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1 Introduction

It has recently been conjectured that fermions coupled to Chern-Simons gauge theories in

certain representations of the gauge group are dual to bosons coupled, roughly speaking,

to level-rank dual representations of the level-rank dual Chern-Simons gauge theories. The

initial reason to suspect such a duality arose [1] from the study of conjectured dual bulk

Vasiliev duals of these theories [1–5]. Moreover in the papers [1, 6, 7] it was demonstrated
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that Chern-Simons theories with matter in the fundamental representation are ‘solvable’

in the large N limit. Using the results of [6, 7] and the Schwinger-Dyson techniques

developed in [1]), the authors of [8, 9] demonstrated that the three point functions of single

trace operators on the two sides of the duality match at their conformal points provided

the levels and ranks of these theories are exchanged under the duality1 and so provided

the first concrete conjecture for the including a map between dual parameters [8].2

While the matching of correlators between the two conformal theories suggests that

they are dual, this evidence alone is less than clinching as the structure of large N three

point functions of single trace operators in these theories is highly constrained by approx-

imate higher spin symmetries [6, 7]. Compelling additional evidence for these dualities

— at least at large N — comes from matching thermal partition functions [1, 16–25] and

S-matrices [26–31]. It turns out that these quantities can both be explicitly computed

at large N independently in the bosonic and fermionic theories using the techniques first

introduced in [1] and match perfectly between bosons and fermions under the same duality

map proposed in [8], establishing the duality between these theories beyond reasonable

doubt, at least at leading order in the large N limit. The authors of [22, 24] were also

able to construct pairs of dual [32] RG flows that originate at the N = 2 supersymmetric

field theory that terminate in the IR at the critical boson and regular fermion theories

respectively. The fact that the supersymmetric duality of [32] holds at finite N supplies

evidence for the validity of Bose-Fermi dualities at finite (if large) N .3

Chern-Simons coupled regular fermion and critical boson theory CFTs each admit a

massive deformation labelled by a real mass, that map to each other under duality. Turning

on this mass deformation triggers an RG flow. Positive and negative mass deformations

both lead to gapped theories or more precisely pure Chern-Simons topological field theories

(TFT)s. The low energy TFTs are different for the two signs of mass. A change in sign of

the fermion mass from positive to negative decreases the level of the effective low energy

topological Chern-Simons theory by one unit. On the other hand, changing the boson mass

changes from positive to negative is expected to cause the boson to condense and so to

reduce the rank of the low energy topological Chern-Simons theory by one unit. These

two effects map to each other under level-rank duality [8]. In the large N limit there is

already considerable direct calculational evidence for the duality between the two CFTs

after a mass deformation for one sign of the mass, as we now briefly review.4

Correlation functions are much more constrained at fixed points than along RG flows.

As a consequence there have been no exact results for correlation functions in the mass

deformed bosonic and fermionic theories. It turns out, however, that the thermal partition

functions and S-matrices of both theories are roughly as easy to compute at large N in the

mass deformed theories (for both signs of the fermionic mass and for positive bosonic mass)

1See [10, 11] for further results on correlation functions.
2See [12–15] for more precise versions of the duality map.
3See [5, 9, 10, 16, 17, 20, 23–25, 33–46] for other large-N computations that provide additional evidence

for this duality.
4Of course a duality between two CFTs implies a duality between dual pairs of relevant deformations of

these CFTs. So the matching of physical quantities after deformation can be regarded as strong additional

evidence for the duality between the parent CFTs.
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as at the fixed point. Explicit all-orders results for the partition function and S-matrix are

already available for positive bosonic masses and fermionic masses of both signs; and — to

the extent that they can be compared — match perfectly under duality [1, 16–25]. However,

explicit all-orders results for the negative mass deformed bosonic theory have not been as

easy to obtain. At the calculational level a negative bosonic mass causes the bosons to

condense, completely changing the nature of the mathematical problem to be solved. In

order to determine the free energy and S-matrices of the bosonic theory in the condensed

phase, in other words, one is required to solve a new mathematical problem that is not a

small deformation of the analogous problem solved at the conformal fixed point.

In this paper we solve this ‘new mathematical problem’ for the bosonic free energy

at finite temperature, and thereby present an all-orders ‘solution’ of the bosonic theory

with a negative mass deformation. We proceed as follows. First we note that the effective

excitations in the Higgsed bosonic phase are W bosons. We work in a mixed unitary -

lightcone gauge that is convenient for our problem, and reduce the original scalar Chern-

Simons Lagrangian to a Lagrangian that describes the interaction of the charged W bosons

with the unbroken part of the gauge group. We then use Schwinger-Dyson methods to sum

all diagrams that contribute at leading order in the large N limit to the thermal propagator

of the W bosons. The free energy is then obtained by sewing this exact thermal propagator

on itself and adding in some appropriate counterterms. Our final result for the thermal

free energy (and thermal mass of the W bosons) turns out to match perfectly with the

previously obtained dual fermionic results.

We leave the generalization of the computations of this paper to S-matrices to future

work. We also work only with critical bosons, leaving the generalization to other theories to

future work. We also work only in the strict large N limit. See [12–14, 47–60] for exciting

recent progress on the study of these dualities, and additional checks of the dualities, at

finite N .

In the rest of this introduction we provide a more detailed description of the theories

we study, our explicit results in the context of what was already known, as well as the

interesting physical implications of our computations.

1.1 Theories and conjectured dualities

The two classes of theories we study in this paper are Regular Fermion (RF) theories

defined by the Lagrangian

SRF[ψ] = SCS +

∫
d3x

(
ψ̄γµD

µψ +mreg
F ψ̄ψ

)
, (1.1)

and the so called Critical Boson (CB) theory defined by the Lagrangian

SCB[φ, σB] = SCS +

∫
d3x

[
Dµφ̄D

µφ+ σB

(
φ̄φ+

NB

4π
mcri
B

)]
. (1.2)

In the actions (1.1) and (1.2), SCS denotes the pure gauge action for three dimensional

gauge fields which is of the pure Chern-Simons form without admixture of a Yang-Mills
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term.5 The field σB in (1.2) is a Lagrange multiplier field6 and its presence is the manifes-

tation of the fact that we are studying the ‘critical’ or gauged Wilson-Fisher scalar theory

rather than the regular or gauged free scalar theory.

In this paper we restrict our attention to the gauge groups SU(NF ) or U(NF ) (for

the fermionic theory) and SU(NB) or U(NB) for the bosonic theory. The Chern-Simons

level for the SU(NB) Chern-Simons action in the bosonic theory will be denoted by the

integer kB.7 We define levels of the fermionic theory to be the level of the pure Chern-

Simons theory obtained in the IR by giving the fermions a mass of the same sign as their

level and integrating them out. With this definition, the rank of the SU(NF ) part of the

fermionic theory is denoted by kF .8 In the large N limit the SU(N) theories and the two

U(N) theories all coincide, so we effectively treat them as identical and deal with them all

together in the computations presented in this paper.

It has been conjectured that the fermionic and bosonic theories described above are

dual to each other when their levels and ranks are related as follows

kF = −sgn(kB)NB , NF = |kB| . (1.3)

In the large N limit of these theories, instead of working with levels and ranks, it is useful

to parametrize these theories by their ‘renormalized’ levels κF , κB and ’t Hooft couplings

λF , λB defined by

κB = sgn(kB)(|kB|+NB), κF = sgn(kF )(|kF |+NF ), λF =
NF

κF
, λB =

NB

κB
. (1.4)

In terms of these variables, the conjectured duality map may be stated as

κF = −κB , λF = −sgn(λB) + λB . (1.5)

At least in the large N limit, the conjectured duality map for mass parameters between

the bosonic and fermionic theories is given by

mreg
F = −λBmcri

B . (1.6)

1.2 Recap of known results

1.2.1 Structure of the large N partition function

It was demonstrated in [19] that the partition function of theories (1.1) and (1.2) on

S2 × S1 can be evaluated (in a suitably coordinated high temperature and large N limit)

by following a two step procedure that we now outline.

5One way of giving precise meaning to the theories studied in this paper is by turning on a Yang Mill

term with a small gauge coupling and then taking the limit in which this coupling goes to zero.
6One way of thinking of this field is as a Hubbard-Stratonovich field that accounts for a φ4 interaction

between the bosons. In the limit that the φ4 coupling becomes very large this quadratic term for the

Hubbard-Stratonovich field vanishes, turning it into a Lagrange multiplier.
7In the case that the bosonic theory is U(NB), the rank of its U(1) part is either NBkB — in the case

of the so called type II theory or NBsgn(kB)(|kB |+NB) in the case of the so called type 1 theory. See [50]

for a generalization of the type 1 and type II theories to a more general set of so called (k, k′) theories.
8Once again, the case that the fermionic theory is U(NF ), the rank of its U(1) part is either NF kF — in

the case of the so called type II theory or NBsgn(kF )(|kF |+NF ) in the case of the so called type 1 theory.
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In the first step we are instructed study the theory in question on R2 × S1. Up to

gauge transformations, the zero mode of the holonomy U of the gauge field around S1 is

completely specified by its eigenvalues eiθj where j = 1 . . . N and

θj ∈ (−π, π] .

In the large N limit, all information about the eigenvalues of the holonomy matrix is

conveniently packaged into an eigenvalue distribution function ρ(α) defined by

ρ(α) =
1

N

N∑
i=1

δ(α− θi) (1.7)

To complete the first step we are instructed to evaluate the path integral of our theory

at fixed values of the holonomy zero mode U . This path integral defines the ‘free energy

functional’ v[U ],9 via the schematic equation

e−V2T
2v[U ] =

∫
R2×S1

[dφ] e−S[φ,U ] . (1.8)

where V2 is the volume of two dimensional space and T is the temperature. In order to

complete the evaluation of the partition function of interest, we are instructed to evaluate

the unitary matrix integral

ZS2×S1 =

∫
[dU ]CS e

−V2T 2v[U ]. (1.9)

(This is the second step of our procedure). Here [dU ]CS is a Chern-Simons modified Haar

measure over U(N) (see [19] for full details). In the large N limit under study, (1.9) is

most conveniently evaluated in the saddle point approximation.

In this paper we focus entirely on the first step of this programme, i.e. the evaluation

of v[U ] (or more appropriately v[ρ]) defined in (1.8). In order to investigate the actual

physics of our theories (as opposed to simply verifying duality) one would have to study

the matrix integral (1.9); we leave this to future work.

1.2.2 Free energies and gap equations

We now review what is already known about the functionals vF and vB i.e. v evaluated us-

ing (1.8) starting with the fermionic theory (1.1) and the bosonic theory (1.2) respectively.

By explicitly evaluating an infinite sum of loop diagrams of the fermionic/bosonic fields

one obtains off-shell free energy functionals vF (|cF |, ρF ) and vB(|cB|, ρB) for these two

theories respectively. Note that each of these off shell free energies depend on an auxiliary

variable (i.e. |cF | or |cB|) in addition to the holonomy eigenvalue distribution functions.

The onshell free energy functionals defined in (1.8) are functions only of the holonomy

fields; and are obtained from their off-shell counterparts by extremizing w.r.t. |cF | and |cB|
respectively. The extremum values of |cF | and |cB| are physically interpreted as thermal

9We alternately use the notation v[ρ] to denote the dependence of v on the holonomy eigenvalue distri-

bution ρ(α) (1.7) as is appropriate in the large N limit.
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pole masses in units of the temperature for the fermionic/bosonic theories respectively. In

case the off-shell free energy admits more than one extremum, we are instructed to choose

the extremum with the lowest value of the free energy. The explicit results for the fermionic

and bosonic off-shell free energies are

vB(|cB|, ρB) =
NB

6π

[
3

2
m̂cri
B c

2
B −

1

2

(
m̂cri
B

)3 − |cB|3+

+ 3

∫ π

−π
ρB(α)dα

∫ ∞
|cB |

dyy
(
log
(
1− e−y−iα−ν

)
+ log

(
1− e−y+iα+ν

)) ]
,

vF (|cF |, ρF ) =
NF

6π

[
|cF |3

(λF − sgn(XF ))

λF
+

3

2λF
m̂reg
F c2

F −
(
m̂reg
F

)3
2λF (λF − sgn(XF ))2

− 3

∫ π

−π
ρF (α)dα

∫ ∞
|cF |

dyy
(
log
(
1 + e−y−iα−ν

)
+ log

(
1 + e−y+iα+ν

)) ]
.

(1.10)

Here, m̂cri
B and m̂reg

F are the masses divided by the temperature, and ν = µ/T where µ is

a chemical potential that couples to a charge under which all fundamental fields have unit

positive charge while all antifundamental fields have unit negative charge. The quantity

XF (and an analogous quantity XB that we will need in a moment) that appears in (1.10)

are defined by

XF = 2λFC + m̂reg
F ,

XB = 2λBS − λBm̂cri
B − sgn(λB)max(|cB|, |ν|) ,

(1.11)

where

C(|cF |, ν) =
1

2

∫
dαρF (α)

(
log
(

2 cosh
(
|cF |+iα+ν

2

))
+ log

(
2 cosh

(
|cF |−iα−ν

2

)))
,

S(|cB|, ν) =
1

2

∫
dαρB(α)

(
log
(

2 sinh
(
|cB |+iα+ν

2

))
+ log

(
2 sinh

(
|cB |−iα−ν

2

)))
.

