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ABSTRACT

Identifying resistance to antiretroviral drugs is cru-
cial for ensuring the successful treatment of pa-
tients infected with viruses such as human immun-
odeficiency virus (HIV) or hepatitis C virus (HCV).
In contrast to Sanger sequencing, next-generation
sequencing (NGS) can detect resistance mutations
in minority populations. Thus, genotypic resistance
testing based on NGS data can offer novel, treatment-
relevant insights. Since existing web services for
analyzing resistance in NGS samples are subject
to long processing times and follow strictly rules-
based approaches, we developed geno2pheno[ngs-
freq], a web service for rapidly identifying drug re-
sistance in HIV-1 and HCV samples. By relying on
frequency files that provide the read counts of nu-
cleotides or codons along a viral genome, the time-
intensive step of processing raw NGS data is elim-
inated. Once a frequency file has been uploaded,
consensus sequences are generated for a set of
user-defined prevalence cutoffs, such that the con-
structed sequences contain only those nucleotides
whose codon prevalence exceeds a given cutoff.
After locally aligning the sequences to a set of
references, resistance is predicted using the well-
established approaches of geno2pheno[resistance]
and geno2pheno[hcv]. geno2pheno[ngs-freq] can
assist clinical decision making by enabling users
to explore resistance in viral populations with dif-

ferent abundances and is freely available at http:
//ngs.geno2pheno.org.

INTRODUCTION

Drug resistance mutations can emerge rapidly in patients
infected with pathogens such as human immunodeficiency
virus type 1 (HIV-1) or hepatitis C virus (HCV). Since vi-
ral resistance can severely impact the success of antiretrovi-
ral therapy, genotypic resistance testing is performed when
treatment is initiated or in case of treatment failure. Geno-
typic resistance tests consist of two steps: sequencing the rel-
evant segments of the viral genome followed by the interpre-
tation of drug resistance based on the amino-acid sequence
(1). There exist two approaches for interpreting drug re-
sistance: rules-based interpretation systems and algorithm-
driven interpretation systems. While rules-based interpre-
tation systems rely on the knowledge of expert panels,
algorithm-driven systems are based on statistical models
that are trained on clinical or virological data using ma-
chine learning algorithms. The spectrum of expert opinions
has given rise to several sets of rules, for example, the rule
sets from ANRS, HIVdb (2), HIV-GRADE and the Rega
institute, all of which are available via the HIV-GRADE
website (3). Similarly, algorithm-driven approaches differ
among each other with respect to the applied machine
learning algorithms and the data sets that are used for train-
ing the models. For example, geno2pheno[resistance] (4–7)
uses support vector regression and classification, while the
more recent SHIVA software (8) employs random forests.

Despite their differences, all existing genotypic resistance
interpretation systems share one commonality: They inter-
pret data from Sanger sequencing, a technology that has
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dominated the field due to its cost effectiveness and low
rate of errors. However, with a detection limit of 10%-
20% (9,10), Sanger sequencing is unable to identify resis-
tance mutations in minority populations. Next-generation
sequencing (NGS), on the other hand, allows for the identi-
fication of variants even at low abundances (11,12). Due to
the potential clinical relevance of minority resistance mu-
tations (13,14) and the decreasing costs of NGS, the im-
plementation of NGS for viral resistance analysis has in-
creased considerably in recent years. Still, few web services
for interpreting NGS data with respect to drug resistance
are available. To our best knowledge, the only existing web
services for this purpose are PASeq and HyDRA (15). These
tools require the raw sequencing data resulting from sub-
jecting an HIV-1 sample to NGS (e.g. as a FASTQ, gzipped
FASTQ, or SFF file). After a sample has been uploaded, a
processing pipeline performs the following tasks: (i) reads
are trimmed in order to remove low-quality positions; (ii)
reads are mapped to a reference sequence; (iii) the abun-
dance of mutations is quantified and (iv) resistance is in-
ferred. In contrast to web services for interpreting Sanger
sequences, which provide results immediately, PASeq and
HyDRA perform more time-intensive computations and
notify users via email when the results become available.
Both PASeq and HyDRA support only rules-based inter-
pretations and use Stanford’s popular HIVdb by default,
although HyDRA also allows for the consideration of user-
defined sets of rules.

