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Abstract

Motivation: Analyzing k-mer frequencies in whole-genome sequencing data is becoming a com-

mon method for estimating genome size (GS). However, it remains uninvestigated how accurate

the method is, especially if it can capture intra-species GS variation.

Results: We present findGSE, which fits skew normal distributions to k-mer frequencies to estimate

GS. findGSE outperformed existing tools in an extensive simulation study. Estimating GSs of 89

Arabidopsis thaliana accessions, findGSE showed the highest capability in capturing GS variations.

In an application with 71 female and 71 male human individuals, findGSE delivered an average of

3039 Mb as haploid human GS, while female genomes were on average 41 Mb larger than male

genomes, in astonishing agreement with size difference of the X and Y chromosomes. Further

analysis showed that human GS variations link to geographical patterns and significant differences

between populations, which can be explained by variable abundances of LINE-1 retrotransposons.

Availability and implementation: R package of findGSE is freely available at https://github.com/

schneebergerlab/findGSE and supported on linux and Mac systems.

Contact: schneeberger@mpipz.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome size (GS) refers to the amount of haploid nuclear DNA of an

organism and is typically measured in picograms or megabases (where

1 pg is equivalent to 978 Mb) (Soltis et al., 2003; Dole�zel et al.,

2003). GS estimation (GSE) is not only important for our understand-

ing of genome evolution (Gregory, 2005), but is also required for

many practical aspects in genome sequencing and assembly, including

approximating the amount of sequencing data needed and evaluating

the completeness of assembled genome sequences.

Methods for GSE can be classified into two broad categories,

experimental or computational. Experimental techniques, like feul-

gen densitometry or the widely used flow cytometry, have been used

for many years and were applied to tens of thousands of species

leading to various GS databases (Gregory et al., 2007). It is impor-

tant to note that all experimental methods rely on specific genomes

which are used as internal/external size standards (Bennett et al.,

2003; Dole�zel et al., 2007; Hardie et al., 2002). However, the goal

of establishing a set of commonly used standards has remained unre-

alized since the importance of standards was emphasized (Dole�zel

and Barto�s, 2005; Dole�zel and Greilhuber, 2010). This and other

factors like differences in sample preparation, staining/dyeing strat-

egy, and stochastic drift of instruments can result in significant dif-

ferences in GSE for the same genome when analyzed in different

laboratories (Dole�zel et al., 1998).

Alternatively, GS can be estimated computationally using whole-

genome sequencing data. Due to the incompleteness of most

sequence assemblies, using genome assembly length as GSE is not
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very accurate. Instead, GS can be inferred from sequencing reads

directly by analyzing the frequencies of k-mers (Li and Waterman,

2003), for which there are various efficient k-mer counting tools,

like jellyfish or DSK (Marçais and Kingsford, 2011; Rizk et al.,

2013). The amount and average abundance of k-mers can then be

used to estimate GS; however, accurate estimation of these variables

is not trivial. Recently mathematical models have been used to fit

the histogram of distinct k-mer frequencies including negative bino-

mial distributions or Poisson distributions to infer these variables

and predict GS (Liu et al., 2013; Vurture et al., 2017). Though

regularly used, there are hardly any studies that verified their

predictions.

In this work, we introduce findGSE, a sophisticated method for

k-mer based GSE, which relies on a mixture model by fitting k-mer

frequencies iteratively using a skew normal distribution (Azzalini,

1985, 2005) to factor in sequencing biases as well as low-frequency

k-mers that are usually excluded together with erroneous k-mers.

After systematically comparing findGSE with state-of-the-art k-mer

based GSE methods using simulated data, we used findGSE to esti-

mate GS of 89 Arabidopsis thaliana accessions for which both

whole-genome sequencing data and flow cytometry-based GSE were

released. Estimates calculated with findGSE were strongly corre-

lated to the flow cytometry-based estimates, thus demonstrating

higher capability in capturing GS variation than others. Encouraged

by this, we applied findGSE to unravel human GS variation. Using

previously published sequencing data from 142 human genomes

from all around the world, we estimated an average GS of 3, 039

Mb and found a significant difference of 41 Mb between male and

female genomes, which is in high agreement with the size differences

of the X and Y chromosome reference sequences. Besides gender we

found that the highly abundant LINE-1 retrotranspons are the major

contributors to present human GS variation and that this is linked to

significant differences between populations.

