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METHODOLOGY

MowJoe: a method for automated‑high 
throughput dissected leaf phenotyping
Henrik Failmezger1,2†, Janne Lempe1†, Nasim Khadem2, Maria Cartolano1, Miltos Tsiantis1* and Achim Tresch1,3*

Abstract 

Background:  Accurate and automated phenotyping of leaf images is necessary for high throughput studies of leaf 
form like genome-wide association analysis and other forms of quantitative trait locus mapping. Dissected leaves (also 
referred to as compound) that are subdivided into individual units are an attractive system to study diversification of 
form. However, there are only few software tools for their automated analysis. Thus, high-throughput image process-
ing algorithms are needed that can partition these leaves in their phenotypically relevant units and calculate morpho-
logical features based on these units.

Results:  We have developed MowJoe, an image processing algorithm that dissects a dissected leaf into leaflets, 
petiolule, rachis and petioles. It employs image skeletonization to convert leaves into graphs, and thereafter applies 
algorithms operating on graph structures. This partitioning of a leaf allows the derivation of morphological features 
such as leaf size, or eccentricity of leaflets. Furthermore, MowJoe automatically places landmarks onto the terminal 
leaflet that can be used for further leaf shape analysis. It generates specific output files that can directly be imported 
into downstream shape analysis tools. We applied the algorithm to two accessions of Cardamine hirsuta and show 
that our features are able to robustly discriminate between these accessions.

Conclusion:  MowJoe is a tool for the semi-automated, quantitative high throughput shape analysis of dissected leaf 
images. It provides the statistical power for the detection of the genetic basis of quantitative morphological variations.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Plant leaves are critical for survival as they are the pri-
mary site of photosynthesis. Leaf shape and size show 
tremendous variation between species, which is assumed 
to be the result of adaptive evolutionary processes tinker-
ing with leaf shape to allow best performance in particu-
lar ecological niches [12, 14, 20, 23, 36]. Therefore, plant 
leaves have attracted scientists from diverse disciplines 
to study ecology, evolution, development and patterning 
mechanisms [5, 17, 21, 22, 27, 34, 40, 41].

Qualitative descriptions of leaf shape, traditionally used 
for species classification, are insufficient to characterize 
the developmental and genetic factors underlying phe-
notypic variation. Rather, it is necessary to quantitatively 

describe the geometric features of leaf shape and perform 
shape analysis [6, 26]. Easily accessible measures include 
length, width, perimeter and area. A more refined mor-
phometric analysis, however, is based on the extraction 
of multivariate shape features. Typically these methods 
analyse the relative position of landmarks—homologous 
points identified in each leaf sample—or sequential posi-
tions along the leaf outlines or combinations of the two. 
These approaches are collectively referred to as geomet-
ric morphometrics. Examples of methods based on out-
line analysis are Eigenshape analyses and elliptic Fourier 
analysis [19, 24, 31].

For the identification of loci controlling quantitative 
traits, phenotypic analysis of larger populations with 
proper randomization is necessary, for example in quan-
titative trait locus (QTL) mapping or genome-wide asso-
ciation (GWA) studies. Sizes of mapping populations 
and availability of genetic information on such largely 
increased with the advancement of sequencing tech-
nologies and phenotyping has become the bottleneck. 
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Whereas simple phenotypes can be determined by 
eye, more complex quantitative phenotypes need to 
be defined algorithmically. During the last years, sev-
eral tools were developed which measure, e.g., leaf size 
[16, 29], or more complex shape parameters, and shape 
landmarks [2, 8, 9, 18, 40, 42]. Most of these tools calcu-
late features for simple leaves, in which the leaf blade is 
entire (Fig.  1a), and they are well established for plants 
like Arabidopsis thaliana. However, dissected leaves, 
leaves that are divided into several units so called leaflets 
(Figs. 1b, 2a), move more and more into focus [3, 10, 22], 
as they allow the investigation of interesting questions on 
shape evolution, leaf patterning and development.

