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Olof Ahléna and Axel Kleinschmidta,b

aMax-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),

Am Mühlenberg 1, DE-14476 Potsdam, Germany
bInternational Solvay Institutes,

ULB-Campus Plaine CP231, BE-1050 Brussels, Belgium

E-mail: olof.ahlen@aei.mpg.de, axel.kleinschmidt@aei.mpg.de

Abstract: In this note we study the U-duality invariant coefficient functions of higher

curvature corrections to the four-graviton scattering amplitude in type IIB string theory

compactified on a torus. The main focus is on the D6R4 term that is known to satisfy an

inhomogeneous Laplace equation. We exhibit a novel method for solving this equation in
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2 Poincaré series ansatz 3

2.1 A brief reminder of Eisenstein series 3

2.2 R4 and D4R4 curvature corrections 4

2.3 Inhomogeneous Laplace equation and ansatz 5

3 D
6
R

4 solutions in various dimensions 7

3.1 Type IIB in D = 10 7

3.2 Toroidal compactification to D = 7 10

4 Modular graph functions 14

5 Discussion 17

A Particular solution of the equation for cN for SL(5) 18

A.1 Laplacians and Bessel functions 18

A.2 Particular solution by recursion 20

B Regularisation of inhomogeneous Laplace equations in D = 10 22

1 Introduction

String theory predicts very precise corrections to field theory scattering amplitudes via the

α′-expansion [1], where α′ = ℓ2s is related to the inverse string tension. Via this process the

contribution of massive string states to the scattering of massless particles can be system-

atically evaluated. Using further the constraints implied by U-duality and supersymmetry

one can sometimes even determine exactly the perturbative and non-perturbative contri-

butions to the string scattering amplitude at a fixed order in α′. This strategy was first

employed by Green and Gutperle [2] and further developed in many subsequent papers,

see for example [3–30].

The structure of the (analytic contribution to the) four-graviton amplitude can be

written in terms of an effective low-energy theory in D space-time dimensions (in Einstein

frame) as

L(D) ∼ 1

(α′)3
R+

∞∑

p,q=0

(α′)2p+3qE(D)
(p,q)(g)D

4p+6qR4 + . . . , (1.1)
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where we have suppressed an overall dimensionful factor. There is a double summation

over two integers due to the two independent symmetric invariants1

σ2 = s2 + t2 + u2, σ3 = s3 + t3 + u3 (1.2)

that can be constructed for the scattering of four massless particles and that can appear in

the scattering amplitude. The term D4p+6qR4 is short-hand for very specific contractions

of (4p + 6q) covariant derivatives of four Riemann tensors. The main interest lies in the

functions E(D)
(p,q)(g) of the moduli g ∈ E11−D(R)/K(E11−D), where E11−D is the (split real)

Cremmer-Julia hidden symmetry group of maximal ungauged supergravity in D space-time

dimensions [31] and K(E11−D) its maximal compact subgroup. (The Dynkin diagram of

E11−D is given below in figure 1.)

The functions have to be invariant under the discrete U-duality E11−D(Z) [32] and

supersymmetry implies that they also have to satisfy (tensorial) differential equations [6,

10, 23, 27]. The most prominent of these are the second order Poisson-type equations for

the first three terms in the expansion [6, 10, 25]

(

∆− 3(11−D)(D−8)

D−2

)

E(D)
(0,0)=6πδD,8, (1.3a)

(

∆− 5(12−D)(D−7)

D−2

)

E(D)
(1,0)=40ζ(2)δD,7+7E(4)

(0,0)δD,4, (1.3b)

(

∆− 6(14−D)(D−6)

D−2

)

E(D)
(0,1)=−

(

E(D)
(0,0)

)2
+40ζ(3)δD,6+

55

3
E(5)
(0,0)δD,5+

85

2π
E(4)
(1,0)δD,4,

(1.3c)

where ∆ is the Laplace-Beltrami operator on the classical moduli space E11−D/K(E11−D).

The Kronecker delta terms on the right-hand sides of these equations are related to di-

vergences in supergravity in specific dimensions whose treatment is known [14, 33, 34].

Disregarding these, the first two equations in (1.3) are homogeneous Laplace equations for

the two functions E(D)
(0,0) and E(1,0) that correspond to the 1

2 -BPS R4 and 1
4 -BPS D4R4 cur-

vature corrections, respectively. Their solutions have been studied in great detail and are

given by (linear combinations of) Eisenstein series, see for instance [14, 15, 17, 25, 35] for

summaries or section 2.2 below. By contrast, equation (1.3c) for E(D)
(0,1) (that corresponds to

the 1
8 -BPS correction D6R4) is of a qualitatively different nature in that it always contains

a non-linear source term given by −(E(D)
(0,0))

2. The equation is therefore an inhomogeneous

Laplace equation or Poisson equation. A similar structure is expected for curvature cor-

rections with even more derivatives [36]. We also note that very similar inhomogeneous

SL(2,Z) invariant equations arise in the study of so-called modular graph functions [37–40]

and we shall also study these cases.

The structure of the inhomogeneous Laplace equation (1.3c) indicates that it will not

be solved by an automorphic function of the standard type as these functions are required

to be finite under all E11−D-invariant differential operators, see for instance [35]. The

1The dimensionless Mandelstam invariants are here defined as s = −α′

4
(k1 + k2)

2, t = −α′

4
(k1 + k4)

2

and u = −α′

4
(k1 + k3)

2 and satisfy s+ t+ u = 0 on-shell.

– 2 –
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generalised class of E11−D(Z)-invariant functions on E11−D to which the solution E(D)
(0,1)

belongs has not been identified abstractly. In this article, we will not attempt to define

this class fully but rather present a method for solving equations of the type (1.3c) using

a Poincaré series ansatz.

Our method is inspired by the recent explicit solution of (1.3c) that was presented

by Green, Miller and Vanhove in [41] for the case of D = 10 type IIB string theory. In

this case one has the Cremmer-Julia group SL(2,R) and U-duality group SL(2,Z) and

they performed a Fourier expansion of the equation, using SL(2,Z)-invariance and the

known source function E(10)
(0,0) that appears on the right-hand side of (1.3c). The solution

to the homogeneous equation is fixed by consistency with string perturbation theory as

a boundary condition. In an appendix of [41], the authors rewrite their solution as a

Poincaré series. The starting point of our approach is that the ‘seed’ of the Poincaré series

solves a much simpler Laplace equation than (1.3c). This simpler equation is, however, still

inhomogeneous. We present solutions to this equation. The hard part is now to impose

the correct boundary conditions and to extract the Fourier expansion. Our method is

explained in detail in section 2.

The correction term D6R4 has attracted a fair amount of attention recently [25, 27,

42], in particular in connection to the Kawazumi-Zhang invariant of genus two Riemann

surfaces [43–46]. In the supergravity limit, the corresponding expressions resemble two-loop

field theory amplitudes [25]. This agrees nicely with independent expressions for (parts of)

E(D)
(0,1) that were recently found using a two-loop calculation in exceptional field theory with

manifest E11−D invariance [29]. Other approaches to solving the inhomogeneous differential

equation include the original approach followed in [10, 41] based on Fourier decomposing

the equation, but one can also try to tackle the equation by using spectral methods [41, 47]

and there might also be a connection to automorphic distributions [41]. Our present work

is complementary to these results.

This article is structured as follows. In section 2, we present the new method for

solving the inhomogeneous Laplace equation (1.3c) based on a Poincaré series ansatz. The

method is used in section 3 to construct the function E(D)
(0,1) in various dimensions while we

consider an example from modular graph functions in section 4. Section 5 discusses open

problems arising from our analysis.