In this work, we present geno2pheno[ngs-freq], a web
service for identifying resistance in NGS samples of HIV-
1 and HCV that is based on the well-established methods
of geno2pheno[resistance] (4–7) and geno2pheno[hcv] (16).
geno2pheno[ngs-freq] does not require the input of raw se-
quencing data and instead relies on frequency files that tab-
ulate either the counts of observed nucleotides or codons
along a viral genome. In contrast to raw NGS data, whose
sheer size may prevent some labs from performing resis-
tance analyses over the internet, frequency files are quite
small. Since geno2pheno[ngs-freq] does not need to map
thousands of reads to a reference sequence, batches of fre-
quency files can be analyzed quickly and results can be in-
spected immediately.

MATERIALS AND METHODS

In the following sections, we introduce the frequency file
format, illustrate the mechanisms behind geno2pheno[ngs-
freq], and outline how we validated the web service.

Format of input files

Frequency files are CSV files containing either the counts
of observed codons (Supplementary File S1) or nucleotides
(Figure 1A and Supplementary File S2) along a viral
genome. These files can be generated via custom or avail-
able NGS processing pipelines such as VirVarSeq (17) or
MinVar (18). In the following, we consider a frequency file
as a matrix F ∈ N

m×n
0 whose number of rows m ∈ N is de-

termined by the number of genomic positions and whose
number of columns n ∈ N is defined either by the number
of nucleotides or triplets. Let A = {−, A, C, T, G, N}

Figure 1. Transformation of a single-nucleotide frequency file to a consen-
sus sequence at a prevalence cutoff of 10%. (A) Example of a nucleotide
frequency file providing the nucleotide counts for the first three positions
in a viral genome. (B) Table of prevalence ratios in which observations with
ratios of at least 10% are shown in red. The corresponding motif logo in
which the height of individual nucleotides reflects their prevalence is shown
below. (C) Consensus sequence constructed for a prevalence cutoff of 10%.
Ambiguous positions are encoded according to IUPAC nomenclature.

be the nucleotide alphabet and let A3 = (A\{−, N})3 ∪
{(−,−,−)} be the triplet alphabet. Nucleotide frequency
files contain entries fi j that denote the number of reads sup-
porting the nucleotide j ∈ A at position i , while codon fre-
quency files are defined by entries fi j where j ∈ A3 relates
to triplets instead.

Workflow

Once a user has supplied a set of prevalence cut-
offs, a frequency file, and an optional sample identifier,
geno2pheno[ngs-freq] performs the following steps: (i) gen-
eration of a consensus sequence for every prevalence cut-
off; (ii) inference of the viral species and (iii) identification
of viral resistance for every consensus sequence. Once all
computations have completed, users can contrast the esti-
mated impact of identified variants at low abundances with
those at greater abundances by selecting two cutoffs for dis-
playing the results, the personal and the reference cutoff. By
default, the personal cutoff is set to 2%. The default setting
should ensure tolerance with regard to sequencing errors for
all NGS platforms suitable for viral samples (19,20), and, at
the same time, allow for the consideration of clinically rele-
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vant minority variants (21). The default reference cutoff for
samples from HIV-1 is set to 10% (22) and to 15% for sam-
ples from HCV (23) such that results based on the reference
cutoff should agree well with those that would be obtained
via Sanger sequencing.