(1.12)

The expression for vF listed in (1.10) is expected to be complete. However the expres-

sion for vB was obtained by working about an unHiggsed bosonic vacuum. As we have

explained earlier in this introduction, under certain circumstances — roughly for negative

bosonic mass — we expect this to be the wrong vacuum for the bosonic theory. As a

consequence we expect the expression for vB above to be correct only in a certain paramet-

ric regime. In this paper we will calculate the bosonic free energy in the complementary

parametric regime.10

The condition that vF and vB are extremized on-shell yields an equation — called a

gap equation — that can be used to determine cF and cB on-shell. The gap equations for

the fermionic theory is

|cF | = sgn(XF )
(
2λFC(|cF |, ν) + m̂reg

F

)
= |XF | , (1.13)

10Our result for the free energy (1.10) is given in terms of the logarithmic function log(z). Here and

through the rest of this paper this function is defined so that it is real when z is real and positive, and so

that it has a branch cut on the negative real axis in the z plane.
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while the gap equation obtained by extremizing vB is

2S(|cB|, ν) = m̂cri
B . (1.14)

In appendix A below we review some properties of the gap equation. In particular we

demonstrate that the bosonic gap equation (1.14) only has solutions provided

− sgn(λB)sgn(XB) ≥ 0 . (1.15)

11When transformed to fermionic variables, (1.15) turns into the condition

sgn(λF )sgn(XF ) ≥ 0 . (1.16)

It turns out (see appendix A) that there is a one to one map between all solutions to the

bosonic gap equation (1.14) and and those solutions to the fermionic gap equation (1.13)

that obey (1.16).

However there also exist solutions to the fermionic gap equation that obey the com-

plement of (1.16). The bosonic duals of these solutions have not been understood in the

existing literature. However the duality map (see appendix A for details) can be used to

recast the existing fermionic results into bosonic variables, yielding the gap equation

2|cB| =
(

2|λB|S̃ − |λB|m̂cri
B

)
. (1.17)

where

S̃ =

{
S when |ν| < |cB|

S − 1
2|λB |(|ν| − |cB|) when |ν| > |cB|

. (1.18)

In this range of parameters the off-shell fermionic free energy can also be recast into bosonic

language; we find

vB(|cB|, ρB) =
NB

6π

[
− |m̂|

3

|λB|
+ 3|λB||m̂|S2 + 2|λB|2S3 (1.19)

− |cB|3+3

∫ π

−π
ρB(α)dα

∫ ∞
|cB |
dyy

(
log
(
1+e−y−iα−ν

)
+ log

(
1+e−y+iα+ν

))]
,

The equations (1.17) and (1.19) may be thought of as the predictions of duality for the

gap equation and free energy of the bosonic theory in the condensed phase, i.e. when (1.15)

is not obeyed. In this paper we will reproduce both these results from a direct evaluation

of the bosonic path integral in the condensed phase. The exact agreement under duality of

the bosonic and fermionic results may be thought of as a detailed new check of the duality

conjecture.

11Eq. (1.15) should be thought of as effectively describing the parametric regime in which the bosonic

free energy listed in (1.10) is valid. Outside this regime the free energy expression is obtained by the

computation in the Higgsed phase that we perform in this paper.
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1.3 Computations in the Higgsed phase of the bosonic theory

Consider the theory (1.1) when mcri
B < 0. In this situation the equation of motion for the

field σB forces the modulus of φ̄φ to take a fixed nonzero constant value determined by

mcri
B . It is useful to work in the unitary gauge. This choice of gauge rotates φ to be real

and to point in the NB-th flavour direction in SU(NB) colour space.12 As |φ| is a fixed

constant, it follows that with this choice of gauge there are no degrees of freedom in φ.

The ‘condensation’ of φ breaks SU(NB) to SU(NB − 1). The gauge bosons of SU(NB)

split up into Chern-Simons coupled SU(NB − 1) gauge bosons, NB − 1 complex massive

W bosons that transform in the fundamental of SU(NB − 1) and a single real massive Z

boson that is uncharged under SU(NB − 1). The action that governs the interactions of

these fields is easily worked out and is presented in (2.21), (2.22) below.

As in previous work (see [1] and several subsequent papers) we choose to adopt the

lightcone gauge for the unbroken SU(NB − 1) gauge symmetry. Once we make this choice

the Lagrangian is quadratic both in the SU(NB−1) gauge fields and in the Z bosons. It is

thus possible to integrate both these fields out. This process generates a non-local quartic

interaction between the W bosons. The resultant effective theory usually is called a vector

model in the literature on large N models. The W fields are SU(NB − 1) vectors with a

non-local W 4 interaction. At this point we use standard large N techniques to reduce the

finite temperature path integral over W , in the large N limit, to a set of nonlinear integral

equations for the self-energy matrix Σµν of the Wµ fields.

Using symmetries and other structural properties of the integral equations, it is possible

to parametrize the four nonzero components of Σµν by four unknown functions F1, . . . , F4

of a single variable (see (2.53)). The integral equations for Σµν reduce to a set of four

nonlinear coupled integral equations for F1, . . . , F4 (see (2.58)). Quite remarkably it turns

out to be possible to solve these equations exactly, in terms of a single real constant M . M is

the thermal mass of the W bosons and it, in turn, is required to obey a gap equation (2.101)

which perfectly reproduces the prediction from duality (1.17), at least when |cB| > |ν|.
Next we plug our solution for Σµν back into our large N expression for the partition

function. On-shell, we find that the final result for the free energy vB perfectly matches

the prediction (1.19).

2 Finite temperature partition function at large NB

2.1 The effective action in terms of W bosons

Consider the mass deformed SU(NB) critical boson theory defined by the Euclidean ac-

tion SE,13

SE = SCS + SB , SCS =

∫
d3x iεµνρ

κB
4π

Tr

(
Xµ∂νXρ −

2i

3
XµXνXρ

)
,

SB =

∫
d3x
√

det g

(
Dµφ̄D

µφ+ σB

(
φ̄φ+

NB

4π
mcri
B

))
.

(2.1)

12For definiteness sake, we work with the gauge group being SU(NB) as opposed to U(NB).
13We follow the standard convention that the Euclidean partition function is given in terms of the

Euclidean action by the path integral
∫

[dφ] e−SE[φ].
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where Dµφ = ∂µφ − iXµφ. The fields Xµ are N × N hermitian matrices. Throughout

this paper the gauge group generators are normalised such that Tr(TATB) = 1
2δAB. All

through this paper we work with the dimensional regulation scheme (see subsection 2.6

below). With this choice of regulator the constant κB that appears in (2.1) matches κB
defined in (1.4). In other words κB may be identified with the ‘renormalized’ Chern-Simons

level (see the discussion above (1.4)). We will present most of our formulae in terms of the

’t Hooft coupling defined by λB = NB
κB

(see (1.4)). Note that, by definition, |λB| ≤ 1.

The field σB plays the role of a Lagrange multiplier in the action (2.1). The σB
equation of motion

φ̄φ = −NB

4π
mcri
B , (2.2)

has no real solution when mcri
B is positive. In this ‘standard’ case one proceeds to analyse the

theory assuming that the scalar field has a vacuum at φ = 0 and tests the self consistency

of this assumption by demonstrating that the quantum effective action for σB — evaluated

by integrating out the φ fields — has a stable minimum.

In this paper we are interested in regime in which mcri
B is negative. In this case the

situation is more straightforward. Let us define the real quantity v by the equation

|κB|v2 = −NB

4π
mcri
B =⇒ v2 = −|λB|

4π
mcri
B (2.3)

a definition that is sensible precisely because mcri
B is negative. The equation (2.2) may be

rewritten as

φ̄φ = |κB|v2 . (2.4)

Clearly (2.2) now admits classical solutions, but the solution to this equation is not unique;

given any solution one can always generate a new solution by performing a spacetime

dependent SU(NB) rotation of the original solution. Of course these rotations are simply

gauge transformations, the solution to (2.2) can be made unique by making an appropriate

choice of gauge. We adopt the so called ‘unitary gauge’ in which the fundamental field

φ is always rotated to be real and to point in the NB-th direction in colour space. The

equation of motion (2.2) then determines the magnitude of φ at each point in spacetime

and we find

φi = δiNBv
√
|κB| = δiNB

√
NB

4π
|mcri

B | . (2.5)

With this choice the φ field is completely determined and effectively non dynamical, and

the original SU(NB) gauge symmetry is Higgsed down to SU(NB − 1).

Matter Chern-Simons theories are often thought of as theories which govern interaction

of dynamical matter fields with non-dynamical gauge fields. In the current situation our

gauge choice has frozen the matter field completely. So where has its degrees of freedom

gone? Of course the answer to this question is familiar; symmetry breaking of the gauge

group transfers the degrees of freedom of the matter field into the gauge field. More

precisely, those gauge bosons that originally were in the adjoint of SU(NB) — but are not

in the adjoint of the residual SU(NB − 1), inherit the matter degrees of freedom and turn
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into propagating massive W bosons after symmetry breaking. We now explain in detail

how this works.

Let (Xµ)ij represent the ijth element of the matrix valued field Xµ in (2.1). The indices

i and j run over the range i, j = 1, . . . , NB. It is useful to separate out i = NB as special

(same for j). Let a, b denote indices that run from 1, . . . , NB − 1. Then we define

(Xµ)aNB =
W a
µ√
κB

, (Xµ)NBb =
(W̄µ)b√
κB

, (Xµ)NBNB = Zµ, (Xµ)ab = (Aµ)ab−
Zµ

NB − 1
δab (2.6)

where the traceless matrices (Aµ)ab are the gauge bosons of the unbroken SU(NB−1) gauge

group and (W a
µ )∗ = (W̄µ)a, i.e. the fields Wµ and W̄µ are complex conjugates of each other.

Notice that Wµ transforms in the fundamental while W̄µ transforms in the antifundamental

of the unbroken gauge group SU(NB − 1).

Working in unitary gauge and with the decomposition described in (2.6) we obtain the

Euclidean action

SE[A,W,Z] =
iκB
4π

∫
Tr(AdA− 2i

3
AAA) +

i

4π

∫
[2W̄DW + κBZdZ − 2iZW̄W ]

+ sgn(κB)v2

∫
d3x
√

det g (κBZµZ
µ + W̄µW

µ) (2.7)

where Dµ = ∂µ − iAµ and the exterior product ABC means d3x εµνρAµBνCρ.

At the linearized order the equation of motion for the field Aµ is simply Fµν = 0,

reflecting the fact that the field Aµ has no propagating degrees of freedom. On the other

hand the linearized equations of motion for the fields Wµ and Zµ are

iεµνρ

4π
2∂νWρ + sgn(κB)v2Wµ = 0,

iεµνρ

4π
2∂νZρ + sgn(κB)v22Zµ = 0 (2.8)

It follows immediately from the divergence of (2.8) that ∂µW
µ = ∂µZ

µ = 0. The equa-

tions (2.8) are easily solved in momentum space. Let us define

W a
µ (x) =

∫
d3q

(2π)3
eix·qW a

µ (q) . (2.9)

Then, (2.8) turns into (
−ε

µνρqν
2π

+ sgn(κB)v2gµρ
)
W a
ρ (q) = 0 (2.10)

The equation (2.10) has solutions only when the matrix on the l.h.s. of (2.10) has a zero

eigenvalue. This, in turn, is the case only when

− gµνqµqν = (2πv2)2 ≡ m2
W (2.11)

It follows that the W -boson Wµ is a propagating field with mass mW = +2πv2. For every

qµ (at fixed v2) for which (2.11) is obeyed, the solution to (2.10) is uniquely determined

up to a single complex number (either W+ or W− for example). It follows, in other words,

that the fields W a
µ have the same number of degrees of freedom as a standard massive
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scalar field of mass mW . In a similar way the Z boson Zµ has as as many solutions as a

single real scalar field of mass 2mW . The total number of degrees of freedom of the W,Z

system is thus that of 2(NB − 1) + 1 = 2NB − 1 real massive scalars. This is precisely

the number of degrees of freedom in the scalar field once its modulus has been frozen by

the σB equation of motion. The condensation of φ simply ‘transmutes’ these degrees of

freedom from a spin zero scalar to a spin ±1 vector.14

2.2 Reducing the evaluation of the partition function to saddle point equations

In the rest of this section we will evaluate the finite temperature partition function

Z =

∫
[dAdWdZ] e−SE[A,W,Z] , (2.12)

where the action SE was defined in (2.7) and the path integral is evaluated over the Eu-

clidean manifold R2 × S1.

Adapting the explanation of [19] to the current context, it is possible to convince oneself

that the path integral (2.12) may be evaluated (in the coordinated high temperature and

large NB limit described in [19]) by following a two step process. The first step in this

process is to evaluate the path integral over the fields of (2.7) on R2 × S1 at fixed values

of the holonomy fields of the unbroken gauge group SU(NB − 1). The second step in

this process is to regard the result of the first path integral as an effective action for

the holonomy matrix, and then use this action to perform an integral over the holonomy

matrices. Both steps in this process can be practically carried through in the large NB

limit (the second step involves solving a saddle point equation for the holonomies). In this

section we concentrate entirely on the first step, leaving the second step for later work.

In order to proceed with our computation we need to fix the unbroken SU(NB − 1)

gauge invariance in the action (2.7). Following [1] (and more or less every other subsequent

successful large N computation in matter Chern-Simons theories) we work in the lightcone

gauge A− = 0.15 Once we adopt this gauge, the cubic term for A vanishes in the Chern-

Simons action. The action (2.7) simplifies to

SE[A,W,Z] =
i

4π

∫
d3x Tr

(
κBε

µ̃−ν̃Aµ̃∂−Aν̃
)

+

∫
d3x W̄µ( i

2π ε
µνρ∂ν + sgn(κB)v2gµρ)Wρ

+

∫
d3x

(
Zµ
(
iκB
4π ε

µνρ∂ν + gµρ|κB|v2
)
Zρ
)

+
1

2π

∫
d3x εµνρW̄ρ (Aµ− Zµ)Wν .