2 Poincaré series ansatz

After first reviewing briefly Eisenstein series and their properties, we expose our ansatz

and how it can be used to simplify the inhomogeneous Laplace equation.

2.1 A brief reminder of Eisenstein series

The homogeneous Laplace equations in (1.3) for E(D)
(0,0) and E(D)

(1,0) can be solved in terms

of (combinations of) Eisenstein series E(λ, g) on the symmetric space E11−D/K(E11−D).

Such Eisenstein series are invariant under E11−D(Z), can be parametrised by a (complex)

– 3 –
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weight λ of the Lie algebra and satisfy the Laplace equation
(

∆− 1

2
(λ2 − ρ2)

)

E(λ, g) = 0, (2.1)

where ρ is the Weyl vector of the Lie algebra and the norm-squares are calculated using

the Killing metric, normalised to 2 on real roots. Eisenstein series can be written as2

E(λ, g) =
∑

γ∈B(Z)\G(Z)

e〈λ+ρ|H(γg)〉, (2.2)

where H : E11−D → a11−D is a map from the group to the Cartan subalgebra a11−D of

the Lie algebra. It is given by the logarithm of the diagonal torus component a in the

Iwasawa decomposition g = nak of a group element g ∈ E11−D, where n is in the maximal

(upper) unipotent and k ∈ K(E11−D). As the k-component of g does not enter in the

above definition, the Eisenstein series (2.2) descends to a function on the symmetric space

E11−D/K(E11−D). In mathematical terms, it is spherical. Invariance of E(λ, g) under

E11−D(Z) is manifest in (2.2) as it is an orbit sum; the quotient by B(Z) = N(Z)A(Z) is

necessary as one has H(γg) = H(g) for γ ∈ B(Z).

We can also think of the summand as arising from a B(Z)-invariant character

χλ : B(Z)\B → C
×, χλ(na) = e〈λ+ρ|H(na)〉 (2.3)

on the Borel subgroup B that has been extended trivially to all of E11−D = BK(E11−D).

The character property means that

χλ(bb
′) = χλ(b)χλ(b

′) (2.4)

for any b, b′ ∈ B.

2.2 R
4 and D

4
R

4 curvature corrections

The functions E(D)
(0,0) and E(D)

(1,0) that appear for the R4 and D4R4 curvature corrections,

respectively, satisfy the homogeneous Laplace equations of the first two lines in (1.3) unless

there is a Kronecker source term. In the generic cases without Kronecker source term, the

solutions are given by Eisenstein series of E11−D with weights given as in table 1. In

the table, the weight Λ1 refers to the fundamental weight associated with node 1 of the

Dynkin diagram of E11−D that is shown in figure 1. Table 1 lists the relevant weights for

the Eisenstein series.3 In the last column, we also show which representations of E11−D

the automorphic functions belong to. The above answers have passed many consistency

checks [14, 15, 17] and were also found by direct exceptional field theory calculations [29].

The quasi-characters χλ for the particular weight λ = 2sΛ1 − ρ actually have a larger

invariance than B(Z): also the whole T-duality group SO(10 −D, 10 −D;Z) (associated

with the nodes 2, . . . , 11 − D in the diagram) leaves χλ invariant. Combined with B(Z)

one obtains an invariance under the maximal parabolic subgroup P1(Z) and the Eisenstein

series can also be called a maximal parabolic Eisenstein series [14].

2This expression is absolutely convergent for large enough real parts of λ (with respect to all simple

roots) and can be analytically continued almost everywhere by functional equations [48].
3For D < 9, the Eisenstein series for these weights have to be obtained by analytic continuation from a

functionally related convergent expression of the form (2.2).

– 4 –
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function curvature term weight λ (automorphic) representation

E(D)
(0,0) = 2ζ(3)E(λ, g) R4 λ = 3Λ1 − ρ (s = 3

2) minimal

E(D)
(1,0) = ζ(5)E(λ, g) D4R4 λ = 5Λ1 − ρ (s = 5

2) next-to-minimal

Table 1. Table of curvature corrections at the two lowest non-trivial orders. The notation is

explained in the text.

② ② ② ② ② ②

②

1

2

3 4 5 11−D

Figure 1. Dynkin diagram of E11−D with (Bourbaki) labelling of nodes used in the text.

2.3 Inhomogeneous Laplace equation and ansatz

We reproduce the inhomogeneous equation (1.3c) for the D6R4 correction for convenience:

(

∆− 6(14−D)(D − 6)

D − 2

)

E(D)
(0,1) = −

(

E(D)
(0,0)

)2
+ 40ζ(3)δD,6 +

55

3
E(5)
(0,0)δD,5 +

85

2π
E(4)
(1,0)δD,4.

(2.5)

The Kronecker delta source terms in dimensions D = 4, 5, 6 are related to supergravity

divergences (also in form factors). If one works in a dimension D where these do not arise,

the equation is of the form

(∆− µ)ϕ(g) = −(E(λ, g))2, (2.6)

where E(λ, g) is an Eisenstein series that is given by a coset sum as in (2.2). This equation

has to be supplemented by appropriate boundary conditions near cusps of G/K. In string

theory language this includes for example consistency with string perturbation theory [41].

More generally, we could also allow for equations involving a polynomial in Eisenstein series

on the right-hand side and this happens for higher derivative terms [36] or modular graph

functions [37, 40].

The strategy in [41] for solving the equation (2.6) was to (double) Fourier expand

both sides of the equation and then obtain simpler equations for the Fourier coefficients. A

standard Fourier expansion of the right-hand side would require computing the convolution

of the Fourier expansions of the product of two Eisenstein series, something that has

not been carried out in full. The double Fourier expansion consisted in not doing the

convolution sum but rather looking at each summand individually. In appendix A of [41],

the authors rewrite the doubly Fourier expanded solution in terms of a Poincaré series. This

has served as inspiration for our strategy to directly work with a Poincaré series ansatz.

Our strategy consists in making the ansatz that ϕ(g) can be written as a coset sum

ϕ(g) =
∑

γ∈B(Z)\G(Z)

σ(γg), (2.7)

– 5 –
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with the ‘seed’

σ : G → C
× (2.8)

that has the property that

σ(bZgk) = σ(g) (2.9)

for all bZ ∈ B(Z) and k ∈ K(E11−D). In other words, the seed σ can be thought of as a

function on the Borel subgroup B that is trivial on the discrete subgroup B(Z) and extended

trivially to all of G by right K-invariance. Importantly, we do not assume, however, that

σ is a character on B. Therefore, the Poincaré sum ϕ(g) in (2.7) is in general not an

Eisenstein series.4 Moreover, the ansatz entails that we would like the Poincaré sum to be

absolutely convergent. As we shall see in the examples below, this is not always obvious

to achieve.

With the ansatz (2.7) and the expression (2.2) one can find solutions of the inhomo-

geneous Laplace equation (2.6) if one has a solution of the equation

(∆− µ)σ(g) = −χλ(g)E(λ, g). (2.10)

In writing this equation, we have ‘folded’ the coset sum in one of the Eisenstein factors

on the right-hand side. On the left-hand side one also uses the fact that the differential

operator is invariant under the group E11−D.

Since both σ(g) and χλ(g) are left-invariant under the discrete Borel group B(Z), this

group can be further used to Fourier expand equation (2.10). Let U ⊂ B be a unipotent

subgroup of the Borel group B. For example, we could choose U = N , the maximal

unipotent subgroup generated by all positive root spaces, but this is not necessary and

other choices might be more convenient in some cases. Let ψ : U(Z)\U → U(1) be a

unitary character on U , i.e. for abelian U it is of the form5

ψ(u) = ψ

(

exp

(
dimU∑

k=1

xkEk

))

= exp

(

2πi
dimU∑

k=1

mkxk

)

, (2.11)

where Ek are the suitably normalised nilpotent generators of U and mk ∈ Z are the mode

numbers of the character ψ that we will also refer to as instanton numbers or instanton

charges.