Generation of consensus sequences. For each prevalence
cutoff cF ∈ [0, 1] provided for a frequency file F ∈ N

m×n
0 ,

the web service generates a consensus sequence in the fol-
lowing manner. Let di = ∑

j fi j indicate the depth of cov-
erage at position i ∈ {1, . . . , m} in the frequency file. If F is
a codon frequency file, the ratio at which the codon j ∈ A3

occurs at position i is determined by xi j = fi j

di
, and, if F is

a single-nucleotide file, as described in Supplementary Text
S3. We construct the consensus sequence scF by consider-
ing only Ai,cF = { j |xi j ≥ cF }, the set of observations whose
prevalence is at least cF , and setting position i of the consen-
sus sequence as si,cF = �(Ai,cF ). In case that Ai,cF is empty
(i.e. no frequencies are greater or equal to the cutoff), we
use the greedy criterion, Ai,cF = argmax j xi j instead. The
function φ translates nucleotides or codons into their cor-
responding IUPAC representation (24). Given a prevalence
cutoff of cF = 10% and the observed prevalence ratios
xi A = 10%, xiC = 1%, xiG = 9%, and xi T = 80% (Fig-
ure 1B), we would set si,10% = �(Ai,10%) = �(A, T) = W
(Figure 1C).

In order to correctly extract the target amplicon from
a frequency file, we truncate the sequence by combin-
ing a relative and an absolute cutoff. Let dmed denote
the median depth of coverage over all positions with
non-zero coverage. We set the coverage cutoff to dcut =
max(20, min(100, 0.1 · dmed)) and use it to define the start
of the target region as is = mini {i ∈ {1, . . . , m} | di ≥
dcut}. If is is undefined, no further computations are per-
formed. Otherwise, we define the end of the region as ie =
mini {i ∈ {is + 1, . . . , m} | di < 0.5 · dcut} − 1. If ie is un-
defined, we set ie to the value of m.

Please note that geno2pheno[ngs-freq] provides warnings
for individual positions i with di < 100, when the 25th per-
centile of a genomic region is smaller than 100, or when stop
codons or frameshift mutations are found in a genomic re-
gion. In the following, we use the term default consensus se-
quence to denote the consensus sequence of a sample that
was constructed according to the corresponding default ref-
erence cutoff (i.e. s10% for HIV-1 and s15% for HCV samples).

Inference of the viral species. We identify the viral species
from which an input sample originates by aligning its de-
fault consensus sequence to the genomic segments of the
reference sequences for HIV-1 and HCV, HXB2 (25) and
H77 (26), respectively. To ensure that we perform resistance
analyses only for the supported viral species, we consider
only high-quality alignments, i.e. alignments with high sim-
ilarities between query and reference sequence. If no high-
quality alignments are available, it is assumed that the sam-
ple derives from a species that is not supported and no fur-
ther computations are performed. Otherwise, the annotated
species of the reference sequence with the greatest alignment
score is used. An alignment is considered a high-similarity
alignment if it satisfies two similarity criteria, which are de-
fined by dividing the number of matching amino acids in the

alignment either by the length of the alignment (alignment
similarity) or by the length of the reference sequence (refer-
ence similarity). For HIV-1 sequences, a minimal alignment
similarity of 60% and a minimal reference similarity of 50%
is used for all regions, except for the reverse transcriptase
(RT). Since all major drug resistance mutations are located
within the first half of the gene, the RT region is frequently
merely partially amplified. Thus, we require a reference sim-
ilarity of only 20% for the RT. Due to the greater phyloge-
netic divergence of HCV, we require an alignment similar-
ity of 40% and a reference similarity of 20% for all HCV
regions.

