral group Dy which converges in the
large-N limit to O(2), with ultracold atoms. Our scheme is in principle applicable to all dihedral
groups but the focus is put on the simplest non-abelian one which is Dg. It is isomorphic to the
group of permutations .S3. The underlying idea is to use a product Hilbert space to represent the
gauge fields residing on the links. The same applies for the auxiliary Hilbert space. In practice
this can be done by using two atoms, e.g. two different hyperfine levels of the same atomic
species. This drastically reduces the number of levels in every system. If m levels in the first
and n levels in the second system are required to represent a certain state, a single system would

need m x n levels.

5.1 Simulating system

Focusing again on the lattice gauge theory of Dg, as explained in section 3, we first want to
discuss the system we will use as a platform to perform the quantum simulation. The proposed
implementation can be carried out in either two or three dimensions. In both cases the lattice is
constructed by lasers generating optical potentials and trapping different atomic species. For the
exact construction in two dimensions we refer to [42]], for the construction in three dimensions
we refer to the general algorithm presented in chapter 4. In the following we will concentrate on
the latter and built the implementation upon this scheme. The two dimensional version can also
easily be derived from that. The most important ingredients, the atomic species, represent the
dynamical fields of our theory. For the matter fields it is crucial to use fermionic atoms to obtain
the correct commutation relations. Since the dimension of the only faithful representation of
the dihedral groups is two, and we thus have two fermionic d.o.f. 1) and 1), it is very natural to
choose an F' = 1/2 hyperfine level to describe the matter fields. This is an advantage compared
to the abelian case where only one fermionic d.o.f. exists and one has to make sure that other
mp states in the same hyperfine level do not disturb the simulation. The fermionic operators 1,

and ), are associated with the /' = 1/2 multiplet in the following way:
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(209)

To simulate the gauge field and auxiliary degrees of freedom we will use, as mentioned above,
the tensor product of two systems. The reason for that becomes clear when looking at the

structure of their Hilbert space. We denote the dihedral group Dg as

D¢ = {(pv m)|p € {07 L, 2}’m € {O’ 1}} (210)

where p corresponds to rotations and m to reflections (for a detailed discussion of the group
properties see section 3). Using the group element representation basis, the Hilbert space of the

gauge fields then exhibits the product structure:

2

1
Heontrat = Hiink = €D span{|p,m)} = € span{|p)} @ @ span{|m)} = Hy@H> (211)

p,m p:O m=0

This group structure already suggests to use a tensor product of a three-level and a two-level
system to represent the gauge field d.o.f. and the auxiliary d.o.f.. One possible choice is atoms
in the F3 = 1 hyperfine multiplet (the index 3 will label the three-level system) and on the other
hand atoms in the F; = 1/2 multiplet (the index 2 will label the three-level system), but in

principle any three-level resp. two-level system can be chosen. We identify:

lp=0)=|F;=1,mp=0)

p=1=|F=1mp=1)

p=2)=|F=1mp=—1) 212)
Im = 0) = |F, %,mF:%>

m = )E|F2:%,mpz—%>

Every state of the Hilbert space on the link can be obtained as a tensor product of the two mul-
tiplets, e.g. [p=1,m=1) = |F3=1,mp =1) ® |F, = 3,mp = —3). The corresponding
creation operators on some link (x, k) are described by af, (x, k) with mp = —1,0,1 for the
three-level system and cf, (x, k) with mp = —1/2,1/2 for the two-level system.

Since the Hilbert space structure for the link and auxiliary d.o.f. is the same, we can use another
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atomic species in the same hyperfine multiplets to simulate the controls. To distinguish the two
species we will denote all the auxiliary states with a tilde, i.e. the three level states by |p) and
the two-level states by |/m). Their creation operators are called bInF (x, k) withmp = —1,0,1
for the three-level system and df,  (x, k) with mp = —1/2,1/2 for the two-level system. The
resulting setup - for convenience in two dimensions - is depicted in Fig. [7]

It will turn out useful to define unitary operators Ps, (3 and P, ()5 acting on the three-level
respectively two-level system of the link Hilbert space. The same operators acting on the aux-
iliary Hilbert space will be denoted with an additional tilde, i.e. Ps, Q5 and Py, Q. They are
defined as:

Pylp) = '57|p)
Qs|p) = |p+ 1) (cyclically)
Pylm) = ™ [m) = (=1)™ |m)

Q2 |m) = |m + 1) (cyclically)

(213)

We see that the operators acting on the three-level system fulfill the Zg3 algebra whereas the
operators acting on the two-level system fulfill the Z, algebra. All interactions between the
constituents of the simulating system from above are mediated by two-body scattering (for
a detailed discussion see chapter 2). The only additional ingredient we have to add to the
experimental setup is a magnetic field. The necessity for that will become clear during the
implementation with the scattering term as we will need to preserve mg for both atoms. This
can be achieved by lifting the degeneracy for the hyperfine multiplets in different ways such
that a transition changing mp will cost energy. A natural way to do that is by introducing a

uniform magnetic field corresponding to the magnetic Hamiltonian (Zeeman shift):

Hy = ppgrmpB (214)

where 1 is the Bohr magneton and g the hyperfine Lande factor. Since the energy splitting
is supposed to be different for the two atoms we need to choose species with different Lande
factor. Another possible approach to realize the energy splitting is to address single species
which however requires alternative methods (e.g. use of AC Stark effect).

At some points of the implementation we also need to spatially separate the different mp lev-
els which can be achieved by applying a magnetic field gradient, for example in z-direction:

B(z) = bzé,. Since the magnetic potential is not uniform anymore the different m g levels will

69



Figure 7: The Dg simulating system consists of one atomic species on the vertices representing
the matter (red circles) and two for each the gauge field on the links and the controls located at
the centers of every second plaquette (resp. cube in three dimensions).

experience forces, pointing in different directions for mp levels with opposite sign. The overall
harmonic trapping potential on the other hand will lead to an equilibrium position within the
harmonic well. By choosing the Lande factors of the atomic species and tuning the magnetic
field gradient one can then tailor the scattering interactions in an mpg-dependent way due to
fully controlling the overlap between the atomic wave functions. In the case of two atoms in
the /' = 1 multiplet (F; = F» = 1) and a sufficient spatial separation, one could create terms
only containing the mp; = 0 and mp states. One could also choose an F' = 1/2 multiplet
with a very small Lande factor and an F' = 1 multiplet with a large Lande factor so that only
the mp = 0 component would interact with the two-level system.

Similar manipulations using a magnetic field gradient have already been employed. A selective
trapping of the mp = 0 component has already been accomplished in experiment while the
other components were pushed out of the trap [79]]. Weaker gradients should therefore enable a
spatial m g-splitting inside the trap.
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5.2 Implementation of the digital simulation

With the presented simulating system and the necessary background from the previous chapters

we can finally implement the digital simulation scheme for the lattice gauge theory of Dk.