(2.14)

14If we take the momentum of the W boson to be in the 3 direction, it is easy to check that its polarization

is in the z = x + iy direction when κB is positive but in the z̄ = x − iy direction when κB is negative

(this follows from (2.10) using (2.11)). In other words the little group spin of our on-shell W bosons equals

sgn(κB).
15Our conventions are defined by

x± =
x1 ± ix2√

2
, p∓ =

p1 ± ip2√
2

, A∓ =
A1 ± iA2

√
2

. (2.13)

In our conventions, the nonzero components of the metric in lightcone coordinates are g+− = g−+ = g33 = 1,

the Levi-Civita symbol is given by ε+−3 = ε−+3 = −i , and the Kronecker delta is given by δµν = 1 if µ = ν

and 0 otherwise.
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where the indices µ̃, . . . run over +, 3 only. The first line of the action (2.14) contains

the quadratic kinetic terms for the SU(NB − 1) gauge fields A+ and A3.16 The second

line of (2.14) has the kinetic term for the SU(NB − 1) fundamental field Wµ and its

(antifundamental) complex conjugate W̄µ. All gauge indices (which have been suppressed

for readability) in (2.14) are contracted, i.e. the gauge index structure of all terms in this

line is W̄ aWa. The third line in (2.14) contains the kinetic term for the real, SU(NB − 1)

neutral field Zµ. The last line in (2.14) contains the only interaction terms present in the

Lagrangian. The first interaction term — which will play a crucial role in what follows

— has the gauge contraction structure W̄ aAa
bWb. This term completes the derivative in

the kinetic part of the W action into an SU(NB − 1) covariant derivative. It follows, in

particular, that the current carried by the W bosons that couples to the SU(NB−1) gauge

field A is given by

(JµA)ba =
1

2π
εµνρ(Wν)a(W̄ρ)

b . (2.15)

Finally the second interaction terms in the last line of (2.14) has the gauge structure

ZW̄ aWa. In strictly formal analogy with the discussion above we may define the ‘Z boson

current’

JµZ = − 1

2π
εµνρ(Wν)a(W̄ρ)

a . (2.16)

Note that

JµZ = −Tr JµA . (2.17)

Using these definitions the Lagrangian (2.14) can be rewritten as

SE =
i

4π

∫
d3x Tr

(
κBε

µ̃−ν̃Aµ̃∂−Aν̃
)

+

∫
d3x W̄µ( i

2π ε
µνρ∂ν + sgn(κB)v2gµρ)Wρ

+

∫
d3x Zµ

(
iκB
4π ε

µνρ∂ν + gµρ|κB|v2
)
Zρ +

∫
d3x

(
Tr(Aµ̃J

µ̃
A) + JµZZµ

)
.

(2.18)

We will find it convenient to work in Fourier space. Our conventions for moving between

real and Fourier space are given by

ψ(x) =

∫
D3q

(2π)3
eix·qψ(q) , (2.19)

where ψ(x) is any field and the measure D3q is defined as follows. In R3 (i.e. when we are

interested in zero temperature physics) the integration measure over momenta is usually

written as d3p. While this measure is perfectly correct as written at zero temperature, at

finite temperature we are working on R2 × S1. In this space the measure along R2 is the

usual dp1dp2, but the measure for the momentum p3 along S1 which we write as Dp3 is

different and is given by∫
Dp3 f(p3) =

∫ π

−π
ρB(α)dα

2π

β

∞∑
n=−∞

f

(
2πn+ α

β

)
, (2.20)

16In this paper we have worked, for definiteness, with the case in which the original gauge group of the

bosonic theory is SU(NB). Had we instead started with a U(NB) bosonic theory, the Lagrangian (2.14)

would have continued to apply with the change that Aµ would be a U(NB − 1) gauge field. All the leading

large NB computations and results presented in the rest of this this paper would go through unmodified in

this case (because U(NB − 1) and SU(NB − 1) results differ only at subleading order in 1
NB

).
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where ρB(α) is the holonomy eigenvalue distribution defined above and f is any function

of p3. The action (2.18) may then be rewritten as

SE =

∫
D3p

(2π)3
Tr

(
Aµ̃(−p)K µ̃ρ̃(p)Aρ̃(p)

2
+ J µ̃A(−p)Aµ̃(p)

)
+

∫
D3p

(2π)3

(
Zµ(−p)Kµρ

Z (p)Zρ(p)

2
+ JµZ(−p)Zµ(p)

)
+

∫
D3p

(2π)3
W̄µ(−p)Kµρ

W (p)Wρ(p) .

(2.21)

where

K µ̃ρ̃(p) =
−κB
2π

εµ̃−ρ̃p− ,

Kµρ
Z (p) =

−κB
4π

εµνρpν + |κB|v2gµρ ,

Kµρ
W (p) = − 1

2π
εµνρpν + sgn(κB)v2gµρ ,

J µ̃A(p) =
1

2π
εµ̃νρ

∫
d3q

(2π)3
Wν(p− q)W̄ρ(q) ,

JµZ(p) = −Tr JµA(p) .

(2.22)

A path integral based on the action (2.21) can be simplified by integrating out the fields Aµ
and Zµ. As each of these fields enter the action (2.21) quadratically, this integrating out

procedure can be performed exactly. For each of A and Z we have to complete squares and

evaluate a quadratic Gaussian integral. Let us first ignore the determinants and simply

classically eliminate the variables Aµ and Zµ by completing squares. This procedure gives

us an effective action for the Wµ and W̄µ fields given by

SE[W ] =

∫
D3p

(2π)3
W̄a,µ(−p)Kµρ

W (p)W a
ρ (p) (2.23)

− 1

2

∫
D3p

(2π)3

D3q

(2π)3

D3q′

(2π)3
[W̄αWβ ](q,−p) Λαβα

′β′(q − q′, p) [W̄α′Wβ′ ](q
′, p) ,

with

K−1
µ̃ν̃ (p) =

2π

κBp−
εµ̃−ν̃ , K

−1
µ̃ν̃ (p)K ν̃ρ̃(p) = δρ̃µ̃

K−1
Z,µν(p) =

−2πmZ

|κB|(p2 +m2
Z)

(
δµν − sgn(κB)εµνρ

pρ

mZ
+
pµpν
m2
Z

)
,

K−1
Z,µν(p)Kνρ

Z (p) = δρµ

Λαβα
′β′(q − q′, p) = Λαβα

′β′

A (q − q′) + Λαβα
′β′

Z (p) ,

Λαβα
′β′

A (q − q′) =
1

(2π)2
εβα

′µ̃K−1
µ̃µ̃′(q − q

′)εµ̃
′β′α ,

Λαβα
′β′

Z (p) =
1

(2π)2
εαβµK−1

Z,µµ′(p)ε
µ′α′β′ .
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We have used the notation [BA] to denote the singlet combination BaA
a where B and A are,

respectively, fields that transform in the antifundamental and fundamental of SU(NB − 1).

Moreover the expression [W̄αWβ ](q, p) in (2.23) is shorthand for

[W̄αWβ ](q, p) ≡
[
W̄α

(
q + p

2

)
Wβ

(
−q + p

2

)]
, (2.24)

(where p is the centre-of-mass momentum of the bilinear field and q its relative momentum).

We note that expressions can be further simplified to give17

Λµνµ
′ν′(q − q′, 0) =

1

2πκB(q − q′)−
(ενµ

′ν′δµ− − ενµ
′µδν

′
− )

− 1

2π|κB|mZ
(δµµ

′
δνν

′ − δµν′δνµ′) . (2.25)

For use in the next section we note the some easily verified symmetry properties of the

quartic couplings ΛA and ΛZ above:

Λµνµ
′ν′

A (p) = −Λµνµ
′ν′

A (−p) = −Λµµ
′νν′

A (p) = −Λν
′νµ′µ(p) ,

Λµνµ
′ν′

Z (0) = −Λνµµ
′ν′

Z (0) = −Λµνν
′µ′

Z (0) .
(2.26)

The final path integral we need to perform is given by

Z =

∫
[dW ]e−SE[W ] detA detZ , (2.27)

where SE[W ] is the Euclidean action listed in (2.23), detA is the determinant that results

from integrating out the Aµ fields and detZ is the determinant resulting from integrating

out the Zµ fields. We now turn to a study of these two determinants.

It is easily verified that

detA = e
−
∫ D3p

(2π)3
log

iκBp−
4π (2.28)

This determinant is formally cancelled by the Faddeev Popov determinant associated with

the gauge fixing to A− = 0 and so may be discarded.18 On the other hand we find

detZ = e
− 1

2

∫ D3p

(2π)3
log detKνρ

Z (p)
= e
−
∫ V2d2ps

(2π)2
log

(
1−eβ
√
p2s+4πv2

)
, (2.29)

where V2 is the volume of two dimensional space. Eq. (2.29) is a nontrivial function of

temperature, but contributes to the logarithm of the partition function only at order unity.

The contribution we will obtain below from integrating over the NB W bosons will clearly

be of order NB. Consequently the contribution of (2.29) to the free energy is subleading

in an expansion in 1
NB

and we ignore it in what follows.

17Here we have used εβα
′+ε3β

′α = εβα
′+(ε3+−δα−δ

β′

+ + ε3−+δα+δ
β′

− ).
18At any event this determinant and its Faddeev-Popov counterpart are both independent of temperature,

the W fields and the holonomy fields and so can be absorbed into the normalization of the path integral

(equivalently into a shift of the ground state energy) and so can be ignored.
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In summary, at leading order in the large NB limit we can simply ignore both deter-

minants detA and det Z and work with the simplified path integral

Z =

∫
[dW ]e−SE[W ] , (2.30)

with SE[W ] given in (2.23). We now proceed to evaluate this path integral in the large

NB limit.

2.3 Dynamics in terms of singlet fields

In order to exploit the simplifications of the large NB limit we imitate the analysis of [16]

and employ a variant of the Hubbard-Stratonovich trick. Specifically we introduce two

bilocal but SU(NB − 1) singlet auxiliary fields Σµν(q, p) and αµν(q, p) and introduce these

into the path integral using the identities

1 =

∫
[dα] δ

[
κBαµν(q, p) + [W̄µWν ](q, p)

]
=

∫
[dα][dΣ] exp

(∫
D3p

(2π)3

D3q

(2π)3
iΣνµ(−q,−p)

(
κBαµν(q, p) + [W̄µWν ](q, p)

)) (2.31)

Recall the definition of [W̄µWν ](q, p) from (2.24). Similarly, p is to be thought of as the

centre-of-mass momentum and q the relative momentum of the bilocal fields αµν(q, p) and

Σµν(q, p). Inserting the identity (2.31) into the path integral, the action (2.7) can be

written as

SE [α,Σ,W ]

NB
=− i

λB

∫
D3p

(2π)3

D3q

(2π)3
Σνµ(q, p)αµν(−q,−p)

+
1

NB

∫
D3q

(2π)3

D3p

(2π)3
W̄µ(−q − p

2)Qµν(q, p)Wν(q − p
2)

− 1

2λB

∫
D3p

(2π)3

D3q

(2π)3

D3q′

(2π)3
αµν(q,−p) κBΛµνµ

′ν′(q − q′, p) αµ′ν′(q′, p) .

(2.32)

where

Qµν(q, p) = (2π)3δ(p)Kµν
W (q)− iΣνµ(q, p) ,

or Q(q, p) = (2π)3δ(p)KW (q)− iΣT (q, p) schematically . (2.33)

and the quartic coupling Λ is defined in (2.23). It is useful to define

V [α] = − 1

2λB

∫
D3p

(2π)3

D3q

(2π)3

D3q′

(2π)3
αµν(q,−p) κBΛµνµ

′ν′(q − q′, p) αµ′ν′(q′, p) . (2.34)

in terms of which the effective action takes the form

SE [α,Σ,W ]

NB
=

1

NB

∫
D3q

(2π)3

D3p

(2π)3
W̄µ

(
−q − p

2

)
Qµν(q, p)Wν

(
q − p

2

)
+ V [α]− i

λB

∫
D3p

(2π)3

D3q

(2π)3
Σνµ(q, p)αµν(−q,−p).

(2.35)
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As the effective action (2.35) is a quadratic function of the W -bosons, they can be integrated

out. The result of such an integration is an effective action for the bilocal fields that takes

the schematic form

Seff[α,Σ] = NB

(
− i

λB
Σ · α+ log detQ+ V [α]

)
. (2.36)

As the action (2.36) is of order NB the subsequent integral over the Σ and α fields can

be performed — at leading order in 1/NB — in the saddle point approximation. We will

assume that the saddle point solution for Σ and α preserves translational invariance, i.e.

that the saddle point solution takes the form

Σµν(q, p) = (2π)3δ(p)Σµν(q) ,

αµν(q, p) = (2π)3δ(p)αµν(q) .
(2.37)

Under this assumption the expression for Qµν(q, p) in (2.33) simplifies to

Q(q, p) = (2π)3δ(p)Q(q) , with Q(q) = KW (q)− iΣT (q) . (2.38)

From this point on every occurrence of the symbols Σµν , αµν and Qµν in this paper will

refer to the ‘single momentum’ fields on the r.h.s. of (2.37) and (2.38) rather than the

bi-momentum field on the l.h.s. of (2.37) and (2.38).

