
Ludwig-Maximilian University of Munich

Faculty of Physics

Bachelor Thesis

Exploring the Interplay between

Entanglement and Nonlocality

A Novel Perspective on the Peres Conjecture

Viktoria Sophia Kabel





Ludwig-Maximilians-Universität München

Fakultät für Physik

Bachelorarbeit

Untersuchungen des Zusammenspiels von

Verschränkung und Nichtlokalität

Ein neuer Blick auf die Peres-Vermutung

Vorgelegt von:

Viktoria Sophia Kabel
Geboren am 01.12.1996 in Bad Reichenhall

Matrikelnummer 11160777

Betreuer:

Prof. Dr. Ignacio Cirac (extern)
Dr. Jordi Tura i Brugués (extern)
Prof. Dr. Ulrich Schollwöck (intern)

München, den 3. Juli 2017





Contents

1. Introduction 1

2. Quantum Mechanical Formalism 2

2.1. Postulates of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Ensembles of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Entanglement & Nonlocality 11

3.1. Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Nonlocality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3. The Peres Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. The Local Polytope 21

4.1. Convex Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. Locality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. Classes of Bell Inequalities 32

5.1. Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6. A Method to Generate PPT Bounds 35

6.1. Semide�nite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. Sums of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3. Application to Bell Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4. Sum of Squares for PPT states . . . . . . . . . . . . . . . . . . . . . . . . 42

7. Results 44

7.1. The Projected Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2. Classes of Bell Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3. Quantum and PPT-bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8. Conclusion 47

A. Measurement Statistics for the Partial Trace 48

B. Dimension of the No-signalling Polytope 49



1. Introduction

One of the most intriguing features of quantum mechanics is entanglement. Entangled
systems can display correlations that go beyond our classical intuition. Nevertheless,
these correlations have been observed and con�rmed by a great number of experiments.1

In addition, entanglement is a resource for quantum information processing tasks that
have no classical analogue. It can be used to encrypt messages securely via quantum key
distribution [BBB+92] or to transmit a quantum state over arbitrary distances [BPM+97].
Intensive studies of entanglement have also led to new insights on the structure of low
energy states of physical systems [Oru14].
A fascinating aspect of entanglement is that the correlations between entangled particles
do not always admit a local hidden variable (LHV) model.2 In other words, entangle-
ment sometimes implies nonlocality. The precise connection between these two concepts,
however, is not known to date. While we know that entanglement is necessary to obtain
nonlocal e�ects, there are entangled states that admit an LHV model. Over the past
few decades various attempts have been made to limit the number of possible states
implying nonlocality. In this thesis we will focus on one particular conjecture by Asher
Peres [Per98]. He suggested that a certain set of states, so-called PPT states, admits a
description via local models. His conjecture was disproved years later, when Vertési and
Brunner found a PPT-state that does not admit an LHV model [VB12,VB14]. A coun-
terexample does not provide much insight into the connection between PPT-states and
locality, though. The aim of this thesis is to study the Peres conjecture more closely for a
particular scenario. To do so, we �rst recapitulate the necessary theoretical foundations.
Then we introduce a novel method that allows us to obtain new results numerically while
providing an analytical proof for these results on the side.

The work is structured as follows. In Chapter 2 we will review the postulates of quan-
tum mechanics, which lay the foundations for the following discussion. In Chapter 3 we
will discuss entanglement and nonlocality, in the course of which we will introduce the
Bell inequalities � inequalities that hold for all states admitting an LHV model. These
inequalities, when interpreted geometrically, de�ne a convex polytope, which will be con-
structed in Chapter 4. In Chapter 5 we will show how to use symmetry transformations
to group the inequalities into equivalence classes while in Chapter 6 we will introduce
the new method announced above. Finally, we will apply the results from the preced-
ing Chapters to a particular set of inequalities in Chapter 7 and conclude the thesis in
Chapter 8.

1See Section 3.2.1 for some references.
2See Section 3.2 for a detailed characterisation of LHV models.
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2. Quantum Mechanical Formalism

The quantum mechanical formalism can be summarised in four postulates. In this chap-
ter we �rst motivate these postulates for systems whose state is known completely in
Section 2.1 and then extend it to systems whose state is known only within some level
of uncertainty in Section 2.2, to allow for a more re�ned description.

2.1. Postulates of Quantum Mechanics

2.1.1. State Space

Quantum mechanics is written in the language of linear algebra, the �eld of vector spaces
and linear transformations. The state of any quantum mechanical system is represented
by a vector in a Hilbert space H of possibly in�nite dimension. The restriction to Hilbert
spaces ensures that any Cauchy sequence of vectors converges and provides us with
an inner product, denoted 〈·|·〉, to compute the lengths of the vectors. All vectors |ψ〉
representing a quantum mechanical system are normalised to unit length: 〈ψ|ψ〉 = |ψ|2 =
1. Together, these requirements constitute the �rst postulate of quantum mechanics:

Postulate 1. Each quantum mechanical system is described by a unit vector |ψ〉 in a
Hilbert space H. This vector is called the wavefunction of the system. [NC00, p.80]

2.1.2. Evolution

Given the state of the system, one would also like to describe its dynamics. The evolution
equation for a closed quantum system was discovered by Erwin Schrödinger in 1926 and
has been veri�ed by a great number of experiments. Yet it cannot be derived rigorously
from �rst principles. Therefore we have to add a second postulate that determines the
time evolution of the wavefunction.

Postulate 2. The time evolution of the wavefunction is given by Schrödinger's equation:

i~
d

dt
|ψ〉 = Ĥ |ψ〉 (2.1)

where Ĥ is a hermitian operator (Ĥ = Ĥ†) known as the Hamiltonian of the system and
~ = h

2π = 1.054... Js is the experimentally determined reduced Planck constant. [NC00,
p.82]

As Schrödinger's equation is a linear ordinary di�erential equation of �rst order, its
solution is given by the exponential:
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2. Quantum Mechanical Formalism

|ψ(t)〉 = e−
i
~ Ĥ(t−t0) |ψ(t0)〉 (2.2)

The linearity of Schrödinger's equation also implies that any linear combination
∑

i |ψ〉
(i)

of solutions |ψ〉(i) solves the equation as well. This linear combination is usually called a
superposition of wavefunctions and the fact that each superposition is a solution itself is
known as the superposition principle.

The form 2.2 of the general solutions to Schrödinger's equation also allows us to express
the time evolution of any system in a di�erent way. By de�ning the unitary operator

U(t, t0) ≡ e−
i
~ Ĥ(t−t0) =

∞∑
n=0

(
− i

~
(t− t0)

)n Ĥn

n!
(2.3)

the time evolution can be described with

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (2.4)

No matter which expression one uses, �nding the actual Hamiltonian or unitary operator
for a given system plus solving the corresponding di�erential equation is quite a complex
problem. However, the exact form of Ĥ will be of no concern to us in the following
discussion.

2.1.3. Measurements

We also want to describe measurements on a given system.1 The behaviour of the
wavefunction during a measurement is described by

Postulate 3. Measurements on a quantum system are described by a set of operators
{Mm} acting on the system's wavefunction, with the index m indicating the possible

outcomes of the measurement. These measurement operators satisfy
∑

mM
†
mMm = 1.

The probability that upon measuring a given wavefunction |ψ〉 the outcome is m is

p(m) = 〈ψ|M †mMm|ψ〉 (2.5)

and the state after the measurement is

∣∣ψ′〉 =
Mm |ψ〉√
p(m)

. (2.6)

[NC00, p.84-85]

1It is a strange feature of quantum mechanics that one has to make an additional postulate about
measurements. The measurement apparatuses are, after all, quantum systems themselves, so one
should be able to describe them in the same way as the system being measured. Yet experiments
such as the Stern-Gerlach-experiment suggest that there is something fundamentally di�erent about
the measurement process. Lots of discussion has been devoted to this measurement problem and still
no consensus has been found.
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2. Quantum Mechanical Formalism

If one de�nes Em ≡ M †mMm, one obtains a positive-operator valued measure (POVM)
- a set of hermitian, positive-semide�nite2 operators {Em} satisfying

∑
mEm = 1. A

special class of POVMs are projective measurements.

Projective measurement. A projective measurement is described by a hermitian op-
erator M = M †, called an observable, which can be written as

M =
∑
m

λm |m〉〈m| (2.7)

where {|m〉} is an orthornormal basis of eigenvectors of M satisfying 〈m|m′〉 = δmm′ and
λm are the corresponding eigenvalues. The probability of obtaining the outcome λm is

p(m) = 〈ψ|m〉 〈m|ψ〉 = |〈m|ψ〉|2 (2.8)

and the state after the measurement is

∣∣ψ′〉 =
|m〉〈m| |ψ〉√
|〈m|ψ〉|2

= |m〉 . (2.9)

This is actually quite intuitive - after measuring the outcome λm we can be sure that the
system is in the corresponding state |m〉. Let's look at an example to illustrate this.

We want to measure the spin of an electron in a given direction. There are two orthonor-
mal spin-states: |↑〉 and |↓〉 satisfying 〈↑|↑〉 = 〈↓|↓〉 = 1 and 〈↑|↓〉 = 0. The measurement
apparatus gives out +1 if the electron has spin up and −1 if the electron has spin down.
The corresponding measurement operator is

M = +1 · |↑〉〈↑| − 1 · |↓〉〈↓| (2.10)

Let's say the electron is in the state |ψ〉 = 1√
2
(|↑〉 + |↓〉). Then the probability for each

of the two outcomes is

p(↑) = |〈↑|ψ〉|2 =
1

2
p(↓) = |〈↓|ψ〉|2 =

1

2
(2.11)

Now let's assume that the measurement apparatus showed the result +1. Intuitively
we would conclude that the system is in the spin-up-state |↑〉. This intuition is met by
postulate 3: the post-measurement state is

∣∣ψ′〉 =
|↑〉〈↑| |ψ〉√

p(↑)
= |↑〉 (2.12)

2A hermitian operator A acting on H is positive-semide�nite, denoted A � 0, if and only if ∀ |φ〉 ∈ H :
〈φ|A|φ〉 ≥ 0.
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2. Quantum Mechanical Formalism

One can also say that after the measurement
the wavefunction is projected onto the mea-
sured state. This is illustrated by the �gure
on the right.

|↑〉

|↓〉

|ψ〉

|↑〉〈↑| |ψ〉

|↓〉〈↓| |ψ〉

2.1.4. Composite Systems

Finally, we ask for a way to describe the composition of two or more quantum mechanical
systems. As the systems are described by wavefunctions in a Hilbert space, we need a
way to join Hilbert spaces and their inhabitants:

HAB = HA ◦ HB |ψAB〉 = |ψA〉 ◦ |ψB〉 ∈ HAB (2.13)

Ideally, not only the joint wavefunctions but also any superposition
∑

i αi |ψAB〉
(i) of joint

wavefunctions would be part of the joint Hilbert space - after all, this is the case for the
wavefunctions of single systems. These requests are met by the tensor product [TiB16].