In order to perform quantitative shape analyses of dis-
sected leaves in larger populations, we have developed 
the MowJoe analysis pipeline. As compared to entire 
leaves, the shape of dissected  leaves is more challeng-
ing to image processing algorithms. Instead of report-
ing merely morphological features of the entire leaf, 
one needs to cut the  dissected leaf into pre-defined, 
phenotypically meaningful parts beforehand. A recent 
approach [11] relies on the assumptions of circular leaf-
lets and the symmetric positioning of leaflets along the 
rachis to build a leaf shape model. Leaflets are then seg-
mented by Active Contours. Another approach searches 
for concavity points in the leaf and partitions the leaf 
based on these points [35] or deletes the rachis of the 
leaves by fitting a polynomial curve [1]. The drawback of 
these methods is their sensitivity to violations of leaflet 
convexity. These may occur naturally or through imaging 

artifacts like fissures in the leaf produced by its fixation to 
a plain surface.

Recently, skeletonization of an image was combined 
with morphological operations in order to measure the 
length of the branches in rice panicles [13]. Informally, 
the skeleton is a reduced, one-dimensional representation 
of a leaf through its “central” points (see Fig. 2c). We use 
skeletonization to derive marker points on the skeleton 
of a leaf, which mark, e.g., its leaflets. In contrast to [13], 
we exploit the fact that skeleton points located within a 
leaflet have a larger distance to the outline of the leaf than 
skeleton points lying in the rachis or the petiolule. This 
allows the fast and reliable determination of the points 
on the skeleton which separate leaflets from petiolules 
and rachis. Based on this algorithm, we have developed 
MowJoe, a software tool that segments dissected leaves 
into phenotypically meaningful units and calculates mor-
phological features for the whole leaf as well as for the 
individual leaflets, the petiolule, the inter-rachis, the peti-
ole and the terminal rachis. Additionally, it determines 
landmarks and outlines of the terminal leaflet that can 
directly be used as input files for downstream shape anal-
ysis software, such as MorphoJ [25], Eigenshape Analysis 
[32] and R shapes [15]. We apply MowJoe to two different 
accessions of the model plant species Cardamine hirsuta 
[22] and demonstrate the potential of MowJoe to identify 
leaf shape variation in dissected leaves.

Results
Image segmentation
Image acquisition and binarization
We obtained digitized 2D color images by scanning 
leaves of the fifth node. In order to improve the process-
ing time, the images were rescaled by a factor of 25% 
using a bicubic interpolation (Fig. 2a).

Foreground pixels were extracted by using a method 
similar to [28]. The image was converted from RGB to 
HSV space and a 2-means clustering of the pixels in the 
saturation-value (SV) space was performed. This initial 
clustering gave an estimate of the intensity centroids of 
foreground and background pixels in SV space, which 
served as an initialization of a 2-multivariate Gauss-
ian mixture model on the SV values of the image pixels. 
The covariance matrices of that model were initialized as 
scaled identity matrices, the scale chosen as the stand-
ard deviation of the whole data set. From the resulting 
segmentation, the largest connected foreground (green) 
component was kept (Fig.  2b). The Gaussian mixture 
method outperformed other common methods such as 
Otsu thresholding [37] applied to the grey scale or the 
green component of an image (Additional file 1: Fig. S1).

Fig. 1  Leaf architecture of simple leaves (a) and dissected leaves 
(b) of A. thaliana and C. hirsuta respectively. The simple leaf consists of 
a single entire leaf blade and a petiole. The architecture of a dissected 
leaf is more complex. The leaf blade is divided into terminal and 
several lateral leaflets, which are arranged along the main axis, which 
itself consists of the terminal rachis, inter rachis and the petiole. The 
petiolules connect the rachis and the lateral leaflets
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Graph representation of a leaf
The binarized leaf is converted into a skeleton represen-
tation. Skeletonization of a binary image is a standard 
procedure in image processing [39]. Informally, it cal-
culates one-dimensional summary of a 2-dimensional 
binary image (Fig. 2c). Technically, a distance transform 
is applied to the image first. This operation assigns to 
every leaf pixel x the Euclidean distance d(x) to the near-
est background pixel. The distance value d(x) can be 
thought of as the radius of the largest circle centered at x 
which touches the border of the leaf. Those points whose 
circle touches the border at least twice are the skeleton 
pixels (Fig. 2c).

