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Abstract. In this work we study permutation synchronisation for the
challenging case of partial permutations, which plays an important role
for the problem of matching multiple objects (e.g. images or shapes).
The term synchronisation refers to the property that the set of pairwise
matchings is cycle-consistent, i.e. in the full matching case all compo-
sitions of pairwise matchings over cycles must be equal to the identity.
Motivated by clustering and matrix factorisation perspectives of cycle-
consistency, we derive an algorithm to tackle the permutation synchroni-
sation problem based on non-negative factorisations. In order to deal with
the inherent non-convexity of the permutation synchronisation problem,
we use an initialisation procedure based on a novel rotation scheme ap-
plied to the solution of the spectral relaxation. Moreover, this rotation
scheme facilitates a convenient Euclidean projection to obtain a binary
solution after solving our relaxed problem. In contrast to state-of-the-art
methods, our approach is guaranteed to produce cycle-consistent results.
We experimentally demonstrate the efficacy of our method and show that
it achieves better results compared to existing methods.

Keywords: partial permutation synchronisation, multi-matching, spec-
tral decomposition, non-negative matrix factorisation

1 Introduction

The problem of matching features across images or shapes is a fundamental
topic in vision and has a high relevance in a wide range of problems. Potential
applications include shape deformation model learning [1, 2], object tracking,
3D reconstruction, graph matching, or image registration. The fact that many
tasks that seek for a matching between a pair of objects can be formulated as
the NP-hard quadratic assignment problem (QAP) [3] illustrates the difficulty of
matching problems. The more general problem of matching an entire collection
of objects, rather than a pair of objects, is referred to as multi-matching. In
general, such multi-matching problems are computationally at least as difficult as
pairwise matching problems, as they can be phrased in terms of simultaneously
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solving multiple pairwise matching problems that are coupled via consistency
constraints. Using such couplings of pairwise problems is a common approach
for solving multi-matching problem in practice [4–7].

Due to the importance and practical relevance of making use of pairwise
matchings to solve multi-matching problems, in this work we focus on studying
permutation synchronisation methods. The aim of these methods is to process a
given set of “noisy” pairwise matchings such that cycle-consistency is achieved.
In the case of full matchings, cycle-consistency refers to the property that compo-
sitions of pairwise matchings over cycles must be equal to the identity matching.
Synchronisation methods have been studied extensively both in the context of
multi-matching (e.g. [8–12]) as well as for general transformations (e.g. [13–20]).
One can interpret the synchronisation methods as a denoising procedure, where
the wrong matchings (i.e. the noise) that account for cycle inconsistencies in the
set of pairwise matchings are to be filtered out.

Most commonly, the synchronisation of pairwise matchings is formulated as
an optimisation problem over permutation matrices. In the work by Pachauri
et al. [8], a solution for the synchronisation of permutation matrices based on a
spectral factorisation is presented. A major limitation of this work is that the
method is only suitable for full permutation matrices, i.e. it is assumed that all
features are present in all objects (cf. Sec. 3.3). While this limitation has recently
been addressed in the work by Maset et al. [11], in their work they do not aim for
cycle-consistency. Since the (unknown) true matchings must be cycle-consistent,
we argue that cycle-consistency is essential and should be strived for.

The main objective of this work is to present a novel approach for the syn-
chronisation of pairwise matchings that addresses the mentioned shortcomings of
existing methods. To this end, we present an improved formulation for the per-
mutation synchronisation problem that finds a non-negative approximation of
the range space of the pairwise matching matrix. In contrast to [8], our approach
can handle partial pairwise matchings. Moreover, unlike [11, 21], our approach
guarantees cycle-consistent matchings.

Main contributions: The main contributions of our work on the sychroni-
sation of partial permutations can be summarised as follows: (i) Motivated by
clustering and matrix factorisation perspectives of cycle-consistency in the set of
pairwise matchings, we derive an improved algorithm for permutation synchro-
nisation based on non-negative factorisations. (ii) While the proposed formula-
tion is non-convex, we propose a novel procedure for initialising the variables.
(iii) Moreover, we present a novel projection procedure to obtain a binary solu-
tion from the relaxed formulation. (iv) Experimentally we demonstrate that our
method achieves superior results on synthetic and real datasets, while addressing
the aforementioned shortcomings.