Identification of viral resistance. Viral resistance of HIV-
1 and HCV samples is interpreted using the approaches of
geno2pheno[resistance] (4–7) and geno2pheno[hcv] (16), re-
spectively. geno2pheno[resistance] provides two types of ap-
proaches. The original g2p[resistance] approach relies on
support vector regression models with linear kernel func-
tions. These models were trained on genotype-phenotype
pairs consisting of Sanger sequences from HIV-1 and corre-
sponding measurements of drug-specific resistance factors
(RF), which quantify the fold change in the half maximal in-
hibitory concentration of a mutated sample with respect to
the wildtype (6,27). The more recently developed approach
of g2p[drug-exposure] is based on support vector classifica-
tion models. These models were trained using clinical data
consisting of Sanger sequences and corresponding labels in-
dicating whether a sequence originates from a patient that
had received treatment with a specific drug (7). This ap-
proach estimates a quantity that is correlated with the de-
gree of drug exposure, the so-called drug-exposure score
(DES). Because RFs and DESs vary considerably across
drugs, geno2pheno[resistance] standardizes these quantities
to z-scores providing the number of standard deviations
that a value is above/below the mean of therapy-naı̈ve pa-
tients. Finally, each z-score is transformed to one of three in-
terpretable, clinically-motivated levels of resistance (5): sus-
ceptible, intermediate, or resistant.

geno2pheno[hcv], on the other hand, relies on a set of
drug- and genotype/subtype-specific rules that was chosen
by an expert panel through extensive reviewing and weight-
ing of literature related to HCV drug resistance. The level of
drug resistance associated with an input sequence is deter-
mined by scanning the amino acids of nonstructural pro-
tein 3 (NS3), nonstructural protein 5A (NS5A), and non-
structural protein 5B (NS5B) for matches to any of the rules
and reporting the worst-case resistance level. For example,
given a virus with subtype 1b, the mutation 41R would
not affect susceptibility to the NS3 inhibitor asunaprevir,
however, susceptibility would be considered to be reduced
if both 41R and 80R were present. geno2pheno[ngs-freq]
uses the following outcomes for classifying the resistance
of HCV samples to individual drugs: susceptible, substitu-
tion on scored position (substitution at a position for which
a rule exists), resistance-associated mutation in closest sub-
type (for rare subtypes only: existence of a rule in the clos-
est non-rare subtype), reduced susceptibility, resistant, and
unlicensed (drug is not approved for the identified subtype).
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Please note that both approaches yield warnings when
resistance-associated positions are missing from the con-
structed consensus sequences.

Validation

For validating the web server, we analyzed a total of
3844 frequency files of which 926 files represented sam-
ples from HIV-1 (24.1%) and 2918 files represented sam-
ples from HCV (75.9%). Resistance interpretations were
obtained for 922 of 926 HIV-1 samples (99.6%) and
2898 of 2918 HCV samples (99.3%). For the remain-
ing samples, geno2pheno[ngs-freq] did not provide a re-
sult due to low depth of coverage. Since we had re-
implemented the approach of geno2pheno[hcv] during the
development of geno2pheno[ngs-freq], we investigated the
concordance between the predictions of geno2pheno[ngs-
freq] and geno2pheno[hcv] using the default consensus
sequences constructed from the 2866 successfully ana-
lyzed HCV frequency files. We did not perform an anal-
ogous validation for the HIV-1 samples because predic-
tions for HIV-1 samples are based on the current version
of geno2pheno[resistance].

Technical details

The geno2pheno backend is implemented in C++ and relies
on an Oracle database for data storage. We implemented the
frontend with Typescript and the React library. The web in-
terface allows for the analysis of batches containing at most
20 files.

RESULTS

Validation

The levels of resistance that were predicted with
geno2pheno[ngs-freq] and geno2pheno[hcv] for the
default consensus sequences had an agreement of 99.7%.
The median runtimes required for analyzing HIV-1 and
HCV samples were 6 seconds and 4 seconds, respectively.

Case studies

In this section, we provide two case studies that illustrate
how geno2pheno[ngs-freq] can offer insights that may im-
pact clinical decision making. While non-nucleoside re-
verse transcriptase inhibitor (NNRTI) resistance mutations
at low abundances are associated with virological failure
(14,28–30), it is still generally unclear how minority re-
sistant variants influence the treatment outcomes of HIV-
1 infected persons (31–36). The impact of HCV minority
resistant variants is less studied than for HIV-1 but the
presence of minority resistant variants has recently been
shown to deteriorate the outcomes in subtype 1 patients be-
ing treated with NS5A inhibitors (37). Although treatment
choices based on minority resistant variants should be taken
with particular care as noted previously (38), regimens that
could be impaired by resistant minorities can be excluded if
suitable alternative treatment options are available.