The integral over the W bosons in (2.32) is now easily performed and gives rise to the

following effective action for the αµν and Σµν fields:

Seff[α,Σ]

NBV3
= V0[α]− i

λB

∫
D3q

(2π)3
Σνµ(q)αµν(−q) +

∫
D3q

(2π)3
log det

(
KW (q)− iΣT (q)

)
.

(2.39)

where V3 = V2β is the volume of spacetime. The quantity V0[α] is obtained by setting the

centre-of-mass momentum p to zero in the integrand of V [α] in (2.34) and dividing by V3:

V0[α] = − 1

2λB

∫
D3q

(2π)3

D3q′

(2π)3
αµν(q) κBΛµνµ

′ν′(q − q′, 0) αµ′ν′(q
′) (2.40)

2.4 A symmetry of the gap equations

Varying the action (2.39) w.r.t. Σµν(−q) yields the equation

ανµ(q) = λB
δ

iδΣµν(−q)
log det

(
KW (q)− iΣT (q)

)
. (2.41)

We might have anticipated from (2.31) that the on-shell value of αµν would turn out to

be the (appropriately normalized and colour stripped) propagator of the W bosons, while

Σµν would turn out to be the self energy in this propagator. This expectation is confirmed

by the explicit form of (2.41).

Varying (2.39) w.r.t. the αµν(−q) yields an expression for the self energy Σµν in terms

of αµν and so — using (2.41) — in terms of Σµν . Explicitly

Σνµ(q) =
i

2

∫
D3q′

(2π)3

(
κBΛµνµ

′ν′(q′ − q, 0) + κBΛµ
′ν′µν(q − q′, 0)

)
αµ′ν′(−q′) . (2.42)
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Before turning to the structure of the r.h.s. of (2.42) in detail, we pause to note an

important symmetry property of solutions to this equation. Using the explicit expressions

in (2.22) we can immediately verify that

Kµν
W (q) = Kνµ

W (−q) , i.e. KW (q) = KT
W (−q) . (2.43)

It follows that, at tree level,

α(q)µν = ανµ(−q) , i.e. α(q) = αT (−q) (2.44)

We will now demonstrate that relations analogous to (2.43) and (2.44) apply not just

at tree level but at every order in perturbation theory.

Let us first work at the lowest nontrivial order in perturbation theory. In order to ob-

tain the ‘one loop’ contribution to the W boson self energy we plug the tree level propagator

αµν (which is of order λB) into the r.h.s. of the equation (2.45)

Σνµ(q) =
i

4π

∫
D3q′

(2π)3

(
ενµ
′ν′δµ− − ενµ

′µδν
′
− − εν

′µνδµ
′

− + εν
′µµ′δν−

) αµ′ν′(−q′)
(q′ − q)−

+

− isgn(κB)

2πmZ

∫
D3q′

(2π)3
(δµµ

′
δνν

′ − δµν′δνµ′)αµ′ν′(−q′) . (2.45)

The resultant expression is of order λB and is the first order (or one loop) correction to

Σµν . Using (2.44), it is easy to verify that the second line of (2.45) vanishes. The first line

of (2.45) does not vanish and gives a nonzero one loop contribution to Σµν . Using (2.44)

however, it is easy to convince oneself that this first order correction to Σµν obeys

Σµν(q) = Σνµ(−q) , i.e. Σ(q) = ΣT (−q) . (2.46)

It follows that up to first order in λB

Qµν(q) = Qνµ(−q) , i.e. Q(q) = QT (−q) . (2.47)

which implies that αµν obeys (2.44) up to first subleading order in λB.

This argument can now be iterated. In order to obtain the ‘two loop’ contribution to

Σµν one plugs the O(λ2
B) part of αµν into the r.h.s. of (2.45) and evaluates the integrals

on the r.h.s. The fact that this correction piece in αµν also obeys (2.44) implies the two

loop correction to Σµν receives no contribution from the second line of (2.45). The entire

contribution to this two loop correction comes from the first line of (2.45), which, in turn,

now obeys (2.46). It follows that Qµν obeys (2.47) to second order. This implies αµν
obeys (2.44) upto first subleading order in λB and so on. Iterating the argument above

indefinitely we conclude

• The equations (2.47), (2.44) and (2.46) are obeyed at every order in the λB expansion.

• The contribution of second line in (2.45) vanishes at every order in the λB expansion.
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Σ(q) =
q′

q − q′

+

q′

Figure 1. Gap equation.

Note that the second line in (2.45) summarizes the contribution of Zµ exchange to Σµν .

The fact that this line does not contribute to the gap equation at any order in λB, and so

can just be dropped, tells us that that diagrams involving propagating Zµ bosons do not

contribute to the partition function at leading order in the large NB limit. Note that this

conclusion does not follow from large NB counting, but instead follows from the slightly

more detailed analysis presented above.19

In summary, our saddle-point equations or gap equations take the final form:20

ανµ(q) = λB
δ

iδΣµν(−q)
log det

(
KW (q)− iΣT (q)

)
= −λB(Q−1(q))νµ , (2.48)

Σνµ(q) = − i

4π

∫
D3q′

(2π)3

(
ενµ
′ν′δµ− − ενµ

′µδν
′
− − εν

′µνδµ
′

− + εν
′µµ′δν−

) αµ′ν′(q
′)

(q′ + q)−
. (2.49)

where Σµν , αµν and Qµν enjoy the symmetry properties (2.46), (2.46) and (2.47) respec-

tively.

Our final gap equation, (2.49), may be diagrammatically summarized as in figure 1.

The l.h.s. of the figure is the W boson self energy. On the r.h.s. of the figure the double

lines denote the exact W boson propagators, the dashed line is the Z boson propagator

while the wiggly line is the SU(NB − 1) gauge boson propagator. The r.h.s. of (2.49) is

entirely captured by the first figure on the r.h.s. of figure 1. This is consistent because

the second figure on the r.h.s. of figure 1 (i.e. the contribution to Σ of Z boson exchange)

vanishes, as we have demonstrated above.

2.5 Reduction to integral equations of a single variable

Notice that the r.h.s. of the gap equation (2.49) or (2.55) for Σ(q) is independent of q3. It

follows that each component of Σµν is independent of q3.

The various components of Σµν can, in general, depend on q+ and q−. To further

constrain this dependence we note that our gauge choice A− = 0 preserves an SO(2)

subgroup of the Euclidean isometry group SO(3) of our theory. We choose conventions

so that q± carries unit positive(negative) charge under this subgroup; the general rule is

19At the diagrammatic level this is the assertion that ‘tadpole’ contributions to Σµν — the second graph

on the r.h.s. of figure 1 vanishes at all orders.
20We have changed variables from −q′ to q′ in going from (2.45) to (2.49). To get the second equal-

ity in (2.48) we have used that for any non-singular matrix M we have log detM = Tr logM =⇒
δ(log detM) = Tr(M−1δM).
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that every lower + and upper − sign carries positive unit charge, while every lower − and

upper + sign carries negative unit charge. It is easy to verify that, with these conventions,

SO(2) rotations are a symmetry of the gap equations. It follows that any given component

of Σµν must be given by a number of explicit powers of q± (determined by the charge of

that component) times an unknown function of

w = q2
s = 2q+q− . (2.50)

More specifically, we choose to parametrize non-zero components of Σµν as

Σ−−(q) =
1

2πq2
−
F1(w) ,

Σ+−(q) = +Σ−+(q) =
1

2π
F2(w) ,

Σ3−(q) = −Σ−3(q) =
1

2πq−
F3(w) ,

Σ3+(q) = −Σ+3(q) =
q−
2π
F4(w) .

(2.51)

We will now recast the gap equations as equations for four unknown single variable functions

F1, . . . , F4.

To start with it is useful to express the matrix Qµν explicitly in terms of the the

functions F1, . . . , F4. We define the quantity m as

m = −
λBm

cri
B

2
= sgn(κB)2πv2 , (2.52)

where we have used (2.3) to get the second equality above (see also (A.13) of appendix A).

Note that |m| = |mW | (see (2.11)) and also the fact that m changes sign as κB changes

sign. With this notation we find the quadratic kernel Qµν(q) as defined in (2.38) (the

matrix is presented in the order +, −, 3)

Qµν(q) =
1

2π

 0 −i(F2 + im+ q3) iq−(1− F4)

−i(F2 + im− q3) − i
q2−
F1(w) − i

q−

(
F3 + w

2

)
−iq−(1− F4) i

q−

(
F3 + w

2

)
m

 . (2.53)

The zeros of determinant of the matrix Qµν are the pole mass of the propagator. The

determinant is given by

detQ = − m

8π3
(q2 +M2(w))

q2 = w + q2
3

M2(w) = −(F2 + im)2 − i
mF1(1− F4)2 − i

m(F2 + im)(w + 2F3)(1− F4)− w .

(2.54)

With these formulae at hand now we proceed to give explicit form of the gap equations

for Σ, α.
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The gap equation (2.49) is given by

Σ33(q) = 0 ,

Σ++(q) = 0 ,

Σ−−(q) = − 1

π

∫
D3q′

(2π)3

1

(q + q′)−
α3+(q′) ,

Σ+−(q) = − 1

2π

∫
D3q′

(2π)3

1

(q + q′)−
α−3(q′) ,

Σ3−(q) =
1

2π

∫
D3q′

(2π)3

1

(q + q′)−
α−+(q′) ,

Σ3+(q) = − 1

2π

∫
D3q′

(2π)3

1

(q + q′)−
α−−(q′) .

(2.55)

It follows from (2.48) that the components of α(q) = −λBQ(q)−1 are

α++(q) =
λB

(2π)2detQ

1

q2
−

(
imF1 +

(
F3 + w

2

)2)
,

α−+(q) =
λB

(2π)2detQ

(
(1− F4)

(
F3 + w

2

)
− im(F2 + im− q3)

)
,

α−−(q) =
λB

(2π)2detQ
q2
−(1− F4)2 ,

α−3(q) = − λB
(2π)2detQ

q−(1− F4)(F2 + im− q3) ,

α3+(q) = − λB
(2π)2detQ

1

q−

(
F1(1− F4) + (F2 + im− q3)

(
F3 + w

2

))
,

α33(q) = − λB
(2π)2detQ

(
(F2 + im)2 − q2

3

)
. (2.56)

Inserting (2.56) into (2.49) we find the explicit coupled integral equations:

1

q2
−
F1(w) =

λB
(2π)2

∫
D3q′

(2π)3

2F1(1− F4) + (F2 + im)(2F3 + w′)

detQ(q′)(q + q′)−q′−
,

F2(w) =
λB

(2π)2

∫
D3q′

(2π)3

(1− F4)(F2 + im− q′3)q′−
detQ(q′)(q + q′)−

,

1

q−
F3(w) =

λB
(2π)2

∫
D3q′

(2π)3

(
F3 + w′

2

)
(1− F4)− im(F2 + im− q′3)

detQ(q′)(q + q′)−
,

q−F4(w) = − λB
(2π)2

∫
D3q′

(2π)3

(1− F4)2q′2−
detQ(q′)(q + q′)−

. (2.57)

(All the functions F1, F2, F3 and F4 on the r.h.s. of (2.57) and have the argument w′.)
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Substituting the expression for detQ from (2.54) we obtain

1

q2
−
F1(w) = −2πλB

m

∫
D3q′

(2π)3

2F1(1− F4) + (F2 + im)(2F3 + w′)

((q′3)2 + w′ +M2(w′)) ((q + q′)−q′−)
,

F2(w) = −2πλB
m

∫
D3q′

(2π)3

(1− F4)(F2 + im− q′3)q′−
((q′3)2 + w′ +M2(w′)) (q + q′)−

,

1

q−
F3(w) = −2πλB

m

∫
D3q′

(2π)3

(
F3 + w′

2

)
(1− F4)− im(F2 + im− q′3)

((q′3)2 + w′ +M2(w′)) (q + q′)−
,

q−F4(w) =
2πλB
m

∫
D3q′

(2π)3

(1− F4)2q′2−
((q′3)2 + w′ +M2(w′)) (q + q′)−

. (2.58)

The dependence of the integrands on the r.h.s. of (2.58) on q′3 is completely explicit since

the unknown functions on the r.h.s. are all functions of w′. As a consequence the integral

(sum) over q′3 is easily evaluated as we now demonstrate. Recall, from equation (2.20),

that the ‘integral over q3’ is really a discrete sum∫
Dq3

2π
f(q3) =

∫
dαρB(α)β−1

∑
n∈Z

f

(
α+ 2πn

β

)
. (2.59)

To proceed, we make the assumption that the holonomy distribution ρB(α) is an even

function of α:

ρB(α) = ρB(−α) . (2.60)

It follows that all integrals with an odd number of q′3 factors vanish in (2.58). In terms of

the function χ(z) defined as

χ(z) ≡ −(2π)3

mβ

∫
dαρB(α)

∑
n∈Z

1(
2π nβ + α

β

)2
+ (z +M2(z))

, (2.61)

= −2π3

m

∫
dαρB(α)

1√
z +M2(z)

×

×
(

coth
(
β
2

(√
z +M2(z) + iαβ

))
+ coth

(
β
2

(√
z +M2(z)− iαβ

)))
,

the integral equations (2.58) become

1

q2
−
F1(w) =

λB
(2π)2

∫
d2q′

(2π)2
χ(w′)

2F1(1− F4) + (F2 + im)(2F3 + w′)

(q + q′)−q′−
,

F2(w) =
λB

(2π)2

∫
d2q′

(2π)2
χ(w′)

(1− F4)(F2 + im)q′−
(q + q′)−

,

1

q−
F3(w) =

λB
(2π)2

∫
d2q′

(2π)2
χ(w′)

(
F3 + w′

2

)
(1− F4)− im(F2 + im)

(q + q′)−
,

q−F4(w) = − λB
(2π)2

∫
d2q′

(2π)2
χ(w′)

(1− F4)2q′2−
(q + q′)−

. (2.62)
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In the next section we will frequently require the (indefinite) integral of χ(z) defined

in (2.61) with respect to z. This integral is easily evaluated; we find

ξ(z) = − 1

2(2π)3

∫ z

dw′χ(w′) , (2.63)

=
1

2mβ

∫
dαρB(α)

[
log 2 sinh

(
β
2

(√
z +M2(z) + iαβ

))
+

+ log 2 sinh
(
β
2

(√
z +M2(z)− iαβ

))]
.