2 Related Work

In this section we discuss existing works that are most relevant to our approach.
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Transformation synchronisation: Synchronisation methods have been
studied for various kinds of transformations. The synchronisation of (special)
orthogonal transformations has been considered based on spectral methods [15,
22, 20], semidefinite programming approaches [15, 23, 20], or Lie-group averaging
methods [13, 16]. The case of rigid-body transformations, which is particularly
relevant in the context of vision, has been studied in semidefinite programming
frameworks [23, 24], as well as in the context of spectral approaches [17, 25].
In general, the spectral approaches are more scalable compared to semidefinite
programming methods. In addition to the centralised methods, distributed syn-
chronisation methods have also been presented, both for the case of undirected
graphs [26], as well as for the more general case of directed graphs [19].

Permutation synchronisation: Since permutation matrices are a subset
of the orthogonal matrices, one could consider permutation synchronisation as
a special case of the orthogonal synchronisation methods. However, in general
the permutation synchronisation problem appears to be more difficult due to the
additional binary constraints. Moreover, if one considers partial permutations,
this interpretation as special case is no longer valid. The synchronisation of full
permutation matrices has been presented by Pachauri et al. [8], with follow-up
works that consider the case of partial matchings [18, 11]. We devote Sec. 3.3 to
an in-depth explanation of these approaches, where we also identify their main
weaknesses upon which our approach improves.

Matching problems: Matching problems between two objects are com-
monly formulated in terms of the linear assignment problem (LAP) [27, 28] or the
quadratic assignment problem (QAP) [29, 30, 27, 31]. When one matches graphs,
the LAP corresponds to matching node attributes only, whereas the QAP seeks
a matching that respects node attributes as well as edge attributes [32]. Compu-
tationally, the difference between both is that the LAP can be solved globally in
polynomial time (e.g. via the Hungarian method [28] or the Auction algorithm
[33]), whereas the QAP is known to be NP-hard [3]. Hence, for solving QAPs
in practice, existing approaches either resort to (expensive) branch and bound
methods [34], or to approximations, e.g. based on spectral methods [35, 36], dual
decomposition [37], linear relaxations [38, 39], convex relaxations [40–43, 4, 44,
45, 7], path following [46, 32, 47], or alternating directions [48].

Multi-matching problems: The problem of matching more than two ob-
jects can be phrased as multi-graph matching (MGM) problems [49–51, 9, 51, 4,
52, 7], which in general are computationally very challenging. If one uses first-
order terms only, so that geometric relations between the features are not explic-
itly taken into account, multi-matching can efficiently be solved as (constrained)
clustering problem [53, 10]. The approaches described in [4–7] phrase MGM in
terms of multiple pairwise matchings. The work in [21] is closely related to the
permutation synchronisation methods [8, 18, 11], as the authors formulate the
multi-matching problem directly in terms of a low-rank optimisation problem
for a given set of pairwise matchings. However, the so-obtained matchings do
generally not exhibit cycle-consistency.
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3 Background

3.1 Notation

Let 1pq and 0pq denote p×q matrices comprising of ones and zeros, respectively.
We use the shorthand 1p and 0p for q = 1. We use X+ to denote that all
negative elements in the matrix X are replaced by 0. For an integer i ∈ N, we
define [i] := {1, . . . , i}. For a p×q matrix X, and the index sets A ⊆ [p], B ⊆ [q],
we denote by XA,B the |A| × |B| submatrix of X that is formed from the rows
with indices in A and the columns with indices in B. We use the colon notation
to denote the full index set, e.g. X:,B = XA,B for A = [p]. For x ∈ Rp, the
function sign : Rp → {−1, 1}p is defined as (sign(x))i = 1 if xi ≥ 0, and −1
otherwise. The set of (full) permutation matrices is given by

Pp := {X ∈ {0, 1}p×p : X1p = 1p,1
T
pX = 1Tp } . (1)

The set of p× q partial permutation matrices Ppq is defined as

Ppq := {X ∈ {0, 1}p×q : X1q ≤ 1p,1
T
pX ≤ 1Tq } . (2)

3.2 Partial Permutation Synchronisation

Let k ∈ N, k > 2 be the total number of objects (e.g. images or shapes) that
are to be matched. We assume that in object i ∈ N, with i ∈ [k], there are

mi ∈ N features, where the total number of features is denoted as m =
∑k
i=1mi.