De�nition 1. Let HA and HB be two Hilbert spaces. Then the algebraic tensor product
consists of the formal �nite sums∑

i,j

ai ⊗ bi where ai ∈ HA, bj ∈ HB. (2.14)

If HA and HB are �nite-dimensional spaces, the above construction de�nes the tensor
product Hilbert space HA⊗HB. Otherwise the algebraic tensor product has to be completed
in order to obtain a Hilbert space.
The computation rules for a, ai ∈ HA, b, bi ∈ HB and λ ∈ C are as follows:

(a1 + a2)⊗ b = a1 ⊗ b+ a2 ⊗ b

a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2

(λa)⊗ b = λ(a⊗ b)

a⊗ (λb) = λ(a⊗ b)

and the inner product is〈∑
i,j

ai ⊗ bj

∣∣∣∣∣∣
∑
k,l

ck ⊗ dl

〉
HA⊗HB

=
∑
i,j,k,l

〈ai|ck〉HA 〈bj |dl〉HB (2.15)

with ck ∈ HA and dl ∈ HB.
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2. Quantum Mechanical Formalism

Equipped with a way to join Hilbert spaces, we can make the following postulate:

Postulate 4. Let A and B be two physical systems with corresponding wavefunctions
|ψA〉 ∈ HA and |ψB〉 ∈ HB. Then the composite system of A and B is described by the
wavefunction |ψA〉 ⊗ |ψB〉 ∈ HA ⊗HB.
If one has two operators Â and B̂ acting on HA and HB respectively, the action of the
joint operator Â⊗ B̂ acting on HA ⊗HB is de�ned by

(Â⊗ B̂)(|ψA〉 ⊗ |ψB〉) = Â |ψA〉 ⊗ B̂ |ψB〉 . (2.16)

[NC00, p.94]

For example, let the wavefunctions of the component-systems be |ψA〉 = 1√
2
(|↑〉 + |↓〉)

and |ψB〉 = |↑〉. Then the composite system can be described by the wavefunction

|ψAB〉 =
1√
2

(|↑〉 ⊗ |↑〉+ |↓〉 ⊗ |↑〉) =
1√
2

(|↑↑〉+ |↓↑〉) (2.17)

with the short-hand notation |a〉 ⊗ |b〉 = |ab〉.

If one conducts a measurement MA on system A while leaving system B invariant, the
corresponding measurement operator is M = MA ⊗ 1 and its action upon the wavefunc-
tion of the composite system is

M |ψAB〉 = MA

[ 1√
2

(|↑〉+ |↓〉)
]
⊗ |↑〉 . (2.18)

2.2. Ensembles of States

The aforementioned postulates of quantum mechanics allow us to fully describe a given
system or composition of systems with a single wavefunction. In experiments, however,
this wavefunction is often known only within a level of uncertainty.

For example, an experimenter might try to prepare 100 photons in the polarisation state
|ψ1〉 = 1√

2
(|↑〉 + |↓〉). Unfortunately the apparatus he uses to prepare the particles is

not very exact and prepares 25 of the photons in a di�erent state, |ψ2〉 = |↑〉. In this
case the experimenter only knows the possible states |ψ1〉 and |ψ2〉 and their respective
probabilities p1 = 3

4 and p2 = 1
4 .

If there is no way to avoid these uncertainties, we need a new formalism that describes
not only wavefunctions and their behaviour, but also the probabilities associated with
them - a so-called ensemble of states {|ψi〉 , pi}. This formalism should reproduce the
results we obtained so far for pure states, i.e. ensembles where the state of the system is

6



2. Quantum Mechanical Formalism

known with certainty, yet allow us to include the uncertainties for any other state. We
will see, that the density operator meets these requirements in quite an intuitive way.3

2.2.1. Density operators

De�nition 2. The density operator ρ̂ describing the ensemble {|ψi〉 , pi} is given by

ρ̂ ≡
∑
i

pi |ψi〉〈ψi| (2.19)

Given an arbitrary orthonormal basis {|i〉}i=1,...,n one can represent ρ̂ with a matrix, the
so-called density matrix ρ, with entries

ρij = 〈i|ρ̂|j〉 (2.20)

Property 1. ρ̂ is hermitian.

ρ̂† =
∑
i

pi(|ψi〉〈ψi|)† =
∑
i

pi |ψi〉〈ψi| = ρ̂ (2.21)

Property 2. ρ̂ is a positive-semide�nite operator, i.e. ∀φ ∈ H : 〈φ|ρ̂|φ〉 ≥ 0.

〈φ|ρ̂|φ〉 =
∑
i

pi 〈φ|ψi〉 〈ψi|φ〉 =
∑
i

pi|〈φ|ψi〉|2 ≥ 0 (2.22)

Property 3. ρ̂ has unit trace.

Tr(ρ̂) =
∑
i

piTr(|ψi〉〈ψi|) =
∑
i

piTr(〈ψi|ψi〉) =
∑
i

pi = 1 (2.23)

So in the example above, the ensemble is given by

{|ψ1〉 =
1√
2

(|↑〉+ |↓〉), p1 =
3

4
, |ψ2〉 = |↑〉 , p2 =

1

4
} (2.24)

and therefore the density operator is

ρ̂ =
3

4
|ψ1〉〈ψ1|+

1

4
|ψ2〉〈ψ2| =

5

8
|↑〉〈↑|+ 3

8
(|↑〉〈↓|+ |↓〉〈↑|+ |↓〉〈↓|) (2.25)

If we choose |↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
as a basis, the corresponding density matrix is

ρ =
5

8

(
1 0
0 0

)
+

3

8

[(
0 1
0 0

)
+

(
0 0
1 0

)
+

(
0 0
0 1

)]
=

1

8

(
5 3
3 3

)
(2.26)

3The presentation in the next section is based on [NC00, p.98-102].
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2. Quantum Mechanical Formalism

The density operator allows us to reformulate the postulates of quantum mechanics for
ensembles of states. The �rst postulate becomes

Postulate 1'. Each quantum mechanical ensemble is described by a density operator
ρ̂ ∈ B(H) where B(H) describes the space of bounded linear operators acting on H.

For describing the time evolution of the system, it makes sense to assume that the
probabilities associated with each state do not change over time. Additionally, if we
want to reproduce the results from Section 2.1, all state vectors have to evolve according
to equation 2.3. Inserting this into the de�nition for density operators and using the
short-hand notation U(t, t0) ≡ U we obtain

ρ̂(t) =
∑
i

pi |ψi(t)〉〈ψi(t)| =
∑
i

piU |ψi(t0)〉〈ψi(t0)|U †

= U

[∑
i

pi |ψi(t0)〉〈ψi(t0)|
]
U † = Uρ̂(t0)U †,

(2.27)

so the second postulate becomes

Postulate 2'. The time evolution of the density operator is given by

ρ̂(t) = U(t, t0)ρ̂(t0)U(t, t0)† (2.28)

where U(t, t0) is a unitary operator.

To �nd a description for measurements on density operators, we make use of our intuition
about probabilities. If we know the conditional probability p(m|i) of obtaining a result
m, given the state |ψi〉, then the probability of obtaining this result in an ensemble of
states {|ψi〉 , pi} must be the sum of the conditional probabilities p(m|i) weighed with
the probability that the system actually is in the state |ψi〉.4 More formally:

p(m) =
∑
i

pip(m|i)
2.5
=
∑
i

piTr( 〈ψi|M †mMm|ψi〉)

=
∑
i

piTr(M †mMm︸ ︷︷ ︸
≡M̂m

|ψi〉〈ψi|) = Tr(M̂mρ̂)
(2.29)

where in the �rst line we used that the trace of a number is just the number itself. This
way the third postulate turns into

Postulate 3'. Measurements on an ensemble of states are described by a set of positive-
semide�nite measurement operators {M̂m} acting on the system's density operator. These
measurement operators satisfy

∑
m M̂m = 1. The probability that upon measuring a given

system with density operator ρ̂ the outcome is m is

p(m) = Tr(M̂mρ̂). (2.30)
4This is also known as the �law of total probability�.
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2. Quantum Mechanical Formalism

Finally, to combine ensembles of states, we simply use the tensor product as well.

Postulate 4'. Let A and B be two physical systems with corresponding density operators
ρ̂A ∈ B(HA) and ρ̂B ∈ B(HB). Then the composite system of A and B is described by
the density operator ρ̂A ⊗ ρ̂B ∈ B(HA ⊗HB).

The action of a joint operator continues to be de�ned by equation 2.16.

2.2.2. Partial Trace

Given the density operator for a composite system, we can use the partial trace to �nd
descriptions for its subsystems.

De�nition 3. The partial trace is a linear map de�ned by

TrA : B(HA ⊗HB)→ B(HB) TrB : B(HA ⊗HB)→ B(HA) (2.31)

A⊗B 7→ Tr(A) ·B A⊗B 7→ A · Tr(B) (2.32)

and extended by linearity to any operator ρ̂ ∈ B(HA ⊗HB).

The partial trace of a density operator shows an interesting feature when it comes to
measurements. If one performs a measurement M = 1 ⊗MB on a composite system
described by ρ̂AB then this gives the same statistics as performing the measurement MB

on the partial trace TrA(ρ̂AB). This can easily be seen for product states ρ̂AB = ρ̂A⊗ ρ̂B:

p(m) = Tr(Mρ̂AB) = Tr(1ρ̂A ⊗MB ρ̂B) = Tr(ρ̂A)︸ ︷︷ ︸
=1

Tr(MB ρ̂B) = Tr(MB ρ̂B) (2.33)

and generalises to arbitrary states ρ̂AB =
∑

i p
kl
ij |ai〉〈aj | ⊗ |bk〉〈bl|.5

So via applying the partial trace on A, we obtain a density operator that describes
correctly how subsystem B behaves under measurement. This density operator is called
the reduced density operator

ρ̂B ≡ TrA(ρ̂AB) (2.34)

and the process of applying the partial trace on A is often referred to as tracing out
system A. The same argument can be repeated for the reduced density operator for
system A with

ρ̂A ≡ TrB(ρ̂AB). (2.35)

5See appendix A for the full proof.
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2. Quantum Mechanical Formalism

As an example, let's look at the density operator corresponding to a perfect mixture
(p1 = p2 = 1

2) of |ψ1〉 = |↑〉 ⊗ |↑〉 and |ψ2〉 = |↓〉 ⊗ |↑〉:

ρ̂AB =
1

2
|↑〉〈↑| ⊗ |↑〉〈↑|+ 1

2
|↓〉〈↓| ⊗ |↑〉〈↑| (2.36)

Tracing out system A gives

ρ̂B =
1

2
Tr(|↑〉〈↑|)︸ ︷︷ ︸

=1

⊗ |↑〉〈↑|+ 1

2
Tr(|↓〉〈↓|)︸ ︷︷ ︸

=1

⊗ |↑〉〈↑| = |↑〉〈↑| (2.37)

This is what we would have expected - after all, system B is always in the up-state.
Tracing out system B, on the other hand, gives

ρ̂A =
1

2
|↑〉〈↑| ⊗ Tr(|↑〉〈↑|)︸ ︷︷ ︸

=1

+
1

2
|↓〉〈↓| ⊗ Tr(|↑〉〈↑|)︸ ︷︷ ︸

=1

=
1

2
|↑〉〈↑|+ 1

2
|↓〉〈↓| , (2.38)

which corresponds to a perfect mixture of up- and down-states.

The concept of reduced densitiy matrices will be particularly useful when it comes to
characterising entanglement.
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3. Entanglement & Nonlocality

In this chapter we will discuss the relation between two central concepts in quantum
mechanics: entanglement and nonlocality. We will see that some entangled states do not
admit a local hidden variable model - a fact that has puzzled many great minds since
the early days of quantum mechanics - and investigate the properties of these states.

3.1. Entanglement

Entanglement is de�ned via separability: A state is entangled if and only if it is not
separable. Separability, in turn, is de�ned as follows:

De�nition 4. A state ρ̂ ∈ B(HA⊗HB) is called separable if there exist density operators

ρ̂
(i)
A ∈ B(HA), ρ̂

(i)
B ∈ B(HB) and probabilities pi such that

ρ̂ =
∑
i

piρ̂
(i)
A ⊗ ρ̂

(i)
B . (3.1)

Entangled subsystems cannot be described individually - one always has to consider the
entire system ρ̂. This is illustrated in the following example.