2.6 Dimensional regularization

Later in this section we will encounter divergent integrals that will need to be regulated.

Following [1] we will perform this regulation by employing dimensionally regulated version

of the summation in (2.61) which effectively replaces (2.61) by (see around Sec (2.2) of [1]

for details)

χ(z) =− 2π3

m

∫
dαρB(α)

1(√
z +M2(z)

)1+ε×

×
[
coth

(
β
2

(√
z +M2(z) + iαβ

))
+ coth

(
β
2

(√
z +M2(z)− iαβ

))]
, (2.64)

and effectively replaces (2.63) by

ξ(z) =
1

2mβ

∫
dαρB(α)

1(√
z +M2(z)

)ε× (2.65)

×
[
log 2 sinh

(
β
2

(√
z +M2(z) + iαβ

))
+ log 2 sinh

(
β
2

(√
z +M2(z)− iαβ

))]
,

where ε is an infinitesimal that is taken to zero at the end of the computation (there are

additional terms in the indefinite integral of (2.64) which are proportional to ε. However,

since we always take the limit ε→ 0, we drop these extra terms from (2.65)).

2.7 Performing the angular integrals

While the r.h.s. of (2.62) is given in terms of two dimensional integrals d2q′ the unknown

functions on the r.h.s. are functions only of w′. For this reason we can explicitly perform

all angular integrals in the r.h.s. of the four equations (2.62). Let q′− = 1√
2
q′se

iη. It is easy

to check that∫ 2π

0

dη

2π

1

q− + q′−
=

1

q−
Θ(qs − q′s) ,

∫ 2π

0

dη

2π

1

(q− + q′−)q′−
= − 1

q2
−

Θ(qs − q′s) , (2.66)∫ 2π

0

dη

2π

q′−
q− + q′−

= Θ(q′s − qs) ,
∫ 2π

0

dη

2π

q′2−
q− + q′−

= −q−Θ(q′s − qs) . (2.67)
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Using these results to perform all angular integrals on the r.h.s. of (2.62) we find that the

integral equations take the form

F1(w) = − λB
(2π)2

∫ w

0

dw′

4π
χ(w′)

(
2F1(1− F4) + (F2 + im)(2F3 + w′)

)
,

F2(w) =
λB

(2π)2

∫ ∞
w

dw′

4π
χ(w′)(1− F4)(F2 + im) ,

F3(w) =
λB

(2π)2

∫ w

0

dw′

4π
χ(w′)

((
F3 + w′

2

)
(1− F4)− im(F2 + im)

)
,

F4(w) =
λB

(2π)2

∫ ∞
w

dw′

4π
χ(w′)(1− F4)2 . (2.68)

2.8 Differential equations for the unknowns

We obtain the following differential equations for the functions F1(w), . . . , F4(w) by differ-

entiating them with respect to their arguments:

F ′1(w) = − λB
2(2π)3

χ(w) (2F1(1− F4) + (F2 + im)(2F3 + w)) ,

F ′2(w) = − λB
2(2π)3

χ(w)(1− F4)(F2 + im) ,

F ′3(w) =
λB

2(2π)3
χ(w)

((
F3 + w

2

)
(1− F4)− im(F2 + im)

)
,

F ′4(w) = − λB
2(2π)3

χ(w)(1− F4)2 .

(2.69)

Now it follows from the definition of M2(w) in (2.54) that when (2.69) are satisfied

M ′(w) = − 1

2M(w)

(
F4(w) +

iF2(w)(1− F4(w))

m

)
. (2.70)

We will return to this equation in a bit.

2.9 Solving the gap equations

2.9.1 Determining F4

The integral equation for the function F4 (see (2.68)) can be solved very simply in multiple

different ways. To begin with we solve this equation order by order in perturbation theory.

We proceed by expanding F4 in a perturbative expansion in λB

F4 = f0 + λBf1 + λ2
Bf2 + · · · . (2.71)

and simply plug this ansatz back in to the integral equation. The equation takes the form

f0 + λBf1 + λ2
Bf2 + · · · = λB

2(2π)3

∫ ∞
w

dw′χ(w′)(f0 − 1 + λBf1 + λ2
Bf2 + · · · )2 . (2.72)

and yields the following infinite sequence of equations

f0 = 0 , f1 =
1

2(2π)3

∫ ∞
w

dw′χ(w′) , f2 = − 1

2(2π)3

∫ ∞
w

dw′χ(w′)2f1(w′) , . . . (2.73)
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Each of these equations can be solved in a straightforward manner by integration. The

only subtlety here is that, at every order, the indefinite integrals in question diverge at

large w′. We use the dimensional regulation scheme outlined in subsection 2.6 to define

these divergent integrals. In order to proceed with our analysis we assume that the mass

parameter M(z) tends to a constant M at least at large z; in the next subsection we will

demonstrate that this assumption is self-consistent.

In order to see how this works lets start with the second equation in (2.73). It follows

immediately from the definition (2.63) that

f1 = ξ(w)− ξ(∞) . (2.74)

The problem with (2.74) is that ξ(∞) is divergent; indeed it is easily verified from the

regularized version (2.65) that at large w

ξ(w)→ 1

2m
(
√
w +M2(w))1−ε ≡ ξasymp(w) . (2.75)

In order to make sense of (2.74) we proceed as follows. Consider the function B(w)

B(w) =
1− ε

4m(
√
w +M2(w))1+ε

B(z) is defined so as to obey the identity

B(z) = ξ′asymp(z)

Now we evaluate the integral for f1(w) in (2.73) as follows:

− 2(2π)3f1 =

∫ ∞
w

dw′
(
χ(w′)−B(w′)

)
+

∫ ∞
w

B(w′) (2.76)

The first integral in (2.76) is now convergent and evaluates to

−ξ(w) + ξasymp(w) ,

(note that the contributions at infinity cancel). The second integral in (2.76) is divergent

and is evaluated using dimensional regularization. It evaluates to

−ξasymp(w) .

Adding together the two terms we find the well defined expression

f1(w) = ξ(w) . (2.77)

Notice that the net effect of our dimensional regulation scheme was to simply drop the

surface term at infinity. It is easy to convince oneself that this scheme effectively does the

same thing (i.e. drops all surface terms at infinity) in all the integrals that appear in the

perturbative evaluation of F4. Adopting this prescription we find

F4(w) = λBξ(w)− λ2
Bξ(w)2 + λ3

Bξ(w)3 − · · ·

= 1−
∞∑
n=0

(−λB)n ξ(w)n = 1− 1

1 + λBξ(w)
. (2.78)
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Summing up, we have

1− F4 =
1

1 + λBξ(w)
. (2.79)

As a consistency check, it is easy to verify that our solution (2.79) obeys its differential

equation (fourth of (2.69)). Indeed this differential equation is easy to solve in generality;

its most general solution is
1

1− F4(w)
= λBξ(w) + c4 , (2.80)

where c4 is an integration constant. Clearly (2.80) reduces to (2.79) if we choose

c4 = 1 . (2.81)

2.9.2 A subtlety in F4

In order to complete the process of checking our solution, let us directly check that the

solution (2.79) obeys the integral equation (2.68) which we reproduce here for clarity.

F4(w) =
λB

(2π)2

∫ ∞
w

dw′

4π
χ(w′)(1− F4)2 (2.82)

We will find that this check helps us better understand the procedure we used to obtain

the solution (2.79), by contrasting it with an equally reasonable sounding procedure that

does not work.

Let F4 be any solution of the fourth of (2.69), i.e. a solution of the form (2.80) with

any value of c4. For every such solution

(1− F4)2 =
1

(λBξ(w) + c4)2
(2.83)

Inserting this into the r.h.s. of (2.82) and using the fact that

χ(w)dw = −2(2π)3dξ (2.84)

we conclude that the r.h.s. of (2.82) evaluates to

− 1

λBξ(w) + c4
= F4 − 1

(where we have used the fact that ξ diverges as w → ∞ — note in particular that the

integral on the r.h.s. of (2.82) is convergent). On the other hand the l.h.s. of (2.82) is F4.

As F4 6= F4−1 we find that the r.h.s. and l.h.s. of these equations do not agree for any value

of c4. It follows, in other words, that no solution of the differential equations (2.69) obeys

the integral equation (2.82). As we have earlier argued that every solution of the integral

equations (e.g. (2.82)) obey the differential equations (2.69), we are forced to conclude that

the integral equation (2.82) has no solutions!

The conclusion of the previous paragraph appears to be in direct conflict with the fact

that — in the previous subsubsection — we have actually found an explicit solution —

namely (2.79) — of the equation (2.82). To make this contradiction as sharp as possible
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let us specialize the analysis in the paragraph around (2.83) to the special case c4 = 1. In

this case the solution presented in (2.83) is the perturbative solution (2.79). How can it be

that the analysis in the paragraph around (2.83) demonstrates that this solution does not

obey the integral equation (2.82), while the analysis earlier in this subsection demonstrates

that it does?

The answer to this question is simply that the expansion of the quantity (1 − F4)2 on

the r.h.s. of (2.82) in a power series in λB does not commute with the integral over w′

in (2.82). More precisely let us contrast two methods of evaluating the integral (2.82) that

give different answers.

The first method — the one adopted in this subsubsection — is to performing the sum

over λB first (as in (2.78)), then to notice that the resultant integrand defines a convergent

integral in (2.82), and to evaluate the integral.

The second method — adopted in subsubsection 2.9.1 — on the other hand, is to

first expand the integrand on the r.h.s. of (2.82) in a power series in λB, perform the

integral order by order for each of the coefficients of λnB and then to sum the final power

series of results. Crucially the integrals encountered at every order in the λB expansion

are divergent and need to be defined. Defining the integrals by a form of dimensional

regularization yields a result for the r.h.s. that agrees with the l.h.s. of (2.82).

The second method is guaranteed to reproduce the results of Feynman diagram based

perturbation theory (because it simply is the integral equation’s way of generating Feynman

diagrams loop by loop). As we require all our results to agree with perturbation theory we

will take the view that the second method is the correct one all through this paper, and

so (2.79) is the correct solution for F4.

We will not encounter similar subtleties in any of the other integral equations in this

paper.

2.9.3 A curious observation

In this subsection we note a curious fact relating to the subtlety of the last subsection. It

turns out that there is a second, apparently ad hoc — but nonetheless interesting procedure

that yields the same answer for our W boson propagator as the procedure outlined in the

previous subsection and employed in the rest of this paper. This subsection is devoted to

a description of this alternate procedure.

The analysis of this subsection will be used no where else in this paper — and may

turn out to be a curiosity with no deeper significance. The impatient reader should feel

free to skip over to the next subsection.

The ad hoc procedure we will employ in this subsection is to modify our starting action

— (2.18) — in the manner that we now describe: we simply drop the term proportional

to W+∂−W3 that occurs in the expansion of the first term in the second line of (2.18). If

we then rerun the analysis of this paper but starting with this modified action we find, in

particular, that

Qµν(q) =
1

2π

 0 −i(F2 + im+ q3) iq−(−F̃4)

−i(F2 + im− q3) − i
q2−
F1(w) − i

q−

(
F3 + w

2

)
−iq−(−F̃4) i

q−

(
F3 + w

2

)
m

 . (2.85)
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where F̃4 parametrizes the self energy contribution to Σ3+ in the modified problem, in

exactly the same way that F4 parametrized the same quantity in the original problem.21

Proceeding as above, we find that our modified problem leads to the integral equations

F1(w) = − λB
(2π)2

∫ w

0

dw′

4π
χ(w′)

(
2F1(−F̃4) + (F2 + im)(2F3 + w′)

)
,

F2(w) =
λB

(2π)2

∫ ∞
w

dw′

4π
χ(w′)(−F̃4)(F2 + im) ,

F3(w) =
λB

(2π)2

∫ w

0

dw′

4π
χ(w′)

((
F3 + w′

2

)
(−F̃4)− im(F2 + im)

)
,

F̃4(w) =
λB

(2π)2

∫ ∞
w

dw′

4π
χ(w′)(−F̃4)2 . (2.86)

In particular the last of (2.86) is easily solved at finite λB (there is not need to expand

in λB before performing the integrals) and we find

F̃4 = F4 − 1 = − 1

1 + λBξ(w)
(2.87)

Comparing (2.85), (2.53) and (2.87), it follows that Qµν of this subsection is now identical

— as a function of F2, F3 and F1 — to Qµν of the actual problem. The remaining integral

equations of modified problem — the first three of (2.86) with (2.87) plugged in — are

now identical to the integral equations (2.68) of the original problem with (2.79) plugged

in. It follows, in particular, that from this point on, the equations for the two problems

are the same.

Let us summarize. There are two procedures that yield the same thermal propagator.