Moreover, we assume that there is a total number of d ∈ N distinct features
across all objects i ∈ [k] in the universe. We use Pij ∈ Pmimj

to denote a
(partial) permutation matrix that encodes the matching between the i-th object
and the j-th object (Fig. 1(i)). To be more specific, the element (Pij)pq ∈ {0, 1}
at position (p, q), p ∈ [mi], q ∈ [mj ] of matrix Pij is 1 iff the p-th feature
of object i is matched to the q-th feature of object j. For Pij ∈ Pmimj , let
W = [Pij ]i,j∈[k] ∈ [Pmimj

]i,j∈[k] be the m × m matrix of pairwise (partial)
matchings.

Cycle-consistency of partial matchings: In contrast to full matchings,
where cycle-consistency refers to the property that compositions of pairwise
matchings over cycles must be equal to the identity matching, in the case of
partial matchings one only requires that compositions of pairwise matchings
over cycles must be a subset of the identity matching. Due to potential pairwise
non-matchings (i.e. zero rows or columns in Pij) along a cyclic path, some of the
original matchings may vanish. A convenient way to define cycle-consistency of
partial matchings is based on universe features:

Definition 1. The matrix of pairwise (partial) matchings W = [Pij ]i,j∈[k] is
said to be cycle-consistent (or synchronised) iff there exists a set {Pi ∈ Pmid : i ∈
[k], Pi1d = 1mi

} such that for all i, j ∈ [k] it holds that Pij = PiP
T
j .
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Fig. 1. Conceptual illustration of (i) relative matchings, (ii) absolute matchings, (iii)
the matrix factorisation perspective, and (iv) the graph of pairwise matchings. The
objects are denoted by 1, 2 and 3, where corresponding features across objects are
labelled by the same letter from A to D. The relative matchings are represented by
the permutation matrices Pij (e.g. P12), and the absolute matchings are represented by
the permutation matrices Pi (e.g. P1) that match each feature to one of the universe
features a, b, c, d. Since cycle-consistency holds in this case, the matrix W in (iii) can
be factorised into UUT (Lemma 1); and the graph of pairwise matchings in (iv) is a
union of the disconnected cliques a, b, c and d (Lemma 2).

The matrices Pi ∈ Pmid can be interpreted as assignments of each feature of the
i-th object to one of the features in the universe (Fig. 1(ii)), where the `-th row
of Pi is the assignment of the `-th feature of object i to a particular feature in
the universe. The requirement Pi1d = 1mi ensures that each feature of object i
is assigned to exactly one feature of the universe.

For U := {U ∈ [Pmid]i∈[k] : U1d = 1m} ⊂ Rm×d, one can characterise
cycle-consistency of partial matchings in terms of a low-rank factorisation [11],
which is also illustrated in Fig. 1(iii):

Lemma 1. The pairwise (partial) matching matrix W is cycle-consistent iff
there exists a matrix U ∈ U , such that W = UUT .

Proof. To prove the statement we identify U =
[
PT1 PT2 · · · PTk

]T ∈ Rm×d. One
can easily see, cf. Def. 1, that cycle-consistency implies that there exists a U that
has the desired properties. Likewise, if a U ∈ U with W = UUT is given, one
can see that the blocks {Pi} of U satisfy Pi1d = 1mi

as well as Pij = PiP
T
j . ut
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Optimisation problem: Lemma 1 shows that in the noise-free case, the
matrix of pairwise matchings W can be factorised as W = UUT . Given a noisy
W , a straightfoward way to phrase the permutation synchronisation problem is
to consider the constrained nonlinear least-squares problem

arg min
U∈U

‖W−UUT ‖2F . (3)

Since Problem (3) is non-convex, finding an exact solution is intractable for
reasonably large instances. Hence, various simplifications have been considered
in the literature, as we describe next.