Let's assume that a system is in the pure entangled state |φ+〉 = 1√
2
(|00〉 + |11〉).1The

corresponding density matrix is

ρ̂AB =
∣∣φ+
〉〈
φ+
∣∣ =

1

2
(|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|) (3.2)

Now we want to know the state of the subsystem A, so we trace out system B and obtain

ρ̂A = TrB(ρ̂AB) =
1

2
(|0〉〈0|+ |1〉〈1|) (3.3)

The reduced density operator tells us that system A is in a perfect mixture of the states
|0〉 and |1〉 - despite the fact that the composite system was in a pure state! Even though
the state of the composite system was fully known, we cannot say, whether system A is
in state |0〉 or |1〉.

One can easily see that results of this kind can exclusively be obtained with entangled
states. If a pure state is separable, it can be written as ρ̂ = |ψA〉〈ψA| ⊗ |ψB〉〈ψB| and
the reduced density matrices are ρ̂A = |ψA〉〈ψA| resp. ρ̂B = |ψB〉〈ψB|, both of which
correspond to pure states.

1We will later see a proof that this state actually is entangled.
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3. Entanglement & Nonlocality

3.1.1. The Separability Problem

It is not always easy to �gure out if a given state is separable. In fact, it has been shown
that detecting separability is in general NP-hard [Gur03]. We can, however, �nd criteria
for separability. In this thesis we will focus on one particular criterion, which was �rst
discovered by Horodecki and Peres [HHH96,Per96]. It relies on two concepts: positive,
but not completely positive maps [TiB16] and the partial transposition.

De�nition 5. A map Λ: B(H1)→ B(H2) is positive if for all ρ ∈ B(H1)2

ρ � 0⇒ Λ[ρ] � 0. (3.4)

De�nition 6. A map Λ: B(H1)→ B(H2) is completely positive if for all n ∈ N and all
ρ ∈ Cn ⊗ B(H1)

ρ � 0⇒ (1n ⊗ Λ)[ρ] � 0. (3.5)

Note that to describe a physical system, ρ has to be positive semi-de�nite. While a
positive map preserves this property when applied to the whole system, it does not nec-
essarily preserve it when applied to one of the subsystems only. Therefore the application
of a positive map is not always a physical operation. A completely positive map, on the
other hand, preserves positive semi-de�niteness, no matter which subsystem it is applied
to. To ensure that all of the requirements for density operators in De�nition 2 are met,
a physical operation has to correspond to a completely positive map Λ that does not
change the trace or hermiticity of the state it acts on.

Equipped with the de�nitions above, we can show an interesting relation between sep-
arable states and the action of positive maps. Let Λ be a positive but not necessarily
completely positive map on B(HA) and B(HB). Furthermore, consider a separable state

ρAB =
∑

i piρ
(i)
A ⊗ ρ

(i)
B where ρ

(i)
A ∈ B(HA) and ρ

(i)
B ∈ B(HB) for all i. Because Λ is a

positive map, it preserves the positive semi-de�niteness of every ρ
(i)
A and ρ

(i)
B . If we now

apply (1n ⊗ Λ) to ρAB, we obtain

(1n ⊗ Λ)[ρAB] = (1n ⊗ Λ)
[∑

i

piρ
(i)
A ⊗ ρ

(i)
B

]
=
∑
i

piρ
(i)
A ⊗ Λ[ρ

(i)
B ] � 0

(3.6)

where the last inequality follows from the fact that Λ[ρ
(i)
B ] � 0 for all i. So a necessary

criterion for separability is that any positive map on ρ is also completely positive. To
obtain the Peres-Horodecki criterion, we have to identify Λ with the transposition with
respect to the computational basis. Then the action on one of the subsystems, (1n⊗Λ),
corresponds to the partial transpose.

2From now on we will consider only the matrix representation of density operators.

12



3. Entanglement & Nonlocality

De�nition 7. The partial transpose TA resp. TB is a linear map de�ned by

TA : B(HA ⊗HB)→ B(HA ⊗HB) TB : B(HA ⊗HB)→ B(HA ⊗HB) (3.7)

A⊗B 7→ AT ⊗B A⊗B 7→ A⊗BT (3.8)

and extended by linearity to any operator ρ̂ ∈ B(HA⊗HB). The transposition of a matrix

A = (aij)ij =

a11 . . . a1n
...

...
am1 . . . amn

 ∈ Cm×n

is de�ned by

AT = (aij)ji =

a11 . . . am1
...

...
a1n . . . amn

 ∈ Cn×m. (3.9)

The resulting criterion is often also called PPT-criterion, where PPT stands for �positive
partial transpose�, and can be summarised as follows.

PPT-Criterion. If a state is separable, then its partially transposed density matrix is
positive-semide�nite, i.e. ρTBAB � 0.

It has been shown that for systems with dimension 2 × 2 and 2 × 3 this criterion is also
su�cient. In general, however, this is not the case [HHH96].

We can now show, that the state |φ+〉 = 1√
2
(|00〉 + |11〉) from our previous example is

indeed entangled. The matrix representations of ρAB and its partial transpose on B are:

ρAB =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ρTBAB =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.10)

To check if ρTBAB is positive-semide�nite we calculate its eigenvalues and obtain

λ1 = −1, λ2 = λ3 = λ4 = 1 (3.11)

This means that 〈v1|ρTBAB|v1〉 = λ1 < 0, where |v1〉 is the eigenvector corresponding to

λ1. Therefore ρ
TB
AB is not positive-semide�nite and the state must be entangled.

13



3. Entanglement & Nonlocality

3.2. Nonlocality

The second concept we want to discuss in this section is nonlocality. Nonlocality arises
when two distant events in�uence each other within a very short amount of time. More
precisely, in a local theory spacelike-separated events cannot in�uence each other. Two
points in spacetime, (ct1,x1) and (ct2,x2), are spacelike-separated if the spatial distance
∆x ≡ ‖x2 − x1‖ is greater than the distance light travels within the time interval ∆t ≡
t2 − t1 (see Figure 3.1). For example, an event on Mars at 12:00 am cannot locally
in�uence an event on earth at 12:01 am because it takes light at least three minutes to
travel from one planet to the other.

x

ct

A

B

Figure 3.1.: Two spacelike-separated events A and B. The diagonal lines represent the
path of light in spacetime, so event A can only locally in�uence events within
the shaded area, the so-called light cone. Any events outside its light cone
are spacelike-separated from A.

For a long time locality was assumed to be a fundamental property of nature. In 1964,
however, John Bell showed that quantum mechanics violates this property and proposed
an experiment to test if these quantum mechanical predictions are true [Bel64]. And in-
deed, when Aspect conducted the �rst Bell experiment in 1982, the experimental results
agreed perfectly with the theoretical predictions [AGR81]. Since then many more exper-
iments have been conducted, closing several loopholes and con�rming Aspect's results.3

3.2.1. The CHSH inequality

Instead of following Bell's original proof, we will look at a more instructive generalisation
�rst presented by Clauser, Horne, Shimony and Holt in 1969 [CHSH69]. Their argument
is based on the setting illustrated in �gure 3.2. A pair of entangled photons in the state∣∣φ+

〉
=

1√
2

(|00〉+ |11〉) (3.12)

3See, for example, the three Bell tests conducted independently in 2015 by Hensen [HBD+15], Giustina
[GVW+15] and Shalm [SMSC+15] and the work of the group around Harald Weinfurter at LMU
[PBD+00].
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3. Entanglement & Nonlocality

is generated in the grey box and sent to two distant observers, Alice and Bob. Both of
them can choose between two di�erent measurements, A0, A1 and B0, B1 respectively.

|φ+〉
B0

B1

A0

A1

Figure 3.2.: Setting for the CHSH-scenario.

For example, A0 and B0 could correspond to measurements of the polarisation in x-
direction while A1 and B1 correspond to the same measurements in z-direction. In
general, however, this argument is independent of the explicit form of the measurement
operators. In the CHSH-setting each of the measurements has two outcomes, +1 and −1,
which will be denoted by a, b ∈ {+1,−1}. The choice of measurement will be represented
by x ∈ {0, 1} for Alice and y ∈ {0, 1} for Bob. Now Alice and Bob run the experiment
many times with random measurement settings, each time obtaining a pair of outcomes
a and b.

a0 a1 b0 b1
+1 -1
-1 -1

+1 -1
-1 -1

+1 +1
...

...
...

...

Figure 3.3.: A typical protocol of the Bell experiment.

The outcomes are governed by a probability distribution p(ab|xy) depending on the choice
of measurements xy. In the following argument we will invoke the locality principle to
further specify this probability distribution. This way we can derive a simple inequality
that has to hold for any state describable with a local hidden variable model, yet can be
violated by nonlocal states. We then show that for the particular quantum state |φ+〉
this inequality is violated and conclude that quantum mechanics is nonlocal.

As mentioned before, locality implies that two distant events cannot in�uence each other
instantaneously. So, let's assume that Alice and Bob are arbitrarily far apart and perform
their measurements within a very short time frame - so short that no signal can be
transmitted locally between the two measurements. They also do not decide, which
measurement they are going to perform, until very shortly before the actual measurement.
So, if they are far enough apart, Alice's choice of measurement cannot locally in�uence

15



3. Entanglement & Nonlocality

Bob's result and vice versa. More formally, the probabilities for a and b have to be
independent of the distant measurment: p(ab|xy) = p(a|x)p(b|y). However, one has to
take into account that there might be some other factors, the so-called hidden variables λ,
that in�uence both Alice's and Bob's result. The possible values of the hidden variables
are governed by a normalised probability distribution q(λ), which will not be speci�ed
further to keep the results as general as possible. Considering these hidden variables the
probability distribution takes the form

p(ab|xy) =

∫
Λ
dλq(λ)p(a|x, λ)p(b|y, λ). (3.13)

Models that can be described with this kind of probability distributions are called local-
hidden-variable (LHV) models.

Let's now consider the following quantity:

〈B〉 = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 (3.14)

where the expectation value 〈·〉 is de�ned as 〈A〉 ≡
∑n

i=1 p(ai, λ)ai with ai being the
possible outcomes of A and p(ai, λ) the respective normalised probabilities. Therefore

〈B〉 =

∫
Λ
dλq(λ)(〈A0〉 〈B0〉+ 〈A0〉 〈B1〉+ 〈A1〉 〈B0〉 − 〈A1〉 〈B1〉)λ

≤
∫

Λ
dλq(λ)(| 〈A0〉 || 〈B0〉+ 〈B1〉 |+ | 〈A1〉 || 〈B0〉 − 〈B1〉 |)λ

(3.15)

where the second line follows from the triangle inequality. Because of ai ∈ {−1,+1}
| 〈A0〉 |, | 〈A0〉 | ≤ 1 holds and the inequality simpli�es to

S ≤
∫

Λ
dλq(λ)(| 〈B0〉+ 〈B1〉 |+ | 〈B0〉 − 〈B1〉 |)λ (3.16)

It can be seen by case di�erentiation with respect to the extremal values +1 and −1 of
〈B0〉 and 〈B1〉 that no matter which value one chooses for the expectation values the
expression | 〈B0〉+ 〈B1〉 |+ | 〈B0〉 − 〈B1〉 | is always less than or equal to two. Therefore

〈B〉 ≤ 2

∫
λ
dλq(λ) = 2. (3.17)

This is the so-called CHSH-inequality :

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2 (3.18)

Any probability distribution that can be described by a local hidden variable model must
satisfy this inequality.