Afterwards, the skeleton is pruned further by remov-
ing small branches whose length falls below a threshold 

of 25 pixels (corresponding to 4.5 mm. This value can be 
adjusted arbitrarily in the MowJoe GUI). The skeleton 
is then converted into a graph with one node for every 
skeleton pixel and one edge for every pair of neighboring 
pixels in the skeleton. This graph representation of the 
skeleton simplifies further processing.

Our next task was to segment the skeleton into rachis, 
petiolule and leaflet parts. To this end, we define a cut 
node as skeleton pixels in the petiolule neighboring to 
a leaflet pixel (blue points in Fig. 2d). Similarly, branch-
ing nodes are defined as skeleton pixels on the rachis 
neighboring to a petiolule pixel (green points in Fig. 2d). 
Skeleton pixels in the leaflet are likely to have larger dis-
tance transform values than skeleton pixels in petiolules 
or in the rachis. This property is exploited to find the 

Fig. 2  Leaflet segmentation. The scanned leaf (a) is scaled and converted to a binary image (b). The foreground pixels of the binary image are 
distance transformed (c). The darker the grey scale of a point, the larger its distance to the outline of the leaf. Skeleton pixels are classified according 
to their distance transform value (red = small, green = large). d Cut nodes (blue, c) are points on the skeleton that mark the border between leaflet 
pixels and petiolule pixels. Branching nodes (green, c) are points on the skeleton that mark the border between petiolule pixels and rachis pixels. e 
The pairs of red points (b1, b2) cut the leaf into leaflets (blue areas), petiolules (red areas) and rachis (green)
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cut nodes. The distance values of the skeleton pixels are 
clustered by 2-Gaussian mixture clustering. This gives 
a rough segmentation in leaflet pixels L (green points 
in Fig.  2c, having larger distance values) and petiolule/
rachis pixels R (red points in Fig. 2c, having smaller dis-
tance values). Since this separation is not perfect and 
wrong labeling happens at leaflet nodes that are far from 
the rachis, we implemented a procedure that removes 
these errors and gives an optimal separation between 
leaflet and rachis/petiolule pixels. Note that the labeling 
of points (leaflet versus petiolule/rachis) should only 
switch once on a simple path from the rachis bottom 
towards extremal points in the leaflet (we call nodes in 
the graph that have only one neighbor extremal; unfor-
tunately, the more common term “leaf node” has differ-
ent meanings in biology and mathematics). We calculate 
all paths in the graph starting at the bottom node (end of 
the rachis) to the extremal leaf nodes. Given such a path, 
we enumerate the nodes on that path from 1 to N, start-
ing with the bottom node. If node k was a cut point, then 
all points 1, . . . , k should be petiolule/rachis points, and 
all other points should be leaflet points. The number of 
M(k) misclassifications according to our initial 2-Gauss-
ian mixture clustering is then

This yields an easy criterion to robustly identify the 
correct cut point: it is the (first) node k which minimizes 
M(k). There might be several paths ending in the same 
leaflet (e.g., see the terminal leaflet in Fig.  2c), possibly 
leading to different cut nodes for the same leaflet. How-
ever in practice, these cut points always agreed. In case 
of disagreement, we suggest to use the cut point with the 
smallest value.