3.3 Spectral Relaxations

In this section we summarise the key ideas of existing spectral relaxations, where
we also identify their shortcomings when synchronising partial permutations.

Full matchings: In the case of (cycle-consistent) full matchings, it holds
that UTU = kId. Thus, ‖W−UUT ‖2F = 〈W,W 〉−2〈W,UUT 〉+〈UUT , UUT 〉 =
const−2〈W,UUT 〉. Hence, for full matchings, the authors of [8] relax the con-
straint U ∈ U to UTU=kId, and then solve Problem (3) with the relaxed con-
straints by eigendecomposition, followed by a projection step.

Partial matchings: For the partial matchings case, the authors of [11] pro-
pose to maximise 〈W,UUT 〉 based on eigendecomposition. In the partial match-
ings case, in general we have that UTU 6=kId, so that the objective 〈W,UUT 〉
differs from the objective in Problem (3). Instead, for U ∈ U the objective
〈W,UUT 〉 counts the number of equal matchings between the matrices Pij and
PiP

T
j for all i, j. A further difficulty, particularly in the partial matching case,

is related to the necessary projection due to the relaxation of the constraints, as
we describe next.

Projection: When the constraint U ∈ U is replaced by UTU = kId, after
obtaining U based on the spectral decomposition of W , one needs to project
U onto the set U . Since for any orthogonal matrix Q ∈ Rd×d it holds that
(UQ)(UQ)T=UQQTU = UUT , the factorisation UUT is only determined up to
such a matrix Q. Hence, for projecting the blocks of U , one can choose a suitable
orthogonal matrix Q in order to simplify the projection. For the full matching
case, the authors of [8] suggest to perform Euclidean projections of the d × d
blocks of UQ for the choice Q = PT1 . Under the assumption that W is relatively
close to the form UUT , the matrix P1 remains close to being orthogonal, such
that the first block of UQ is close to the identity matrix, while the remaining
blocks of UQ shall become close to permutation matrices.

Since for partial permutations the matrices Pi are of dimension mi×d, where
generally mi<d, the assumption that the Pi are near-orthogonal breaks, and
thus such a procedure is not applicable anymore (cf. Sec. 4.1 for details). As
workaround, instead of projecting the blocks of U onto U , the authors of [11] per-
form a projection of the blocks of UUT , such that the m×m matrix proj(UUT )
is obtained. While it is reasonable (under small noise assumptions) to assume
that the blocks of UUT are close to being (partial) permutation matrices, in
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this approach one cannot guarantee that the matrix proj(UUT ) satisfies the
conditions in Lemma 1, and thus, cycle-consistency is violated.

Another approach for the projection is pursued by the authors of [21, 18],
where a greedy strategy is employed for obtaining blocks of partial permutations
from the matrix of eigenvectors U .

3.4 Clustering Perspective

Here, we summarise the clustering perspective of synchronisation (cf. [18, 10]),
which will become useful to motivate our approach in Sec. 4. For that, we consider
the graph of pairwise matchings G := G(W ) (cf. Fig. 1(iv) for an illustration).
The (non-negative) m ×m matrix W is considered as the adjacency matrix of
G, so that G comprises m nodes (recall that m =

∑
imi). The value (W )pq ∈ R

at position (p, q) of W denotes the edge weight that represents the affinity of
nodes p ∈ [m] and q ∈ [m], where (W )pq = 0 means that there is no edge. Note
that w.l.o.g. we assume (W )pp = 1 for all p ∈ [m]. As shown by Tron et al. [10],
and illustrated in Fig. 1(iv), cycle-consistency can compactly be formulated in
terms of the graph of pairwise matchings:

Lemma 2. The graph of pairwise matchings G(W ) is cycle-consistent iff it is a
union of disconnected cliques.

Proof. See Prop. 2 in [10]. ut

Lemma 3. Let the graph of pairwise matchings G(W ) be cycle-consistent so
that it is a union of the disconnected cliques Ci ⊆ [m], i ∈ [d]. It holds that all
columns of the matrix W:,Ci

∈ {0, 1}m×|Ci| are equal for a given i ∈ [d].