The Fourier coefficient of any function f(g) that is left-invariant under U(Z) is then

defined by

fψ(g) =

∫

U(Z)\U

f(ug)ψ(u)du, (2.12)

4The differential equation (2.6) for ϕ also implies that ϕ is not an automorphic function in the standard

sense [35]. Standard automorphic functions are what is called Z(g)-finite, where Z(g) is the center of

the universal enveloping algebra of the Lie algebra g of E11−D. This center is generated by the Casimir

operators that translate into invariant differential operators. Because of the source (E(λ, g))2 in (2.6) the

system is not finite under the action of the Laplace operator.
5For non-abelian U , one only has to include the generators associated with the abelianisation [U,U ]\U .

The Fourier expansion will then be incomplete and has to be refined using also non-abelian Fourier

coefficients [35, 49, 50].

– 6 –
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where the integration is over a single period and the Haar measure is normalised such that

U(Z)\U has unit volume. Fourier coefficients satisfy fψ(ug) = ψ(u)fψ(g) for any u ∈ U .

For abelian U one has the Fourier expansion of the function f given by

f(g) =
∑

ψ

fψ(g). (2.13)

The sum is over all unitary characters, i.e. over all choices mk ∈ Z. The trivial case ψ = 1

represents the constant term of f with respect to U ; in physics applications this comprises

typically all perturbative contributions in some modulus.

Taking Fourier coefficients of equation (2.10) one then obtains

(∆− µ)σψ(g) = − (χλE)ψ (g). (2.14)

For the product right-hand side one needs to take the convolution of the Fourier expansions

of the factors. Due to the Poincaré series ansatz (2.7) the convolution has become trivial

since the character χλ only has a zero mode in its Fourier expansion. Therefore one obtains

(∆− µ)σψ(g) = −χλ(g)Eψ(λ, g). (2.15)

If the Fourier expansion of E(λ, g) is known (as it is for the R4 cases in string theory), one

can explicitly write down this equation and try solve it for each mode ψ, separately. This

is the strategy we will follow in the following sections.

Besides convergence, one tricky point is the fate of the boundary conditions when

making the Poincaré series ansatz. The inhomogeneous equation (2.15) will allow also

require solutions to the homogeneous equation and the particular combination that arises

for the wanted solution σ is fixed by boundary conditions. However, these boundary

conditions are originally stated for the Poincaré sum ϕ in (2.7). We do not currently know

how to generally translate these conditions directly into conditions for σ and so in principle

one has to perform the Poincaré sum to select the right solution. In the cases below we

will basically follow this logic for fixing the homogeneous solution.

3 D
6
R

4 solutions in various dimensions

in this section we implement the strategy just outlined to determine the D6R4 coefficient

function in D = 10 and D = 7 space-time dimensions.

3.1 Type IIB in D = 10

In the case of type IIB in D = 10, the differential equation on the Poincaré upper half

plane H = {z = x+ iy ∈ C| y > 0} ∼= SL(2,R)/SO(2) is [41]

(∆− 12) E(0,1) = −
(
E(0,0)

)2
. (3.1)

The R4 function E(0,0) on H is given by

E(0,0)(z) = 2ζ(3)E3/2(z), (3.2)

– 7 –
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with E3/2(z) being the s = 3
2 case of the non-holomorphic Eisenstein series

Es(z) =
∑

γ∈B(Z)\SL(2,Z)

[Im(γz)]s = ys +
ξ(2(1− s))

ξ(2s)
y1−s +

∑

n 6=0

Fn,s(y)e
2πinx (3.3)

with the non-zero Fourier coefficients

Fn,s(y) =
2

ξ(2s)
y1/2|n|s−1/2σ1−2s(|n|)Ks−1/2(2π|n|y) (3.4)

and ξ(s) = π−s/2Γ(s/2)ζ(s). An element γ =
(
a b
c d

)
∈ SL(2) acts on z ∈ H by z 7→

γz = az+b
cz+d . Kt(y) in the above is a modified Bessel function of the second kind and

σt(k) =
∑

d|k d
t is the (positive) divisor sum for k ∈ Z>0. The Eisenstein series Es(z) is

induced from the character χs(z) = ys. The Laplace operator on H is ∆ = y2
(
∂2
x + ∂2

y

)
.

The physical interpretation of the modulus z ∈ H here is such that its real part x

corresponds to the RR axion of type IIB string theory while its imaginary part y is the

inverse string coupling g−1
s . The Fourier expansion of E3/2(z) given in (3.3) then contains

two zero mode terms, y3/2 = g
−3/2
s and y−1/2 = g

1/2
s . These correspond to the perturbative

tree-level and one-loop contributions to the four-graviton scattering amplitude expressed

in Einstein frame; the fact that there are no further zero modes is a strong perturbative

non-renormalisation theorem [2].

Making the Poincaré series ansatz (2.7) for E(0,1)(z), viz.

E(0,1)(z) =
∑

γ∈B(Z)\SL(2,Z)

σ(γz) (3.5)

the inhomogeneous Laplace equation (3.1) leads to the ‘folded’ equation

(∆− 12)σ(z) = −4ζ(3)2y3/2E3/2(z). (3.6)

This equation corresponds to (2.10) in the general discussion and we can further analyse

it by Fourier expanding both sides. The abelian unipotent invariance group here is given

by U(Z) = N(Z) =
{(

1 k
1

) ∣
∣ k ∈ Z

}
. Writing the Fourier expansion of σ(z) as

σ(z) = c0(y) +
∑

n 6=0

cn(y)e
2πinx (3.7)

leads to the following two equations for the zero and non-zero Fourier modes

(y2∂2
y − 12)c0(y) = −4ζ(3)2y3 − 4

3
π2ζ(3)y, (3.8a)

(y2∂2
y − 4π2n2y2 − 12)cn(y) = −16πζ(3)y2|n|σ−2(|n|)K1(2π|n|y), (3.8b)

where we have used the explicit form of the Fourier coefficients for E3/2(z) given in (3.3).

These equations correspond to (2.15) in the general discussion.

The general solution to equation (3.8a) for the zero mode c0(y) is simple to obtain:

c0(y) =
2

3
ζ(3)2y3 +

1

9
π2ζ(3)y + αy−3 + βy4. (3.9)

– 8 –
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Here, α and β are a priori undetermined integration constants that have to be fixed by

boundary conditions. We note that performing the Poincaré sum of any term of the form ys

produces the Eisenstein series Es(z) with perturbative terms ys and y1−s, cf. (3.3). Having

either α or β non-zero will therefore necessarily lead to the two zero mode terms y−3 and

y4 in the summed E(0,1). While the term y−3 = g3s corresponds to a three-loop contribution

(after changing to string frame), the term y4 = g−4
s would be a contribution of loop

order −1/2, something that is incompatible with string perturbation theory. Since both

homogeneous solutions parametrised by α and β would lead to this inconsistent behaviour,

we are led to set

α = β = 0 ⇒ c0(y) =
2

3
ζ(3)2y3 +

2

3
ζ(2)ζ(3)y. (3.10)

The solution of equation (3.8b) for the non-zero modes cn(y) is more complicated.