Dissection of leaf components
The cut nodes serve for the identification of individual leaf-
lets in the binarized image. To define the boundary of a 
leaflet, we choose b1, the point on the image boundary at 
minimum distance to a given cut node c. Next, we define 
b2 as the boundary point at minimum distance to c with 
respect to the constraint d(b1, b2) > d(c, b2), i.e., b2 lies 
on the “opposite side” of b1 (see Fig. 2d). The line between 
b1 and b2 separates one leaflet from the rest of the leaf. This 
finally results in a separation of the leaf into petiole, rachis, 
petiolule and leaflets (see Fig.  2e). In order to verify the 
accuracy of our method, we manually measured the rachis 
and the petiolule of 5 leaves (Additional file 1: Fig. S2) and 
compared the results to MowJoe’s results. The mean peti-
olule length was 26.3 pixels (4.6 mm) as measured manu-
ally. The mean deviation between MowJow and manual 
measurements of petiolule length was 2.9 pixels (0.5 mm), 
corresponding to a mean relative deviation of 11%. For the 

M(k) = |
{

1, . . . k
}

∩ L| + |
{

k + 1, . . . ,N
}

∩ R|.

rachis, the mean length was 368.4 pixels (64.8 mm), and the 
mean deviation was 2.6 pixels (0.46  mm), corresponding 
to a mean relative deviation of 0.7%. All in all, manual and 
MowJoe measurements were in good agreement and did 
not show any systematic differences.

Feature extraction
The segmentation of the leaf allows the calculation of global 
phenotypic features of the whole leaf as well as local fea-
tures of the rachis, petiolules and leaflets. Such features can 
potentially discriminate different accessions of C. hirsuta. 
We compared global and local features of two accessions of 
C. hirsuta originating from New Zealand (Nz) and Oxford 
(Ox). For these accessions a global leaf feature like leaf area 
already provides a good separation (Fig. 3a; Additional file 1: 
Fig. S3A). While the Nz accession has a larger whole leaf 
area, Ox leaves have a longer rachis (Fig. 3b). Further, Ox 
leaves tend to have at most four leaflets whereas Nz have 
up to seven leaflets. However, local features offer higher dis-
criminatory power and thus boost the discovery of morpho-
logically relevant genes in genome-wide association studies. 
In order to facilitate the comparison of local features, leaf-
lets were numbered according to their distance to the ter-
minal leaflet and their position (left or right) relative to 
the rachis. The petiolule length, the number of pixels from 
leaflet branching node to leaflet cut node, discriminates 
unequivocally between the leaflets of the Nz and those of 
the Ox accession (Fig. 3c). Another local feature is the inter-
rachis distance, the distance between two neighboring leaf-
let crossing points (Fig. 3e). Similar to the petiolule lengths, 
leaves from the Ox accession tend to have larger inter-rachis 
distances (Fig. 3e). This is also true for a related measure, the 
distance from the leaflet base point to the leaflet branching 
points (Fig. 3d). Other interesting features are leaflet shape 
parameters derived from individual leaflets (Fig. 3f–h). We 
calculated several morphometric features that describe the 
shape of a leaflet: Leaflet area (number of pixels) and leaf-
let perimeter, the length of the leaflet major and minor axis, 
and leaflet eccentricity. Here, leaflet eccentricity models the 
pixels of a leaflet by an ellipse of similar shape and same size 
(formally, the ellipse is obtained from the empirical covari-
ance matrix generated by the coordinates of the foreground 
pixels). The deviation from a circular shape is measured by 
the eccentricity, e =

√

1− b2

a2
, where a (resp. b) is the length 

of the major (resp. minor) axis of the ellipse. Since an ellipse 
captures the essential shape of a leaflet quite well, eccentric-
ity turns out to be a useful descriptor. Leaflets from the Nz 
accession have larger leaflet areas, major/minor axis lengths, 
equivalence diameters, perimeters and leaflet eccentrici-
ties (Fig. 3f–h; Additional file 1: Fig. S3B,C,D). In summary, 
we have demonstrated that morphological features, either 
for the leaflets or the whole leaf, are able to discriminate 
between the two C. hirsuta accessions.
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Morphometric shape analysis
Morphometric shape analysis allows a quantitative 
description of shape additional to one dimensional 
size measures. This multivariate analysis makes use of 

biological homologous points so called landmarks that 
determine shape. In order to calculate homologous 
landmarks for each leaf in the MowJoe software, we 
first searched the top point for every leaf. To do so, we 