Proof. We denote by ci, i ∈ [d], the number of elements in the i-th clique.
Since G is a union of d disconnected cliques, there is a permutation P ∈ Pm
such that PWPT is the block-diagonal matrix PWPT = diag(1c1c1 , . . . ,1cdcd).
Moreover, for P it holds that I:,Ci

= PT I:,Ai
for Ai = {di+1, di+2, . . . , di+ci}

with di =
∑i−1
`=1 c`. From I:,Ci = PT I:,Ai it follows that (PW ):,Ci = (PW )I:,Ci =

(PWPT )I:,Ai = diag(1c1c1 ,.. .,1cdcd)I:,Ai=[0Tcic1 ,.. .,0
T
cici−1

,1Tcici ,0
T
cici+1

,.. .,0Tcicd ]T ,
which shows that the columns of (PW ):,Ci

are equal. Hence, with PW being a
permutation of the rows of W , the columns of W:,Ci

must also be equal. Since
cycle-consistency implies symmetry of W , the analogous statement also holds
for the rows of W . ut

Lemma 3 illustrates that one can cluster the columns (or rows) of W to
identify to which universe feature they belong (cf. Fig. 1(iv)).

4 Proposed Approach

The main idea of our approach is to formulate the permutation synchronisation
problem in terms of a non-negative matrix factorisation (NMF) [54]. To be more
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specific, we propose to solve

arg min
V≥0,H≥0

‖W−V H‖2F , (4)

where V ∈ Rm×d and H ∈ Rd×m. Problem (4) is a relaxation of Problem (3),
where the constraints V = HT are dropped, and the constraint set U is replaced
by non-negativity constraints. At first sight it may appear unnatural that one
aims for an unsymmetric factorisation V H of the symmetric matrix W . However,
we have found that this is advantageous compared to a symmetric factorisation,
which we believe is due to the following reasons: (i) On the one hand, from a
theoretical perspective the factorisation V H enables to get a better rank-d ap-
proximation of W (cf. Lemma 1) compared to enforcing HT to be equal to V . (ii)
On the other hand, the unsymmetric NMF optimises over a higher-dimensional
space, such that it has more freedom during the optimisation and is thus less
prone to unwanted local optima of the non-convex Problem (4). (iii) Further-
more, with the inherent clustering properties of NMF [55–60], Problem (4) can
also be understood from the clustering point-of-view (cf. Sec. 3.4). In the cluster-
ing perspective, the columns of the matrix V can be seen as the cluster centres,
where each column of W is a conic combination of the columns of V , and the cor-
responding column of H contains the coefficients. The motivation for enforcing
both V and H to be non-negative is as follows: when cycle-consistency holds, the
columns of V should be non-negative and mutually orthogonal, so that each row
in V can contain at most one non-zero element. Thus, if the factor matrix H is
such that W = V H, then, since W is non-negative, H needs to be non-negative.

Before we present the overall synchronisation algorithm, we first introduce
our rotation scheme, which is used for the initialisation of V and H, as well as
for the final projection of V onto U .

4.1 Rotation Scheme

For Xi ∈ Rmi×d, i ∈ [k], let X = [XT
1 , . . . , X

T
k ]T ∈ Rm×d be a rank-d matrix that

comprises a low-rank approximation of W , i.e. W ≈ XXT . For any orthogonal
matrix Q we have that XXT = (XQ)(XQ)T , so that we can freely choose Q
and use (XQ)(XQ)T as low-rank approximation of W in place of XXT . The
purpose of this section is to describe a procedure to find a Q, such that XQ is
closer to the set U compared to X, which is for example beneficial for performing
a Euclidean projection of X onto U . To this end, we generalise the full-matching
rotation scheme in [8], which will be explained in the next paragraph, such that
one can find a suitable orthogonal matrix Q for the case of partial matchings.