2 Materials and methods

2.1 Algorithm for findGSE
The number of k-mers in a haploid genome with G bases is G-k þ 1.

Assuming that each k-mer is sequenced on average with C copies

(k-mer coverage) and N denotes the number of genomic k-mers in

the reads, the relationship N ¼ C*(G–k þ 1) allows to estimate GS

with G � N/C as G� k. Both C and N can be statistically inferred

from a k-mer frequency histogram (or k-mer distribution in short),

which summarizes how many distinct k-mers occur at a specific fre-

quency within a given whole-genome sequencing data set. Figure 1A

shows the shape of a typical k-mer distribution of a diploid genome.

The leftmost peak mostly consists of k-mers resulting from

sequencing errors, which occur often but are at low frequencies as

they are only present in one or a few reads. The second (heterozy-

gous) peak and the third (homozygous) peak reflect genomic k-mers

present in either one or both chromosome sets, which are shared by

all reads sampled from the respective loci (except those with

sequencing errors). The long tail of the distribution reflects genomic

k-mers from repetitive elements, which occur at higher frequencies

as they are shared by multiple loci. In general, at higher levels of het-

erozygosity, the heterozygous peak becomes more dominant and

shapes the k-mer distribution differently (Fig. 1B).

When compared with Poisson or negative binomial distributions,

skew normal distributions (Azzalini, 2005), Y ~ SNðn; x2; aÞ, can

be more appropriate for fitting k-mer frequencies. Both sides of the

distribution can be skewed independently. This is of importance if

different genomic regions are represented with more reads than

other regions, which has been regularly reported for Illumina

sequencing, e.g. for GC rich versus GC poor regions (Ossowski

et al., 2008).

Given a distribution of k-mer frequencies, findGSE first fits the

distribution iteratively with a skew normal distribution model; then

it calculates the total number of k-mers (N) according to both of the

fitted and the original counts and corrects the average k-mer cover-

age (C) with the skewness of the fitted curve, based on which it cal-

culates G as N/C (Algorithm 1). Details of the algorithm are

explained with an example in Supplementary Material Sections 1.1

and 1.2. Approximate k-mer frequency distribution based on k-mer

sampling, which is useful in other tasks such as determining optimal

k for genome assembly (Chikhi and Medvedev, 2014), is not recom-

mended because such methods do not accurately estimate repetitive

genomic k-mers (Supplementary Fig. S1).

2.2 Read simulation
For evaluation of methods (Section 3.1), we simulated 99 bp

Illumina reads from the A. thaliana reference sequences using pIRS

(Hu et al., 2012) by tuning parameters including base coverage,

Algorithm 1. findGSE

Input: k, and a k-mer frequency distribution from whole-

genome sequencing data

Output: size of the genome G

1: Initialize a vector residual(0)  raw k-mer counts at differ-

ent frequencies.

2: Initialize an overall fitting Fo as a null vector with the same

size as residual(0)

3: For iteration in 1: n

4: Find valley and (the homozygous) peak frequency fv
and fp according to residual(iteration-1)

5: Find a set of parameters (n, x, a, s), which minimize
P

x¼ fv: 2*fp(dsnorm(xjn, x, a)*s – residual(iteration-1, x))2

6: Set F(iteration)  dsnorm(xjn, x, a)*s

7: If iteration¼¼1

8: Set a1  a
9: Set fv1  fv
10: End If

11: Set residual(iteration)  residual(iteration-1) – F(iteration)

12: Update Fo  Fo þ F(iteration)

13: End for

14: Set N  
P

x¼1:fv1 (x*Fo (x))þ
P

x¼fv1þ1:end (x*residual(0,

x)), where end is length of raw k-mer counting

15: Calculate frequency e with a1 and max(Fo) (Supplementary

Material)

16: For x in 1 to e, if x � fv1, H(x)  Fo(x), else H(x)  
residual(0, x)

17: Calculate C as
P

x¼1:e (x*H(x))/
P

x¼1: eH(x)

18: Return G as N/C

(x—k-mer frequencies; n—location parameter mean; x—scale

parameter sd; a—skewness parameter; s—density scaling fac-

tor; dsnorm(.)—function for computing skew normal density.