The case studies can be replicated by visiting http://ngs.
geno2pheno.org, ensuring that the default prevalence cut-
offs (2%, 10% and 15%) are selected, and loading the fre-
quency files that are provided through Supplementary Files
S1 and S2. The HIV-1 case study was performed using the
g2p[resistance] model, which predicts phenotypic drug re-
sistance (27), while the HCV case study was performed us-
ing the geno2pheno[hcv] rule set (16).

Case study 1: HIV-1 resistance interpretation. This case
study (Supplementary File S1) is based on a plasma isolate
from an HIV-1 infected patient with a viral load of 102 000
copies/ml. The plot of viral drug resistance (Figure 2) re-
veals that the major viral population (at the reference cutoff
of 10%) seems to be susceptible to nearly all drugs. When
considering also minor viral populations (at the personal
cutoff of 2%) we find highly increased levels of resistance to
ABC, ddI and 3TC, drugs from the class of nucleoside re-
verse transcriptase inhibitors (NRTIs). Using the resistance
table, we can determine that the increased level of resistance
is caused by the well-studied resistance mutation M184V,
which occurs at a population prevalence of 2.36%. M184V
is not only known for enhancing the susceptibility to the
NRTIs ZDV, d4T and TDF, but also for delaying the emer-
gence of resistance to these drugs (39). Therefore, a combi-
nation therapy consisting of two such NRTIs and one pro-
tease inhibitor such as TDF + ZDV + DRV would be a rea-
sonable choice. An alternative treatment with fewer side ef-
fects could consist of TDF + FTC + DRV. The idea behind
this treatment is that FTC could stabilize M184V such that
susceptibility to TDF is ensured (39). Moreover, although
M184V is associated with a >100-fold reduction in suscep-
tibility to FTC in vitro (40), FTC exhibits residual activity
in the presence of M184V in vivo (41,42). Therefore, even if
the minority population characterized by M184V were to
become the major viral population over time, FTC would
still be residually active.

Case study 2: HCV resistance interpretation. The visual-
ization of resistance for the provided HCV sample (Sup-
plementary File S2) reveals an interesting scenario (Supple-
mentary Figure S4). Although the viral population at the
15% cutoff seems to be susceptible to all direct- acting an-
tiviral agents targeting NS5A, the population at the 2% cut-
off seems to be resistant to most NS5A inhibitors due to the
presence of the resistance mutation 30R, which was found
at a prevalence of 6.1%. Using this information, the treating
clinician may decide to avoid the use of the NS5A inhibitors
DCV, EBR, LDV, and OBV, for which resistance was re-
ported, and instead use VEL, to which the viral population
seems to be susceptible.

DISCUSSION

In contrast to existing web services for interpreting vi-
ral resistance for NGS samples, geno2pheno[ngs-freq] uses
frequency files instead of raw NGS data, which offers
many benefits. First, due to their small size (kilobytes vs
megabytes), samples can be uploaded quickly even in set-
tings with limited bandwidth. Second, resistance interpre-
tation does not require the time-intensive step of process-
ing the raw NGS data, allowing for rapid analyses (a few
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Figure 2. Radar plot of predicted drug resistance for the HIV-1 sample from the first case study. Each spoke in the plot relates to an antiretroviral drug.
Each drug class is represented by a different type of symbol. Here, circles, triangles, and squares indicate the results for nucleoside reverse transcriptase
inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs), respectively. The three colored circle sectors
indicate the estimated levels of drug resistance, from inside to outside: green for susceptibility, orange for intermediate resistance, and red for resistance.
Resistance levels are indicated by two surfaces. The inner surface shows the estimated level of resistance for the consensus sequence based on the reference
prevalence cutoff at 10%, while the outer surface indicates the level of resistance for the consensus sequence based on the personal cutoff at 2%. The points
defining the surfaces are determined through the z-scores that are predicted by geno2pheno[resistance]. Points lying further to the inside of the plot indicate
decreased drug resistance, while points lying further to the outside indicate increased resistance.

seconds vs several minutes or hours). Third, the use of fre-
quency files offers greater flexibility than basing the analysis
on raw sequencing data since interpretation engines based
on the latter data apply pre-determined pipelines for the ba-
sic processing of the NGS samples. By relying on frequency
files, geno2pheno[ngs-freq] does not impose limitations on
the manner in which NGS samples are processed.