The homogeneous equation can be recast in Bessel form and has only one solution that

falls off at the weak coupling cusp y = g−1
s → ∞. For mode number n it is given by

y1/2K7/2(2π|n|y) and has in fact a finite asymptotic expansion around weak coupling. A

particular solution of (3.8b) can be extracted from the analysis [41]6 and combined with

the homogeneous solution we obtain

cn(y) =
8ζ(3)σ−2(|n|)

|n|

[(

|n|y + 10

π2y|n|

)

K0(2π|n|y) +
(
6

π
+

10

π3y2|n|2
)

K1(2π|n|y)
]

+ αny
1/2K7/2(2π|n|y), (3.11)

where αn is the integration constant associated with the homogeneous solution. Again,

this integration constant has to be fixed from asymptotic considerations. In this case, we

consider the strong coupling region y → 0 where these instantonic contributions dominate.

By S-duality this region is also related to the perturbative regime y → ∞. The absence of

any singular terms in the limit y → 0 determines the value of αn to be

αn = −128ζ(3)σ−2(|n|)
3π
√

|n|
, (3.12)

leading to the final expression after some rearrangements

cn(y) = 8ζ(3)σ−2(|n|)y
[(

1 +
40

(2π|n|y)2
)

K0(2π|n|y) +
(

12

2π|n|y +
80

(2π|n|y)3
)

K1(2π|n|y)

− 16

3π(|n|y)1/2K7/2(2π|n|y)
]

. (3.13)

This way cn(y) is of order y as y → 0 and does not contain any singular terms.7 The

resulting expression agrees precisely with the result found in [41] but now obtained directly

from a Poincaré series ansatz.

6In appendix A, we present an algebraic formalism that also leads to this solution.
7This condition appears slightly stronger than the requirement O(y−2) as y → 0 for the summed solution

E(0,1)(z) that was found by S-duality in Lemma 2.9 in [41].
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We note that the seed function σ(z) = c0(y) +
∑

n 6=0 cn(y)e
2πinx depends non-trivially

on both Borel coordinates x and y and in particular is not a character on B. This leads

to complications when carrying out the Poincaré sum. In fact, the full expression is not

known. Let us make a few comments about convergence of the Poincaré sum over the seed

we just determined. If the sum were absolutely convergent one could perform the sum

over all the terms separately. This cannot be true as it is well known that the Poincaré

sum for the linear term in y in c0(y) does not converge: it represents the limiting value

of the non-holomorphic Eisenstein series for SL(2). It is therefore desirable to introduce a

regularised version of the solution depending on a parameter with a limit that is related to

the above solution.8 In appendix B, we present a regularised version of the equation and

the solution where this problem does not arise.

The physical content of the solution is obtained by performing a Fourier expansion of

E(0,1)(z) =
∑

γ σ(γz) with respect to the periodic real part x that represents the Ramond-

Ramond axion in type IIB theory. The zero mode piece in E(0,1)(z) corresponds to the

perturbative terms in gs, together with non-perturbative contributions of vanishing net

instanton charge. These should be interpreted as instanton-anti-instanton contributions

and they are exponentially suppressed by e−4π|n|y [10]. We have not managed to derive the

Fourier expansion from the Poincaré sum form and here merely quote the result for the

perturbative zero modes obtained in [10, 41]9

E(10B,pert.)
(0,1) =

2

3
ζ(3)2y3 +

4

3
ζ(2)ζ(3)y +

4ζ(4)

y
+

4ζ(6)

27y3
. (3.14)

The perturbative terms thus obtained correspond to contributions from tree-level up to

three-loops. The numerical values obtained by using SL(2,Z) invariance and the differential

equation have been confirmed by direct string theory calculations [10, 43, 51].

3.2 Toroidal compactification to D = 7

In the case of D = 7, the U-duality group is SL(5,Z) and the moduli space is SL(5)/SO(5).

Equation (1.3c) becomes

(

∆− 42

5

)

E(7)
(0,1) = −

(

E(7)
(0,0)

)2
, (3.15)

where the R4-function E(7)
(0,0)(g) = 2ζ(3)E(3Λ1 − ρ, g) satisfies

(

∆+
12

5

)

E(7)
(0,0) = 0 . (3.16)

We will analyse equation (3.15) over the mirabolic P1, i.e. the maximal parabolic subgroup

associated with node 1. This is the parabolic that is associated with the string perturbation

8In terms of the Eisenstein series Es(z) induced by the character ys one obtains the so-called (first)

Kronecker limit formula [35] for s → 1.
9The exponentially suppressed terms in the zero and non-zero modes are not known explicitly.
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theory expansion; the Levi is SL(4) × GL(1) ∼= SO(3, 3) × R+ (locally) giving the T-

duality moduli space of the string theory three-torus and the string coupling. Explicitly,

we parametrise the group element g ∈ SL(5) as

g = ulk =

(

1 Q

0 1

)(

r4/5 0

0 r−1/5e4

)

k (3.17)

where Q is a four-component row vector and e4 is a general element of SL(4) and k ∈ SO(5).

The variable r equals the inverse string coupling10 in D = 7, Q corresponds to the four

axions that BPS-instantons couple to11 and e4 ∈ SL(4) ∼= SO(3, 3) is associated with the

moduli space of T 3. The Laplacian ∆ = ∆SL(5) on SL(5)/SO(5) decomposes in these

coordinates as

∆SL(5) =
5

8
r2∂2

r −
15

8
r∂r + r2||e−1

4 ∂Q||2 +∆SL(4) . (3.18)

3.2.1 Perturbative terms in the string coupling

Before solving the inhomogeneous equation (3.15) using a Poincaré sum, we first consider

the perturbative pieces similar to (3.14) by considering the zero Fourier modes in an ex-

pansion of E(7)
(0,1) in the decomposition (3.17). A similar analysis can be found in [14].

Making the ansatz for the perturbative terms up to three loops with Fh denoting the

h-loop perturbative piece as12

E(7,pert.)
(0,1) = r14/5

(
r2F0 + r0F1 + r−2F2 + r−4F3

)

= r24/5F0 + r14/5F1 + r4/5F2 + r−6/5F3 (3.19)

leads to the four equations
(
∆SL(4) − 6

)
F0 = −4ζ(3)2 , (3.20a)

(

∆SL(4) −
21

2

)

F1 = −16ζ(2)ζ(3)ESL(4)(2Λ1 − ρ, e4) , (3.20b)

(
∆SL(4) − 10

)
F2 = −16ζ(2)2ESL(4)(2Λ1 − ρ, e4)

2 , (3.20c)
(

∆SL(4) −
9

2

)

F3 = 0 . (3.20d)

The equations not involving a squared source on the right-hand side are solved by

F0 =
2

3
ζ(3)2 , (3.21a)

F1 =
4

3
ζ(2)ζ(3)ESL(4)(2Λ1 − ρ, e4) +

5π

756
ζ(7)ESL(4)(7Λ2 − ρ, e4) , (3.21b)

F3 = 4ζ(6)
(

ESL(4)(6Λ1 − ρ, e4) + ESL(4)(6Λ3 − ρ, e4)
)

. (3.21c)

10We parametrise the string coupling in D dimensions gD such that different orders in perturbation theory

differ by g2D; this is different from the convention used in [17].
11In type IIA language, there are three D0-instantons (wrapping one of the three cycles of T 3) and one

D2-instanton (wrapping the full torus). In type IIB language, there is one (point-like) D(−1)-instanton and

three D1-instantons (wrapping two out of three cycles).
12The overall pre-factor comes from relating the string scale to the Planck scale in D = 7 space-time

dimensions.
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The constant tree-level contribution follows by expanding the known amplitude which also

rules out any contributions from the kernel of the differential operator. The one-loop piece

is a theta lift of the Narain partition function [13, 52]

F1 =
π

3

∫

SL(2,Z)\H

d2τ

τ22
Γ(3,3)(e4)

[
ξ(3)E3(τ) + ζ(3)

]
, (3.22)

where τ is the complex structure of the string one-loop torus and the combination

ξ(3)E3(τ)+ζ(3) can also be obtained using modular graph functions [37]. The second term

in (3.20b) is in the kernel of the differential operator but is needed for obtaining the right

decompactification limit. The three-loop equation is homogeneous and the particular com-

bination of the homogeneous solutions is fixed by having the right decompactification limit

consistent with (3.14). It is also given by the genus-three theta lift of the constant func-

tion [14]. The two-loop term is as always the hardest as it satisfies a similar inhomogeneous

equation to the original function. It is connected to an integral over the Kawazumi-Zhang

invariant [43, 44] and constrained by having the right decompactification limit.