5.2.1 Standard configuration of the lattice

Before starting the simulation we should define the starting configuration of our simulation sys-
tem. As already explained in chapter 3, the standard configuration for the lattice is reached if
the staggering potential Vy,,(, v, z) for the matter fields is switched off and the optical poten-
tial V.q:(, y, 2) is sufficiently deep such that no tunneling occurs. Furthermore, the potentials
Viik (2, y, 2) and V. (2, y, 2) need to have deep minima as well preventing any tunneling. For
the latter the potential barriers between the different minima will be kept high throughout the
whole implementation since we only need to allow for tunneling of the matter fermions at some
point.

The loading of the atoms proceeds as follows: The auxiliary and link lattice are loaded with one
atom per minimum. The initial states of the auxiliary atoms in the group representation basis are
the ones corresponding to the neutral element, i.e |in) = |&). This means we have to prepare the
state | Fy = 1; 7y = 0) for the three-level system and |F, = 1/2; 7, = 1/2) for the two level
system. The link atoms are prepared in the singlet state |000) (see eq.) corresponding to
the trivial representation. Thus, in terms of the hyperfine states representing the group element
basis, this translates as an equal superposition of all possible states. All the atoms are cooled
to a degree that they will certainly occupy the motional ground state with energies Ey ,,,,, and
Eo ink-

For the matter fermions we need to achieve half-filling with empty even minima and fully oc-
cupied odd minima (energy Fj ,q:) for the reasons described below. As we are dealing with
the non-abelian gauge Dg, the non-trivial representation of the matter fields under the gauge
group is two-dimensional. This means that we have to prepare the fermionic species in the
|F' = 1/2;mp = 1/2) state for the first component and in the |F' = 1/2;mp = —1/2) state for
the second component and put one of each in an odd minima. This will give us the gauge-
invariant Dirac sea state | D) (see section 3.3.1). Together with the |0) state of the gauge fields
we obtain the global singlet state from eq. (88).

As mentioned in the previous section, we also need to introduce a uniform magnetic field (or

an AC Stark effect) to lift the degeneracy of the ground state. and induce energy splittings
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(AE e, A B and AFE,,,, respectively) between the different m r components.
We can finally define the non-interacting Hamiltonian /7, which will be present throughout the

whole implementation:

HO = Z(EO,mat + AEmat) 1/}1 (X)¢1(X) + (EO,mat - AEvmat) Tﬁ;(x)%(x)

= Z Z(EOJink:,a + AEjnkamr) al, (X, k)apm, (x, k)

x,k mp

- Z Z(Eo,link:,c + AElinlac mF) C]anF (X> k)CmF (X7 k) (215)

x,k mp

- Z Z(Eo,au:c,b + AE’au:(:,b mF) bjnF (X)bmF (X)

X mp

- Z Z(Eo,aum,d + AEjau:r:,d mF) dInF (X)dmp (X)

X mp

All parts of the digital simulations are added on top of H,. To recover the desired Hamilto-
nian H we move to an interaction picture , i.e. we will work in a rotating frame with respect to

H, and make use of the rotating wave approximation.

5.2.2 The mass Hamiltonian

The mass Hamiltonian in three dimensions takes the form

Hyp = MY (=147t () (x) (216)

with 9T (%) (x) = 9] (%)t (x) 4 14(x)1s(x). Thus, the corresponding time evolution for a

time step 7 is:

Wy = e Hum (217)

The implementation of this term can be achieved by smoothly increasing the staggering poten-
tial Viyo4(2, y, 2), as described in section 5.4. This allows to raise the energy of the even minima

by an amount M., resulting in the Hamiltonian
Hiy = Megen 3 (1+ (—1)7 225535 () (x) (218)
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Meven
M

If we realize this Hamiltonian for a time 7 we obtain the desired unitary evolution

W, up to an irrelevant global phase.

5.2.3 The stator

For the creation of the plaquette interactions and the gauge-matter interactions it is required to

construct the group element stator (see chapter 4 for a detailed discussion):

5= / dglg) (9] ® |3) (219)

where ~ denotes the auxiliary system and the part without the ~ the physical system. If we
want to create this stator for a certain link ¢ from the state corresponding to the neutral element

lin) = |&) we have to apply

U = / dg lg); (9l; ® O} (220)

Speciftying this equation to the gauge group Dg we obtain the following interaction between the

d.o.f. on each link and the ones of the control:
U |in) = ZZ@, (p.m|; ® 61 [0,0)
—ZZIP, i (p,ml; @ |p+ (=1)™0,1m)
—ZZIp, i (p,ml, ® |p, ) (221)
= sz i (p,ml; @ Q5Q3'[0,0)

:Q§Q2 | ) >

By choosing |0, 0) as our initial state the creation of the stator reduces to an interaction be-
tween the three-level systems and an interaction between the two-level systems which can be

implemented in parallel. They can be written as

Us = Qf = e '3 los@slosPs — iy, (222)

with V3 mapping from the Q-basis into the P-basis and
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ué — e—i% log P; log Ps (223)

The mapping to the P-basis is required since this will allow to express the interaction in terms
of the angular momentum operator.

Respectively for the two-level systems:

Uy = Q= e~ixloe@loe P2 — gy, (224)

with

ué _ e—z%logﬁg log P> (225)

The basis transformations V3 and V5 are local interactions on the auxiliary atoms that can be
implemented by adressing them with optical/RF fields. Thus, we express this unitary transfor-

mation for all auxiliary atoms, V3 4, as a time evolution under a Hamiltonian, denoted H3 q;:

. 1
Hagn = 3 |83 = DU + 51+ 2L ) )
x ) (226)
+ 5b{(x)b,l(x) — bl (x)bo(x) — bl (x)by(x) + H.C.]

The basis transformation from the Q-basis to the P-basis is then generated by V3 4 = e_m3’“” 33,
The similar transformation for the two-level system is much simpler, as it is just a Hadamard
transform. Applied to all atoms it takes the form:

i ;(fm +52)

- 1 B B
Va.al :ﬁ(%,au +0.a) =€ (227)

The more difficult part is the implementation of U5 and U5. Starting with U3, we first express
the Ps-operators in terms of the z-component of the hyperfine angular momentum operator F’, 3.
The action of log(P;) on the F' = 1 hyperfine angular momentum states |F3 = 1;mp = 1),
|F3 = 1;mp = 0), |F3 = 1;mp = —1) - which represent our three-level system - can be ex-

pressed in their basis:
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5 0 o (100 ,
logP;=1log| 0 1 =i [0 0 0 | =iTF, (228)
0 0 e % 00 —1

We can therefore write the I} - interaction in terms of the z-components of the hyperfine angular

momentum:

Uy = &5 FaFea (229)

We want to use two-body scattering processes to implement this interaction. For the two F' = 1
multiplets of the auxiliary and the link atom, the unitary describing the scattering process takes

the form (for details see chapter 2):