Challenges: As discussed in Sec. 3.3, in the case of full matchings, i.e. m1 =
. . . = mk = d, the authors of [8] set Q = XT

1 so that XQ is close to a matrix
that comprises blocks of permutations. Now, in the case of partial matchings,
the problem is that generally all mi are strictly smaller than d, i.e. there is
no object i in which all the universe features are present. Hence, the matrices
Xi are not square (and thus not orthogonal), so that for any i we have that
XXT

i (XXT
i )T = XXT

i XiX
T 6= XXT .
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Our approach: For finding a suitable orthogonal matrix Q in the case of
partial matchings, we propose to consider d rows of the matrix X, which we do
not restrict to be chosen from a single block Xi. Instead, these d rows can be
selected from arbitrary blocks. While in an ideal case we would like to find d
such rows of X that are mutually orthogonal, the matrix X forming the low-
rank approximation XXT of a cycle-inconsistent W will generally not contain
d mutually orthogonal rows. Assuming that X is dominated by non-negative
elements, we aim to find d rows of X that are close to mutually orthogonal unit
vectors eTi , i ∈ [d], where ei ∈ Rd is defined as the vector that is 1 at position
i and zero elsewhere. The linear map f : Rm×d → Rm×d, defined as (f(X))ij =
Xij− 1

d−1

∑
6̀=j |Xi`|, contains a score in element (f(X))ij that approximately

measures the similarity between the i-th row and the unit vector eTj . Using these
similarity scores, we find the d largest elements in f(X) that are in disjoint
columns. This can be phrased as the (partial) linear assignment problem

Y ∗(X) := arg max
Y ∈Pmd,1T

mY=1T
d

〈Y, f(X)〉 , (5)

input X XQ

Fig. 2. Effect of our rotation scheme
applied to X.

which can be solved efficiently by the Auc-
tion algorithm [33, 61]. Here, the minimiser
Y ∗(X) is a binary m× d matrix, that con-
tains exactly d elements with value 1 that
are in disjoint columns, such that the sum
over f(X) (the similarity score) at these
non-zero positions is maximised. The non-
zero rows of Y ∗(X) should correspond to
(approximately) mutually orthogonal rows
of X. The matrix R = XTY ∗(X) ∈ Rd×d
is the transposition of the selected d rows
of X. Eventually, since R is only expected
to be approximately orthogonal, we orthog-
onalise it via singular value decomposition
to obtain the matrix Q̄. We set Q = Q̄ diag(sign(1dQ̄)) to ensure that the col-
umn sums of XQ are non-negative. Note that Q is still an orthogonal matrix.
In Fig. 2 we illustrate that when applying this rotation scheme to a matrix X,
the rotated matrix XQ has a structure that is much closer to an element of U
compared to X.

4.2 Initialisation

Since Problem (4) is non-convex, the initialisation of the matrices V and H
plays a crucial role. We propose to initialise V and H based on a rotation of
the spectral factorisation of the pairwise matching matrix W . Hence, we first
compute the best rank-d approximation of W using eigendecomposition, so that
W ≈ XXT , where X ∈ Rm×d is the matrix of the (scaled) most dominant
eigenvectors of W. Subsequently, we rotate the columns of X such that it is
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dominated by non-negative elements, followed by applying Q so that it becomes
closer to U , as described in Sec. 4.1.

As X was computed via eigendecomposition of W , it may be dominated by
negative elements such that its rows may generally be far away from unit vectors
eTi , i ∈ [d]. We deal with this by rotating X such that it becomes dominated by
positive elements, i.e. 1TmX1d > 0. To this end, we apply two transformations
to X before we apply the matrix Q from Sec. 4.1: (i) First, we ensure that the
column sums of X are non-negative, i.e. we define X ′ = XQsign with Qsign =
diag(sign(1mX)). (ii) Second, based on the assumption that the sizes of the
universe cliques are well-balanced, we enforce the column sums to be equal. This
is achieved by setting X ′′ = X ′Q1Q

T
2 , where the orthogonal matrices Q1 and

Q2 are computed using Gram-Schmidt orthogonalisation based on the following
result:

Lemma 4. Let X ∈ Rm×d such that XTX = Id and ‖XT1m‖ 6= 0. Define
x1 = 1

‖XT 1m‖X
T1m, y1 = 1√

d
1d. For Q1 = [x1, q2, . . . , qd] ∈ Rd×d and Q2 =

[y1, q
′
2, . . . , q

′
d] ∈ Rd×d, where q2, . . . , qd and q′2, . . . , q

′
d are chosen such that Q1

and Q2 are orthogonal matrices, it holds that all column sums of X ′ = XQ1Q
T
2

are equal, i.e. 1TmX
′ = s1Td for the scalar s = ‖XT 1m‖√

d
.