Iteration number n can be set as 10 by default.)
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sequencing error, and rate of SNPs (to build heterozygous diploid

genomes).

2.3 Pre-processing of real reads and selecting size of k
For evaluation of methods with real reads (Sections 3.2 and 3.3),

first, adapters were trimmed with Skewer (Jiang et al., 2014) and

reads longer than 33 bp were retained. Second, reads duplicated by

PCR amplification were filtered out using FastUniq (Xu et al.,

2012). Third, reads with sequence similarity to mitochondrial,

chloroplast or phiX genomes were removed using BWA (Li and

Durbin, 2009) and SAMtools (Li et al., 2009). For the analysis of

the seven Col-0-like samples, we used k ranging from 15 to 33 at a

step of 2 in k-mer counting with jellyfish. Considering the computa-

tional requirement, we used fewer ks including 15, 17, 25 and 27 in

the analysis of the 89 A. thaliana accessions, while we only used one

k of 21 in analyzing the 142 samples of human (Section 3.4). All the

selections guaranteed a k-mer frequency �10 at the homozygous

peaks. If several ks were used, final GS was the average of all indi-

vidual estimates.

3 Results

3.1 Evaluation of k-mer based GSE
As for any other k-mer analysis, the selection of k can be critical,

however, it is not obvious what k is optimal (Chikhi and Medvedev,

2014). In the first simulation using the yeast reference sequence with

a length of �12 Mb (www.yeastgenome.org), we evaluated the per-

formance of findGSE across a wide range of coverage and k values

(Supplementary Fig. S2). The results were surprisingly stable against

changes in k, and even simultaneous changes in sequence coverage

could not affect GSE as long as coverage and k were reasonably

selected. To minimize these already small effects, we decided to per-

form GSE with a range of k values from 21 to 33 at a step of two

and use their average predictions as final estimates.

We then compared findGSE with five other methods using simu-

lated sets of Illumina reads by varying base coverage, sequencing

error rate, and heterozygosity level (Section 2.2). The first method

used for our comparison is a naı̈ve implementation for GSE (by this

work), which avoids erroneous k-mers by excluding all k-mers

occurring at frequencies smaller than frequency fv (at the valley

between the first and second peak) and uses frequency fp (at the

homozygous peak) as C. The second method estimates GS by divid-

ing the total length of reads with the average base coverage that is

derived from k-mer frequency fp (script available at https://github.

com/josephryan/estimate_genome_size.pl.git, version 0.04, referred

to as egs). The third method is implemented in the genome assembly

tool ALLPATHS-LG (version r52488, Gnerre et al., 2011) which

estimates GS using k-mers occurring with frequencies between fv
and 3fp/2 to calculate C while discarding both low-frequency (<fv)

and extremely high-frequency k-mers from N. To be mentioned,

A B

C D

E F

Fig. 1. Comparison of k-based GS estimation tools using simulated data. (A) Typical k-mer frequency histogram of a diploid genome (gray). Dashed lines describe fit-

ted curves that reveal the amount of k-mers from heterozygous (left) or homozygous regions (right). (B) k-mer histograms (k¼ 21) with different levels of heterozygos-

ity (larger rate of SNPs has a higher peak around k-mer frequency 10) simulated with 99 bp reads, 1% sequencing error and 30� sequencing coverage (with in-silico

A. thaliana hybrids). (C) GS estimation performance of different tools with varying base coverage (99 bp reads, 1% sequencing error). (D) Performance with varying

sequencing error (99 bp reads, 30� sequencing coverage). (E) Performance with different levels of heterozygosity (99 bp reads, 1% sequencing error, 30� base cover-

age). (F) Performance with different levels of heterozygosity (99 bp reads, 1% sequencing error, 100� base coverage). Note: figures in E and F gives the number of

overlapping data points at the respective region. For example, at 2.0% as shown in E, ALLPATHS-LG has 30 (20) cases showing doubled (extremely low) GS estima-

tions. For C–F, from left to right: findGSE, naive, ALLPATHS-LG, gce, GenomeScope (egs)
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tools targeting at other tasks such as selecting optimal size of k and

genome assembly, namely SPAdes (version 3.9.0, Bankevich et al.,

2012), KmerGenie (version 1.7044, Chikhi and Medvedev, 2014)

and ABySS (version 2.0.2, Jackman et al., 2017), can infer genome

(assembly) size using the total number of unique k-mers within the

reads. However, as such estimates only consider the collapsed size of

repetitive regions, they can be much lower than real GSs, and thus

they are not compared. Finally, we also tested two advanced meth-

ods, gce (version 1.0, Liu et al., 2013) and GenomeScope (Vurture

et al., 2017), which determine N and C by fitting Poisson and nega-

tive binomial distributions to the k-mer distribution, respectively.

