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A new solution of four-dimensional vacuum General Relativity is presented. It describes the near
horizon region of the extreme (maximally spinning) binary black hole system with two identical
extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a
non-supersymmetric, asymptotically flat near horizon extreme binary black hole geometry of two
uncharged black holes. The black holes are co-rotating, and the solution is uniquely specified by
the mass. The binary extreme system has finite entropy. The distance between the black holes is
fixed, but there is a zero-distance limit where the objects collapse into one. This limiting geometry
corresponds to the near horizon extreme Kerr (NHEK) black hole.

Several black holes have been observed to spin at
nearly the speed of light (the theoretical upper limit for
stationary black holes) [1]-[5]. Although there is con-
siderable uncertainty in how black holes attain nearly
extremal spins, several mechanisms in Nature can be en-
visioned. These include the merging of binary black holes
(BBHs) possibly spinning at nearly extremal spins, and
prolonged disk accretion. Numerical simulations, that
are key in developing the most precise predictions of dy-
namical BBHs mergers [6]-[8] and black hole disk ac-
cretion [9]-[12], have confirmed the feasibility of these
mechanisms giving rise to nearly extremal spinning black
holes.

From a theoretical perspective, a rotating Kerr black
hole obeys cosmic censorship: any singularities must lay
behind the black hole’s event horizon. As the black hole
spin increases, for a fixed mass, the event horizon area
protecting the singularity decreases. The maximum al-
lowed spin, which corresponds to the speed of light, is
reached before exposing the singularity. These maximally
rotating black holes are called extreme and are the cen-
tral objects of study of this work.

At extremality, the black hole’s temperature drops to
zero. Interestingly, at this point the geometry close to the
event horizon, the so called Near-Horizon Extreme Kerr
geometry [13], displays a very special feature: the sym-
metry is enhanced to an SL(2, R), conformal, symmetry
and develops a warped version of AdS3. NHEK is ob-
tained through scalings from the extreme Kerr black hole,
has finite size, namely, finite event horizon area, and re-
tains all the relevant aspects of black holes: an event hori-
zon and an ergosphere. The enhanced conformal sym-
metry in NHEK, which does not extend to the full Kerr
geometry, motivated works such as the Kerr/CFT con-
jecture concerning the quantum structure of black holes
[14] and studies on the dynamics of stars [15] and energy
extraction [I6] in this region.
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One then wonders, could NHEK be formed from a
merger of the near horizon geometries of extreme BBHs?
And, in this case, is the conformal symmetry also present
in the geometry giving rise to NHEK after merger? To
answer these questions, in this paper, we propose to fo-
cus on the stationary - rather than dynamical - BBHs
and find explicitly the Near-Horizon Extreme Kerr Bi-
nary Black Hole geometry, “NHEK2”. We will show that
this new metric retains only partially the symmetry of
NHEK, including the dilatations, and are “tree”-like ge-
ometries: they are solutions with NHEK asymptotics,
but as one moves inward the geometry branches into two
smaller warped AdS3 regions.

Luckily, stationary (non-dynamical) BBHs solutions
of Einstein’s equations of General Relativity in vacuum
with two-Kerr black holes are also known analytically.
These are exact asymptotically flat vacuum solutions
with two spinning (neutral) Kerr black holes supported
by a conical singularity along the line separating the
black holes. These were first found in [I7] and con-
structed via a variety of solutions generating techniques
in i.e. [I8]-[24]. The black holes in these solutions
can co-rotate or spin in opposite directions. They be-
come, for certain range of the parameters, extremal zero-
temperature stationary BBHs solutions [22]-[24]. Re-
markably, as first observed in [19] 23], the extreme BBHs
overtake the extremal Kerr bound. All of these geome-
tries were originally written in Weyl coordinates, where
many expressions simplify. In these coordinates, the met-
ric takes the form

~2
ds? = _p?dt“z + f(dd+wdb)? + e (dp? +d5?), (1)

where f,v,w are functions only of the (p, 2)-coordinates,
and £ € (—o00,00), p,2 € (—00,00) and ¢ ~ ¢ + 2w A
Note that all stationary axi-symmetric black hole solu-
tions can be written in Weyl coordinates , including
the stationary BBHs central to our discussion, and also
the Kerr and NHEK geometries. Our starting point to
find the NHEK2 geometry are the co-rotating extreme
double-Kerr black hole solutions in [24]. We develop an
appropriate near-horizon limiting procedure, and apply
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it to the extreme BBHs geometry. As a result we obtain
the new NHEK2 geometries, which becomes a distinct
object with finite entropy. Our results may be of con-
siderable interest in extending the Kerr/CFT conjecture
to BBHs systems, entropy calculations, and gravitational
signatures of near rapidly spinning binary black holes.