Finally, we take a look at a particular set-up [KS11]. Alice and Bob both want to
measure the polarisation of their photon in two directions. A polarisation measurement
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3. Entanglement & Nonlocality

in an arbitrary direction r = (sin(α), cos(α))T in the x-z-plane can be represented by
the operator

Ô = sin(α)σx + cos(α)σz =

(
cos(α) sin(α)
sin(α) − cos(α)

)
(3.19)

where σx and σz are Pauli matrices. While Alice measures the polarisation of her photon
in x- and z-direction, Bob's polarisation �lters are shifted by 45◦ (see �gure 3.4).

x

z

A0

A1
B0

B1

Figure 3.4.: Directions of Alice's and Bob's measurements.

So Alice's and Bob's measurements are

A0 = Ô(0) B0 = Ô
(
π/4) (3.20)

A1 = Ô(π/2) B1 = Ô(−π/4) (3.21)

As mentioned in the beginning of this section, the photons are in the state |φ+〉 =
1√
2
(|00〉+ |11〉), so the quantum mechanical expectation value can be computed via

〈AiBj〉 =
〈
φ+
∣∣Ai ⊗Bj∣∣φ+

〉
. (3.22)

The results are: 〈A0B0〉 = 〈A0B1〉 = 〈A0B1〉 = 1√
2
and 〈A1B1〉 = − 1√

2
and therefore

〈B〉 = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 = 2
√

2 > 2 (3.23)

This is clearly a violation of the CHSH-inequality from which we conclude that quantum
mechanics is indeed nonlocal.

Bell Inequalities in General

The CHSH inequality is just one of many Bell Inequalities indicating nonlocality in
quantum mechanics. One can generalise the simple scenario of two parties (Alice and
Bob) and two measurement apparatuses (spin in x- and y-direction) with two possible
outcomes (+1, −1) to settings of n parties and m measurement apparatuses with d
possible outcomes. Such a setting will be described by the triplet of numbers (n,m, d)
in this thesis. In Chapter 4 we will discuss a way to generate the Bell inequalities for a
given scenario. For now it is enough to bear in mind that the CHSH-inequality is just
one specimen in a whole zoo of Bell inequalities.
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3. Entanglement & Nonlocality

3.3. The Peres Conjecture

In our discussion so far we may have used entanglement to show that quantum mechanics
is nonlocal but we have yet to show that entanglement is actually the decisive factor when
it comes to nonlocality. In Section 3.2.1 we already argued that the locality condition
manifests itself in the following equation:

p(ab|xy) =

∫
Λ
dλq(λ)p(a|x, λ)p(b|y, λ) (3.24)

It can be seen quite easily that any separable state satis�es this condition: Suppose we
perform a measurement M = MA|x ⊗MB|y on a composite system in a separable state
ρ̂AB where x and y indicate the choice of the measurement apparatus on each site. Due
to the third postulate, the probabilities of the possible outcomes are given by

p(ab|xy) = Tr(Mρ̂AB) = Tr
[
(MA|x ⊗MB|y)

(∑
i

piρ̂
(i)
A ⊗ ρ̂

(i)
B

)]
=
∑
i

piTr(MA|xρ̂
(i)
A )︸ ︷︷ ︸

p(a|x,λ)

· Tr(MB|yρ̂
(i)
B )︸ ︷︷ ︸

p(b|y,λ)

=
∑
i

pip(a|x, λ)p(b|y, λ)

(3.25)

and thereby satisfy the locality condition 3.13. So every separable state admits a local
hidden variable model. Interestingly the converse is not true. Just because a state admits
a local hidden variable model, it doesn't have to be separable. For instance, the Werner
state

ρW = p
∣∣φ+
〉〈
φ+
∣∣+

1

4
(1− p)1 (3.26)

is separable only for p ≤ 1
3 but allows an LHV model up to p = 0.66 [AGT06].4 This

means that entanglement does not imply nonlocality. But what does? One longstanding
guess was ventured by Asher Peres in 1998.

It is plausible that quantum systems whose density matrix has a positive
partial transposition satisfy all these inequalities [the Bell inequalities], and
therefore are compatible with local objective variables, even if their quantum
properties are essentially nonlocal. [Per98]

Put shortly, he conjectures that if an entangled state has a positive partial transpose, it
admits a local hidden variable model. Quite often the Peres conjecture is mentioned in
the context of bound entangled states.

4See [BCP+14, p.21] for an explicit LHV model for p = 1
2
.
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3. Entanglement & Nonlocality

Bound entanglement

So far we have only considered the pure entangled state |φ+〉. This state is maximally
entangled, which means that each of the subsystems is in a perfectly mixed state, that
we cannot obtain any information about one of the subsystems alone. A paradigmatic
example for maximally entangled states for the CHSH-case are the so-called Bell states:

∣∣φ+
〉

=
1√
2

(|00〉+ |11〉),
∣∣φ−〉 =

1√
2

(|00〉 − |11〉) (3.27)∣∣ψ+
〉

=
1√
2

(|01〉+ |10〉),
∣∣ψ−〉 =

1√
2

(|01〉 − |10〉). (3.28)

Now let's suppose Alice and Bob share an arbitrary ensemble of entangled states ρ. Then
each of them can perform local operations on his/her particles, thereby changing the state
of the system. They can also exchange classical information, such as texting each other,
which operation they performed. These actions are summarised in the term LOCC : local
operations and classical communication. Sometimes they can produce one or more pairs
of maximally entangled particles through LOCC. In this case they have distilled maxi-
mally entangled states from ρ. However, not every ensemble can be distilled. Ensembles,
which cannot be distilled are called bound entangled.

Separability

PPT LHV Model

Bell InequalitiesBound Ent.

Peres Conjecture

Figure 3.5.: Relations between separability, the existence of local hidden variable mod-
els, bound entanglement, Bell's inequalities and the positivity of the partial
transpose. The dashed lines indicate that the relations only hold for certain
scenarios while the red line indicates that the admittance of an LHV-model
does not imply separability.

Now we are in a position to draw a connection between bound entangled states and the
Peres conjecture. In their 1998 paper [HHH98] the Horodeckis showed that PPT implies
bound entanglement. To do so, they �rst proved that any LOCC-action preserves the
positivity of the partial transpose. Then they assumed that there exists a PPT state ρ
that can be distilled. This means that one can obtain a 2× 2 maximally entangled state
via LOCC from ρ. Because the LOCC-action does not change the positivity of the partial
transpose, this state must be a PPT-state as well. But for systems with dimension 2× 2
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3. Entanglement & Nonlocality

the PPT-criterion is su�cient for separability. Therefore the maximally entangled state
has to be separable, which is clearly a contradiction.

As PPT implies bound entanglement, one can formulate a stronger version of the Peres
conjecture by restricting it to bound entangled states. However, even in this restricted
version, the conjecture was disproved by Vértesi and Brunner, who found an undistillable
state violating a Bell inequality.5 Yet this state was only found numerically and does not
provide any further insight into the connection between PPT-states and local models. To
obtain a deeper understanding of this connection we will introduce a new method that
allows us to study the Peres conjecture more closely for a given Bell scenario and apply
it to the particular case of (3, 2, 2).

5See [VB12] for the multipartite case (n > 2) and [VB14] for the bipartite case (n = 2).
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As mentioned before, the CHSH inequality is just one of many Bell inequalities, each
corresponding to a particular scenario (n,m,d). In this section we will discuss how to
generate the Bell inequalities for a given scenario, using a fascinating connection to
convex polytopes. To do so, we �rst need to lay the theoretical foundations, which is
why in Section 4.1 we will be discussing the relevant de�nitions and theorems from the
�eld of convex polytopes. Building on this, we will construct the so-called local polytope
and present an algorithm to generate a minimal set of Bell inequalities constraining it.

4.1. Convex Polytopes

4.1.1. De�nitions

De�nition 8. A point set K ⊆ Rs is convex if for any two points x1, x2 ∈ K it also
contains the straight line segment

[x1, x2] = {λx1 + (1− λ)x2|0 ≤ λ ≤ 1}1 (4.1)

For example, in the �gures below, the set on the left is convex, while the set on the right
is not.

De�nition 9. For any K ⊆ Rd the convex hull conv(K) is the smallest convex set
containing K:

conv(K) ≡ ∩{K ′ ⊆ Rd : K ⊆ K ′, K ′ convex} (4.2)

For example, the convex hull of the three points in general position in 2D is the triangle
obtained by connecting each of the points with a straight line plus its interior.

1This de�nition and the following de�nitions in this subsection are taken from [Zie07, p.3-4, 28-29].
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4. The Local Polytope

The convex hull of a given set K is equivalent to the set of all convex combinations of
points xi in K:

conv(K) =

{ n∑
i=1

λixi | n ∈ N, xi ∈ K, λi ≥ 0,

n∑
i=1

λi = 1

}
(4.3)

This can be seen as follows: Each convex set containing K must, by de�nition 8, contain
all convex combinations of points in K, so the set of all convex combinations is a subset
of conv(K). Conversely, the set of all combinations of points in K is itself a convex set
containing K, which is why the two sets must be equal.

De�nition 10. A V-polytope2 is the convex hull of a �nite set of points in Rd.

PV = conv(V ) for some V ∈ Rd×n (4.4)

An H− polytope is a bounded intersection of �nitely many closed halfspaces in Rd.

PH = P (A, z) = {x|Ax ≤ z} for some A ∈ Rd×m, z ∈ Rm (4.5)

A polytope is a point set P ⊆ Rd that can be represented as a V- or as an H-Polytope.3

The �gures below illustrate the di�erence between a V-polytope (left) and an H-polytope
(right).

Before moving on to the dimension of polytopes, we �rst need to introduce the concepts
of the a�ne subspace [Fis00, p.116] and a�ne hull [Zie07, p.3].

2As only convex polytopes are of relevance in this thesis, we will simply call them �polytopes� in the
following.

3We will soon see that each V-polytope admits a description as an H-polytope and vice versa.
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De�nition 11. If V is a vector space, then X ⊆ V is called an a�ne subspace if X = ∅
or if there is a v ∈ V and a subspace W ⊂ V such that

X = v +W = {u ∈ V | ∃w ∈W : u = v + w} (4.6)

If X 6= ∅, the dimension of X is equal to the dimension of W . Any a�ne subspace can
be represented as the a�ne hull of a �nite point set. The a�ne hull of a point set S is
the smallest a�ne subspace containing S:

a�(S) =

{ k∑
i=1

λixi | k > 0, xi ∈ S, λi ∈ R,
k∑
i=1

λi = 1

}
(4.7)

De�nition 12. The dimension of a polytope is the dimension of its a�ne hull. A polytope
of dimension d is called a d-polytope.

De�nition 13. Let P ⊆ Rn be a convex polytope. A set of the form

F = P ∩ {x ∈ Rd : cTx = c0} (4.8)

where c
T
x ≤ c0 is satis�ed for all points x ∈ P is called a face of P. Faces of dimension

0, 1 and (dim(P)− 1) are called vertices, edges and facets, respectively.

The �gures below show the inequality cTx ≤ c0 for a vertex (left) and a facet (right) of
a 2-polytope.

4.1.2. The Representation Theorem

The main theorem for convex polytopes is the following:

Theorem 1. A subset P ⊆ Rd is a V-polytope if and only if it is an H-polytope.

This is quite a remarkable result - it allows us to choose between the vertex- and the
half-space-representation for any polytope. We will not prove the theorem rigorously
but provide a sketch for the direction V → H which will be of great importance when
it comes to generating Bell inequalities.4 This proof relies on an algorithm called the
Fourier-Motzkin elimination (FME).