The first uses the actual classical action of our system as its starting point but evaluates

all integrals by expanding out the integrands term by term in an expansion in λB and then

evaluating the integrals that appear at each order using the dimensional regularization

scheme. This is the procedure adopted in earlier subsections and in the rest of this paper.

In the second procedure we evaluate all integrals first (before performing any expansions

in λB that may be of interest). The second procedure gives us the same result as the first,

if we modify the starting action with a very particular ‘counterterm’.

In other words it appears that the two different regulation schemes (using dimensional

regularization before or after expanding in λB) differ by a very particular counterterm. It

is, of course, usual for different regulation schemes to effectively differ by counterterms. The

novelty in the current situation is that the needed counterterm occurs at leading (classical)

order in the loop expansion rather than at higher orders as is more usual.

2.9.4 Determining F2

We will now determine the function F2. The differential equation for F2 is given by

F ′2(w) = − λB
2(2π)3

χ(w)(1− F4)(F2 + im) . (2.88)

21In principle we should also replace F2 by F̃2, and similarly for F3 and F1, but it will turn out below

that F̃i = Fi for i = 1 . . . 3, so we will avoid cluttering the notation.
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Plugging in the expression for 1 − F4 from (2.79) and using (2.63), we have

d(F2 + im)

F2 + im
=
d(1 + λBξ(w))

1 + λBξ(w)
, (2.89)

which gives the solution

F2(w) + im = c2(1 + λBξ(w)) , (2.90)

where c2 is an integration constant.

In order to determine the constant c2 we plug (2.90) into the second of (2.68). Us-

ing (2.84) we see that the r.h.s. of that integral equation evaluates to

− c2λB

∫ ∞
w

dξ(w) (2.91)

The integral (2.91) is divergent and must be evaluated after dimensional regularization.

Exactly as in subsubsection 2.9.1, the net result of this regulation scheme is to simply drop

the surface term at infinity. We conclude that the integral in (2.91) evaluates to

c2λB ξ(w).

The integral equation is satisfied if this expression also equals F2. Using (2.90) this condi-

tion takes the form

c2(1 + λBξ(w))− im = c2λBξ(w) i.e. c2 = im . (2.92)

We conclude that the unknown function F2 is given by

F2(w) = imλBξ(w) . (2.93)

2.9.5 Determination of the mass

Plugging (2.93) and (2.79) into (2.70) we find

M ′(w) = 0, (2.94)

In other words the complicated mass function M(w), listed in (2.54) is just a constant

independent of w. We pause to recall why this result is extremely satisfying, both from

the physical and the technical point of view.

Recall that poles of the W boson lie at the zeroes of the determinant of Q. Now

the poles of W boson particles have gauge invariant physical content (they determine the

dispersion relation of the W bosons). At zero temperature we expect this dispersion to

be Lorentz invariant. It follows from (2.54) that this is only the case if M is a constant

independent of w. The fact that M comes out to be constant and serves as a nontrivial

consistency check on our results at zero temperature.22

22Note that the full W boson propagator — which is gauge dependent and so unphysical — is far from

Lorentz invariant in our gauge. It is gratifying that, nonetheless, the gauge invariant data in the propagator

is Lorentz invariant.
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It is not immediately clear that there is a clear physical reason to expect that M had

to be constant, independent of w, even away from the zero temperature limit. However

the fact that this turns out to be the case is satisfying for two reasons. First, it allows

us to give a clear interpretation to the quantity M ; M is the ‘thermal mass’ of the W

bosons. More importantly, at the technical level, the fact that M is a constant turns the

function χ into a completely known function of w (it was previously known in terms of

the unknown function M(w)). This fact turns the differential equations for F3 and F1 into

linear differential equations that are easily solved. We will return to this point in the next

subsubsection.

Of course the constant value of the mass M is not a free parameter; it is itself deter-

mined in terms of the parameters of the theory and the temperature. In the rest of this

subsubsection we will find an equation that determines the value of M .

Inserting the relation

− i

m
(F2 + im)(1− F4) = 1 , (2.95)

into the expression for M2 in (2.54) we conclude that

M2 = −(F2 + im)2 − i
mF1(1− F4)2 + 2F3 . (2.96)

Eq. (2.96) is a functional relationship that holds at every value of w. The r.h.s. of (2.96)

involves the functions F3 and F1 that we still do not know at general values of w. However

the structure of the last two equations (2.62) ensures that F3(0) = F1(0) = 0. Evaluat-

ing (2.96) at w = 0 we find the equation

M2 = −(F2(0) + im)2 = m2 (λBξ(0) + 1)2 . (2.97)

Recall

ξ(0) =
1

2βm

∫
dαρB(α)

[
log 2 sinh

(
β
2

(
M + iαβ

))
+ log 2 sinh

(
β
2

(
M − iαβ

))]
=
S
mβ

.

(2.98)

where, we recall from (1.12), that S = S(M, 0). To proceed, we define the dimensionless

quantities

cB = βM , m̂ = βm . (2.99)

It follows that (2.97) can be recast in terms of cB and m̂ into the equation

c2
B =

(
m̂+

λB
2

∫ π

−π
dαρ(α)

[
log 2 sinh

(
cB+iα

2

)
+ log 2 sinh

(
cB−iα

2

)])2

. (2.100)

Using (2.98) and the expression for m̂ in terms of m̂cri
B from (A.13), the above may be

rewritten as

(2cB)2 =
(
−λBm̂cri

B + 2λBS
)2

=
(
−|λB|m̂cri

B + 2|λB|S
)2

(2.101)

This is our final gap equation for the thermal mass of the W bosons.
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2.9.6 Solving for F3 and F1

We next focus on the differential equations for F1 and F3. We define the function g(w):

g(w) = λBξ(w) + 1 =
1

im
(F2 + im) =

1

1− F4
, with g′(w) = − λB

2(2π)3
χ(w) . (2.102)

Then, the differential equation for F3 becomes

F ′3(w) +
g′(w)

g(w)

(
F3(w) + w

2

)
+m2g′(w)g(w) = 0 , (2.103)

which we rewrite as

(
F ′3(w) + 1

2

)
+
g′(w)

g(w)

(
F3(w) + w

2

)
+m2g′(w)g(w)− 1

2 = 0((
F3(w) + w

2

)
g(w)

)′
+m2g′(w)g(w)2 − 1

2g(w) = 0

(2.104)

Integral equation for F3 requires F3(0) = 0. With this boundary condition above equation

can be integrated to give

F3(w) = −w
2

+
1

g(w)

(
1

2
I(w)− m2

3
(g(w)3 − g(0)3)

)
(2.105)

where we have defined

I(w) =

∫ w

0
g(z)dz (2.106)

To get a simplified equation for F1 we use (2.54) to eliminate F3 from r.h.s. of (2.69)

(M2 is independent of w as follows from previous discussions) to give a differential equation

for F1

F ′1(w)− g′(w)

g(w)
F1(w) + img′(w)g(w)(g(w)2m2 −M2 − w) = 0(
F1(w)

g(w)

)′
+ img′(w)(g(w)2m2 −M2 − w) = 0

(2.107)

Integral equation for F1 requires F1(0) = 0. With this boundary condition above equation

can be integrated to give

F1(w) = img(w)

(
M2(g(w)− g(0))− m2

3
(g(w)3 − g(0)3) +

∫ w

0
zg′(z)dz

)
= img(w)

(
M2(g(w)− g(0))− m2

3
(g(w)3 − g(0)3) + wg(w)− I(w)

) (2.108)

Using formula for mass (2.97), it can be easily checked that these solutions indeed sat-

isfy (2.54) as required by consistency. We next plug these solutions into the effective

action and obtain the free energy functional vB. Before that, we take a short digression

and discuss the case with chemical potential.

– 30 –



J
H
E
P
1
1
(
2
0
1
8
)
1
7
7

2.9.7 Adding a chemical potential

The SU(NB) theory (2.1) enjoys invariance under a global U(1) symmetry. The action of

the U(1) global symmetry element eiα on the fundamental multiplet is given by

φ→ eiαU(α)φ, φ̄→ φ̄U †(α)e−iα, Aµ → U(α)AµU
†(α) (2.109)

where U(α) is any one parameter choice of SU(NB) gauge transformations. As U(α)

generate gauge transformations, different choices of U(α) all actually generate the same

symmetry. The matrix U(α) can be chosen in any convenient manner.

We will find it convenient to choose U(α) to be given by

U(α) = Diag
(
e
i α
NB−1 , e

i α
NB−1 , . . . , e

i α
NB−1 , e−iα

)
(2.110)

With this choice the action (2.109) preserves our unitary gauge choice (2.5). As we have

explained above, this choice of gauge freezes out all φ degrees of freedom. The gauge

fields of the unbroken SU(NB−1) gauge group transform trivially under (2.109), as do the

neutral Z bosons. On the other hand the fundamental W bosons transform under (2.110)

like objects of charge − NB
NB−1 . In the large NB limit under study in this paper, the charge

of these W bosons is just −1.

The reader may find herself surprised by the fact that the global charge of a Wµ boson

differs (although ever so slightly) from −1. In fact this charge renormalization is actually

natural in the SU(NB) theory with which we are working. Recall that neither φ (in the

unHiggsed phase) nor Wµ (in the Higgsed phase) are gauge invariant operators. We can

build gauge invariant operators by contracting φ (or W ) with their complex conjugates,

but such operators carry no global charge. The simplest charged gauge invariant operator

is a ‘baryon’ build by contracting NB φ,23 or NB−1 Wµ operators. In the unHiggsed phase

such a baryon clearly carries global symmetry charge NB. This precisely matches the global

symmetry charge of a baryon operator made out of NB − 1 W̄µ fields precisely because of

the charge ‘renormalization’ described above. In other words the charge renormalization

is precisely what is needed in order to ensure that the charges of gauge invariant operators

do not jump as we move from the Higgsed to the unHiggsed phase.24

There is another way of understanding fact that the ratio of the magnitude of the charge

of a W boson and the original φ field is NB
NB−1 using duality. Let Bµ be the background

gauge field that couples to the global U(1) symmetry of the U(NF )kF fermionic theory. The

coupling in question is proportional to
∫
Bda where a is the U(1) part of the dynamical

U(NF ) fermionic gauge field. A single fermionic particle traps da flux proportional to 1
|kF |

when mF and kF have the same sign (i.e. in the dual of the un Higgsed phase) but da

flux proportional to 1
|kF |−1 when mF and kF have opposite signs, i.e. in the dual to of the

Higgsed phase. It follows that the ratio of charges of excitations in the (fermionic dual to)

the unHiggsed and Higgsed phases is |kF |
|kF |−1 , which exactly maps to NB

NB−1 under duality.

23In our schematic discussion we use the same notation for φ and any of its derivatives; similarly for Wµ.
24Note that the phenomenon we have just explained — namely the ‘renormalization’ of global charge —

does not occur in the U(NB) theory in which case Wµ bosons have global charge −1. This matches with

the fact that the explanation we have presented also does not apply to the U(NB) theory which has no

baryonic operators.
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Let us now repeat the computation of the thermal partition function, presented earlier

in this section, after turning on a chemical potential µ for the U(1) charge with action listed

in (2.109). This may be accomplished by turning on an imaginary background gauge field

with A0 = iµ for all fundamental W fields and an imaginary gauge field with A0 = −iµ
for the antifundamental W̄ fields. This is achieved by making the replacement α→ α− iν
in (2.61) and (2.63) etc. In other words we define generalized χ and ξ functions by the

formulae

χ(z) ≡ −8π3

m

∫
dαρB(α)β−1

∑
n∈Z

1(
2π nβ + α

β − i
ν
β

)2
+ (z +M2(z))

,

= −2π3

m

∫
dαρB(α)

1√
z +M2

(
coth

(
β
2

(√
z +M2 + iαβ + ν

β

))
+ coth

(
β
2

(√
z +M2 − iαβ −

ν
β

)))
(2.111)

and

ξ(z) = − 1

2(2π)3

∫ z

dw′χ(w′) , (2.112)

=
1

2βm

∫
dαρB(α)

(
log 2 sinh

(
β
2

(√
z +M2 + iαβ + ν

β

))
+ log 2 sinh

(
β
2

(√
z +M2 − iαβ −

ν
β

)))
.

Earlier in this subsection we have obtained explicit results for the thermal self energy

and propagators of our theory. Our results were expressed in terms of the functions F1 . . . F4

which, in turn, we solved for in term of χ and ξ. All of these results also go through in the

presence of a chemical potential if we replace the functions χ and ξ with their generalizations

defined in this subsection.

3 The free energy

Recall that the free energy functional vB is given in the saddle point approximation by the

effective action for the α and Σ fields (cf. (2.39)):

V2T
2vB(|cB|, ρB) = Seff[α,Σ] = NBV3

(
V0[α]− i

λB

∫
D3q

(2π)3
Σνµ(q)αµν(−q)

+

∫
D3q

(2π)3
log det

(
KW (q)− iΣT (q)

))
.

(3.1)

The quantity V0[α] in (3.1) is complicated because it involves a double integral over mo-

menta even when evaluated on translationally invariant solutions. On shell, however, it is

possible to eliminate V0[α] using the equations of motion. Using the fact that V0[α] is a

homogeneous polynomial of degree 2 in α it follows (from the α equation of motion) that,

on-shell,

V0[α] =
1

2

δV0

δα
· α =

1

2

i

λB
Σ · α . (3.2)
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Plugging this into the equation (3.1) we find that on-shell, the effective action becomes,

Seff = NBV3

(
− i

2λB

∫
D3q

(2π)3
Σνµ(q)αµν(−q) +

∫
D3q

(2π)3
log det(KW (q)− iΣT (q))

)
.