The basis for read simulation and comparison of these tools was the

reference sequence of A. thaliana with a length of �119 Mb. For

each of the following comparisons, we further included ten repli-

cates, even though the variation between (ks and) replicates was

negligibly small anyways (Supplementary Fig. S3A and B). Usages of

tools are provided in Supplementary Table S1.

We started by simulating reads with a base coverage of 50� and

with a sequencing error of 1% assuming an inbred, homozygous

genome (Supplementary Fig. S3C). All tools showed very precise

and stable estimates ranging between 118 and 123 Mb around the

simulated GS of 119 Mb (Fig. 1C). The only exception was egs,

which consistently predicted too large GS (of 149 6 5 Mb) because

of counting the total number of bases in the reads without any filter-

ing on sequencing errors. Stepwise reducing base coverage from 50�
to 10� revealed that even with 30� all tools (except egs) showed

precise estimates. With base coverage of 10�, both ALLPAHS-LG

and GenomeScope failed in returning any meaningful GSE, while

findGSE, gce and the naı̈ve method still estimated reasonable GS. In

contrast, increasing sequencing error rates had only marginal effects

on GSE (again with the exception of egs). We had to simulate unre-

alistically high-sequencing error rates until we observed the first

effects on GSE. At an error rate of 5%, ALLPATHS-LG became

unstable as the k-mer frequencies were greatly reduced while the

estimates of the other tools still remained stable (Fig. 1D;

Supplementary Fig. S3D).

To analyze the impact of heterozygosity, we generated in silico

A. thaliana hybrids with SNP rates from 0.1 to 5.0% and simulated

sequencing with 30� coverage including an error rate of 1%. As

accurate calculation of the average k-mer coverage C relies on the

correct identification of the homozygous peak, the tools need to dis-

tinguish between the homozygous and the heterozygous peaks (Fig.

1A and B). There are two different strategies for this, either by auto-

matic identification of the homozygous peak (as implemented in

ALLPATHS-LG and GenomeScope) or by prior information of an

approximated average k-mer coverage which guides the selection of

the homozygous peak (as implemented in findGSE, gce and the

naı̈ve method).

For low levels of heterozygosity of 0.1–1.0%, all methods pre-

dicted highly accurate estimates (Fig. 1E). However, for higher levels

of heterozygosity of 2.0–5.0%, we observed strong discrepancies

between the expected and predicted GS. Out of 280 predictions per-

formed with each of the tools, we found 150 and 29 predictions of

ALLPATHS-LG and GenomeScope, respectively that appeared

twice as high as expected. In these cases, the automatic peak identifi-

cation falsely selected the heterozygous peak as the homozygous

peak, which led to wrong estimation of C and consequently to an

inflated haploid GSE. Surprisingly even for gce, which requires prior

information on the homozygous k-mer coverage we also observed

120 of such cases. Moreover, extremely low (or no) GSE were

reported in additional 110 and 173 cases of ALLPATHS-LG and

GenomeScope. In these cases, curve fitting around the (again falsely

selected) heterozygous peak was hampered by low frequency values,

and could not yield any meaning results. Increasing base coverage to

100� could efficiently avoid this complete failure in GSE by both

tools; however, it did not eliminate the selection of the wrong peak

and thus the doubled estimates in even more cases (Fig. 1F). In con-

trast, except of the problem of artificially doubling GSE, the results

by GenomeScope showed lowest variation across all tools with high

accuracy.findGSE was little affected by increased heterozygosity. In

particular at high coverage, findGSE was highly accurate even in the

presence of 5% heterozygosity predicting an average GS of 121 6 1

Mb, while at lower coverage this prediction was slightly more varia-

ble (125 6 7 Mb), but still fairly close to the simulated GS of 119

Mb.