3.2.2 Solution using a Poincaré sum

Let us assume that E(7)
(0,1) is a Poincaré series with respect to the same maximal parabolic

P1 as in (2.7), i.e.

E(7)
(0,1)(g) =

∑

γ∈P1(Z)\SL(5,Z)

σ(γ · g) . (3.23)

We note that this particular type of parabolic coset sum is an assumption. Our motivation

for this choice is that is adapted to a string perturbation formulation of the solution, i.e.

the seed will be decomposed into terms at fixed order in string perturbation theory plus

SO(3, 3,Z) T-duality invariant functions coupled to instantons. Of course, this ansatz for

the seed gets spread out by the SL(5,Z) orbit sum into a more complicated U-duality

invariant function. We shall find a solution to the differential equation with our parabolic

ansatz; it is likely that other forms using other parabolics sums exist and it would be very

interesting to study their relation and functional equations.

With the assumption of the parabolic Poincaré series (3.23), the Laplace equation (3.15)

then unfolds into (

∆− 42

5

)

σ(g) = −4ζ(3)2r12/5E(3Λ1 − ρ, g). (3.24)

Since we assume σ to be left P1(Z)-invariant, it can be expressed as the Fourier series

σ(g) =
∑

N∈Z4

cN (r, e4)e
2πiQN . (3.25)

As the unipotent of a maximal parabolic subgroup of SL(n) is abelian, this expression

captures the whole of σ without need for non-abelian coefficients. Here, N is a four-

component column-vector. The Eisenstein series on the right-hand side of (3.24) can also

be written as a Fourier series over the unipotent as

E(3Λ1 − ρ, g) =
∑

N∈Z4

fN (r, e4)e
2πiQN (3.26)
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with

fN (r, e4) =
2

ζ(3)
r7/5σ2(k)

K1(2πr||e−1
4 N ||)

||e−1
4 N ||

for N 6= 0 and (3.27a)

f0(r, e4) = r12/5 +
2ζ(2)

ζ(3)
r2/5ESL(4)(2Λ1 − ρ, e4) . (3.27b)

One has ∆SL(4)E
SL(4)(2Λ1− ρ, e4) = −3

2E
SL(4)(2Λ1− ρ, e4) and k = gcd(N). The notation

here is such that Λ1 for SL(4) denotes the node adjacent to the one used defining the string

perturbation limit for SL(5) and thus is one of the outer notes of SL(4). (From the point

of view of SO(3, 3), this is a spinor node.) We now obtain differential equations for the

Fourier coefficients cN of σ in (3.25).

For the zero mode c0 we have the equation

(
5

8
r2∂2

r−
15

8
r∂r+∆SL(4)−

42

5

)

c0(r,e4)=−4ζ(3)2r24/5−8ζ(2)ζ(3)r14/5ESL(4)(2Λ1−ρ,e4).

(3.28)

Starting with the homogeneous equation, one can make a separated ansatz of the form

c
(h)
0 (r, e4) = rαFα(e4). This leads to

(

∆SL(4) +
5

8
α2 − 5

2
α− 42

5

)

Fα(e4) = 0 . (3.29)

In order for this to produce terms consistent with string perturbation theory only the values

α ∈ {24
5 ,

14
5 ,

4
5 ,−6

5} are allowed, leading to the eigenvalues {6, 212 , 10, 92} as in (3.20). The

remaining equation for Fα(e4) is then solved by appropriate SL(4) Eisenstein series.

Looking for a particular solution of the form α1r
24/5 + α2r

14/5ESL(4)(2Λ1 − ρ, e4) we

are led to the particular solution

c
(p)
0 (r, e4) =

2

3
ζ(3)2r24/5 +

2

3
ζ(2)ζ(3)r14/5E(2Λ1 − ρ, e4). (3.30)

The full solution for the zero mode is now c0 = c
(h)
0 +c

(p)
0 . Comparison with the IIB case sug-

gests that one should choose the homogeneous solutions c
(h)
0 = 5π

1512ζ(7)r
14/5ESL(4)(7Λ2 −

ρ, e4) but without computing the Fourier expansion of the Poincaré sum (3.23) and com-

paring with (3.20) we cannot fix the homogeneous term definitively.

For the non-zero modes cN (r, e4), we have the equation

(
5

8
r2∂2

r−
15

8
r∂r−4π2r2||e−1

4 N ||2+∆SL(4)−
42

5

)

cN =−16πζ(3)σ2(k)r
19/5K1(2πr||e−1

4 N ||)
||e−1

4 N ||
.

(3.31)

We show in appendix A that

c
(p)
N =32π2ζ(3)σ2(k)r

24/5

(
K0

(
2πr||e−1N ||

)

(2πr||e−1N ||)2
+12

K1

(
2πr||e−1N ||

)

(2πr||e−1N ||)3
+40

K2

(
2πr||e−1N ||

)

(2πr||e−1N ||)4
)

(3.32)

is a particular solution of this equation. The proof relies on writing out the SL(4) Laplacian

and using properties of the Bessel functions in a way similar to demonstrating (3.11). As
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also explained in the appendix, there are solutions to the homogeneous equation given by

(see (A.22))13

c
(h)
N = r24/5

K7/2(2πr||e−1
4 N ||)

(2πr||e−1
4 N ||)5/2

and c
(h)
N = r16/5

K7/2(2πr||e−1
4 N ||)

(2πr||e−1
4 N ||)3/2

. (3.33)

If we impose the same constraint as for SL(2), namely that the strong coupling behaviour

r → 0 is regular, this rules out the second solution and selects the combination

cN (r, e4) = 32π2ζ(3)σ2(k)r
24/5

[
K0

(
2πr||e−1N ||

)

(2πr||e−1N ||)2
+ 12

K1

(
2πr||e−1N ||

)

(2πr||e−1N ||)3
+ 40

K2

(
2πr||e−1N ||

)

(2πr||e−1N ||)4

− 2
√
2

15
√
π

K7/2(2πr||e−1
4 N ||)

(2πr||e−1
4 N ||)5/2

]

. (3.34)

4 Modular graph functions

Another family of automorphic functions satisfying inhomogeneous Laplace equation is

provided by modular graph functions [37]. These are functions that are invariant un-

der SL(2,Z) and have an explicit lattice sum description. Moreover, they satisfy typi-

cally inhomogeneous Laplace equations. We note that for any Poincaré sum of the form

ϕ(z) =
∑

γ∈B(Z)\SL(2,Z) σ(γz), where z = x + iy and the periodic seed has the expansion

σ(x + iy) =
∑

n∈Z cn(y)e
2πinx, the Fourier modes of ϕ(z) =

∑

n∈Z fn(y)e
2πinx are given

by [35, 53]

fn(y)= cn(y)+
∑

d>0

∑

m∈Z

S(m,n;d)

∫

R

exp

[

−2πiωn−2πim
ω

d2(ω2+y2)

]

cm

(
y

d2(ω2+y2)

)

dω ,

(4.1)

involving the Kloosterman sums

S(m,n; d) =
∑

q∈(Z/dZ)×

e2πi(qm+q−1n)/d . (4.2)

This can be shown by writing out explicitly the coset sum. We shall try to apply this

formalism to re-derive some results on modular graph functions.