(3.3)

Using the formula (2.54) and the fact that M(w) = M (where M is independent of w), the

second term on the r.h.s. of (3.3) is easily evaluated:

∫
D3q

(2π)3
log det(KW (q)− iΣT (q))

= −|cB|
3

3
+

∫ π

−π
ρ(α)dα

∫ ∞
|cB |

dyy
(
log(1− e−y−iα−ν) + log(1− e−y+iα+ν)

)
,

(3.4)

(Here and the rest of the analysis in this section, we restrict ourselves to the regime |cB| >
|ν|. See appendix A for a discussion.) We now turn to simplifying the first term on the

r.h.s. of (3.3). Using the fact that Σ33 = Σ++ = 0 (see (2.55)) it follows that that

Σνµ(q)αµν(−q) = (3.5)

Σ−−(q)α−−(−q) + 2(Σ−3(q)α3−(−q) + Σ−+(q)α+−(−q) + Σ+3(q)α3+(−q)) .

In order to further simplify (3.5) we now plug in the explicit expressions for Σ and α

obtained above (i.e. (2.55) and (2.56) with the particular values of F1 . . . F4 solved for

above). The dependence of the resultant expression on q3 is very simple; it is given by

a polynomial of degree one in q3 times 1
detQ . (Of course q3 is discretized and holonomy

shifted version at finite temperature). The linear term in this Polynomial yields a vanishing

contribution when summed over the full range of discrete values of q3 and simultaneously

integrated over the holonomy.25 For this reason we simply ignore the term linear in q3.

With this understanding — omitting the terms discussed above — we have

Σνµ(q)αµν(−q) =− λB
(2π)3detQ

imL(w)

L(w) =
2g(0)3m2 + 3I(w)

3g(w)2
+

1

3

(
−2g(0)3m2 − 9g(0)2m2 − 3I(w)− 6w

)
− 4

3
m2g(w)3 +m2g(w)2 +

1

3
g(w)

(
6g(0)2m2 + 4m2 + 6w

)
(3.6)

(the functions g and I were defined in (2.102) and (2.106) above). The dependence of (3.6)

on the discretized and holonomy shifted version of q3 is entirely through the factor of 1
detQ .

25We use here that the eigenvalue distribution function ρ(α) is an even function of α.
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Performing the sum over the discrete momenta in q3 we find

− i

2λB

∫
D3q

(2π)3
Σνµ(q)αµν(−q) =

∫
D3q

(2π)3

−m
2(2π)3detQ

L(w)

=
−m

2(2π)3

∫
qsdqs

2π

1

β

∑
q3

1

− m
(2π)3

(q2 +M2)
L(w)

=
m

4π

−1

2(2π)3

∫
dwχ(w)L(w) =

m

4π

∫
dwξ′(w)L(w)

=
m

4π

∫
dw ξ′(w)

∑
n

Ln(w)(−λB)n .

(3.7)

where we have used (2.61) and (2.63). In the last line of (3.7) we have simply Taylor

expanded L in all explicit factors of λB according to the following rule. We see from (3.6)

that L depends on the functions g and I. We use the equation (2.102) to rewrite g in terms

of χ using

g(w) = 1 + λBξ(w) , g′(w) = − λB
2(2π)3

χ(w) . (3.8)

In a similar fashion we use (2.106) to write I in terms of integrals of ξ:

I(w) =

∫ w

0
dz (1 + λBξ(z)) . (3.9)

We then Taylor expand L treating ξ and all its integrals as independent of λB; with this

understanding Ln are defined by

L =

∞∑
n=0

Ln(w)(−λB)n. (3.10)

The various coefficient functions Ln are easily worked out. We find26

L0(w) = 0, L1(w) = 2m2ξ[0],

L2(w) = −2Iξ(w)ξ(w)−m2ξ(0)2 −m2ξ(w)2 + 3wξ(w)2

L3(w) = −3Iξ(w)ξ(w)2 + 4m2ξ(w)3 − 6m2ξ(0)ξ(w)2 + 2m2ξ(0)2ξ(w) + 4wξ(w)3

Ln(w) =
1

3
ξ(w)n−3

(
− 6nξ(w)2m2ξ(0)− 2m2(n− 2)ξ(0)3 + 6m2(n− 1)ξ(0)2ξ(w)

+ (n+ 1)2m2ξ(w)3
)

+
(

(n+ 1)wξ(w)n − nξ(w)n−1Iξ(w)
)

for n ≥ 4

(3.11)

where

Iξ(w) =

∫ w

0
ξ(z)dz . (3.12)

The integral (3.7) over the last two terms in the expression for Ln, n ≥ 4 in (3.11) can be

simplified using

dw ξ′(w)
(
(n+ 1)ξ(w)nw − nξ(w)n−1Iξ(w)

)
= d(ξ(w)n+1w − ξ(w)nIξ(w)) (3.13)

26L0(w) = 0 is just the statement that this contribution is present only when interactions with gauge

fields are turned on.
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It follows that the integral over those terms reduces to surface terms which vanish in the

dimensional regularization scheme27 so that∫
dw ξ′(w)

(
(n+ 1)ξ(w)nw − nξ(w)n−1Iξ(w)

)
= 0 . (3.14)

The integral over all remaining terms in Ln for all n are of the form∫
dξ f(ξ) ,

where the functions f are all simple polynomials of ξ. As a consequence all remaining

integrals are easily performed and we find∫
dw ξ′(w)Ln(w) = 0 for n ≥ 3 . (3.15)

The only non-zero contributions are∫
dw ξ′(w)L1(w) = −2m2ξ[0]2 , (3.16)∫
dw ξ′(w)L2(w) =

4

3
m2ξ[0]3 . (3.17)

Putting all these together we get, for the Σ · α piece,

−NBV3
i

2λB

∫
Σνµ(q)αµν(−q) =NB

mV3

4π

(
2m2ξ[0]2λB +

4

3
m2ξ[0]3λ2

B

)
=NB

V2T
2

6π

(
3S2|m̂||λB|+ 2S3λ2

B

)
,

(3.18)

where we use sgn(m) = sgn(κB) = sgn(λB). Combining (3.18) and (3.4) we obtain

vB(|cB|, ρB) =
NB

6π

(
3|λB||m̂|S2 + 2|λB|2S3 (3.19)

− |cB|3 + 3

∫ π

−π
ρB(α)dα

∫ ∞
|cB |

dyy
(
log(1− e−y−iα−ν) + log(1− e−y+iα+ν)

))
This matches precisely with the prediction for the bosonic free energy from the fermionic

result presented in (1.19). In other words the free energy of the bosonic theory exactly

matches the free energy of the fermionic theory under the duality map, as we set out

to show.

It is not difficult to promote the expression (3.19) to an offshell free energy. Consider

the quantity

FB[ρB(α), cB] =
NB

6π

[
− (λB − sgn(λB)− sgn(XB))

λB
|cB|3 +

3

2
m̂cri
B c

2
B + α

(
m̂cri
B

)3
+ 3

∫ π

−π
ρ(α)dα

∫ ∞
|cB |

dyy
(
ln
(
1− e−y−iα

)
+ ln

(
1− e−y+iα

)) ]
,

(3.20)

27The fact that ξ(∞)|DR = 0, Iξ(0) = 0 is used here.
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where α is an unknown pure number (see below for a discussion). In the case that

sgn(XB) = −sgn(λB), FB reduces to vB(ρ) reported in (1.10). It follows that (3.20) is

the correct offshell free energy in the unHiggsed phase. Let us now consider the opposite

case sgn(XB) = sgn(λB). In this case the expression for FB in (3.20) simplifies to

FB[ρB(α), cB] =
NB

6π

[
− (λB − 2sgn(λB))

λB
|cB|3 +

3

2
m̂cri
B c

2
B + α

(
m̂cri
B

)3
+ 3

∫ π

−π
ρ(α)dα

∫ ∞
|cB |

dyy
(
ln
(
1− e−y−iα

)
+ ln

(
1− e−y+iα

)) ]
,

(3.21)

It is not difficult to verify that the condition of stationarity of variation of (3.21) w.r.t.

|cB| yields the gap equation (2.101). It is also not difficult to verify that when (3.21)

reduces to (3.19) when evaluated onshell (upto the term proportional to α: see below)

i.e. on a solution to (3.21). It follows that (3.21) is an offshell free energy for the critical

boson theory in the Higgsed phase, and so also that (3.20) is an offshell free energy for the

critical boson in either phase — Higgsed or unHiggsed. Finally, it is not difficult to verify

that (3.20) maps to the regular fermionic offshell free energy reported in (1.10) (once we

identify |cB| with |cF |).
Let us now return to a discussion of the parameter α in (3.21). As this term is

independent of cB it does not affect the variation of the action w.r.t. cB and so does

not contribute to the gap equations. This term shifts lnZ of the theory (Z is the finite

temperature partition function) by −V (mcri
B )3α
T where V is the volume of space and T is

the temperature. This shift can be absorbed into a shift of the ground state energy of the

theory by V α(mcri
B )3, or equivalently by a shift proportional to α(mcri

B )3 of the cosmological

constant counterterm of the original field theory. In other words the parameter α can

only be determined once we have made a particular choice of the cosmological constant

counterterm. In the absence of such a choice α is ambiguous. We will leave α above as a

free parameter in our final result.

As we have explained in the introduction, the quantity vB reported in (3.19) (or equiv-

alently (1.19)) defines the integrand of an integral over unitary matrices U . The result of

this integral over U is the finite temperature partition function Z

Z = Tr e−βH , (3.22)

where H is the Hamiltonian. In the Higgsed phase the Hamiltonian H may be obtained by

canonically quantizing the action (2.7) — the starting point of our path integral evaluation

of the free energy. The spectrum of (2.7) is particularly simple in the limit λB = 0 with

|mW | =
∣∣∣λBmcri

B
2

∣∣∣ held fixed. In this limit the gauge fields Aµ are very weakly coupled,

and the the partition function (3.22) may be evaluated by enumerating the spectrum of

effectively free massive W (and Z) bosons, subject only to the ‘Gauss Law’ constraint that

asserts that all physical states are gauge singlets (see [61] and references therein). It is easy

to see that our explicit results (1.17) and (1.19) are consistent with this expectation. In

this limit (1.17) reduces to |cB| = |m̂W |. In other words the thermal mass of the W bosons
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agrees with their bare mass at all temperatures, as expected in a free theory. Moreover,

after dropping irrelevant constants, the expression (1.19) reduces, in this limit to

vB(|cB|, ρB) =
NB

2π

∫ π

−π
ρB(α)dα

∫ ∞
|m̂W |

dyy
(
log
(
1+e−y−iα−ν

)
+ log

(
1+e−y+iα+ν

))
,

(3.23)

which is precisely vB of a free complex bosonic degree of freedom (in this case the W

bosons) in the fundamental representation.28

4 Discussion

In this paper we have directly evaluated the thermal free energy of the large NB Chern-

Simons gauged critical scalar theory in its Higgsed phase, and demonstrated that our final

results match perfectly with the predictions of its conjectured fermionic dual. In particular

we have demonstrated that the pole mass of the W boson maps to the pole mass of the bare

fermionic excitations under duality. It follows that under duality, the elementary fermionic

excitations — which map to elementary scalar excitations in the unHiggsed phase map to

W bosons in the Higgsed phase.

At zero temperature both the bosonic theory and its fermionic dual undergo a sharp

phase transition when the bosonic/fermionic mass goes through zero. As we have explained

above, the topological pure Chern-Simons theory that governs the long distance dynamics

of the two theories changes discontinuously from positive to negative mass, and may be

thought of as an order parameter for the phase transition. At finite temperature, on the

other hand, there is no clear order parameter separating the two ‘phases’ (note in particular

that the long distance effective theory is two rather than three dimensional and so cannot

be a Chern-Simons theory). On physical grounds it seems likely that the free energy of our

theories is analytic as a function of mass (and chemical potentials) even at finite N .

It is interesting that this physically expected feature of the free energy — namely that

it is analytic as a function of mass at finite temperature — is borne out by the explicit

large NB calculations presented in this paper but in a highly unusual way. The finite

temperature free energy of the bosonic theory in its Higgsed ‘phase’ is determined by a

completely different computation than the one that determines the finite temperature free

energy in the unHiggsed ‘phase’. The two calculations have non overlapping domains of

validity, deal with different degrees of freedom and are dominated by distinct looking saddle

points. Yet, when the dust settles, it turns out (in an apparently miraculous manner) that

the two results are simply analytic continuations of each other. At the level of formulas,

therefore, there is a sense in which the duality between fermions and scalars is enhanced into

a ‘triality’ between fermions, scalars and W bosons at finite temperature: there are three

completely different looking computations, each of which give rise to the same final free

energy after the appropriate analytic continuation. It would be interesting to understand

this better — perhaps there is a more general uniform way of computing the bosonic free

energy in both phases at once which makes the analyticity of the final result manifest.

28We thank D. Radicevic for a very useful discussion on this point.
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From a physical point of view, the duality between bosons and fermions is particularly

interesting at nonzero chemical potential and low temperatures. In this regime one expects

a Fermi liquid at weak fermionic coupling but a Bose condensate at weak bosonic coupling.

By analyzing the already known fermionic results, the authors of [25] have already made

this expectation quantitative (by dualizing the fermionic free energy to bosonic variables,

and demonstrating that the final results at weak bosonic coupling enjoys certain features

expected of Bose condensates). It would be interesting to better understand these results

directly from the bosonic point of view using the results of this paper.