Taken together, independent of the actual method k-mer based

GSE can accurately predict absolute GS at high to moderate base

coverage and some tools can even do it at low base coverage when

applied to simulated data.

3.2 Reproducibility of k-mer based GSE
GSE methods need to be stable against changes in the actual experi-

ments to ensure consistently accurate estimates even with data from

different sources. To test for reproducibility of the GSE, we analyzed

seven independent whole-genome sequencing data sets, all of which

were published for wild type or mutant plants of the A. thaliana

reference accession Col-0 (Becker et al., 2011; Hartwig et al., 2012;

Jiang et al., 2014; Silva-Guzman et al., 2016; Zampini et al., 2015).

Even though small genomic differences between ‘identical’ A. thali-

ana lines selected from different laboratories have been reported

(Zapata et al., 2016), we assumed that the changes between these

genomes were only of small scale and did not affect GS in any recog-

nizable degree. As these samples were sequenced in different years,

the reads were generated with different sequencing chemistry,

sequencing depths and lengths (Supplementary Table S2). After

adapter trimming and removal of potential PCR duplicates and

reads with similarity to mitochondrial, chloroplast or phiX genomes

(Section 2.3), GS were estimated with all five tools.

The standard deviations of the seven predictions for each tool

were generally low, ranging from 2 Mb for the estimation of

findGSE up to 5 Mb for the estimation of gce (Fig. 2A). This sug-

gested that k-mer based GSE methods are very robust against

changes in the actual sequencing setup, and that their estimations

can be highly reproducible.

Absolute GSEs were different but all average estimates of the dif-

ferent tools ranged between 132 and 139 Mb, which is close to the

estimated size of 135 Mb (www.arabidopsis.org). Among these

methods, the estimates of ALLPATHS-LG were consistently lower

(124 Mb on average), which mainly resulted from the removal of

low and high frequency k-mers leading to the underestimated total

number of genomic k-mers (Supplementary Fig. S4).

3.3 k-mers versus flow cytometry
Recently, the GSs of 165 diverse strains of A. thaliana were esti-

mated using flow cytometry and matching whole-genome sequenc-

ing data were released (Long et al., 2013; Schmitz et al., 2013). This

allowed us to compare flow cytometry and k-mer based GSE, while

testing for intra-specific GS variation in A. thaliana. After prepro-

cessing the sequencing reads (Section 2.3), we selected 89 accessions

(Supplementary Table S3) with a base coverage larger than 19x for

GSE with findGSE, ALLPATHS-LG, GenomeScope and gce.

GS predictions by k-mers were independent of base coverage

(Fig. 2B) and the standard deviations of findGSE, GenomeScope
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and ALLPATHS-LG ranged between 6 and 9 Mb (Fig. 2C–F).

In contrast, the standard deviation of gce was unreasonably large

(38 Mb) indicating extreme levels of noise in these estimates. The

standard deviation of 4 Mb of the flow cytometry derived GSE was

lower than any of the k-mer based methods implying that flow

cytometry predictions are more stable and less noisy than the k-mer

based predictions.

To evaluate k-mer based predictions, we correlated them with the

flow cytometry GS estimates, assuming that a high positive

correlation implies high accuracy in capturing real variation in GS. The

estimates of findGSE showed by far the strongest correlation (Pearson’s

r ¼ 0.52), while the correlations of gce (Pearson’s r ¼ 0.23),

GenomeScope (Pearson’s r ¼ 0.14) and ALLPATHS-LG (Pearson’s r ¼
0.30) appeared to be rather weak (Fig. 2C–F). Though this does not

allow on any conclusion of the absolute GS, it reveals a remarkable sim-

ilarity within the results of findGSE and flow cytometry.

Lower variability within the flow cytometry-based predictions as

compared with the k-mer based predictions does not imply that their

absolute GS predictions are better as well. As k-mer based predica-

tions are independent of any internal standard they have the poten-

tial to predict absolute GS independent of any prior assumptions.

findGSE, ALLPATHS-LG and GenomeScope predicted an average

GS of 152, 146 and 138 Mb across all 89 A. thaliana accessions,

while gce showed unexpectedly large estimates with an average of

177 Mb (and an unreasonable range of 113–300 Mb). In contrast,

the flow cytometry based predictions were 167 Mb on average.