As an example we consider the function C3,1,1(z) in the notation of [37]. It can be

defined explicitly from a multiple lattice sum as

C3,1,1(z) =
∑

(m1,n1),(m2,n2)∈Z2

(mi,ni) 6=(0,0)
(m1+m2,n1+n2) 6=(0,0)

y5

π5|m1z + n1|6|m2z + n2|2|(m1 +m2)z + (n1 + n2)|2
.

(4.3)

13We note that these homogeneous solutions appear not to correspond to the Fourier modes of an SL(5)

Eisenstein series associated with the minimal series on node 1. Looking for such an Eisenstein series leads to

irrational powers of r. There is, however, a well-known homogeneous solution given by ESL(5)(7Λ2−ρ) [25].
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As shown in [37, eq. (3.19)] it satisfies the equation

(∆− 6)C3,1,1(z) =
86

5
E5 − 4E2E3 +

ζ(5)

10
, (4.4)

where Es = 2π−sζ(2s)Es is the non-holomorphic Eisenstein series Es in a different

normalisation.

We shall now forget that we have an explicit solution for C3,1,1(z) and try to construct

one by solving the Laplace equation (4.4) using a Poincaré ansatz. In order to treat the

finite constant on the right-hand side, we replace it by an Eisenstein series Eǫ and send

ǫ → 0 at the end, using analytic continuation. Writing C3,1,1(z) =
∑

γ∈B(Z)\SL(2,Z) σ(γz)

in Poincaré form, we have to solve the equation

(∆− 6)σ(z) =
172π5

467 775
y5 − 8π5

42 525
y3E2 +

ζ(5)

10
yǫ , (4.5)

where we have explicitly written out the normalising factors and yǫ represents the regulator

for the constant. In writing the equation we have chosen to ‘fold’ E3. The boundary

condition for solving this equation is that the solution f(z) should not have a term growing

as y3 when approaching y → ∞.

Reducing the equation to Fourier modes σ(z) =
∑

n∈Z cn(y)e
2πinx leads to

(
y2∂2

y − 6
)
c0(y) =

4π5

22 275
y5 − 8π2

945
ζ(3)y2 +

ζ(5)

10
yǫ ,

(
y2∂2

y − 4π2n2y2 − 6
)
cn(y) = −32π3

945
|n|3/2σ−3(n)y

7/2K3/2(2π|n|y)

= −8π2

945
σ−3(n)y

2(1 + 2π|n|y)e−2π|n|y . (4.6)

A particular solution to these equations is given by

c0(y) =
2π5

155 925
y5 +

2π2ζ(3)

945
y2 +

ζ(5)

10(ǫ(ǫ− 1)− 6)
yǫ ,

cn(y) =
2π2

945
σ−3(n)y

2e−2π|n|y . (4.7)

(The homogeneous solutions correspond to the various Fourier modes of E2(z), but we will

not require them here.)

Using the general formula for Fourier expansions of Poincaré sums one can now con-

struct the zero mode of the C3,1,1(z) =
∑

n∈Z fn(y)e
2πinx by computing

f0(y) = c0(y) +
∑

d>0

∑

m∈Z

S(m, 0; d)

∫

R

exp

[

−2πim
ω

d2(ω2 + y2)

]

cm

(
y

d2(ω2 + y2)

)

dω .

(4.8)
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This expression can be evaluated for the present case as follows. We first rescale the

integration variable and restrict to the terms with m 6= 0 in the sum. They are

y
∑

d>0

∑

m 6=0

S(m, 0; d)

∫

R

[

−2πimy−1d−2 t

1 + t2

]

cm

(
y−1d−2

1 + t2

)

dt

=
4π2

945
y−1

∑

m>0

∑

d>0

S(m, 0; d)d−4σ−3(m)

∫

R

(1 + t2)−2 exp

[

−2πmy−1d−2 1 + it

1 + t2

]

dt

=
4π2

945
y−1

∑

m>0

∑

k≥0

1

k!

∑

d>0

S(m, 0; d)d−4−2k

︸ ︷︷ ︸

=
σ
−3−2k(m)

ζ(4+2k)

mkσ−3(m)(−2πy−1)k
∫

R

(1 + t2)−k−2(1 + it)kdt

︸ ︷︷ ︸

=2−k−2(k+2)π

=
π3

945
y−1

∑

m>0

∑

k≥0

k + 2

k!

σ−3(m)σ−3−2k(m)mk

ζ(4 + 2k)
(−πy−1)k . (4.9)

As is evident from this expression the sum over m is divergent and so the two remaining

summations cannot be interchanged strictly. One can partly make sense of the sum over

m by analytically continuing the Ramanujan identity

∑

m>0

σa(m)σb(m)m−s =
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
(4.10)

from the convergent region with large real part of s to s = −k. This leads to

(4.9) =
π3

945
y−1

∑

k≥0

k + 2

k!

ζ(−k)ζ(3− k)ζ(k + 3)ζ(k + 6)

ζ(4 + 2k)ζ(6)
(−πy−1)k

= −2ζ(3)2

21π
y−1 +

7ζ(7)

16π2
y−2 − ζ(3)ζ(5)

2π3
y−3 +

11ζ(9)

32π4
y−4 . (4.11)

The k-summation terminates due to the zeroes of the Riemann zeta function at negative

even integers. The case k = 2 requires taking a limit.

To complete the calculation of the zero mode f0(y) we also have to take into account

the contribution from c0(y) and the terms with m = 0 in the general expression. These are

just the usual constant terms for Eisenstein series [35]. This leads in total to

f0(y) =
2π5

155 925
y5 +

2π2ζ(3)

945
y2 +

ζ(5)

10(ǫ(ǫ− 1)− 6)
yǫ

+
2π5

155 925

ξ(9)

ξ(10)
y−4 +

2π2ζ(3)

945

ξ(3)

ξ(4)
y−1 +

ζ(5)

10(ǫ(ǫ− 1)− 6)

ξ(2ǫ− 1)

ξ(2ǫ)
y1−ǫ

− 2ζ(3)2

21π
y−1 +

7ζ(7)

16π2
y−2 − ζ(3)ζ(5)

2π3
y−3 +

11ζ(9)

32π4
y−4

ǫ→0→ 2π5

155 925
y5 +

2π2ζ(3)

945
y2 − ζ(5)

60
+

7ζ(7)

16π2
y−2 − ζ(3)ζ(5)

2π3
y−3 +

43ζ(9)

64π4
y−4 (4.12)

This agrees with the Laurent polynomial stated in [37, eq. (6.2)] except for the constant

term in y0.14 The reason for this appears to be that the constant term of E2E3 has a

14We note that this Laurent polynomial can be deduced by considering the zero mode of equation (4.4)

and applying the Rankin-Selberg method to fix the solution to the homogeneous solution.
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contribution to y0 that is missed by the above construction and this seems to be a general

feature that requires additional study. A further point that requires investigation is that

our method of treating the divergent sum over m seems to have lost all the exponentially

suppressed terms of the form O(e−y) in the zero mode while one would expect them from

the known function C3,1,1(z). However, we note that the method produces also the right

combination of solutions to the homogeneous equation found in [37].

5 Discussion

In the present paper, we have outlined a method for solving inhomogeneous automorphic

differential equations of the type that appear in string theory in several places. This

method relied on making an ansatz for the solution of a Poincaré sum form as in (2.7).

The advantage of this method is that the resulting differential equation for the seed σ of

the Poincaré sum is less involved than the original equation and is solved in a Fourier

expansion. We exemplified this method for four examples, namely the D6R4 correction

for ten-dimensional type IIB string theory and the D6R4 correction in D = 7 space-time

dimensions. The first example reproduced a known result from [10, 41] while the second

example gave a new proposal for D = 7. The third example dealt with a modular graph

function and how to reproduce its Laurent polynomial. A last family of examples was a

generalisation of the D6R4 function in D = 10 presented in appendix B.