Of course, using frequency files also entails loss of in-
formation. For nucleotide frequency files, amino acid fre-
quencies need to be estimated and spurious amino acids
may be generated. Imagine that the codons ATA (Ile) and
TTT (Phe) are observed at the same genomic position. In
this case, the triplets ATT (Ile) and TTA (Leu) would be
considered in addition to the observed nucleotides when
constructing the consensus sequence. Thus, the unobserved
amino acid Leu would be erroneously taken into account
during the resistance interpretation, which may lead to an
incorrect estimate of drug resistance. Therefore, we gener-
ally recommend the use of codon frequency files because
this file format retains information on the abundance of tri-
nucleotides. Thus, amino-acid frequencies are represented
correctly and the appropriate translation of codons con-

taining multiple ambiguous positions can be determined.
Another limitation of frequency files is that they do not
allow for quasispecies reconstruction. While quasispecies
reconstruction may offer insights in some scenarios, the
mediocre precision/recall trade-off of most methods for in-
ferring quasispecies (43) suggests that these approaches are
not yet mature enough for routine use. However, more re-
cent approaches seem more promising (44,45). Last, future
resistance interpretation systems based on read-based mod-
els may provide another incentive for the use of raw se-
quencing data.

CONCLUSIONS AND FUTURE WORK

We have developed geno2pheno[ngs-freq], a free and pub-
licly accessible web server for the rapid genotypic in-
terpretation of viral drug resistance in NGS samples.
geno2pheno[ngs-freq] is the first service that enables the ap-
plication of geno2pheno[resistance] on NGS samples and,
to the best of our knowledge, provides the first interpre-
tation engine for NGS samples from HCV. We developed
a new visualization of drug resistance (Figure 2) that en-
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hances the interpretability of both algorithm-driven and
rules-based interpretation engines. Due to its reliance on
frequency files, geno2pheno[ngs-freq] can be integrated into
existing NGS pipelines for interpreting viral resistance. By
providing a means of exploring drug resistance for viral
populations at multiple prevalence levels, we expect that
geno2pheno[ngs-freq] will contribute to making clinical de-
cisions and researching the impact of low-prevalence resis-
tance mutations.

In future versions of geno2pheno[ngs-freq], we plan to
improve the interpretability of the service, for example by
annotating called variants using data from the literature.
We also intend to incorporate further prediction models,
particularly for identifying the coreceptor that is used by
HIV (46,47) and for predicting the susceptibility of HIV-1
towards integrase strand transfer inhibitors. At a later point
in time, support for samples from other viral species such
as HBV, for which the emergence of resistance is relevant
(48,49), could be added. Last, we are working towards pro-
viding an application programming interface that will be
made available for the use in research settings.

DATA AVAILABILITY

geno2pheno[ngs-freq] (http://ngs.geno2pheno.org)
identifies viral resistance based on the approaches
of geno2pheno[resistance] (www.geno2pheno.org)
and geno2pheno[hcv] (http://hcv.geno2pheno.org).
geno2pheno[ngs-freq] relies on geno2pheno[mutext]
(http://align.geno2pheno.org) for performing local pair-
wise alignments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Verheyen,J. and Lengauer,T. (2012) Genotyping hepatitis B virus
dual infections using population-based sequence data. J. Gen. Virol.,
93, 1899–1907.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gky349/4990638
by MPI Software Systems user
on 04 May 2018