Uscar = €71 Zio 9T I (230)
2r (To
n JO
tion duration 7j. To make this equal to eq. (229)) we need to make use of the magnetic field we
introduced in the last section. This comes from the appearance of F , Fs, and Fy,Fy, terms

where o = O(t)dt is the Wannier functions’ overlap integrated over the whole interac-

that involve transitions between different mp and mp values. To suppress this processes, we
can give them an energy penalty by introducing a magnetic field, lifting the degeneracy of the
hyperfine states (Zeeman splitting). This adds an energy term E(mpg) = Emp to the Hamilto-
nian of the link atoms and to the Hamiltonian of the auxiliary atoms, £ () = Emp. Since the
atomic collision conserves the sum of the z-components of the angular momentum, mg + mg,
the transition my — m/ is characterized by an energy cost (m/, — mp)(E — £). If we require

£ + &, the scattering process will conserve both my and 7 p. Enforcing this constraint on

eq.(230), gives us

uscat — efia(noNtotNtot+n1Fz,gﬁz73+n2]\~/0N0) (231)

where 10 = go+592, M = 91— 392: 12 = 392, Niot = X, G Gimes Niot = 3 bbby, No =
a[T)ao and ]\70 = bgbo. For the exact values of the ¢’s in terms of the scattering lengths see section
2.5.

The shaping of the lattice is done in a way that no tunneling in the link and the auxiliary lattice
is possible. As every well is loaded with one atom we can set N;,; = Ntot = 1. Hence, the

first term in the exponential gives only rise to a global phase. When tuning the parameter o
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we have to be a bit careful since the overlap integral has to be positive. On the other hand,

without further specification (e.g. the atomic species) we can not tell whether the parameters 7

2m

3
If it is positive we set o = 3% which would give us the conjugate Z/{g by following the same

are positive or negative. We therefore set « = —z= under the assumption that 7; is negative.
procedure. Its conjugate I/ could then be obtained by doing a flipping operation in the exact
same way as explained later on for the case of taking the conjugate of /5. Focusing now on the
case 11 < 0 we get

%"(Fzsﬁz,av-i-%]vo]\fo)

Usear = €' (232)

up to a global phase. To eliminate the undesired second term in the exponential we apply
a magnetic field gradient as explained in section 5.1 so that a spatial separation between the
different mp -respectively mp - components occurs. This allows to shape the atomic wave
function in a way that only the mrp = 0 and mp = 0 components will overlap. However,
we have to take into account that the different levels of the hyperfine multiplet will acquire
relative phases during the time evolution under a magnetic field gradient. This can be remedied
by switching the sign of the magnetic field and repeating the process (this technique will be
applied for all future scattering events of this kind). All relative phases then cancel each other

and we end up with a scattering term of the form:
Viscat = eiiBNONO (233)
We tune overlap and interacting time such that 5 = 27(k + z2) > 0(k € Z can be chosen as

7
3m
the smallest allowed integer). Combining it with Uf,.,; we get

j 2T 3 —i N s e
Viscatlscat = e's Feafes € 2maNoNo. — e's Fasbas — ué (234)

where in the last step we used the fact that since x € Z the second unitary has no effect
whatsoever. We finally found a way to create the stator but we also need to explain how to
undo the stator, i.e. create Z/{g. One way of implementing it is by flipping locally the mpr = 1
and mpr = —1 levels of the auxiliary atoms, which is equivalent to mapping Fz73 into —Fz,g.
It can be achieved by addressing the control atoms with lasers or RF light. Denoting the spin

flipping by \~/F73 we can obtain Z/{éT by the sequence (again ignoring global phases):
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) “t _iBNoNo 42 (—Fy3F, 3+ 2 NoNo) 28 F oF. 5 4%
VscatVF,BuscatVEg =e€ Ao Oe 3 FerEetm =e "3 EETe3 —L{3 (235)

In a similar fashion we want to create now the unitary operator U, from two-body scattering. We
first write U/} in terms of the z-component of the angular momentum operator F’, 5. The action of
log P, on the two level system - consisting of |Fy = 1/2;mp = 1/2) and |Fy = 1/2;mp = —1/2)

- is given by:

log P, = log . = log (¢/50779) = iZ(1 - 0.) = iZ(1 - 2F.») (236)
Hence, U4 can be written in the form:
U, = e—ix(15)2(1=02)(1-62) _ (iF =150z 155 inFe2Fz 0 (237)

The first term is a global phase and can be ignored. The second and third term are local op-
erations which can be implemented by adressing the respective atoms by external fields. The
more difficult part is the two-body-interaction between the auxiliary and the link atom. It will
be realized by an atomic collision between the two. Since both are in the F' = 1/2 multiplet the
total angular momentum can only take two values (F},; = 0 or F},; = 1) which simplifies the

expression. The corresponding scattering term Uscqs 2 1S

uscat,Z — e*Z’Y(QONtotNtotJrgle'FZ) (238)

where v is again the Wannier functions’ overlap integrated over the time of interaction. As for
the three-level system, the different energy splittings due to the magnetic field will conserve the
mp and mp values. Moreover, tunneling is forbidden for both lattices so that N;,; = Ntot =1

and we can ignore the resulting global phase. We end up with the constrained scattering term:

uscat,? — 6—1’791Fz,2'Fz,2 (239)

If we tune the overlap and interaction time such that v = —911, we obtain the desired two-body
interaction of 5. We assumed again that the parameter g, is negative. If it is positive, we can
choose v = 5% and finally get U;f (if we take the conjugate of the local terms as well). Either
way, we would then need to implement the conjugate which is done again by a spin flip of the
mp = 1/2 and mp = —1/2 state, denoted as V5. For the g; < 0 case the conjugate Ll;T 18

obtained by the sequence
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IG5, i1 ~ iT&, i — 3 /
e'192 ol 502 VFQZ/{scat,QV}iQ — ¢l102015%2¢ inFy0F, 0 Z/{QT (240)

5.2.4 Plaquette interaction

Knowing how to construct the stator, the implementation of the plaquette interaction is straight-
forward. Since we have to split them in different parts (see chapter 4), we start with Hp i,
the type 1 plaquettes of the even cubes, where the auxiliary atoms are placed in the standard

configuration. We follow the three steps of the algorithm given in section 4.3.1:

1. We create the stator for the plaquettes. It can be constructed out of the unitaries Uy =
\N/;Z/{QN/Q and Us = V;Méf/g responsible for creating the group element stator as discussed
in the last section. Thus, if we move the lattice of the auxiliary atoms to a link 7 and tailor

the interactions accordingly, we can build the stator for all links i in even cubes:

Uie = %T,all‘;;r,all H ué,i(x) éz(x) %,all%,all (241)

X even

The desired plaquette stator can therefore be obtained by repeating this procedure with
all four links. The basis transformations V3 and V5 have to be done only in the beginning

and at the end which reduces the sequence to:

Upte = V3 Vol il Us U UL Vot Vs (242)

where U, is defined as U, = [] Us,(x)Us;;(x). This gives us the entangled state
between the four links and the aﬁiqjielrilary degree of freedom which allows mediating the

plaquette interactions.