Fig. 3  Comparison of accessions by different statistics. Left leaf: Example of the New Zealand (Nz, red) accession, right leaf: Example of the Oxford 
(Ox, blue) accession. Leaflets are numbered according to their distance to the terminal leaflet. a Whole leaf area, b length of the rachis, c petiolule 
length, d number of pixels from leaf base to branching node, e distance from leaflet branching node to next branching node, f leaflet area, g leaflet 
eccentricity, h leaflet perimeter
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calculated the line from the leaf bottom node to the ter-
minal leaf cut node. The intersection of this line with the 
terminal leaf outline determined the top point.

Two more landmarks were defined by searching for 
the longest perpendicular line, and by using the intersec-
tion point of this line with the terminal leaflet outline. 
The lines that formed an angle of 45° to these lines deter-
mined the rest of the landmarks (Fig. 4a). The landmarks 
of the terminal leaflets of all leaves that are exported by 
MowJoe were further analyzed by MorphoJ [25] (Fig. 4b). 
MorphoJ first performs a Procrustes fit which removes 
variation in position, orientation and size from the data. 
We tested the difference in mean shape between these 
two accessions in MorphoJ using Fisher’s discriminant 
function analysis (DFA). We observed a significant dif-
ference for the terminal leaflet shape (Fig.  4c, P value: 
0.0003).

For additional shape analysis, MowJoe generates out-
put files that can be imported to Eigenshape analysis [32], 
or shape analysis implemented in the R package ‘shapes’ 
[15].

Comparison of combined leaf features
We generated a unified leaf representation for each 
accession, by an affine mapping of all the leaf ’s marker 
points into one coordinate system. This transformation is 
defined by mapping the leaf base point (lower rachis end) 
to the origin of the 2d plane, and mapping the top point 
of the leaf to (0,1) on the y-axis. The overlay of all leaf 
images of one accession creates the so-called “metaleaf”, 
which provides an overview of the morphological variety 
of that accession (Fig.  5a). On the metaleaf, the differ-
ence between the accessions becomes obvious (Fig.  5a). 
The Ox accession has larger distances between branching 
nodes and cut nodes but smaller distances between cut 
nodes and leaflet centers.

In order to define a low-dimensional Euclidean space 
that satisfactorily captures the morphological variety of 
entire leaves, we merged whole leaf features, like leaf area 
and leaf perimeter, with features derived from individual 
leaflets. We only included features of the first three leaf-
lets, as the leaves have different numbers of leaflets and 
we wanted to keep the feature sets comparable. We then 
performed principal components analysis for further 
dimensionality reduction. The leaves of the two C. hir-
suta accessions are clearly separated in this morphologi-
cal leaf space, indicating that our features extract relevant 
information (Fig. 5b).

Discussion
Several tools for leaf size and shape measurements have 
been developed [2, 4, 7, 33, 42]. However, dissected leaves 
are more complex, they consist of several distinct mor-
phological units that need to be identified accurately. We 
developed an image processing algorithm that is able to 
extract these units from the entire leaf.

It first identifies the leaf component, extracts its skel-
eton and identifies potential cut nodes using the distance 
transformation, and in the end selects the optimal cut 
nodes by a loss function. We applied this algorithm to 
leaves of the plant C. hirsuta, a model organism for dis-
sected leaf development that moved into focus due to its 
leaf shape and its close relationship to A. thaliana [22].