The partition function of the Higgsed phase scalar theory on S2 × S1 is obtained by

performing an integral over holonomies; the integrand for this integral is given by the

the free energy vB[ρ] computed in this paper. From a physical point of view it would be

interesting to explore this integral in detail, particularly at finite chemical potential. In the

large volume limit the saddle point eigenvalue distribution will take the universal tabletop

form.29 However the distribution will deviate from this universal form away from the large

volume limit, giving rise to a rich phase structure with many interesting phase transitions

(generalizing the analysis of [19]).

It should be possible to generalize the computations presented in this paper to the study

of the partition functions of the regular boson — critical fermion duality (see e.g. [23]) and

of theories with with both a bosonic and a fermionic field ([22, 24]). It would also be

interesting to use the techniques of this paper to generalize the S-matrix computations

of [26–31] to evaluate the bosonic S-matrices in the Higgsed phase, and to match the final

results with the fermionic S-matrices as predicted by duality. The techniques of this paper

could also permit the computation of the quantum effective action of the scalar theories as

a function of the gauge covariant field φa (in a suitable gauge). This computation could

prove useful in analysing the vacuum stability of these theories. We hope to turn to several

of these issues in the near future.
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A Review of known results and a prediction for the Higgsed phase

The gap equation for the bosonic theory — which follows from varying (1.10) w.r.t. |cB|
— takes the form

2S(|cB|, ν) = m̂cri
B , (A.1)

while the gap equation for the fermionic theory is

|cF | = sgn(XF )
(
2λFC(|cF |, ν) + m̂reg

F

)
= |XF | , (A.2)

where S and C were defined in (1.12).

The bosonic and fermionic holonomy eigenvalue distribution functions are related to

each other by the formula (see [19])

|λB|ρB(α) + |λF |ρF (π − α) =
1

2π
. (A.3)

When (A.3) holds (and assuming that ρB(α) and ρF (α) are even functions of their argu-

ments) it is easily verified that

λBS = λFC −
sgn(λF )

2
max(|cF |, |ν|) ,

λFC = λBS −
sgn(λB)

2
max(|cB|, |ν|) .

(A.4)

The equations (A.3) have been derived assuming that the integral over α in the first of (A.4)

runs over real α, i.e. the unit circle in the complex plane z = eiα.

We pause to elaborate on the analytic structure of the functions C and S. The integrals

over α in C and S formally run over the range (−π, π). In this paper we will, however,

be mainly interested in phases in which ρF (α) vanishes in a neighbourhood of π (see [19])

for an extensive discussion of the phases of the large N partition functions of this theory).

In the rest of this paragraph we focus our attention on these fermionic ‘lower gap’ phases.

When this is the case, it is easy to check that the argument of the logarithmic functions

that appear in C(|cF |, ν) in (1.12) never pass through either zero or any negative number

for any value of |cB| or ν. It follows that C(|cF |, ν) is an analytic function of its arguments

for all values of |cF | and ν.

The arguments of S(|cB|, ν) in (1.12) are also nowhere negative on the (unit circle)

contour of integration when |cB| > |ν|. It follows that S is also an analytic function of ν for

|cB| > |ν|. At |cB| = ν, on the other hand, the arguments of one of the two logarithms in

this equation goes to zero at α = 0. For |ν| > |cB|, the contour integral passes through the

cut of the logarithm. These observations suggest that S(|cB|, ν) — viewed as a function

of ν at fixed |cB| — might well be non-analytic at ν = ±|cB|. Equation (A.4) — together

with the fact that C is analytic at ν = ±|cB|— tells us that this is indeed the case. Indeed

the function S must have precisely the singularity needed to cancel that of the function
sgn(λB)

2 max(|cB|, |ν|) on the r.h.s. of the second of (A.4).

The discussion of the last paragraph motivates us to define the analytic function S̃

S̃ =

{
S when |ν| < |cB|

S − 1
2|λB |(|ν| − |cB|) when |ν| > |cB|

. (A.5)
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When expressed in terms of S̃ the relations between S and C in (A.4) become the single

relation

λFC = λBS̃ −
sgn(λB)

2
|cB| . (A.6)

Roughly speaking S̃ can be thought of as being defined by the same integral as that for S
in the second of (1.12) except that one is instructed to perform the integral over a contour

that is deformed to avoid cutting the branch cut of the logarithmic functions.

It follows from (A.6) that under duality the quantity XF = 2λFC + m̂reg
F defined

in (1.11) maps to XB where

XB = 2λBS̃ − λBm̂cri
B − sgn(λB)|cB| . (A.7)

Notice that on-shell (i.e. on a solution to the bosonic gap equations)

XB = −sgn(λB) max(|cB|, |ν|) , so that − λBXB ≥ 0 . (A.8)

In other words all solutions to the bosonic gap equations have λBXB ≤ 0 i.e. λFXF ≥ 0. It

follows that any solution of the fermionic gap equations that violates this inequality does

not have a bosonic dual. We will now see how this works in more detail.

Inserting (A.6) into the fermionic gap equation (A.2) we obtain

|cB| = sgn(XB)
(

2λBS̃ − sgn(λB)|cB| − λBm̂cri
B

)
, (A.9)

Equivalently

|cB| (1 + sgn(λB)sgn(XB)) = sgn(XB)
(

2λBS̃ − λBm̂cri
B

)
, (A.10)

Let us first suppose that sgn(λB)sgn(XB) = −1. In this case (A.10) reduces to the equation

2S̃ = m̂cri
B (A.11)

This equation matches perfectly with (A.1) when |cB| > |ν|.30 On the other hand when

sgn(λB)sgn(XB) = +1, (A.10) becomes

2|cB| =
(

2|λB|S̃ − |λB|m̂cri
B

)
. (A.12)

This is a completely new bosonic gap equation that — at least superficially — seems

different from the bosonic gap equation (A.1). It has been speculated that this equations

governs the dynamics of the critical boson theory in its Higgsed phase. In the rest of this

paper we demonstrate that this is indeed the case by directly deriving (A.12) from an

analysis of the bosonic theory.

30Eqs. (A.11) and (A.1) differ when |ν| > |cB |, because, in this regime, S̃ differs from S. However the

difference between the two equations is quite minor — as we have explained above S̃ and S are defined

by the same integrals but over slightly different contours. It is possible that the derivation of (A.1) has a

subtlety when |ν| > |cB | and the correct equation picks out the contour that changes S to S̃. We leave an

exploration of this to future work.
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We can also use the fermionic free energy (the second of (1.10)) together with the

duality map to obtain a prediction for the free energy in Higgsed phase (we focus on

the case for boson for |cB| > |ν|; when |cB| < |ν| there is a potential subtlety as in the

unHiggsed phase).

For later use we present our results in terms of a quantity

m = −
λBm

cri
B

2
=⇒ |m| = −

|λB|mcri
B

2
, (A.13)

(and correspondingly for the dimensionless hatted quantities.) Note that in the phase

under consideration mcri
B < 0. The quantity |m| would then correspond to the mass of the

W boson in this phase. Using (A.12) we find

|cB| = |λB|S + |m̂| . (A.14)

Substituting (A.14) in (1.10), we have (dropping zero temperature contributions)

vF =
NF

6π

[
|cF |3

(|λF |+ 1)

|λF |
− 3

2|λF |
|m̂reg

F |c
2
F−

− 3

∫ π

−π
ρF (α)dα

∫ ∞
|cF |

dyy
(
log
(
1 + e−y−iα−ν

)
+ log

(
1 + e−y+iα+ν

)) ]
,

=
NB

6π

[
|cB|3

(2− |λB|)
|λB|

− 3

|λB|
|m̂|c2

B+

+ 3

∫ π

−π
ρB(α)dα

∫ ∞
|cB |

dyy
(
log
(
1 + e−y−iα−ν

)
+ log

(
1 + e−y+iα+ν

)) ]
,

=
NB

6π

[
2|cB|3 − 3|m̂|c2

B

|λB|
+

− |cB|3 + 3

∫ π

−π
ρB(α)dα

∫ ∞
|cB |

dyy
(
log
(
1 + e−y−iα−ν

)
+ log

(
1 + e−y+iα+ν

)) ]

=
NB

6π

[
− |m̂|

3

|λB|
+ 3|λB||m̂|S2 + 2|λB|2S3

+ 3

∫ π

−π
ρB(α)dα

∫ ∞
|cB |

dyy
(
log
(
1 + e−y−iα−ν

)
+ log

(
1 + e−y+iα+ν

))
− |cB|3

]
,

where we have used the following duality maps in the first step:

m̂reg
F = 2m̂ ,

NF

|λF |
=

NB

|λB|
, |λF | = 1−|λB| , |λF |ρF (α) =

1

2π
− |λB|ρ(π − α) . (A.15)

In the second and third steps, we have rearranged terms in the expression in order to put it

in a form which will match term by term with the free energy obtained by direct calculation

in the Higgsed phase. The first term in the bracket is a zero temperature contribution and

can be ignored in this context.
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[50] D. Radičević, D. Tong and C. Turner, Non-Abelian 3d Bosonization and Quantum Hall

States, JHEP 12 (2016) 067 [arXiv:1608.04732] [INSPIRE].

[51] A. Karch, B. Robinson and D. Tong, More Abelian Dualities in 2 + 1 Dimensions, JHEP 01

(2017) 017 [arXiv:1609.04012] [INSPIRE].

[52] O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO

and USp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].

[53] F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality

in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP09(2014)009
https://arxiv.org/abs/1404.7849
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7849
https://doi.org/10.1007/JHEP12(2014)165
https://arxiv.org/abs/1409.6083
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6083
https://doi.org/10.1007/JHEP01(2015)054
https://arxiv.org/abs/1410.0558
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0558
https://doi.org/10.1007/JHEP07(2016)090
https://arxiv.org/abs/1605.01122
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01122
https://arxiv.org/abs/1607.02967
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.02967
https://doi.org/10.1142/S0217751X16300520
https://doi.org/10.1142/S0217751X16300520
https://doi.org/10.1007/JHEP01(2017)058
https://arxiv.org/abs/1610.08472
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08472
https://doi.org/10.1007/JHEP01(2018)001
https://arxiv.org/abs/1706.07234
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07234
https://arxiv.org/abs/1707.06604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.06604
https://doi.org/10.1007/JHEP02(2018)094
https://arxiv.org/abs/1711.11300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.11300
https://doi.org/10.1007/JHEP05(2015)117
https://arxiv.org/abs/1502.00945
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00945
https://doi.org/10.1007/JHEP03(2016)131
https://arxiv.org/abs/1511.01902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01902
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://arxiv.org/abs/1607.07457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07457
https://doi.org/10.1007/JHEP12(2016)067
https://arxiv.org/abs/1608.04732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04732
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://arxiv.org/abs/1609.04012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.04012
https://doi.org/10.1007/JHEP02(2017)072
https://arxiv.org/abs/1611.07874
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.07874
https://doi.org/10.1007/JHEP04(2017)135
https://arxiv.org/abs/1702.07035
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.07035


J
H
E
P
1
1
(
2
0
1
8
)
1
7
7

[54] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls and

dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

[55] K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP 11

(2017) 018 [arXiv:1709.01083] [INSPIRE].

[56] K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string

theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].

[57] J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD3 And Dualities, SciPost

Phys. 5 (2018) 007 [arXiv:1710.03258] [INSPIRE].

[58] C. Cordova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in

Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys. 4 (2018) 021

[arXiv:1711.10008] [INSPIRE].

[59] F. Benini, Three-dimensional dualities with bosons and fermions, JHEP 02 (2018) 068

[arXiv:1712.00020] [INSPIRE].

[60] K. Jensen, A master bosonization duality, JHEP 01 (2018) 031 [arXiv:1712.04933]

[INSPIRE].

[61] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The

Hagedorn — deconfinement phase transition in weakly coupled large N gauge theories, Adv.

Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

– 45 –

https://doi.org/10.1007/JHEP01(2018)110
https://arxiv.org/abs/1708.06806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06806
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP11(2017)018
https://arxiv.org/abs/1709.01083
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01083
https://doi.org/10.1007/JHEP12(2017)031
https://arxiv.org/abs/1709.07872
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.07872
https://doi.org/10.21468/SciPostPhys.5.1.007
https://doi.org/10.21468/SciPostPhys.5.1.007
https://arxiv.org/abs/1710.03258
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.03258
https://doi.org/10.21468/SciPostPhys.4.4.021
https://arxiv.org/abs/1711.10008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.10008
https://doi.org/10.1007/JHEP02(2018)068
https://arxiv.org/abs/1712.00020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.00020
https://doi.org/10.1007/JHEP01(2018)031
https://arxiv.org/abs/1712.04933
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.04933
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://doi.org/10.4310/ATMP.2004.v8.n4.a1
https://arxiv.org/abs/hep-th/0310285
https://inspirehep.net/search?p=find+EPRINT+hep-th/0310285

	Introduction
	Theories and conjectured dualities
	Recap of known results
	Structure of the large N partition function
	Free energies and gap equations

	Computations in the Higgsed phase of the bosonic theory

	Finite temperature partition function at large NB
	The effective action in terms of W bosons
	Reducing the evaluation of the partition function to saddle point equations
	Dynamics in terms of singlet fields
	A symmetry of the gap equations
	Reduction to integral equations of a single variable
	Dimensional regularization
	Performing the angular integrals
	Differential equations for the unknowns
	Solving the gap equations
	Determining F4
	A subtlety in F4
	A curious observation
	Determining F2
	Determination of the mass
	Solving for F3 and F1
	Adding a chemical potential


	The free energy
	Discussion
	Review of known results and a prediction for the Higgsed phase