The solution. The solution of extremal co-rotating
identical BBHs [24] from which we derive the new near-
horizon geometry of extreme BBHs, takes a simpler rep-
resentation in Weyl coordinates. We therefore perform
the scaling computations in this frame. In this case, we
find that the appropriate near-horizon limiting procedure
for the extremal BBHs is

P=pPA, z=Z2A, (2)
t ; t
p:—i+mA k=M (4)

V2t ’

taking A — 0 and keeping (£, 5,2, ¢) fixed. In [24], p
and k are free parameters related to the definitions of
positive mass and the separation between the black holes

J
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respectively. As a result of this process, we find the near-
horizon extreme black hole binary NHEK2 geometry in
Weyl coordinates . This is defined by the equations
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with
Ko=—(1++2)/2. (13)

This geometry arises as a scaling limit after a coordinate
transformation of the extremal BBHs of [24]. We have
checked that it is Ricci flat and, thus, a solution to the
vacuum Einstein equations. This solution represents the
near horizon geometry of two extreme Kerr black holes.
With this procedure, the asymptotically flat Minkowski
region from the original metric decouples and the throat
becomes infinitely long while there is a splitting into two
pieces that survives.

The event horizons. Our solution displays two event
horizons located at

pr=0, Ey=+M. (14)

(

Besides the conical singularity (to be analyzed in more
detail below) the metric is smooth. The NHEK2 geome-
try is not asymptotically flat; in fact it has very peculiar
asymptotics as r — oo it approaches the NHEK asymp-
totic geometry, for p = rsinf and Z = r cos 6.

In addition to the two U(1) symmetries - 0; and J
symmetries - present in the double-Kerr BBHs metric,
the NHEK?2 metric is invariant under p — ¢p, 2 — c2
and ¢ — ¢t while M — ¢M. So, the geometry
with — has the dilation symmetry of AdS;. How-
ever, the NHEK2 metric seems not to have all of the
symmetries of AdSs; the metric lacks one of the killing
vectors that would otherwise close in SL(2, R). We con-
clude then that its isometry group is not SL(2, R)xU(1).
These enhancement is observed only when the two black
holes collapse into one, and form a single larger black
hole. In the collapse of NHEK2 to NHEK, the distance
between the black holes goes to zero and corresponds to
the M — 0 limit in NHEK2 as we describe here below.
Inspection of the NHEK2 solution shows that changing



coordinates as
t— (—2+V2)M?T,
p— (R M)sin®,
2= (Rt M)cos©® F M, (15)
148 — 1 2
(148 5607W)M®’

the expansions close to each of the black holes - located
now at R = +M - gives rise to a metric of the form

o= (—2+vV2)T +

2 2 2 12 dR?
ds® ~ M2T(©)[—(R + M)*dT? + ST
+dO?% 4 A(©) (d® + (R + M) dT)2] (16)
with
r(©) = (22 — 15v2)(3 + cos2§) + (72 — 52v/2) cos ©) |
T(©)A(©) = 16(2 — v/2)? sin® ©

((6 —V2)(3 +cos20) + (8 — 12/2cos ©))

when the leading terms in each metric component are re-
tained. Hence locally, in the vicinity of each black hole,
we note that the slices of the geometry at fixed polar
angle © correspond to warped AdSs. Our newly discov-
ered metric are “tree”-like geometries: they are solutions
with NHEK asymptotics, but as one moves inward the ge-
ometry branches into two smaller warped AdS3 regions.
For the same special constant value of ® = Oy where
A(©g) = 1, the local metrics are that of AdSs. Other
tree-like geometries have been previously found for ex-
treme charged BBHs [25]. Whether this local manifesta-
tion of two copies of AdS3 in NHEK hints really to an
underlying conformal symmetry of the extreme BBHs is
yet a question that needs further investigation.

The event horizon area can be computed from the met-
ric close to each of the black holes via

Ai = 27‘(’/ vV doee god d@ . (17)
0

The corresponding entropy S; = A;/4, i = 1,2 of the
extreme constituents is

S1 =8y =(2—V2)7M? ~ 0.5858 x TM?. (18)
The total entropy of the system is
Sverx2 =S1+ S2 = (2—V2)2rM*. (19)

We find that the distance between the black holes de-
creases in the M — 0 limit. In this limit, the black holes
in the NHEK2 solution with functions — col-
lapse into one. The limiting metric is also finite, with
and functions
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v M 22507 (21)
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The collapse geometry corresponds to the single NHEK
black hole metric. Each of the black holes in the orig-
inal NHEK2 geometry contributes a mass M/2. The
larger NHEK black hole formed after the collapse has
mass Mypex = M. The entropy in this case is

SNHEK: 2’/TM2. (22)

Having the explicit expressions for the entropy of the
NHEK2 geometries and NHEK , we can now
check that indeed the black hole area theorem established
by Hawking [20] is satisfied for extremal black holes

Svenk2 < SNHEK - (23)

A more detailed discussion about the entropy of extremal
binary black holes and Hawking’s area theorem can
be found in [27].