While the method seems powerful and convenient for producing formal solutions to

the equations, there are a number of important and interesting points that require further

investigation for bringing the method to its full power. Besides the question of convergence

of the Poincaré sum, these are

1. If the original automorphic differential equation comes equipped with boundary con-

ditions such as compatibility with perturbation theory, these boundary conditions

must be rephrased for the new differential equation for the seed σ. The direct trans-

lation is not obvious and a general procedure will probably rely on a solution to the

second point below. In the examples in this paper we have given a heuristic set of

boundary conditions based on strong couplings limits at the level of the seed.

2. The boundary conditions and the physical content of the Poincaré sum

ϕ(g) =
∑

γ σ(γg) are expressed through the Fourier expansion of ϕ. Even though

σ was solved using Fourier expansion, the direct translation of this into the Fourier

expansion of ϕ is very hard. For the case of SL(2,Z) some intuition can be gleaned by

considering the form of the Fourier expansion of the solution given in general in (4.1).

These expressions, though explicit, seem impossible to evaluate for the seeds σ that

we found for the D6R4 solution15 and also in the case of modular graph functions in

section 4 we had to deal with divergent sums.

15Plugging in our solution (3.10) and (3.13) this agrees with [41, eq. (B.13)]. In both cases, there appears

to be a problem with absolute convergence as the näıve separate evaluation of the m = 0 term in the zero

mode f0(y) leads to
∑

d>0 S(0, 0; d)d
−2s = ζ(2s−1)/ζ(2s) → ∞ for s → 1 from the linear term in y in c0(y).

This problem is related to the lack of convergence of the Poincaré series for this term alone that was men-

tioned below (3.13) as this term normally produces the second constant term of the Eisenstein series Es(z).
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However, we can see from (4.1) that the identity element in the Poincaré sum always

yields the Fourier mode cn of the seed and this is why we relied on the properties of

this in our heuristic analysis of the boundary conditions. One obtains the same types

of integral if one does the direct Fourier expansion of the solution in the SL(5) case. It

would be very good to develop general methods for this and also for higher rank cases.

3. Automorphic forms solving homogeneous equations can belong to principal series

representations and satisfy interesting functional equations [48]. Is there a similar

theory underlying the solutions to the inhomogeneous equations? There is no obvious

such functional relation for the one-parameter family of solutions in appendix B. It

is also not clear what the representation-theoretic meaning of the solutions is. They

most probably represent vectors (or packets) in the tensor product of principal series

representations.

4. The solution we found for D6R4 in D = 7 space-time dimensions is very different

from the integral formulas found in [25, 29]. Since a Fourier expansion has not been

achieved in those cases either, it is hard to compare the two results. The solution we

constructed was based on the Laplace equation. For higher rank groups and curva-

ture corrections one typically has more differential equations to solve and they can

be of higher order in derivatives [27], either of homogeneous or inhomogeneous type.

They represent elements in the center of the universal enveloping algebra and gen-

erated the annihilator ideal for standard automorphic forms. It would be interesting

to investigate these tensorial type equations for Poincaré sum solutions and they will

constrain the homogeneous solutions further.
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A Particular solution of the equation for cN for SL(5)

In this appendix, we construct the particular solution for the non-zero Fourier mode

cN (r, e4) that was stated in (3.31). The equation to solve is (with k = gcd(N)):
(
5

8
r2∂2

r − 15

8
r∂r − 4π2r2||e−1

4 N ||2 +∆SL(4) −
42

5

)

︸ ︷︷ ︸

D

cN = −16πζ(3)σ2(k)
︸ ︷︷ ︸

Ak

r19/5
K1(2πr||e−1

4 N ||)
||e−1

4 N ||
.

(A.1)

A.1 Laplacians and Bessel functions

The SL(4) invariant scalar Laplacian on SL(4)/SO(4) is given by

∆SL(4) =
1

2
gikgjl∂

ij∂kl − 1

8

(
gij∂

ij
)2

+
5

2
gij∂

ij (A.2)
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where

g = e4e
T
4 and ∂ij ≡ ∂

∂gij
satifies ∂ijgkl = δikδ

j
l + δjkδ

i
l (A.3)

as in [7, appendix A] up to an overall normalisation consistent with our conventions.16 We

introduce some helpful notation

u = ||e−1
4 N || =

√

NT g−1N =
√

NigijNj , (A.4a)

x = 2πr||e−1
4 N || = 2πru (A.4b)

and define the functions

fαβ
s = rαuβKs , f ′αβ

s = rαuβK ′
s , f ′′αβ

s = rαuβK ′′
s , (A.5)

so that the prime only affects the Bessel function. All these functions have the Bessel

part evaluated at x = 2πru, e.g. f ′αβ
s ≡ rαuβK ′

s(x). Note that the right-hand side of

the differential equation (A.1) is of the form Ak f
19/5,−1
1 and so contains a function in the

class (A.5) that we shall use below to construct an ansatz for the solution.

We record some helpful identities

gij∂
iju = −u , (A.6a)

gikgjl∂
ij∂klu = 9u , (A.6b)

gikgjl
(
∂iju

) (

∂klu
)

= u2 , (A.6c)

where repeated indices are summed over. We also record how the differential operators

in (A.1) act on a function fαβ
s from (A.5). By using the identities (A.6) one can derive the

following relations

r2∂2
rf

αβ
s = α (α− 1) fαβ

s + 2αxf ′αβ
s + x2f ′′αβ

s , (A.7a)

r∂rf
αβ
s = αfαβ

s + xf ′αβ
s , (A.7b)

gikgjl∂
ij∂klfαβ

s =
(
β2 + 8β

)
fαβ
s + (2β + 9)xf ′αβ

s + x2f ′′αβ
s , (A.7c)

(
gij∂

ij
)2

fαβ
s = β2fαβ

s + (2β + 1)xf ′αβ
s + x2f ′′αβ

s , (A.7d)

gij∂
ijfαβ

s = −βfαβ
s − xf ′αβ

s . (A.7e)

Acting with D from (A.1) on a term fαβ
s then gives

Dfαβ
s = x2f ′′αβ

s +
5α+ 3β

4
xf ′αβ

s +

(
5

8
α (α− 4) +

3

8
β (β + 4)− x2 − 42

5

)

fαβ
s . (A.8)

This expression can be further reduced to a more algebraic equation by using properties

of the Bessel function Ks(x) = K−s(x). The first identity is the modified Bessel equation

x2K ′′
s (x)+xK ′

s(x)−(x2+s2)Ks(x)= 0 or x2f ′′αβ
s +xf ′αβ

s −(x2+s2)fαβ
s =0 (A.9)

16The derivative ∂ij is secretly with respect to the matrix with diagonal elements rescaled by 2 as in [7],

but what we need is its characteristic property when differentiating the symmetric metric gkl.
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that can be used to eliminate the second derivative of the Bessel function without changing

the order s of the Bessel function. Moreover, we have the recursive Bessel relation

xK ′
s(x) = sKs(x)− xKs+1(x) or xf ′αβ

s = sfαβ
s − 2πfα+1,β+1

s+1 (A.10)

that can be used to replace first derivatives of the Bessel function at the cost of changing

the order.