Overall, we think that the slightly lower k-mer based GS predictions

of �150 Mb are more accurate, as flow cytometry-based GS predic-

tions are known for slightly overestimating GS. For example, differ-

ent flow cytometry based GSE of the reference accessions A.

thaliana Col-0 include estimates of �157 and even �201 Mb

(Bennett et al. 2003; Schmuths et al. 2004), while the reference

sequence consortium predicted a GS of only 135 Mb (www.arabi

dopsis.org).

When compared with the other k-mer based tools, the estimates

of findGSE showed the strongest correlation with the relative

variation in the amount of 45 S rDNA, which has recently been

identified as the major contributor to GS variation in A. thaliana

(Long et al., 2013; Rabanal et al., 2017) (Supplementary Table S4;

Supplementary Material Section 1.3). This could indicate that the

k-mer based predictions given by findGSE captured more of the true

variation in GS (than other methods).

3.4 Estimating and explaining human GS variation
Several recent projects have analyzed human genomes at population

scale and released whole-genome sequencing data (Mallick et al.,

2016; The 1000 Genomes Project Consortium, 2015). We analyzed

the short read data (with base coverage �30�) of 142 human indi-

viduals (71 male and 71 female) from seven continent-level popula-

tions (Mallick et al., 2016) (Supplementary Table S5) and estimated

their GS with findGSE (Section 2.3).

Haploid human GS was estimated to be 3039 Mb on average,

while female genomes were 3059 Mb and male genomes 3018 Mb

on average (Fig. 3A). As it is difficult to differentiate chromosomes

on k-mer level, the haploid GS of a female individual is the sum of

the average sizes of each pair of autosomes plus the average size of

the two X chromosomes, while the haploid GS of a male individual

is the sum of the average sizes of each pair of autosomes plus the

average size of the X and Y chromosomes. According to the refer-

ence assembly (version GRCh38.p9; The Genome Reference

Consortium), female haploid GS would therefore be expected

around 3043 Mb and male haploid GS around 2, 994 Mb, implying

A B C

D E F

Fig. 2. Comparison of k-based GS estimation tools (and flow cytometry) using real sequencing data of A. thaliana. (A) GSE by different methods on seven differ-

ent samples of the inbred, homozygous A. thaliana reference accession Col-0. (B) GSE by different methods on 89 A. thaliana accessions, with correlation to

sequencing coverage. (C) Correlation of GSE on the 89 A. thaliana accessions by gce with flow cytometry estimates. (D) Correlation of GSE by GenomeScope

with flow cytometry estimates. (E) Correlation of GSE by ALLPATHS-LG with flow cytometry estimates. (F) Correlation of GSE by findGSE with flow cytometry

estimates. For C–F, regression line was drawn, and Pearson’s correlation value r was given with respective P value
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a 49 Mb size difference between the two sexes. Intriguingly, this is

in nearly perfect agreement with estimates by findGSE and the esti-

mated 41 Mb size difference between female and male genomes

(t-test, P-value 4.5e-15) implies that GS variations as small as �1%

of the total GS can be reliably identified.

At the population level, Asians (with Siberians) and Europeans

showed smaller GS than Africans, Americans and Oceanians (Fig.

3B; Supplementary Table S6). These differences could also be

observed as a significant correlation between GS and latitude, where

GS decreased from South to North (Fig. 3C). Though it would be

tempting to speculate on environmental factors shaping GS, it would

require additional analyses to support such a claim as these patterns

could simply arise from population structure without any underlying

adaptive pressure.

Absolute GSE of 142 individuals ranged from 2950 to 3115 Mb

implying up to 6% size difference in human GS. Even though parts of

this variation might come from inaccurate predictions, we speculated

that we also captured some of real underlying variation in human GS.

To investigate the underlying reasons for these differences, we esti-

mated the percentage of abundant repeats within 41 female and 40

male genomes using the read counts in short read alignments against

the reference sequence. rDNA which was the major source for GS var-

iation in A. thaliana, only makes up a minor fraction (<0.1%) of

human genomes and was not further considered. There were no differ-

ences in the relative abundance of repeats between male and female

(Supplementary Fig. S5), except for the non-LTR retrotransposons

LINE-1 and the endogenous retrovirus L (ERVL) elements where

females showed significantly larger ratios probably because these are

enriched in the X chromosome (Bailey et al., 2000).