Conical Singularity. We now compute the conical
singularities of the new NHEK2 metric

A = 27 lim (1— /

, —M<z< M, (24
p—0 ﬁ262”> : (24)
While the NHEK2 metric has no naked curvature sin-
gularities, our computation show that there is a non-
removable conical deficit between the two black holes

Ad =27 (1/24V2). (25)

Charges and Entropy. The mass and angular mo-
menta of the solution follow from the limiting near-
horizon procedure of the extreme BBHs solution that is
manifestly asymptotically flat

M, = My = M/2, Ji=Jy=M?/2, (26)
Interestingly, the ratio Ji/M}{ = Jo/M3 = 2 is fixed.
While Hawking’s temperature is zero for NHEK2, each
black hole has a non-trivial angular velocity

M =0y =1/(2M), (27)

which displays its non-supersymmetric character. It is
straightforward to verify that the Smarr law (for the
extremal, zero temperature configuration) is satisfied for
each individual black hole M; = 29;J;.

Ergosphere. There are regions in the NHEK?2 space-
time where the vector 0; becomes null. We will refer to
the boundary region as the ergosphere, since they ap-
pear as a consequence of the presence of such regions in
the original stationary extreme BBHs geometries. For
NHEK?2 these are defined by regions where g = 0 and
give rise to a set of disconnected regions as shown in Fig.
1. The event horizons of the black holes in NHEK2 are
points in the (p, z)-plane and have finite event horizon
areas. There is a self similar behavior close to each black
hole that resembles the ergospheres of isolated extremal
Kerr black hole.
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FIG. 1. Ergoregion (shaded orange region) of the NHEK2
black hole solution for M = 1, as a consequence of the pres-
ence of such regions in the original stationary extreme BBHs
geometries. The black holes are located at p = pg = 0,2 =
Zm = +1. A more detailed diagram, close to one of the black
holes appears in the upper right corner. The dashed line cor-
responds to the boundary where 0; is null.

Uniqueness. The NHEK2 geometry, in contrast with
NHEK, is not unique. For a fixed value of the total mass,
it is expected that other finite near-horizon extremal
BBHs exist. These may include extremal BBHs with
spins that are not aligned. Another intriguing aspects
related to the uniqueness includes the classifications of
near horizon geometries in [28] 29]. NHEK2 does not
pertain to any of the classes considered therein. This
suggests that a new set of assumptions are needed for
a complete classification i.e. restricting the number of
isolated horizons in the solutions.

4

Discussion. The extremal BBHs solutions [24], as
well as the new NHEK2 geometries that we have found in
this note, contain a localized conical singularity (strut),
in the line separating the two black holes. Conical singu-
larities are, in contrast to curvature singularities in the
geometry, possibly avoidable as the spin orbit is rein-
stated. In the stationary BBHs, for example, one could
introduce a rotation along one of the planes perpendicu-
lar to the angular momenta that are pointing along the
azimuthal-axis. This mechanism would give rise to a
centrifugal force, that may balance the self-gravitational
effects between the two black holes and eliminate the
strut. So far, however, this modification of the station-
ary BBHs solutions has not been achieved analytically.
Other solutions where rotation plays a role in balancing
different configurations have been given in [30]-[32]. An-
other reason for considering the stationary rather than
the dynamical BBHs solutions is their extremal maxi-
mally rotating (neutral) counterparts. Progress has been
reported on rapidly spinning dynamical BBHs mergers
[6]-[8], but extremal zero temperature BBHs are not vi-
able yet through numerical explorations. Therefore, to
study the extremal BBHs one would have to choose to
work with the exact extreme stationary BBHs and con-
sider the effect of the conical singularities in these solu-
tions. While conical singularities are not desirable, these
have been shown to be irrelevant to the so called black
hole shadows [33] [34] thanks to the underlying cylindri-
cal symmetry of the problem. This suggests that cer-
tain physical properties of black holes are protected by
symmetries and can be studied even with solutions that
contain localized conical singularities.
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