4For a complete proof see, for example, [Zie07].
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Fourier-Motzkin elimination

The Fourier-Motzkin elimination is similar to gaussian elimination [MG07]. While gaus-
sian elimination is used to �nd solutions for a system of linear equations, FME is used to
reduce the number of variables in a system of linear inequalities. The algorithm is based
on the idea that a one-dimensional system of linear inequalities

x ≥ p1, . . . , x ≥ pn ⇔ x ≥ p1, . . . , x ≥ pn
x ≤ q1, . . . , x ≤ qm ⇔ −x ≥ −q1, . . . , −x ≥ −qm

only holds if ∀i = 1, . . . , n, j = 1, . . . , m : qj ≥ pi. This allows us to eliminate x by
adding the inequalities on the right pairwise. In general, given an n-dimensional set of
inequalities indexed by (i):

ai1x1 + · · ·+ ainxn ≥ bi (i) (4.9)

with variables x1, . . . xn, i = 1, . . . ,m and aij ∈ R, we can gradually eliminate all the xks
by iterating the following steps:

• ∀i : aik 6= 0 multiply inequality (i) by 1
|aik|

• ∀i : aik = 0 copy inequality (i).

• For any pair of aik > 0 and ai′k < 0 add the inequalities (i) and (i′) to obtain a
new inequality that is independent of xk.

By repeating these steps m times, one obtains a set of inequalities that is independent
of any x1, . . . , xm.

Consider the polytope de�ned by the following equations:

−2x1 + 3x2 ≥ −2 (1)

−x1 − 2x2 ≥ −8 (2)

2x1 − x2 ≥ 1 (3)

x2 ≥ 1 (4)
x1

x2

Our goal is to eliminate x2. To do so, we read o� the coe�cients for x2 (a12 = 3,
a22 = −2, a32 = −1, a42 = 1 and multiply each of the inequalities with 1

|ai2| .

−2

3
x1 + x2 ≥ −

2

3
(1) −1

2
x1 − x2 ≥ −4 (2)

2x1 − x2 ≥ 1 (3) x2 ≥ 1 (4)
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4. The Local Polytope

Then we add the inequalities with di�ering signs in front of x2 and simplify.

(1) + (2) : x1 ≤ 4

(1) + (3) : x1 ≥
1

4
(2) + (4) : x1 ≤ 6

(3) + (4) : x1 ≥ 1 x1

x2

We have thereby successfully eliminated x2. One can, however, see that the two
equations in the middle are redundant. Removing them yields 1 ≤ x1 ≤ 4. The line
de�ned by these two inequalities is the projection onto x2 = 0.

The redundant inequalities can also be identi�ed by constructing the dual polytope. This
is the polytope one obtains by representing each inequality with a point.5In the case of
our projected polytope we would obtain a line segment de�ned by four points:

x1 ≥ 1

x1 ≥ 4 x1 ≤ 6

x1 ≤ 4

The extreme points of the dual polytope correspond to the non-redundant inequalities.

We can now use this method to construct the corresponding half-space-representation to
any V-polytope

P = conv(V ). (4.10)

By the de�nition of the convex hull 4.3, x is an element of P i� for v1, · · · vn ∈ V

∃λ1, . . . , λn ≥ 0 (4.11)

such that λ1 + · · ·+ λn = 1 (4.12)

λ1v1 + . . . λkvn = x (4.13)

By rewriting each equality a = b as a ≥ b and −a ≥ −b, we obtain a set of inequalities
depending on the coe�cients λi and x. Using the Fourier-Motzkin algorithm, we can
gradually eliminate every λi and thereby obtain a set of linear inequalities involving only
the elements of the vector x. These inequalities fully characterise the elements of P. By
arranging them in a matrix inequality Ax ≥ z we can represent the polytope as

P = {x|Ax ≥ z}, (4.14)

5For the construction of the dual polytope see [Zie07, p.61].
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4. The Local Polytope

which is an H-polytope by construction.

Take, for example, the 1-polytope6

P = conv

({(
1
1

)
,

(
2
3

)})
. (4.15)

This corresponds to a line in R2, represented in the
�gure on the right. The convex hull is in this case
de�ned by

λ1 + λ2 = 1 λ1 ≥ 0

λ1 + 2λ2 = x1 λ2 ≥ 0

λ1 + 3λ2 = x2

One could now rewrite this as a set of linear inequalities and use the Fourier-Motzkin
algorithm to eliminate λ1 and λ2. However, in this case, there is an easier way to eliminate
the coe�cients. In the �rst step we set λ1 = 1− λ2 and obtain

λ2 = x1 − 1 −λ2 ≥ −1

2λ2 = x2 − 1 λ2 ≥ 0

Inserting λ2 = x1 − 1 into the other equations and simplifying gives

2x1 − x2 = 1 −x1 ≥ −2 x1 ≥ 1

By rewriting the equation as two inequalities, we are left with a set of four linear in-
equalities depending only on x1 and x2. These are represented by the following matrix
inequality:

Ax ≡


2 −1
−2 1
−1 0
1 0

(x1

x2

)
≥


1
−1
−2
1

 ≡ z

One should keep in mind that the Fourier-Motzkin algorithm produces a lot of redundant
inequalities, because it simply adds any pair of inequalities whose coe�cients di�er in
sign. It therefore makes sense to check each of the newly generated sets of inequalities for

6This example is based on [Mat15].
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4. The Local Polytope

redundancies and remove the unnecessary ones. One can identify a redundant inequality
by checking if it is trivially satis�ed when all of the other inequalities hold [GGP16]. To
do so we de�ne

• A(i): the matrix obtained by removing the i-th row of A

• b(i): the vector obtained by removing the i-th entry of b

• aTi : the i-th row of A

• bi: the i-th entry of b

and then calculate

b∗ = min
x:A(i)x≥b(i)

aTi x (4.16)

If b∗ ≥ bi, then aTi x ≥ bi for all x satisfying the other inequalities, so the i-th inequality
must be redundant.

4.2. Locality Constraints

Now it is time to build the connection from convex polytopes to Bell inequalities [TAS+15,
WW01]. Recall that in general the Bell inequalities correspond to a given scenario with
n parties, m measurements and d outcomes. Labelling the i-th party's choice of measure-
ment with xi ∈ {0, . . . ,m − 1} and the corresponding outcome with ai ∈ {0, . . . , d − 1}
we can describe each scenario with the probabilities

p(a0, . . . , an−1|x0, . . . , xn−1) ≡ p(a|x) (4.17)

As there are mn possible combinations of measurements, each with dn possible outcomes,
there are (md)n such probabilities. These probabilities can be arranged in a vector P
lying in a space of dimension (md)n. This space is constrained by the non-negativity of
the probabilities

∀a,x : p(a|x) ≥ 0 (4.18)

and the normalisation constraints for each choice of measurements

∀x
∑

a0,...,an−1

p(a0, . . . , an−1|x) = 1. (4.19)

The above (in)equalities de�ne a polytope P of dimension mn(dn − 1).
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4. The Local Polytope

For the CHSH-case we have n = 2 parties, m = 2 measurements x0 ∈ {0, 1} and
x1 ∈ {0, 1} and d = 2 outcomes a0 ∈ {−1, 1} and a1 ∈ {−1, 1}. Therefore one can
assign (2 · 2)2 = 16 probabilities p(a0, a1|x0, x1) to the Bell scenario. There are four
normalisation constraints like

p(1, 1|0, 0) + p(1,−1|0, 0) + p(−1, 1|0, 0) + p(−1,−1|0, 0) = 1, (4.20)

so only 12 probabilities remain independent from each other.

No-signalling constraints

However, some of the probability-vectors in P are not physical because they violate the
no-signalling principle. According to this principle it is impossible to transmit signals
instantaneously. To exclude these un-physical vectors from our polytope, we have to
impose additional constraints. In mathematical terms, the no-signalling principle can be
formulated as follows [BCP+14,TAS+15]:∑

ai

p(a|x0, . . . , xi, . . . , xn−1) =
∑
ai

p(a|x0, . . . , x
′
i, . . . , xn−1) ∀x′i 6= xi (4.21)

This means that the choice of measurement of one party does not in�uence the statistics
observed by the other parties. The no-signalling constraints reduce the dimension of the
polytope to [(d− 1)m+ 1]n − 1.7 We denote the new polytope by PNS .

Locality constraints

Finally we want to restrict our description to probabilities that can be described by LHV
models. These probabilities have to satisfy the generalised version of equation 3.13:

p(a|x) =

∫
Λ
dλq(λ)

n−1∏
i=0

p(ai|xi, λ) (4.22)

By imposing the condition above, we reduce the allowed region in space to a new polytope,
which we will call the local polytope and denote by PL. It is a subset of the no-signalling
polytope and has the same dimension [TAS+15, p.4].

The di�erent polytopes are represented in
the �gure on the right. An important fea-
ture of the vectors within the local polytope
is that they can be expressed as a convex
combination of deterministic events [Fin82].

PNS
PL

P

In a deterministic event the outcomes are known completely, so the corresponding prob-
abilities are either zero or one. We can describe them with delta functions δ(ai, f(xi, λ))

7See appendix B.

28



4. The Local Polytope

where f(xi, λ) produces an outcome in {0, . . . , d− 1} based on the information available
to the i−th party, namely xi and λ. If f(xi, λ) = ai, the probability of obtaining outcome
ai is one, otherwise it is zero. If the outcomes are not known completely, we can describe
the system of the i-th party by assigning probabilities pji to each possible outcome:

p(ai|xi, λ) =
∑
ji

pjiδ(ai, fji(xi, λ)) (4.23)

Inserting this into the locality condition we obtain

p(a|x) =
∑

j0,...,jn−1

pj0 · . . . · pjn−1

∫
dλρ(λ)

n−1∏
i=0

δ(ai, fji(xi, λ)) (4.24)

=

∫
dλρ̃(λ)

n−1∏
i=0

δ(ai, fji(xi, λ)), (4.25)

by merging sum and integral into a new probability distribution ρ̃(λ). Equation 4.25 tells
us that each vector inside the local polytope can be represented as a convex combination
of local deterministic points

p(d) =
n−1∏
i=0

δ(ai, fji(xi, λ)) ∈ {0, 1}, (4.26)

which implies that the local polytope is the convex hull of these points, i.e.

PL = conv({p(d)}). (4.27)

As {0, 1} are the extremal values for probabilities, the points p(d) correspond to the
extreme points of the local polytope. This is a particularly useful result as we now
only need to know a �nite set of points to describe the local polytope. Furthermore,
it is rather easy to generate {p(d)}: One simply assigns a �xed value to each outcome
and calculates the corresponding probabilities. For an (n,m, d) scenario there are d(nm)

possible assignments and thereby local deterministic points.

As an example, we generate a deterministic vector p(d) of the (2, 2, 2)-polytope, corre-
sponding to the outcomes a0 = a1 = b0 = +1 and b1 = −1. In this case

p(+1 + 1|00) = p(+1 + 1|10) = p(+1− 1|01) = p(+1− 1|11) = 1 (4.28)

while all other probabilities are zero. p(d) is obtained by combining all these probabilities
in a vector of dimension [(d− 1)m+ 1]n − 1 = 8.

Once we know the vertices de�ning the polytope, we can use Fourier-Motzkin elimination
to generate the constraining inequalities - the Bell inequalities.
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4. The Local Polytope

4.2.1. Correlator-Description

As the Bell inequalities are sometimes written in terms of correlators (expectation values),
just like the CHSH-inequality 3.18, we need to �nd a way to go from probabilities piai ≡
p(ai) to correlators 〈

A(i)
x

〉
k

=
∑
i

piaia
k
i (4.29)

where i denotes the party, x the choice of measurement and k the order of the correlator.
To express the probabilities in terms of correlators, we make use of the discrete Fourier
transform (DFT) [Fra13, p.178 �.]. The DFT converts a sequence of complex numbers

fk =
N−1∑
j=0

f̂je
2πi
N
jk (4.30)

into another sequence of complex numbers

f̂j =
1

N

N−1∑
k=0

fke
2πi
N
jk. (4.31)

To apply the discrete Fourier transform to our problem, we need to express the outcomes
in terms of primitive roots of unity: ai ∈ {exp(2πi

d j)} where j ranges from 0 to d− 1.