Multiplying relative abundance with GS given by findGSE esti-

mates the length of each repeat type in each of the genomes

(Supplementary Material Section 1.4). The abundance of the repeat

across the genomes revealed the contribution of each of the repeat

types to human GS variation (co-variance values in Fig. 4A–G). The

LINE-1 retrotransposable elements, which have the highest genome

occupancy in the human genome (International Human Genome

Sequencing Consortium, 2001), showed by far the largest covariance

among all repeats accounting for 29% of the GS variation in human.

A combination of all analyzed repeats even accounts for 62% of the

variation implying that repetitive elements and in particular the LINE-

1 elements are the main source for variation in human GS (Fig. 4H).

4 Conclusion

Counting k-mer frequencies within whole-genome sequencing data,

which are continuously generated for many organisms anyhow, ena-

bles a cheap and elegant way to estimate GS. We have developed an

advanced method, findGSE, for GS estimation using iterative fitting

of k-mer frequencies with a skew normal distribution model. A case

study on a global collection of 142 human genomes revealed a sur-

prisingly large variation in GS, which follows geographical distribu-

tions and is predominately caused by retro-transposons.k-mer based

GSE using simulated reads recovered absolute GS nearly perfectly

while replication with and without changes in error rates and

sequence coverage did not affect the predictions of most methods

tested here. High levels of heterozygosity challenged some of the

tools, which try to automatically deal with heterozygosity, but

worked well for findGSE. The genomes sizes estimated with seven

different sequencing data sets of the same A. thaliana background

were also very stable.k-mer based estimates derived from the

A B C

Fig. 3. Human GS variation. (A) GSE distribution at the gender level, with 71 female and 71 male genomes. (B) GS distributions between populations (males in

squares, females in circles). (C) GS distribution along latitude (coloring scheme and symbols as in B). Regression line was drawn (dashed gray line), and

Pearson’s correlation value r given with significance value P

A B C

D

G H

E F

Fig. 4. Covariance analysis of human repeat and GS variations.

(A) Centromeric repeats (of 41 female and 40 male genomes). (B) ERV1 ele-

ments. (C) ERVL elements. (D) LINE-1 elements. LINE-1 elements were the

major contributors to human GS variation. (E) LINE-2 elements. (F) Alu ele-

ments. (G) MIR elements. (H) All repeats in A–G
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sequencing data of 89 A. thaliana accessions were much lower than

the flow cytometry based estimates. Though there is no direct evi-

dence, the fact that flow cytometry has to rely on internal standards,

which themselves are not accurately measured, suggests that k-mer

based predictions have the potential to be more accurate in estimat-

ing absolute GSs even though individual measurements might be

noisier. Nevertheless, there were still notable differences between

k-mer based estimates by different tools, which indicates that some

models might be more accurate than others; however, it is not very

clear which one. To improve the reliability of k-mer based GSE, sev-

eral obvious advances could be implemented, like statistically ana-

lyzing the precision of GS estimates using confidence intervals,

which so far has not been considered by any of the models.

The genomes analyzed in this work are diploid with no or low lev-

els of heterozygosity. For polyploid genomes, which feature a much

more complex k-mer frequency pattern, a mixture model like imple-

mented in GenomeScope, but with a flexible number of distributions

that is able to scale with the ploidy, might be more powerful to fit the

k-mers frequencies. Likewise, within the raw reads of the 89 acces-

sions of A. thaliana we found up to 36% of organellar DNA, which

can easily confound GS if not filtered out, thus data generation using

sterile and nuclei enriched samples could also improve accuracy in

GSE.k-mer based GSE is still in its infancy, but its application on

data, which is usually developed for different purposes anyhow,

makes it a cost-effective and widely applicable method. The lack of

gold standard genomes with precise GS estimates, however, impedes a

final conclusion on how accurate the absolute GSE of k-mer based

methods are and in particular if they are more accurate than the GS

estimates based on flow cytometry. However, independence of any

internal standards but direct measurement of the length of DNA, like

any of the k-mer based methods do, seems to be a promising way for

accurate models in the future. In the meantime, careful analysis of GS

of the size standard genomes used for flow cytometry with different k-

mer methods might help to refine their predicted GS and reduce the

discrepancies between the methods in future.
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