2. The next step is a local operation on the auxiliary Hilbert space which generates the time
evolution in the physical Hilbert space (for details see section 4.3.1). We need to realize

the interaction Vi = e~ "#57 of the control with Hp being the control Hamiltonian:

Hp = \gTr (U +UY) (243)

In our case this is a local interaction since we represent our control system by two atoms.
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The Hamiltonian Hp takes the form (see chapter 3 for details on the magnetic Hamilto-

nian) :
f{B = )\BTF(U+ UT)
= AgTr (Z > 1B, i) (B, 1| TP | H.c.>
D m

%5 (1 _ %), (244)
:)\BTI' (6 ’ ( m) cm >+HC

-2 A

5P e 5P (1 — 1)
= Mg(Ps+ P)(1 —m)+ He
=2\ (Ps + P})(1 — )
The hat over m and p indicates that they are operators acting on the auxiliary Hilbert
space with eigenvalues 1 and p for the state |p, 7). We can already see that Ps + ]53T is

acting on the three-level system whereas (1 — m) is acting on the two-level system. We

therefore have to implement the time-evolution of a two-body interaction:

Vy = o tHBT _ =2\ (Ps+P]) (1) (245)

We first compute ]53—1—]5; acting on the three level system of the hyperfine states | Fy=1:mp= 1),

2 cos 2% 0 0 -1 0
P+ P} = 0o 2 0 =10 2 0|=-1+3N, (246)
0 0 2cos %” 0 0 -1

Thus, we get for the interaction f/B:

Vi = o—tHBT _ o—i22p (P3+P])(1—m)r _ ,—i2Ap (~1+3No)Ny o7

(247)

— 22BNy o7 —i6A5No N /o7

The first exponential is a local term of the two-level system which can be implemented by
means of optical/RF fields. The second term requires scattering between the two auxiliary

atoms. The relevant scattering term for angular momentum F' = 1 and F' = 1/2 is:
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Z/{ 13 = e—i§<91/2 Z’"L dindrn ZTL bILb”+g3/2F‘2'F‘3) (248)
scat,

where  denotes again the integrated overlap of the Wannier functions. As in the previous
cases - since the different energy splittings due to the magnetic field conserve mp - we

can remove terms which change m . The unitary for the scattering process reduces to:

: t t 5 F
Z/{scat,B — 6—15 (91/2 > om dmdm 22, bnb'n+93/2Fz,2F2,3) (249)

To achieve m p-dependent overlaps, we again apply a magnetic field gradient which spa-
tially separates the m p-components. If we choose the Lande-factors of the atomic species
and design the magnetic field gradient in the right way, we can tune the overlap such that

only the mp = 0-component and the mr = 1/2-component experience scattering with

6ABT

each other. With additional tuning of the interaction time we can set ) = e

and finally
obtain:

Z/lscat,?) = 7i6)\BNON1/2T (250)

which is up to local operations the desired unitary V. This interaction will be imple-
mented in parallel for all cubes where auxiliary atoms are placed, i.e. in this case for the

even cubes. Hence, the overall interaction of this step is
Vpe = e BT (251)

with [:IB,e = Zx even FIB(X).

3. In the third and last step we have to undo the stator. This can be done by just doing the

hermitian conjugate of the first step, i.e. the sequence:

u;,le = ‘Z’:r,all%talluéieu?/)eug;u{i%,all‘ZLall (252)

According to eq.(1506) these three steps give us W 1., the time evolution for a time step 7

of the first part of the plaquette interaction at even cubes:
u;7leVBeuB7le = WB,le (253)
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If we repeat now the same procedure but with the links corresponding to the second and third
plaquette term, we obtain Wp 9. and W 3.. To realize the odd cubes evolution, we move the
auxiliary atoms to the centers of the odd cubes and repeat all of the above. This results in the
time evolutions Wg 1,,Wp 2, and W 3,. Then we bring the auxiliary atoms back to the centers

of the even cubes.

5.2.5 Gauge-matter interactions

For the Gauge-matter interactions on a link (x, k) we have to implement the Hamiltonian

(x)
= Ao ¥l(x) (61::5:"”3 U?)abAwb(X + k) + Hec. o5t
= e} (x) (73 7)o (07 e Ye(x + k) + H.c.
= A V(%) (Up)ap(3, k) (U )e(x, k) e(x + k) + H.c.

with U, = %5 7:P and U, = o™. We can use the product structure of U to implement the
gauge-matter part via two-body interactions. The key ingredient for that is the Baker-Campbell-

Hausdorff formula. We first need to define two unitaries, one that corresponds to U,,:

Uy (x, k) = el BUna (k) va(U(0) i %575 (] (01 () =3 (x)i2()) (255)

and another one corresponding to U,,:

Uy (X, k) = €108 Um)ab (k) ViG(0 — i1 (6] () ()1 ()2 ()1 (N (-6 (x) - (256)

With these definitions at hand we can get the following relation by applying twice the Baker-
Campbell-Hausdorff formula:

Usy (%, )Uvwn (36, KL GO Uy (35, KUy, (3, ) = 00 () (Up Jan (6, K) (U o (%K) (257)
The gauge-matter Hamiltonian can then be written as

Henr (%, k) = U (X, &)Uy (%, k) Hy (%, KU, (5, B)US, (%, F) (258)
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with the tunneling Hamiltonian
Hi(x, k) = Aen ¥l (x)0a(x + k) + H.c. (259)

Defining its time evolution as
Uy (x, k) = e Hxk)T (260)

we can write the sequence to realize the time evolution of the Gauge-Matter interaction on the
link (x, k):

Wt (X, k) = U (%, &)Uy (%, KU (x, K)US, L (%, ) US, (%, ) (261)

The crucial thing to note here is that all the terms involve only two-body interactions which
allows an implementation with ultracold atoms as we will see in the following. We can not
implement all gauge-matter interactions at once as the fermions on the vertices are only allowed
to interact with one link at a time. Focusing on the links in the I-direction for the even cubes,

we aim to realize the time evolution
Wenarie = e Harer (262)

with Hoarte = Y yopen Hanm (%, 1). Since we want to keep the lattice of the matter and link
degrees of freedom fixed, these interactions will be mediated by the control atoms. Thus, fol-
lowing the algorithm presented in section 4.3.2, we first need to create the group element stator
between the auxiliary atoms and the link atoms. This can be done by moving the auxiliary

atoms to the 1-links and generate the sequence (as discussed in section. 5.2.3):

Ure = ‘%T,au%tau H Mé,linkl(x) ué,linkl(x) %,all%,all (263)

X even

Afterwards, the two terms L[&,ﬁp and U{}/,m have to be implemented by two-body scattering pro-
cesses but between the fermions and the auxiliary atoms due to the stator construction, therefore
denoted as Uy, and Uyy,,. Starting with U ! > we first write it in terms of the angular momen-

tum operator respectively the second quantized operators 1), and 1), for the fermions:

U, (x, k) = e FPOACN ) -wb(0v2(0) = o=i% P (W] (01 0O~ (0¥ (0) (264)
7p ’
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Now we have to tailor the atomic collision between the F; = 1 and the F' = 1/2 multiplet
accordingly. The magnetic field again lifts the degeneracy of the hyperfine levels and thereby
preventing any transitions changing the mpg-values. An important difference to previous scat-
tering processes is that the fermion number is not locally conserved but only globally, the total
number of auxiliary atoms, however, still is (N'g,,tot => binbm = 1). Taking all that into

account, the unitary for the scattering is given by:

Uy s = efia(guz(l/q%+¢§¢2)+g3/2}7}73(¢1¢1ﬂp;w)) (265)
If we tune the overlap such that o = 3927”/2 we obtain
2912 1 t _
z/{scat 4 =€ ' 293/2 (w1w1+w2¢2)e_i%rFZ,s(iﬁJ{wl_wgiﬁQ) (266)

The second exponential gives rise to the desired interaction Z;{JV , Whereas the first term is a

fermion-dependent phase, denoted from now on as
Vig: (0) = e~ 0™ (267)

where 0 = 237;771/22 and YTy = zﬂwl + w;wg. A discussion of these phases will be done later

on. Before, the implementation of Z;{;[Vm as scattering between the fermions and the two-level

system is explained. It has the form:

B, = o5 Sl sstinmderston

o 5N _1/2 (Wvr+eSa—v] o —plun)

(268)

Vi pere EN-12 @l tebto—wlintibvn)y,

—inN_ o
VH,fere 1T 1/2 ¢'2w2 VH,fer

where ]\7,1 /2 = dtl /Qd,l 2 and Vi jor = \%(ax, fer + 02 fer) @ Hadamard transform on the

fermions which can be implemented by means of optical/RF fields. The remaining two-body
interaction is realized as the scattering between the F' = 1/2 states of the control atoms and the

fermions. It can be described by the following unitary:

Usery s = (90 Zon dndm (@1l 1 oo (W]n—vivo)) (269)
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We switch on a magnetic field gradient designed in a way that only the mp = —1/2-components

of the auxiliary atom and the fermion overlap. Moreover,The interaction time should be tuned

T

such that n = P

which finally gives rise to:

Uscar s = e_m(godt1/2d*1/2¢;w2+gldil/2d*1/2w;w2) = efmdtlﬂd*lﬂ vive (270)
Since the implementation of Z;lgup and Z;{%/m is done in parallel for all even cubes we get the

sequence
T th,. <. Dt (x, 1) Vi (6) 271)

X even
In the next step we implement the tunneling U4, ;. in the 1-direction for even cubes. This can
be achieved by decreasing the potential barrier between neighboring lattice sites as explained in

detail in section 4.4 for the general algorithm. We get

Upie = [] thix,1) (272)

xeven

After the tunneling we need to realize the conjugate of d;v,p and Z;{&,’m, i.e. Uy, and Uyy,,. One
way of creating Uy, is by doing a spin flipping operation V3 for the three-level system of the
control which results in:

Vally Vi = Uy

i . (273)
VF73VW/ (Q)VF,?) = VW’ (9)

For the creation of Z;{Wm we observe that Z;{Jym is a m-gate and the operator dT_1 /2d_1 /ngzﬂz
only takes integer values. Therefore the unitary L{I},,m is real and therefore - since it is diagonal-
conjugate to itself. Hence, we just repeat the steps from above for the creation of Z:{IJ[Vm The

sequence we finally obtain is

T Vi (0)thwp(x, D (x, 1) (274)

X even

In the last step we need to undo the stator, which is done by the conjugate of the first step, L{L

(explained in detail in the previous section on the stator). We can then summarize by writing
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down the whole sequence acting on the stator S; = U, ]zh> created in the beginning :

Ui, TT Viv (0)thwp (5, Dl (x, Dy (x, DU, (5, DU, (%, 1) Vi (0) Sy

X even

=Ul.S1 [T Vivr (00w (3, 1)Uy (3, DU (x, DU, (5, DU, (%, 1) Vi (6)
X even (275)

=in) Viwr(0) [T Wenr(x, 1) Vi (6)

X even

- |Z;’L> VW’ (9)WGM,16VW’ (6)

We finally get the desired gauge-matter interactions up to the fermionic phases Viy/(6). How-
ever, if we consider the whole lattice it can be shown that the phases correspond to a static vector
potential of zero magnetic field and are therefore unphysical [42]. If we repeat the whole proce-
dure from above for the other links we obtain the gauge-matter interactions Weays 2e, Wanr 3esWant, 10.Wans 20

and Waa 30-

5.2.6 Electric Hamiltonian

The electric Hamiltonian for the gauge group Dg acts on the gauge fields residing on the links.
If we choose its second part - which corresponds pure rotations only - in accordance with

the electric energy of Zs (see chapter 3 for details) we obtain, using the notation of previous

sections:
Hp=Xp »_ hp(x,k) (276)
x,k
with
_1 / _p._pi
hip(x, k) = 5 > 10,m) (0,m/| + f,(1— P - P))® L, (277)

If we also express the interactions of the first part in terms of operators acting on the link atoms,

we end up with:

1
hp(x, k) = §ft/a(T)a0 R(1+o)+f(1-P—PHolk

1 1 (278)
ift’a[];ao & (1 + Uac) + fr Z (1 + |mF|>a’7TnpamF ® ]IQ

mp=—1
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The first Hilbert space represents the three-level system, the second one the two-level system.
The coefficient f, is the overall coefficient for the electric part corresponding to pure rotations,

equivalently to Z3. We have to implement the time evolution:

Wy = e~ tHET H efihE(x,k)T (279)
x,k
with
. ,/\Eftl T ,AEft/ T i) f z (1+| |)(ZT a
6—1hE‘r — e—z 5 aoao‘re—z 3 aoaoamTe AR Jr mp mp|)ampampT (280)

The first and the third exponential are local terms of the atoms and can be addressed by exter-
nal fields. The second term is implemented by two-body scattering similar to the one for the

plaquette interaction. Following the steps there, we obtain the unitary:

Uscar,3 = €~ 191720172 (281)
Tuning overlap and interaction time such that v = % and combining it with the local inter-
. ApfuT .
action Vg o = ¢~ 2z /2, gives us:
ApfuT . Apf
Vi olhsatz = €' EQt, N1/2€—Z>\Eft’N0N1/27' — et E2 ! Nooor (282)

If we then perform a Hadamard transform on the two-level system we get the desired interaction:

Ap Ty

i Ap Ty
Vi 2VeoUscar 3V = €' 2

i Ii
Nooy —e 1—5—ayagoxT (283)

which gives us the electric Hamiltonian up to local interactions. We have finally implemented
all interactions by using local interactions on the atoms and tailoring the appropriate two-body

scattering terms.