For example, for d = 2 we can rewrite the outcomes as

1 = exp(iπ · 0), −1 = exp(iπ · 1).

This way, the correlators take the form

〈
A(i)
x

〉
k

=
d−1∑
j=0

e
2πi
d
jkpij (4.32)

Due to the locality constraint the correlators satisfy
〈
AkiA

l
j

〉
=
〈
Aki

〉〈
Alj

〉
for i 6= j on

the vertices. Therefore

〈Ai1 · · · · ·Ain〉k1,...,kn =

d−1∑
j1,...,jn=0

pi1j1 . . . pinjne
2πi
d
j1k1 . . . e

2πi
d
jnkn (4.33)

With the multi-dimensional version of the discrete Fourier transform we can convert this
into
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4. The Local Polytope

pi1j1 . . . pinjn =
1

(d− 1)n

d−1∑
k1,...,kn=0

〈Ai1 · · · · ·Ain〉k1,...,kne−
2πi
d
j1k1 . . . e−

2πi
d
jnkn (4.34)

The formula above allows us to rewrite any probabilities in terms of correlators. In
general one has to use imaginary outcomes to rewrite them in terms of primitive roots of
unity. In the following we will, however, focus on the d = 2 case with the real outcomes
1 and −1.
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5. Classes of Bell Inequalities

Now we know everything we need to generate the Bell Inequalities. Usually the number
of inequalities is incredibly high, though. For the (3, 2, 2) case, for example, there are
53856 inequalities [PS01].These inequalities, however, can be grouped into classes, i.e.
orbits with respect to certain symmetry groups.1

De�nition 14. Given a group G y X, the orbit of an element x ∈ X is given by the
set of elements into which x can be transformed by the elements of G [Mei08].

Orb(x) = {g · x|g ∈ G} (5.1)

One example for symmetry groups are transformations of the equilateral triangle that
project every edge onto another edge. The possible symmetry transformations are:

• clockwise rotation by 120◦

• anti-clockwise rotation by 120◦

• re�ection through the axes a, b and c

• trivial transformation (identity)
B C

A

a

bc

Applying these transformations to the triangle on right gives out six di�erent triangles.

B C

A

A B

C

C A

B

C B

A

A C

B

B A

C

The set of these triangles is the orbit of the triangle ABC with respect to the symmetry
group containing the transformations above.

1Recall that a group is a set G with elements g and an operation ◦ combining the elements such that

1. g1, g2 ∈ G⇒ g1 ◦ g2 ∈ G
2. ∃ an element 1 such that ∀g ∈ G : 1 ◦ g = g ◦ 1 = g

3. ∀g ∈ G ∃g−1 ∈ G : g−1 ◦ g = g ◦ g−1 = 1

4. g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3
Furthermore, an action of a group G on a set X, denoted Gy X, is a map from G×X → X such

that [Mei08]

1. ∀x ∈ X 1 · x = x

2. ∀g1, g2 ∈ G and x ∈ X : (g1g2) · x = g1 · (g2 · x)
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5. Classes of Bell Inequalities

In a scenario (n,m, d) where all parties can choose between the same number of measure-
ment apparatuses with the same number of outcomes, the naming of parties, observables
or outcomes does not make a physical di�erence. Therefore the permutations of elements
corresponding to

• renaming parties

• renaming the observables of one party

• renaming the outcomes of one observable

generate a symmetry group. The Bell inequalities belonging to the same orbit with
respect to this symmetry group do not di�er in a physically relevant sense. It therefore
su�ces to analyse one Bell inequality to obtain results that are valid for all the inequalities
in its orbit. This feature will prove to be very useful in Chapter 7, in which we analyse
a set of over 5000 Bell inequalities. Generating all elements of the symmetry group
and sorting a large set of Bell inequalities into orbits can, however, be quite complicated
[RBG14]. A useful algorithm, allowing us to group the Bell inequalities without explicitly
generating all elements of the symmetry group, is the breadth-�rst search algorithm.

5.1. Breadth-First Search

The breadth-�rst search algorithm [Cor09,Top17] is used to explore graphs. A graph is
an abstract data type, consisting of points (nodes) and their connections (edges). We'll
call the nodes that are connected via an edge �neighbours�. In our case, the nodes are the
Bell inequalities and the edges represent symmetry transformations. In the beginning,
however, we do not know the connections. All we have is a list of all the Bell inequalities
generated by FME:

� inequ1

� inequ2

� inequ3

...

The BFS algorithm now takes the �rst inequality, assigns it to class 1 and performs all
of the generating symmetry transformations on it to obtain its direct neighbours.

inequ1
1

inequ4
1

inequ6
1
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5. Classes of Bell Inequalities

It then �ags all the generated inequalities as belonging to the same class as inequ1 and
adds them to a queue.

q:inequ4, inequ6

In the next step it takes the �rst inequality waiting in line, removes it from the queue
and generates all of its neighbours.

inequ1
1

inequ4
1

inequ6
1

inequ3
1 inequ6

inequ8
1

To avoid getting stuck in an in�nite loop, the algorithm �rst checks whether the inequality
has already been �agged (such as inequ6) before proceeding. It then �ags the remaining
inequalities and adds them to the queue as well.

q:inequ6, inequ3, inequ8

Notice that the next inequality in line is inequ6. This is the key feature of the BFS
algorithm: Instead of following down one path as far as possible before backtracking2, it
adds the newly generated elements to the end of the queue and �rst analyses all of the
direct neighbours. Continuing in the same way as illustrated above until all of the newly
generated neighbours have already been �agged, it �nds all of the elements in the orbit of
inequ1. Then it takes the next un�agged inequality, marks it as belonging to class 2 and
starts anew. This continues until all inequalities have been assigned a class. As it is quite
easy to implement a symmetry that only exchanges one party, renames measurements or
changes outcomes, the BFS algorithm is straightforward for our problem. We will see an
example of classes of Bell inequalities generated via BFS in Chapter 7.

2This is called depth-�rst search.
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6. A Method to Generate PPT Bounds

In this chapter we present a novel method to derive bounds on the minimal value achiev-
able for any PPT-states |ψ〉 ∈ H on a given Bell inequality � the so-called PPT-bounds.
This will lay the groundwork for the following chapter, in which we use this method to
compute the PPT-bounds for a certain set of inequalities for the Bell scenario (3, 2, 2).

The method is based on two concepts, which we will introduce in the subsequent two
sections: semide�nite programming (SDP) and the sum-of-squares-decomposition of a
given polynomial. The former will provide us with the necessary tools to �nd a bound
on the minimal value that a given Bell inequality 〈B〉−β ≥ 01 can take over all possible
quantum states (quantum bound) and PPT-states (PPT-bound) respectively. The results
of the SDP-programme together with the theoretical framework developed in Section 6.2
will additionally provide an analytical proof that the obtained quantum/PPT-bound is
valid indeed.

6.1. Semide�nite Programming

A semide�nite programming (SDP) problem is a convex optimisation problem.2 The
goal is to minimise or maximise a linear function while making sure that it satis�es a
number of constraints in the form of linear matrix inequalities

A0 +
∑
i

Aixi � 0 (6.1)

where Ai ∈ Sn are real, symmetric matrices. An SDP problem can be expressed in one
of the following two canonical forms

primal problem

minimise 〈C,X〉 = Tr(CTX)
subject to 〈Ai, X〉 = bi,X � 0

dual problem

maximise bTy
subject to

∑m
i=1Aiyi 4 C

where C,Ai ∈ Sn. To understand the relationship between the primal and the dual
problem, it is helpful to consider an example. The following example [Wik17] considers a
special case of semide�nite programming, namely linear programming, where the matrices
C and X are both diagonal. In this case, the function to be minimised can be rewritten
as Tr(CTX) = cTx where c and x are vectors of the diagonal elements of C and X
respectively.

1In the following we will refer to B as Bell operator and as classical bound to β. In the CHSH-case the
Bell operator is (−A0B0 −A0B1 −A1B0 +A1B1) while the classical bound is −2.

2This section follows the presentation in [BPT13, chapter 2].
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6. A Method to Generate PPT Bounds

A farmer produces two kinds of crops: x1 and x2. To grow each of the crops he needs
a certain amount of fertiliser y1 and pesticide y2: Two units of fertiliser and one unit of
pesticide for x1 and one unit each for x2. All together he has eight units of fertiliser and
six units of pesticide at his disposal. The optimisation problem the farmer has to solve
is the following:

�How can I maximise the pro�t, if I can sell crop x1 for 3e and crop x2

for 2e?�

Formally, this problem can be written as

maximise: p = 3x1 + 2x2

subject to: 2x1 + x2 ≥ 8

x1 + x2 ≥ 6

x1, x2 ≥ 0

maximize: p = cTx

subject to: Ax ≥ b

x ≥ 0

where the last inequality just expresses the fact that the farmer produces a non-zero
amount of crops. This primal problem can also be expressed in the matrix form on the
right by de�ning

c =

(
3
2

)
, x =

(
x1

x2

)
, A =

(
2 1
1 1

)
, b =

(
8 6

)
.

Now let's assume that someone wants to buy fertiliser and pesticide from the farmer.
Of course the farmer will not sell his products unless he makes at least the same pro�t
selling the fertiliser and pesticide as he would, if he'd raise and sell the crops. So the
buyer has to solve the problem

�How can I minimise the costs while making sure that the farmer makes at
least the same amount of money?�

In mathematical terms:

minimise: m = 8y1 + 6y2

subject to: 2y1 + y2 ≥ 3

y1 + y2 ≥ 2

y1, y2 ≥ 0

minimise: m = bTy

subject to: ATy ≥ c

y ≥ 0

where y = (y1, y2)T . This is the dual problem.

There is an interesting relation between the primal and the dual problem, known as weak
duality, which can be obtained by considering the following term:
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6. A Method to Generate PPT Bounds

〈C,X〉 − bTy = 〈C,X〉 −
m∑
i=1

yi〈Ai, X〉 = 〈C −
m∑
i=1

Aiyi, X〉 ≥ 0 (6.2)

Equation 6.2 tells us that the value of the primal function at X is always greater than or
equal to the value of the dual function at any y and thereby provides a lower bound for
〈C,X〉 and an upper bound for bTy. Furthermore, it allows us to see whether there exist
primal and dual optimal solutions, that is solutions that minimise 〈C,X〉 and maximise
bTy respectively. Using that 〈X,Y 〉 = 0 i� XY = Y X = 0 for X,Y � 0 one can see
that (X,y) are primal and dual optimal solutions if and only if

(C −
m∑
i=1

Aiyi)X = 0 (6.3)

Finally, one should remark that it is possible to choose C = 0. In this case, there is no
function to maximise/minimise and the problem is called feasibility problem. The goal
of such a feasibility problem is simply to determine if there exists a matrix X satisfying
the constraints.

6.2. Sums of Squares

Before we apply our method to Bell inequalities, we will take a closer look at the sum of
squares (sos) decomposition of polynomials.3

De�nition 15. A polynomial of n variables and degree 2d, p(x) ∈ Rx2d, is a sum of
squares if there exist q1, . . . , qm ∈ Rxd such that

p(x) = p2dx
2d + p2d−1x

2d−1 + ...+ p1x+ p0 =

m∑
k=1

q2
k(x) (6.4)

Because each of the terms in the sum is non-negative, it immediately follows that if p(x) is
a sum of squares it is also non-negative. The converse, however, is only true for univariate
polynomials (n = 1), quadratic polynomials (2d = 2) and bivariate quartics (n = 2,
2d = 4) [BPT13, p.59]. In general there exist non-negative polynomials that cannot be
written as sums of squares. One example is the Motzkin-polynomial [BPT13, p.59]:

M(x, y) = x4y2 + x2y4 + 1− 3x2y2. (6.5)

However, there is a criterion both necessary and su�cient for p(x) being a sum of squares.
We will start by looking at the criterion for univariate polynomials and then generalise
it to the multivariate case.