Let us first apply the modified Bessel equation to (A.8). This yields

Dfαβ
s =

5α+ 3β − 4

4
xf ′αβ

s +

(
5

8
α (α− 4) +

3

8
β (β + 4) + s2 − 42

5

)

fαβ
s . (A.11)

Applying then the Bessel relation (A.10) to this leads to

Dfαβ
s =

(
5

8
α(α−4)+

3

8
β (β+4)+s2+

5α+3β−4

4
s− 42

5

)

fαβ
s −2π

5α+3β−4

4
fα+1,β+1
s+1 ,

(A.12)

which implements the differential operator D as a completely algebraic operation on the

space of functions {fαβ
s }.

As a check on the rewriting of the differential operator, one can work out the SL(5)

Laplacian (i.e. removing the −42/5 from D) on the Fourier mode (3.27a) of the R4 cor-

rection term which corresponds to α = 7/5, β = −1 and s = 1 to obtain the eigenvalue

−12/5 as needed. The last term with shifted order drops out in this case as needed. We

also note that the following functions are in the kernel of D:

Df
(4−3β)/5,β
s(β) = 0 (A.13)

with s(β) =
√

(50− 12β − 3β2)/5. This is not necessarily a complete description of the

kernel.

There is one more algebraic relation that we record for special low order

K2(x) =
2

x
K1(x) +K0(x) or fαβ

2 =
1

π
fα−1,β−1
1 + fαβ

0 . (A.14)

A.2 Particular solution by recursion

In order to find a particular solution to (3.31) we make the ansatz

c
(p)
N = Ak

∑

i

Bir
αiuβiKsi = Ak

∑

i

Bif
αiβi
si with Bi ∈ R (A.15)

where the number of terms in the sum is to be determined and we take out the overall

numerical factor Ak. From the SL(2) example in (3.13) we expect that a small and finite

number suffices.

Plugging the ansatz (A.15) into the differential equation (A.1), we get upon use

of (A.12)

∑

i

Bi

{(
5

8
αi (αi − 4) +

3

8
βi (βi + 4) + s2i +

5αi + 3βi − 4

4
si −

42

5

)

fαiβi
si

− 2π
5αi + 3βi − 4

4
fαi+1,βi+1
si+1

}

= f
19/5,−1
1 . (A.16)
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Our strategy will be to solve this recursively such that we always generate the right-

hand side from the non-order preserving term in (A.12). The right-hand side f
19/5,−1
1 can

be generated by acting on f
14/5,−2
0 from the last term in (A.12). Since

− 1

2π
Df

14/5,−2
0 =

12

2π
f
14/5,−2
0 + f

19/5,−1
1 , (A.17)

we start the recursion with − 1
2πf

14/5,−2
0 to generate the original right hand side. This

produces a new right-hand side involving − 12
2πf

14/5,−2
0 that we now cancel by the same

method. Since

Df
9/5,−3
−1 = −10f

9/5,−3
−1 + 2πf

14/5,−2
0 (A.18a)

Df
4/5,−4
−2 = 6πf

9/5,−3
−1 , (A.18b)

we can find a linear combination of the two functions that produces exactly the new right-

hand side, viz.

D

(

− 12

(2π)2
f
9/5,−3
−1 − 40

(2π)3
f
4/5,−4
−2

)

= − 12

2π
f
14/5,−2
0 (A.19)

Here, it is crucial that in (A.18b) no eigenvalue term is produced and our method

terminates.

Thus, altogether we obtain the relation

D

(

− 1

2π
f
14/5,−2
0 − 12

(2π)2
f
9/5,−3
−1 − 40

(2π)3
f
4/5,−4
−2

)

= f
19/5,−1
1 , (A.20)

leading to the particular solution for the Fourier mode of the seed

c
(p)
N (r, e4) = 32π2ζ(3)σ2(k)r

24/5

(
K0(2πr||e−1

4 N ||)
(2πr||e−1

4 N ||)2
+ 12

K1(2πr||e−1
4 N ||)

(2πr||e−1
4 N ||)3

+ 40
K2(2πr||e−1

4 N ||)
(2πr||e−1

4 N ||)4

)

= 32π2ζ(3)σ2(k)r
24/5

{(

1 +
40

(2πr||e−1
4 N ||)2

)
K0(2πr||e−1

4 N ||)
(2πr||e−1

4 N ||)2

+

(

12 +
80

(2πr||e−1
4 N ||)2

)
K1(2πr||e−1

4 N ||)
(2πr||e−1

4 N ||)3

}

(A.21)

upon substituting back the constants and definitions, together with the symmetry

K−s = Ks. In the final rewriting, we have used the identity (A.14) to eliminate the

K2 Bessel function and make the solution more similar to (3.11) that arose in the ten-

dimensional type IIB case.

Similar to the solution of the homogeneous equation in the type IIB case we can expect

to have at least a homogeneous solution involving K7/2. This can be manufactured using

one of the functions in (A.13) using β = −5
2 or β = −3

2 , i.e. the functions

f
23/10,−5/2
7/2 and f

17/10,−3/2
7/2 (A.22)

are homogeneous solutions to (A.1). They are used in the main text to propose the seed

of the D6R4 threshold function for D = 7 space-time dimensions.
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B Regularisation of inhomogeneous Laplace equations in D = 10

In this appendix, we generalise the solution to the inhomogeneous Laplace equation (3.1)

found in section 3.1. The generalisation consists in deforming the inhomogeneous

equation to

(∆− (3− ǫ)(4− ǫ)) fǫ(z) = −4ζ(3)ζ(3 + 2ǫ)E3/2(z)E3/2+ǫ(z) (B.1)

The value ǫ = 0 corresponds to the actual D6R4 correction in D = 10. The reason for

this generalisation is that we would like to avoid the problem with the apparent singular

behaviour when carrying out the Poincaré sum. Note that the generalisation is exact in ǫ.

This equation can be treated by the same method as in section 3.1. We fold the

sum on the deformed Eisenstein series on the right-hand side to replace it by y3/2+ǫ and

obtain the following equations for the zero mode and non-zero modes of fǫ(z) = d0(y) +
∑

n 6=0 dn(y)e
2πinx:

(
y2∂2

y−(3−ǫ)(4−ǫ)
)
d0(y)=−4ζ(3)ζ(3+2ǫ)y3+ǫ− 4

3
π2ζ(3+2ǫ)y1+ǫ, (B.2a)

(
y2∂2

y−4π2n2y2−(3−ǫ)(4−ǫ)
)
dn(y)=−16πζ(3+2ǫ)y2+ǫ|n|σ−2(|n|)K1(2π|n|y). (B.2b)

The solution to the zero mode equation (B.2a) is given by

d0(y) =
2

3− 6ǫ
ζ(3)ζ(3 + 2ǫ)y3+ǫ +

π2

9(1− 6ǫ)
ζ(3 + 2ǫ)y1+ǫ. (B.3)

Here, we have fixed the solution of the homogeneous equation to zero in the same way as

in section 3.1.

The homogeneous form of (B.2b) for the non-zero modes has the solution

y1/2K7/2−ǫ(2π|n|y). Combining it with a particular solution we find

dn(y)=
8ζ(3+2ǫ)σ−2(|n|)y1+ǫ

1−4ǫ2

[(

1−2ǫ+
10−4ǫ

π2(|n|y)2
)

K0(2π|n|y)

+

(
6−ǫ

π|n|y+
10−4ǫ

π3|n|3y3
)

K1(2π|n|y)−
10−4ǫ

Γ
(
7
2−ǫ

)
(π|n|y)1/2+ǫ

K7/2−ǫ(2π|n|y)
]

, (B.4)

where we have fixed the homogeneous solution such that the most singular terms at strong

coupling (y → 0) are absent. This is in correspondence with the choice for d0(y) at weak

coupling (y → ∞). One can check that the above solution tends to (3.13) when ǫ → 0.

The advantage of this solution is that the Poincaré sum of the zero mode (B.3) con-

verges for ǫ > 0.
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