5.3 Experimental errors

The errors affecting the precision of the simulation are twofold. On the one hand, we have
trotterization errors coming from the digitization. They are intrinsic and discussed in detail in
section 4.5. On the other hand, there will be experimental errors in the implementation. Unlike
trotterization errors, they may break the gauge symmetry and increase with a larger number of

time steps M. This concerns in particular gates that do not depend on the length 7 of the time

86



step but require a fixed amount of time. Thus, the number M must be chosen in way to balance
digitization and implementation errors.

Some of the sources of errors are shared with many other cold atom experiments. The first
one is decoherence, e.g. caused by spontaneous scattering of lattice photons with the atoms.
This has been relatively well under control nowadays, reducing the corresponding timescales
to several minutes [3,[80,[81]]. Other factors contributing to decoherence are fluctuations of the
magnetic field which are also present in many cold atom experiments. Secondly, one needs to
ensure that the atoms remain in the lowest Bloch band throughout the whole implementation.
Hence, it is of crucial importance to shape the lattice and move the atoms in an adiabatic way.
This has to be taken into account in our simulation scheme when the auxiliary atoms are moved
or when the matter lattice is deformed to allow for tunneling. However, such techniques have
become well-controlled [3,[82].

Errors more specific to this proposal are connected with the two-body scattering. It requires a
high degree of control over the overlap of the atomic wavefunctions and the time of interaction
during these collisions. One of the ingredients to achieve that is the ability to design and ma-
nipulate the magnetic field gradient in a precise manner. Moreover, for the implementation of

local terms the turning on/off and the duration of laser pulses need to be under high control.
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6 Summary and Conclusions

In this thesis on quantum simulation of lattice gauge theories with ultracold atoms, two main
results were achieved: On the one hand a digital simulation scheme was proposed to realize
lattice gauge theories in 3+1 dimensions including dynamical fermions using only two-body
interactions. On the other hand, following the aforementioned simulation scheme, an imple-
mentation of a lattice gauge theory with a non-abelian gauge group - the dihedral group Dy -
was proposed, mapping the Hamiltonian of lattice gauge theory exactly to the Hamiltonian of
ultracold atoms. However, since the time evolution is performed in a trotterized manner, intrin-
sic errors occur. These were studied in detail as a good bound on the trotterization error gives
more leeway to experimental errors.

The key ingredient of the three-dimensional simulation scheme is an auxiliary system which
can be entangled with the physical system. This allows to create an object called stator which
mediates the complicated three and four-body interactions of lattice gauge theory only by two-
body interactions as desired for implementations with ultracold atoms. Moreover, it should be
emphasized that all time evolutions in this algorithm are individually gauge invariant. The cor-
responding gauge group has to be either a compact Lie group or a finite group which is not a
restriction for all relevant theories. In the case of compact Lie groups, the local Hilbert spaces
of the gauge fields have an infinite dimension and therefore need to be truncated for a feasible
implementation. However, as the construction of the stator is done in group space, the trun-
cation has to be done there as well and can not be in the typically used representation space.
Examples for such truncations are Zy for U(1) or - as proposed in this thesis - Dy for O(2) (or
SO(3)).

For the implementation of the lattice gauge theory with dihedral group Dg - isomorphic to the
symmetric group S3 - we exploited the group structure of Dy as a semidirect product. This
allowed us to represent the gauge fields by a tensor product of a three-level and a two-level sys-
tem and thus simplified the implementation. The potential gain from this procedure would be
even higher for more complicated gauge groups exhibiting a semidirect product structure. This
idea might pave the way for other realizations of lattice gauge theories with non-abelian gauge
groups in more than 1+1 dimensions including dynamical fermionic matter. This is a non-trivial
step since in two and more spatial dimensions plaquette interactions, which are not present in
one dimension, occur. An advantage of implementing these plaquette interaction by the con-

struction of stators is that the interactions are strong since no perturbation theory is required
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as compared to quantum simulations without an auxiliary system. Moreover, no sophisticated
experimental techniques such as Feshbach resonances are required. However, precise control
over atomic collisions is needed in order to obtain the desired time evolution. In particular since
gates entangling the auxiliary system with the physical system do not depend on the simulated
time and are thus more prone to experimental errors.

Future efforts on experimental techniques can therefore be targeted at the controllability of the
relevant parameters, i.e. in particular fine tuning of the overlap integrals and the interaction
time during scattering processes. The generation and experimental control of superlattices is
important as well in order to create a staggering potential for the dynamical fermions. Also
conducting experiments on simpler models - as currently set up for the Schwinger model - is
a very promising direction as it can serve as a proof of principle for the validity of quantum
simulations of lattice gauge theories. The Schwinger model is particularly well suited for this
task since it has accurate analytical and numerical results to compare experimental results with.
Successful experiments might encourage more work in this direction.

From the theoretical point of view, a logical next step is to think of possibilities to realize more
complex gauge groups. One step towards that goal is to find suitable ways to truncate compact

gauge groups like for example SU(2) in a meaningful manner.
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Appendix

For the bounds on the trotterization error of the digital quantum simulation (presented in chapter
4) a computation of commutators and nested commutators of the different parts of the Hamilto-
nian is required. Since the calculation of these commutators for a general lattice gauge theory
are very lengthy, they are shifted to the Appendix.

First order

For the first order formula the ordinary commutators need to be computed. Starting with the

commutator between gauge-matter interactions on different links ¢ and j, we obtain:

(Hewmi, Hojl

=D Aewr (@) Ui (2, k) bn (2 + Ki) + e, Aot U () Unan (0, ki on (y + k) + hec
z,k;

yzk]

D D @)U ki@ k) + B, U (@)U (2, ) (2 + ) + D]

z/{boundary}
+ [@Din(l’)Umn(CE, k’z)Q/Jn(iL’ + kz’l) + h.C, ¢;/<$ + k‘l — k’j)Um/n/([E + k’l — k’j, k’])ﬁ}n/(l’ + k’l) + hc]

N D [Uh@ kU@ k() 0 (@)U (2, ko + By) | = e

z/{boundary}
o [0, (2 U (2, b i) 61 (0 4 R )U S (4 K = By, Yo (4 B — )| = e
=New D U@+ kUL, (@, k) U (0, Ky o (2 + k) = hc.

z/{boundary}
0 (2 Up (2, kUL (2 + ki — kg, By )b (- + ks — k) — hec.
(284)
To estimate the norm of this term the - and U-operators need to be expressed in terms of

tunneling terms and unitary operators as already discussed in section 4.3.2:
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[Hai, How gl
=N Y @+ kUL (@, k) U (2, Ky )b (4 Kj) — hec.