3This section follows the presentation in [BPT13, chapter 3].
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6.2.1. Univariate Polynomials

Let p(x) be a univariate polynomial of degree 2d:

p(x) = p2dx
2d + p2d−1x

2d−1 + · · ·+ p1x+ p0 (6.6)

If it is a sum of squares, then there exist q1, . . . , qm of degree d such that equation 6.4
holds. We can collect all these qks in a vector q of the form

q =


q1(x)
q2(x)
...

qm(x)

 = V


1
x
...
xd

 = V x, V ∈ Rm×(d+1) (6.7)

and thereby rewrite equation 6.4 as

p(x) =
m∑
k=1

qk(x)2 = (V x)TV x = xTV TV x ≡ xTQx (6.8)

where Q ≡ V TV . From this, one immediately obtains the following

Lemma 1. Let p(x) be a univariate polynomial of degree 2d. Then p(x) is a sum of
squares if and only if there exists a real, symmetric matrix Q ∈ Sd+1 that satis�es

p(x) = x
TQx and Q � 0 (6.9)

Proof. The forward direction follows by construction. As p(x) is a sum of squares, it has
to be non-negative and therefore

∀x : xTQx ≥ 0 (6.10)

which, by de�nition, means that Q is positive-semide�nite: Q � 0.
For the backward direction we assume that there exists a real, symmetric and positive-
semide�nite matrix Q satisfying p(x) = xTQx. As there is a Cholesky decomposition
A = LTL for every real, symmetric and positive-semide�nite matrix A, we can factor
Q = V TV and thereby obtain a sos-decomposition for p(x).

Figuring out if such a matrix exists is an instance of an SDP problem: Check if there is
a matrix Q satisfying the constraints Q � 0 and pk =

∑
i+j=kQij for k = 1, . . . , 2d.

6.2.2. Multivariate Polynomials

For the multivariate case, we consider a polynomial of degree 2d in n variables:

p(x1, . . . , xn) =
∑

α1,...,αn
α1+···+αn≤2d

pα1,...,αn(xα1
1 · · · · · x

αn
n ) (6.11)
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As we can choose any combination of up 2d elements from a set of n + 1 elements
1, x1, . . . , xn the polynomial consists of

(
n+2d

2d

)
terms. By de�ning

x = (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

d
n) (6.12)

as the vector of all the
(
n+d
d

)
monomials of degree d or smaller, we can proceed analogously

to the previous section and obtain the following

Theorem 2. A multivariate polynomial p(x1, . . . , xn) in n variables and of degree 2d is

a sum of squares if and only if there exists a real, symmetric matrix Q ∈ S(n+dd ) satisfying

pα =
∑

β+γ=α

Qβγ and Q � 0 (6.13)

where α = (α1, . . . , αn), β = (β1, . . . , βn) and γ = (γ1, . . . , γn).

This corresponds to a semide�nite programming problem with
(
n+2d

2d

)
+ 1 constraints.

6.3. Application to Bell Inequalities

To apply the results from the previous sections to our problem, we �rst have to rewrite
the Bell operator in terms of matrices: B = 〈C,X〉 with the so-called moment matrix

X = xx† where x is a vector of the operators A
(i1)
j1 · · ·A

(ik)
jk . As the operators do not

commute in general, the Bell operator is a non-commutative polynomial. Some of the

operators also obey certain relations, such as A
(i)
j A

(i)
j = 1, which can be written in terms

of matrix equalities 〈Ãi, X〉 = bi.
4 This way we obtain the SDP problem

minimise: 〈C,X〉
subject to: X � 0

〈Ãi, X〉 = bi

Running the programme produces a maximal dual solution b = bTy and thereby a lower
bound on B. Due to the weak duality this solution satis�es

B − b = 〈C,X〉 − bTy = 〈C −
m∑
i=1

Ãiyi︸ ︷︷ ︸
Q

, X〉 ≥ 0 (6.14)

The programme also gives out the matrix Q ≡ C −
∑m

i=1 Ãiyi � 05, which we can use to
rewrite (B − b) as a sum of squares:

4Ãi is introduced to rewrite the relations between the operators in x in terms of matrix equalities and
should not be confused with the operators themselves.

5Q is positive-semide�nite, because the dual problem is constrained by
∑m
i=1 Ãiyi � C.
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6. A Method to Generate PPT Bounds

B − b = 〈QT , X〉 = Tr(Q(xx†)) = Tr(xtQx) = xtQx (6.15)

By generating an eigendecomposition of Q we can write it as

Q = V DV T = V
√
D(V

√
D)T ≡WW T (6.16)

Inserting this into equation 6.15 we obtain

B − b = xtWW Tx = (W Tx∗)T (W Tx) =
∑
i

∣∣wTi x∣∣2 (6.17)

where wi =
√
divi is the i-th column vector of W . Knowing the eigendecomposition of Q

we can write down the sos-decomposition for (B − b) and thereby prove that b is indeed
a quantum bound for B.

6.3.1. SOS for the CHSH-inequality

Recall that the CHSH-inequality is

〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≥ −2 (6.18)

The corresponding Bell operator is B = A0B0 +A0B1 +A1B0−A1B1, whose expectation
value can be rewritten as

p(x) = 〈C,X〉 (6.19)

for

X = xx†, x = (1, A0, A1, B0, B1, A0B0, A0B1, A1B0, A1B1)T (6.20)

and a 9 × 9 matrix

C =
1

4



0 1 1 1 −1
1 1
1 −1

1 1
1 −1

1
1
1
−1


(6.21)

where empty entries correspond to zeros. The operators Ai and Bi obey the relations

A2
i = B2

i = 1 AiBj = BjAi (6.22)
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6. A Method to Generate PPT Bounds

which can be expressed in terms of matrix inequalities

〈Ãi, X〉 = bi (6.23)

To solve the semide�nite programme we used MatLab and the package �CVX�, which
provides the tools for convex optimisation. The minimum value obtained this way is
b = −2

√
2. It is worth noting that one does not need to impose all the constraints to

obtain this value. Changing the constraints does, however, change the matrix QT =
C −

∑m
i=1 Ãiyi. So we tried adding and removing the constraints until we obtained a

relatively simple eigendecomposition of Q. For the following results only the constraints
A2
i = B2

i = 1 ∀i and A0B1 = B1A0 were imposed. The eigenvectors corresponding to
non-zero eigenvalues of Q are:

v1 =
1

2
(0, 0, 0, 0, 0, 1,−1, 1, 1)T λ1 =

1

2
√

2
(6.24)

v2 =
1

2
(0, 1,−1, 0,

√
2, 0, 0, 0, 0)T λ2 =

1√
2

(6.25)

v3 =
1

2
(0, 1, 1,

√
2, 0, 0, 0, 0, 0)T λ3 =

1√
2

(6.26)

v4 = − 1√
12

(2
√

2, 0, 0, 0, 0, 1, 1, 1,−1)T λ4 = 1.0607 (6.27)

Using B − b =
∑

i λi
∣∣vTi x∣∣2 we can now calculate the sum of squares for the CHSH-

inequality:

B − 2
√

2 =
1

8
√

2
(A0(B0 +B1)−A1(B0 −B1))2

+
1

4
√

2
(A0 −A1 +

√
2B1)2

+
1

4
√

2
(A0 +A1 +

√
2B0)2

+
1

8
√

2
(2
√

2 +A0(B0 +B1) +A1(B0 −B1))2

(6.28)

One can check that this equation holds by expanding the right hand side. With equation
6.28 we have provided an analytical proof that the lower bound on the CHSH inequality
is −2

√
2 for all quantum states and for all measurements.

The sum-of-squares-decomposition given by equation 6.28 is also useful when trying to
�nd a particular quantum state |ψ〉 and a set of measurements that lead to maximal
quantum violation. In order to obtain the quantum bound 〈ψ|B|ψ〉 = −2

√
2 the ex-

pectation values of the terms in the parentheses with respect to |ψ〉 must all be zero.
This provides a number of relations that |ψ〉 and the measurement operators leading to
maximal quantum violation of the CHSH-inequality must satisfy.

41



6. A Method to Generate PPT Bounds

6.4. Sum of Squares for PPT states

We can now use the results from the previous sections to develop a new method to
generate PPT-bounds for a given Bell inequality. The method is based on the following
observation: To show that b is a PPT-bound on B it is su�cient to show that (B − b) is
a sum of squares S1 plus the partial transpose of another sum of squares S2:

B − b = S1 + STi2 (6.29)

Proof. Let's assume that there exist two sums of squares S1 and S2 such that B − b =
S1 + STi2 . Then

〈B − b〉 = Tr(ρ(B − b)) = Tr(ρ(S1 + STi2 )) = Tr(ρS1) + Tr(ρSTi2 ) (6.30)

Because any density matrix is positive-semide�nite and because S1 � 0, we know that
the �rst term must be non-negative. To see that the second term is non-negative as well,
we use that

Tr(ρSTi2 ) =
∑
i,j

ρijS2ij = Tr(ρTiS2), (6.31)

which is non-negative for any state with a positive partial transpose. From this it follows
that 〈B〉 ≥ b, proving that b is a valid PPT-bound for the Bell inequality B.

This leaves more possibilities for the optimisation than in the case where only S1 is
considered, which is why one might �nd stronger bounds than the quantum bound for
B. In particular, one might �nd that the PPT-bound equals the classical bound, which
would mean that the inequality cannot be violated by PPT-states. This is what one
would expect if they believed the Peres conjecture to be true. On the other hand, if
the PPT-bound does not equal the classical bound, it might be a good candidate to
falsify the Peres conjecture. However, it might be possible to improve the PPT-bound
by minimising over a larger set of variables, i.e. higher-order products of operators and
their transpositions in x. To do so, one would have to include not only combinations
of up to two measurement operators in x, as we do in the following examples, but also
combinations of these combinations and so on. The maximal degree of the monomials in
x de�nes the level of the moment matrix X = xx†.

6.4.1. Application to CHSH

To open up the new possibilities for the optimisation in the SDP-programme used in
Section 6.3.1, we create the matrix

Z =

(
X 0
0 XΓ

)
(6.32)
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6. A Method to Generate PPT Bounds

where Γ denotes the partial transpose and X = xx†. To capture identities such as
BT

0 B
T
1 = (B1B0)T we have to include all the di�erent combinations of two elements

of {1, A0, . . . , B
T
1 } in x. Therefore the matrix X = xx† has 98 × 98 entries6, which

satisfy quite a number of constraints. Using a C++ programme to generate the matrix
inequalities corresponding to the constraints and optimising the Bell operator we obtained
b = −2 as a PPT-bound for B. This is the classical bound for the CHSH-inequality, so
at least in the CHSH-case the Peres conjecture holds. The sum of squares in this case is
quite simple:

B + 2 =
1

8
(B + 2)2 +

1

8
[(BT + 2)2]T (6.33)

Similarly one can show that

2−B =
1

8
(2−B)2 +

1

8
[(2−BT )2]T (6.34)

So we have obtained a simple proof that for PPT-states the CHSH-inequality is bounded
by −2 ≤ 〈B〉 ≤ 2.