As the processing of a single leaf image takes only a few 
seconds, our method is applicable in high-throughput appli-
cations where a large variety of measurements for thousands 
of leaves have to be taken. Based on the separation into the 
phenotypically interesting units we calculate several mor-
phological measurements. These measurements include 
shape parameters of the leaflet, like leaflet area, eccentricity 
and perimeter. Additionally, our algorithm analyses the local 
position of a leaflet in the whole leaf, e.g. the distance of the 

Fig. 4  Landmark generation and shape analysis by MorphoJ. 8 Landmarks are generated for the terminal leaflet (a). Further shape analysis can be 
applied by MorphoJ. Alignment of the landmarks for the Nz accession (b). Histogram of the discriminant scores of the Fisher’s discriminant function 
analysis (DFA) for the two accessions (c)
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leaflet from the rachis (petiolule length) or the distance of 
the leaflet from the terminal leaflet (inter-rachis, terminal 
rachis length). This is a complete representation of all mor-
phological features of a dissected leaf, which are useful for a 

wide spectrum of applications—e.g for mapping the genetic 
basis of variation in individual or combined shape features, 
investigation of leaf shape plasticity in responses to environ-
mental variables or clustering of mutant phenotypes.

Fig. 5  Comparison of combined leaf features. a Metaleaf construction for the Nz accession (left) and the Ox accession (right). All marker point 
positions (magenta: Leaflet centers, blue: Cut nodes, green: Branching nodes, yellow: base/top point of leaf. The bordered points are the respec-
tive means of the surrounding points of the same color) of one accession were combined in the same coordinate system, b principal component 
analysis of global leaf features and features of the first three leaflets. Leaflets of the Nz accession are shown in red, leaflets from the Ox accession are 
shown in blue
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To test the power of our algorithm we applied it to the 
two C. hirsuta accessions Nz from New Zealand and Ox 
originating from Oxford. We show that entire leaf fea-
tures as well as features for individual leaflets are able 
to discriminate between the two accessions. Our open-
source software is a versatile tool that enables QTL 
analysis of leaf morphological variation in large mapping 
populations.

Methods
Plant growth conditions
The two C. hirsuta accessions Ox and Nz were grown 
under long day conditions in the greenhouse. The leaf 
of the fifth leaf node was harvested at identical develop-
mental state—at flowering when the inflorescence was 
15  cm of height. It was digitized with the Epson V700 
Photo scanner at 600 dpi.

Image processing and feature detection
Image skeletonization and Gaussian mixture clustering 
were applied using the particular methods in the Matlab 
image processing and statistics toolbox. Shape features 
for the whole leaf and the leaflets were calculated using 
the standard Matlab methods. In order to calculate the 
petiolule length, two points at the start and the end of the 
petiolule were calculated. These points were defined by 
the cut of the line between opposite border points b1 and 
b2 and the skeleton. The petiolule was afterwards deter-
mined by counting the number of skeleton pixels (graph 
nodes) between these points. The rachis length was cal-
culated by counting the number of skeleton pixels from 
the bottom point to the intersection between terminal 
leaf border points and the skeleton as explained above. 
The inter-rachis distance was calculated by searching 
in the graph the nearest branching node with the same 
orientation in direction of the terminal leaflet. Shape 
analysis was carried out by MorphoJ [25]. Comparison 
of different accessions was performed using discriminant 
factor analysis in MorphoJ. Manual measurements were 
determined using the software ImageJ [38].

Performance and scalability
A set of 60 images was processed, consisting of 28 images 
of the Nz accession and 31 images of the Ox accession. The 
images had a resolution of 600  dpi, resulting in a image 
size of 4200× 1200 pixel. Processing of an average image 
took in total about 14 s on a MacBook Pro (1.4 GHz Intel 
Core i5, 4 GB RAM). The segmentation of the whole leaf 
component of a single image by Gaussian Mixture cluster-
ing took about 1.5 s. The identification of crossing points 
and cut points and the segmentation of single leaflets took 
about 2 s. Calculation of the features and generation of the 
output plots took the remaining time (about 10 s).

Software and availability
All analysis steps were implemented in Matlab and are 
combined in the software MowJoe. This software tool 
provides a rudimental graphical user interface in which 
a folder with leaf images can be processed. The software 
tool, as well as the Matlab source code and raw and pro-
cessed data were published according to [30] and can be 
found at https://github.com/Henrik86/Mow_Joe (https://
doi.org/10.5281/zenodo.1181810).
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