z/{boundary}
A8 (@)U (2, )UKy — ke, By )b (2 + ki — k) — hc.
=\, Z 108 UT (@.ki) i (ki )on (-+i) Glog U (k) o (ki Yy (i)
z/{boundary}
(ML(Z' + kz)z/Jn(x + k:j) _ h'c.)e—IOgU(mvkj)abwi(x‘i'ki)wb(m+ki)6_10g Ut (@,k3) g 08 (2K )by (2+Ks)
410U (@ ki) b ()8 (2) Glog Ut (a-thi—kj k) ot ()b ()
(W (2)n(z + ki — ;) — h.c.)e™ 108U (@hkimhyky) s (@) (@) log Uw ki) bk (@) (2)
=Now D Ul Uwa (] (@ + ki)n (a4 ky) — hoc Ul U

z/{boundary}

+UW3U1TA/4(¢L($)¢7¢($ + ki — kj) — h-C-)UW4U;V3
(285)

Since the U/’s are unitary, the operator norm of this commutator can be estimated as:

I Heni Honrg) | < Moar Y I (@)nle + ki = ky) = heedl| + [9](2)n (@ + ki = ky) — huc|

z/{boundary}

Niink Niink
<Ny —=22dy = Ny ——d
— \GM 2d U GM d U

(286)
where dy; is the dimension of the representation of U under the gauge group and therefore the
operator norm of the tunneling term. In the next step the commutator between the matter- and

gauge-matter interactions is calculated:
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[(Har, Hon)

- [Z M(=1)0h (@) (2), S Aanrthhy (0) Un (1, ki) + i) + e

=3 Midan | (~1)h @) (@) + (~))" ] (@ + k) + ko),

win(x)Umn(wa kz)%(ﬂf + k‘l) + h.c.]
= Mdaar |(=1)"0} (@) (), 0], (@)U (2, ki (2 + kl-)} ~he. (287)

+ [(—1)z+ki¢L (2 + k) ow (2 + k), 01 (2) U (2, K )0 (2 + ki>i| —he.
- Z MAGM(_l)I¢;(x)Umn(xa kz)wn<$ + kfz) — h.c.

_(_1)x+kzwin($)Umn(xa kz),@bn(aT + k’l) — h.c.
=2 " My (=10, (@)U (2, ki) on (2 + ki) — hoc.

We rewrite this expression again in terms of the unitary operators Uy which allows us to bound

the commutator in the following way:

I [Hyr, Hoaal || = 1|2 - MAaas (=1)"0], (2) Ui (2, i) tbn(z + ki) — hec.

(288)

=112 Mear(—=1) U (] (2))0 (2 + ki) — hoc U,

< 2MAeuNinksdy

For the commutator with the electric part the whole gauge-matter interaction is considered as

every part of the gauge-matter Hamiltonian does not commute with Hz. We obtain:
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[Hewn, HE|

ZAGM@N VUrin (2, K)on (2 + k) + ., > Ap Y () |jmn) <jmn|]

Y.k’ J

max; | f(j

=3 AgwAp mas |£() [win(x)Umn(x, B)bule + k) + e 3 % [jmn) <jmn|]
x,k 7
(289)
To bound this expression from above we write the gauge-matter interaction again in terms of
the unitary operators Uy :

| [Haar, He] ||

< Z AGMAE mjax 1f(5)] ‘
z,k

Uy (V] (2)0n (2 + k) + hoc U, Z % [jmn) <jmn|]

max; | f(J
< dawte 1120 ¢n$+k+hCHHme—|f)()||jmn><jm”|

Mznks)\GM)\E maX |f( )|2dU

(290)
The last commutator is the one between the magnetic and electric Hamiltonian:
[HBu HE]
Z ApTr( U1U2U3U4 + h.c. Z)\EZf ) |gmn) jmn|]
plaquettes
« £0)
=\gAg Z Z max \FD)| | Tr(UaUpULUY) + hec., Z m |jmn) <jmn\]
z,k =1 j J
(291)

where in the last step we used the fact that every link is contained in 2(d-1) plaquettes labeled
by 1. Taking the operator norm results in the bound:
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| [Hp, Hg] ||

Tr(UlUQU;IUD +he, Z %

HZ s ) (i

s |

<ABAEN ks (d — 1) max |FD | Tr(UUUTUT) + hec.

£ ()]

=X AeNinks4(d — 1) mjax |f(5)] /d91d92d93d94 191929394) (91929394 Tr(Dj(gnggglgzl)) + h.c.

=AgAeNinks4(d — 1) mjax ()]

H / dg1dgadgsdgs |91929394) (91929394) 2Re{Tr (DI (919295 ' 95 1))}H
A A Niinksd(d — 1) max| f(f)|2mazgeq|Re{T r(D?(g)}]

<ABAENinks8(d — 1) max |f ()] du
(292)
We can be sure that the estimate in the last step is the best one can do since it is realized for the

neutral element.

Second order

For a bound on the second-order formula we need to calculate all nested commutators. We
start with the magnetic Hamiltonian since it commutes with everything apart from the electric

Hamiltonian.
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| [[Hp, Hg], Hg] ||

2(d—1) .
fG) . .
ABA max FDI N TrUaUULUL) + hee, Y ——=2— |imn) (jmn]|| ,
[B P OnUaURU) + e 2 o T
RO WO ‘”””']H
links
2(d—1)
<)\E>\Bmax|f ) Z Z 4
links =1
fG) ‘ [ . .
Tr(UnUpULUL) + hee, Y —2 1imn) (jmnl| | — |5'mn) (j'mn
H ( 1nvi2ts l4) ;maxj‘f(])H >< | ;maxj/lf(]/)H >< |
2(d—1)
<\? EAp max|f(j WYY axsdy
links =1

—/\E/\B max |f< )| Mznk364( 1)dU
(293)

In a similar way we can compute:
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| [[Hp, Hg), Hp] ||

2(d—1)

= /\B)\EZ Z max|f

links =1

—ﬂ‘]) ymn) (Jmn
(‘)||J ) (J II,

max; | f(J

| Tr(UnUnULUS,) + hee,
J

T?"(U”UZQU;%UL) + h.c., Z % |gmn) (jmn| Tr(UlUgUTU4) + h.c.
j

> ATr(UULUUY) + hee.

plaquettes

<)\E/\Bmax|f |Z Z

links =1

§)\E/\Bmax|f |Z Z d—1) x 16d3,

links =1

—)‘E>‘B max | (7 )|Mmks64( 1)2d2U

(294)
The next commutator is the one for the electric Hamiltonian. Since we already calculated the
commutator for the magnetic part H 5 the only non-commuting Hamiltonian remains the gauge-

matter interaction.
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| [[He, Hem], Ha ||

Z Al () Unn (y, K ) (y + ') + h.c.

: [ZAGMAEm;»xmm [ZAumm (Gl 4 U, B+ ) + |
2(2d—1)+1

— max; ()]
<)‘GM)‘EmaX|f |Z Z

QIDT Il) mn(wla k:l)qujn(l‘l + kl) + h.c. ] H

2(2d—1)+1

kel Z 4x||2max 7 ) Gl Ui (V1,2 )+ e ) UL

N A max| £ (] W22 — 1) + 1
(295)

In a similar fashion we calculate the other nested commutator for Hp:
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| [[He, Hem], Hel ||

[ZAGMAEm?xmm [Z%umm Gl U, )+ R) +

2 TN P ) <j'mn|] ‘

H” maxj\f ‘|Jmn> (gmn] b (2)Upn (2, K)0n (z + k) + h.c.