6.4.2. Application to chained inequalities

With equation 6.33 we can also prove that the Braunstein-Caves chained inequalities
[BC90] hold. These are Bell inequalities for the scenario (2,m, 2), which can be obtained
by adding CHSH-inequalities with di�erent measurement operators:

m−1∑
i=1

〈A0Bi−1 +Ai−1Bi−1 +Ai−1Bi−2 −A0Bi−2〉 ≥ 2(m− 1) (6.35)

The CHSH-inequalities in the sum can be obtained from equation 3.18 with the trans-
formations

A0 → −A0, A1 → Ai−1, B0 → Bi−2, B1 → Bi−1. (6.36)

As we already know the decomposition of (BCHSH−2) into a sos plus the partial transpose
of another sos, we can prove that the chained inequalities are satis�ed for PPT-states by
inserting this decomposition into equation 6.35.

6We have nine elements (1, A0, A1, B0, B1, A
T
0 , A

T
1 , B

T
0 , B

T
1 ) with 92 = 81 possible combinations. But

1Ai/Bi = Ai/Bi1, AiAi = BiBi = 1 and AiBj = BjAi so we get 81 − 8 − 8 − 16 = 49 entries for
each of the matrices X and XT .
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7. Results

In this chapter we present the results we obtained by applying the methods developed
in the previous sections to a particular Bell scenario. For our studies, we considered
a simpli�ed local polytope for the (3, 2, 2)-scenario with outcomes d ∈ {+1,−1}. As
mentioned before, the local polytope for (3, 2, 2) is constrained by over 50000 Bell in-
equalities [PS01]. One can, however, reduce the number of inequalities drastically, by
considering a projection of this polytope.

7.1. The Projected Polytope

The dimension of the local polytope for (3, 2, 2) is

D = [m(d− 1) + 1]n − 1 = 26. (7.1)

It is described by vectors of 26 probabilities or equally, as shown in section 4.2.1, by
vectors of 26 correlators. By considering only one- and two-body correlators, we projected
the local polytope onto a smaller polytope of dimension 18.1

p = (〈A0〉 , . . . , 〈B1C1〉 , . . . , 〈A1B1C1〉)T

p = (〈A0〉 , . . . , 〈B1C1〉)T

Figure 7.1.: Projection onto the local polytope of only one- and two-body correlators.

Just like the full local polytope, the projected polytope is the convex hull of the points
corresponding to local deterministic strategies. These points can be generated by assign-
ing one of the two possible outcomes to each of the one-body correlators and computing
the values of the two-body correlators via 〈AiBj〉 = 〈Ai〉 〈Bj〉, 〈BiCj〉 = 〈Bi〉 〈Cj〉 and
〈AiCj〉 = 〈Ai〉 〈Cj〉 for i, j ∈ {0, 1}. There are 26 such extremal points, which we gen-
erated with a C++ programme. This way, we obtained a full vertex-description of the
local polytope. Then we used the software polymake to generate the corresponding in-
equalities via Fourier-Motzkin elimination. As a result we obtained 5864 inequalities -
few compared to the full polytope for (3, 2, 2) with 53856 [PS01] inequalities, yet still far
too many to analyse in detail.

1One can see straightforwardly that the dimension of the projected polytope is 18 by writing down all
of the possible one- and two-body correlators: 〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉, 〈C0〉, 〈C1〉, 〈A0B0〉, 〈A0B1〉,
〈A0C0〉, 〈A0C1〉, 〈A1B0〉, 〈A1B1〉, 〈A1C0〉, 〈A1C1〉, 〈B0C0〉, 〈B0C1〉, 〈B1C0〉, 〈B1C1〉.
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7. Results

7.2. Classes of Bell Inequalities

However, many of these inequalities can be converted into each other by renaming parties,
renaming the observables of one party and renaming the outcomes of one observable.
Using the breadth-�rst search algorithm, we grouped all of the 5864 inequalities into
nine classes. As explained in Section 5, it is su�cient to analyse one of the inequalities
in each class to obtain results that are valid for all inequalities belonging to the same
class. The inequalities we chose to analyse are listed in Table 7.1.

class Bell inequality

1 〈A1 −B0 +B1 − C0 −A1B0 +A1B1 −A1C0 +B0C0+
B0C1 −B1C0 +B1C1〉 ≥ −3

2 〈A0 −A1 − 2B0 − C0 − C1 −A0B0 +A0B1 −A0C0 +A1B0

+A1B1 +A1C1 +B0C0 +B0C1 −B1C0 +B1C1〉 ≥ −4

3 〈−A0 −B0 − C0 − C1 +A0B0 +A0B1 +A0C1 −A1B0 +A1B1

−A1C0 +A1C1 +B0C0 −B1C0 +B1C1〉 ≥ −4

4 〈−2A1 +B0 − 2B1 − 2C0 − C1 +A0B0 +A0B1 −A0C0 +A0C1 −A1B0

+2A1B1 + 2A1C0 +A1C1 − 2B0C0 +B0C1 +B1C0 + 2B1C1〉 ≥ −6

5 〈−A0 +A1 +A0B1 −A0C0 +A0C1 +A1B1 −A1C0 +A1C1

−B0C0 −B0C1 −B1C0 +B1C1〉 ≥ −4

6 〈B0 +B1 − C0 + C1 −A0B0 +A0B1 −A1C0 −A1C1

−B0C0 +B0C1 −B1C0 +B1C1〉 ≥ −6

7 〈A0 + C1 +A0C1〉 ≥ −1

8 〈A0C0 +A0C1 −A1C0 +A1C1〉 ≥ −2

9 〈A0B0 +A0C1 +B0C1〉 ≥ −1

Table 7.1.: Bell Inequalities including only one- and two-body correlators for (3, 2, 2).

7.3. Quantum and PPT-bounds.

We then computed the quantum and PPT-bounds for the inequalities above, using the
method introduced in Chapter 6 and moment matrices of level two. The results are given
in Table 7.2.
We found that the only inequalities for which the PPT-bound equals the classical bound
are those in classes seven, eight and nine. The inequalities belonging to classes seven and
nine can be written as sums of squares and are therefore ful�lled for all quantum states.

1 +A0 + C1 +A0C1 =
1

4
(1 +A0 + C1 +A0C1)2 ≥ 0 (7.2)

1 +A0B0 +A0C1 +B0C1 =
1

4
(1 +A0B0 +A0C1 +B0C1)2 ≥ 0 (7.3)
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7. Results

class classical bound quantum bound PPT-bound

1 -3 −3.82843 u −1− 2
√

2 -3.5
2 -4 -4.84337 -4.83249

3 -4 −4.82843 u −2− 2
√

2 -4.74392
4 -6 -7.13719 -7.04822

5 -4 −4.82843 u −2− 2
√

2 -4.5
6 -4 -4.5 -4.5
7 -1 -1 -1

8 -2 −2
√

2 -2
9 -1 -1 -1

Table 7.2.: Bounds for the Bell inequalities for (3, 2, 2) and moment matrices of level
n = 2.

The equations belonging to class eight, on the other hand, are simply di�erent versions
of the CHSH inequality, whose decomposition we already know from equation 6.33:

A0C0 +A0C1 −A1C0 +A1C1 + 2 =
1

8
(A0C0 +A0C1 −A1C0 +A1C1 + 2)2

+
1

8
[((A0C0 +A0C1 −A1C0 +A1C1)T + 2)2]T

(7.4)

For all of the other inequalities in classes one to six, the PPT-bound does not equal the
classical bound. However, it is possible that this bound can be improved by going to a
higher level with respect to the optimisation variable X. This would be numerically more
expensive, though.

By improving the algorithms used to generate the results presented in this chapter, one
could compute the bounds for higher levels to see if the gap between PPT-bounds and
classical bounds decreases. It would also be interesting to apply our method to study
scenarios with more parties, measurements or outcomes to get a broader understanding
of the connection between PPT-states and local hidden variable models.
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8. Conclusion

In this thesis we showed how to separate correlations admitting an LHV-model from
nonlocal states via Bell inequalities. By interpreting these Bell inequalities geometrically
as the half-spaces constraining a convex polytope, we showed a systematic way to con-
struct all the Bell inequalities for a given scenario. More speci�cally, we introduced an
algorithm, the Fourier-Motzkin elimination, that allowed us to generate Bell inequalities
from the set of local deterministic points. These points could be obtained easily by �xing
the outcomes for each measurement as a function solely of the input of the corresponding
party performing the measurement.

With the BFS-algorithm we were able to group the generated Bell inequalities into classes.
As the members of one class can be obtained from a single inequality by successively ap-
plying certain symmetry transformations, they do not di�er in a physically relevant way.
This means that the results obtained for one Bell inequality are valid for all Bell inequal-
ities in its orbit. This drastically reduced the amount of inequalities we had to analyse.

Finally, we expressed the problem of �nding the PPT-bound of a given Bell inequal-
ity in terms of an SDP-problem. Additionally, we introduced a method allowing us to
prove analytically that the computed PPT-bound is valid. Applying this method to the
CHSH-inequality, we obtained a simple proof that the Peres conjecture holds both for
the CHSH-inequality and the Braunstein-Caves chained inequalities.

We then applied the abovementioned methods to investigate the particular Bell scenario
(3, 2, 2). In particular, we generated all the Bell inequalities involving only one- and two-
body correlators for this scenario, grouped them into classes and computed quantum
and PPT-bounds for each class of inequalities. This method revealed an interesting fact:
While for some Bell inequalities it is easy to certify that they cannot be violated by PPT-
states, it appears to be more intricate to �nd such certi�cates for other Bell inequalities.
We think that a characterisation of this interesting property of Bell inequalities would
yield new insights into why and in which circumstances the Peres conjecture is false.
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A. Measurement Statistics for the

Partial Trace

We want to prove that one obtains the same statistics when performing a measurement
M = 1 ⊗MB on a composite system ρ̂AB and when performing the measurement MB

on the partial trace TrA(ρ̂AB). The most general form of ρ̂AB is

ρ̂AB =
∑
i

pklij |ai〉〈aj | ⊗ |bk〉〈bl| (A.1)

Performing the measurement M = 1⊗MB on ρ̂AB yields

p(m) = Tr(Mρ̂AB)

=
∑
i

pklijTr(1 |ai〉〈aj | ⊗MB |bk〉〈bl|)

=
∑
i

pklijTr(|ai〉〈aj |)︸ ︷︷ ︸
δij

· Tr(MB |bk〉〈bl|)

= pkljjTr(MB |bk〉〈bl|).

(A.2)

Performing the measurement MB on ρ̂B = TrA(ρ̂AB) on the other hand yields

p̃(m) = Tr(MB ρ̂B)

= Tr
[
MB ·

(∑
i

pklijTr(|ai〉〈aj |)︸ ︷︷ ︸
δij

|bk〉〈bl|
)]

= pkljjTr(MB |bk〉〈bl|) = p(m).

(A.3)
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B. Dimension of the No-signalling

Polytope

Here we show that the dimension of PNS is [(d− 1)m+ 1]n−1. Our proof follows closely
the presentation in [Pir05, p.3-4].

Consider the marginals p(ai0 , . . . , aiq |xi0 , . . . , xiq) for all possible subsets {i1, . . . , iq} of
size q and for all q = 0, . . . , n − 1. Of these marginals only retain the ones such that
xi 6= 0 for all i ∈ {i1, . . . , iq}. The number of the remaining probabilities can be computed
with the following combinatorial considerations: For each subset of iqs there are mq+1

possible combinations of xis and (d− 1)q+1 possible combinations of ais. Therefore the
probabilities de�ne in total

D =

n−1∑
q=0

(
n

q + 1

)
[(d− 1)m]q+1 = [(d− 1)m+ 1]n − 1 (B.1)

numbers. Using the normalisation and no-signalling constraints, we can reconstruct all
probabilities p(a0, . . . , an−1|x0, . . . xn−1) from the the set of these marginals. Therefore
the dimension of the no-signalling polytope is given by D.
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