)l

<AemAp max f ()P Z

>3 I <j'mn!] H

max; | f

g X max | F(7)F Y4 HUW (Wl (2)n (@ + k) + h.c.) UWH

z,k
= dam)\s max | f ()P Minksddir

3 % (g} {mal

— max lf

(296)
The next term are the nested commutators for the matter Hamiltonian. The only part of the

Hamiltonian that does not commute with it are the gauge-matter interactions:

| [[Haes Hanm], Hol ||

Iy
2(2d 1) ”
<MD D [P U@ ) (@ + B) = e 0 (@) U, R+ ) + B |
z,k I=1

|64, (@) U, k)@ + ) = hce, 0, (@)U (2, K)ou( + k) + hc ]|

x,k =1

(2d—1)
—o2 MY ( > UW,lUWHmm)UJVUJV,Z) T 2k (2 () — L + Kl + R

=2)\G M Y 2(2d — 1)dy + 2dy
z,k

(297)
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The other commutator for /), takes the much simpler form:

I {[Hx, Hom], Hul |

=2\an M? [Z(—U‘”%@)Umn(% F)n(x + k) = b, Y (=1)"8) (4) (y)] ||

z,k Y

:2>\GMM2 Z [wjn(x)Umn(xv k)%(x + k)7 ¢jn/($)¢m'(x)} + h.c.

x,k

— (000U, )+ B), 0 5+ K)o+ B)| + e

=2\an M || =0l (2) Ui (2, k)b (2 + k) + hc = O, (2) U (2, k) (2 + k) + hoc
x,k

<A\ M Nijns | UWHtUIJ/rv [

:4)\GMM2Minkst
(298)
In the last step the nested commutator among the different gauge-matter hamiltonians needs to

be computed:

99



| IHemis Hon sl s Henl ||

= [Mar D Uh@ kUL ki) U (2, K)o (@ + k) = e
z/{boundary}

U8 (2) U (2, k) UL (2 + ks — ke, Koy )b (2 + ki — K5) — hce,

DN D W@+ kUL (@, ki) U (2, kg Ytbs (2 + 5) = hc,

z/{boundary}
psity (@ 4 ki) Upn (2 + Kis ki) (2 + ks + k) + huc]
+ [ (x + kUL (2, k) U (2, K6 )b (2 + K3) — hoco, (2 + k) U (2 + Ky, k) n (2 + ks + ki) + hec]
[ @) U (2 ) U (@ s = By, By Yo (2 K = ) = ey 0, (2) U (2, R+ ) + rc]
[ U (2, B) U (2 + i = b By Yo (3 + K — ) — e,
Oh (@4 ki — k) Unn (2 + ki — ki, k) Un(@ + ki — ki + ki) + hoc] ||
DN D =l 4 kUL, k) Ui (2, ki) U (@ 4 iy )b (2 + K+ F) + e |

z/{boundary}
+ H’g/)i(ﬂf + k‘l)Ulm(Qf, k‘Z)Umn/(ﬂf, k?j)Un/n//(Zl? + k‘j, I{?l)@bn//(x + k’j + l{l) + hCH
+ H—@@ kg — k) U (2 + ks — kg kUL (@ k) U (2, Koo (2 + ) + h.c.H

Z Aant Vb, () U (9, ki) (y + k) + hec

y7kl

+ ‘ ¢2($)Unm($7 l{:,)U:nn,(x -+ /{Z, — ]{Zj, k‘j)Un/n// (l‘ + kz — /{Jj, /{31)1/)”//(1' + k?l — k?j + k)l) + h.c.

DN D 4| UVl HUY Ul Ul |

z/{boundary}

Niin,
=\ —dd
GM9q Y

(299)
To obtain the nested commutator for the whole gauge matter interactions we need to calculate
how many times the commutator calculated above appears. There are 2d different gauge-matter
Hamiltonians which are implemented separately. Recalling the formula for the total error and

taking only the gauge-matter interactions into account, one gets:
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[24(t) — Unpr (1) = [ — (e—“ﬁﬁ...e—inflﬁe—inﬁe—inflﬁ...e—“hﬁ)MH

3

= 12M2ZH (i, Hieyr + -+ Hp| Hiyr o+ +H]H+—H[[Hk,Hk+1+ + H,), Hyl|
3 2;1
- 12]\/[2 Z || HG’Mk:aHGMk—H + .. +HGM2d] HGMk—H + .. +HGM2d]||

DO | —

+ W Hemp Homprr + -+ Hanoa), Hanl ||
(300)
We see that in the first term we can choose two Hamiltonians out of the remaining ones and one
Hamiltonian for the second term. This gives rise to partial sums of the natural numbers. The

nested commutator for the gauge-matter interactions is therefore:

)\3 lmks 4dU Z T + e (301)

1
= N =5 Ady (6(261 — 1)2d(4d - 1) + 7 (2d - 1)2d)

2
= A2 duNiinks(2d — 1) (§(4d —-1)+ 1)

Putting everything together, we can estimate the trotterization error for the second-order for-
mula.
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(4 (t) — Us,pa ()]

. . t . t . t . t . t
_ He—th _ (e—zHlm”'e—sz,lme—szﬁe—sz,lmme—zHlm)MH

2L )
< SO He Hir + o+ Hyl, o+ ]|+ 5 (i iy + .+ ), |
k=1
t3 1
=257z \ IHs, Hel, Hel| + 5 |[Hp, He], He]ll + [[He, Hou]  How]|

+ 3 U, Ha), Hell| + (1Has, o) Hoadll + 5 N{Has, Haad), Hadl|

2d—1
+ Z W[Hemk, Homps1 + -+ Homod)s Hongrr + - + Hanr2d) ||
=1

1
[ Honses + .-+ Honaal: Hous)
t3
R
=12007
A AE max | £ (5) [ MNiinks(2(2d — 1) + 1)4d%, + A\ max | ()P Minks2dy

(/\QE)‘B max | F ()P Niinks64(d — 1)du + ApF max | £(7) | Miinks32(d — 1)%dy;

+)\éMMMlnk58ddU + 2)\GMM2Minkst

A+ Ao Niings (2d — 1) (§(4d —1)+ 1))

o thinkst
o 12M2

+AGarAp max | (5)](2(2d = 1) + Dddy + Agu AL max | £ (5)[*2

(¥ e £GP0 1) + Ay o | (7320~ 1)

J

+ A& M8d + 22X\ M?

+A& . (2d — 1) (%(m —1)+ 1))

o t3Minkst
- 6M?2

At max )] (2auds(2(2d - 1)+ 1) + Apmax | 1))

10z |7 1) (g )]+ Aad(d 1))

1 1
FAan M (ddhaar + M) + Ny (2d — 1) (5(461 —1)+ 5)]

(302)
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