Proof. We have that 1TmXx1 = 1
‖XT 1m‖ (1

T
mX)(XT1m) = 1

‖XT 1m‖‖X
T1m‖2 =

‖XT1m‖. Since the q2, . . . qd are orthogonal to x1 = 1
‖XT 1m‖X

T1m, it fol-

lows that 1TmXqi = qTi (XT1m) = 0 for all i ∈ {2, . . . , d}. Hence, 1TmXQ1 =
[‖XT1m‖, 0 . . . , 0]. Now, since y1 = 1√

d
1d is constant, it follows that 1TmXQ1Q

T
2 =

[‖XT1m‖, 0 . . . , 0]QT2 = ‖XT1m‖yT1 = ‖XT 1m‖√
d

1Td . ut

Eventually, since we use an NMF algorithm based on multiplicative updates
(cf. Sec. 4.4) that requires a non-negative initialisation, we set V = (X ′′Q)+ and
H = (X ′′Q)T+. We illustrate the effect of the individual steps in Fig. 3, where it
can be seen that this procedure results in a V that is structurally much closer
to U compared to the initial X.

4.3 Projection onto U
After solving Problem (4) (with the algorithm described in Sec. 4.4), we perform
a projection-after-rotation, i.e. we find Q (Sec. 4.1), and then project V Q onto U
to obtain U . This is done by solving k (independent) linear assignment problems
via the Auction algorithm [33, 61]. Moreover, similarly to existing approaches
(e.g. [21, 11]), we prune bad matchings. To this end, we define a threshold θ ≥ 0
and remove all matchings in U where V Q�U is smaller than θ, for � denoting
the Hadamard product.

4.4 Algorithm

We call the overall synchronisation procedure NmfSync, which is summarised
in Algorithm 1. NmfSync comprises the following main steps: (i) initialisation
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input X X ′ = XQsign X ′′ = X ′Q1Q
T
2 V = (X ′′Q)+

Fig. 3. Illustration of the effect of the individual steps of our initialisation procedure.
From top to bottom we show the histogram of values in the matrix, the colour-coding of
these values, the actual matrix, and a summary of its column sums. From left to right
we show the input X, X ′ = XQsign with non-negative column sums, X ′′ = X ′Q1Q

T
2

with equal column sums, and V = (X ′′Q)+ after applying our rotation scheme.

of V and H (Sec. 4.2), (ii) minimisation of Problem (4), (iii) projection of V
onto U to obtain U ∈ U (Sec. 4.3), and (iv) computation of the synchronised
W sync = UUT .

Algorithm 1: NmfSync

Input: W ∈ Rm×m, d, θ
Output: synchronised W sync

// find best rank-d approximation of W (spectral method [8, 11])
1 [X,Λ]← eig(W,d)

2 X ← XΛ0.5

// initialise according to Secs. 4.1 and 4.2

3 X′ ← XQsign, X′′ ← X′Q1Q
T
2 , V ← (X′′Q)+, H ← V T

4 Repeat
// multiplicative updates of NMF [62], ε > 0 is a small number (numerical reasons)

5 H ← H � ((V TW )� ((V TV )H + ε)) // � is element-wise division

6 V ← V � ((WHT )� (W (HHT ) + ε)

// normalise so that the columns of V and HT have the same `2-norms

7 T ← diag(1T
m(V � V ))0.5

8 V ← V T−1, H = TH

// project onto U according to Sec. 4.3

9 Q̄← V TY ∗(V ) // solve Problem (5) (LAP, Auction algorithm [33, 61])

10 Q← Q̄ diag(sign(Q̄))
11 U ← projU (V Q) // project V Q onto U by solving k independent LAPs
12 U ← prune(V Q,U, θ) // prune uncertain matchings

// compute synchronised W

13 W sync ← UUT
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5 Experiments

In this section we evaluate NmfSync and compare it against existing permuta-
tion synchronisation approaches. To be more specific, we consider the Spectral
method [8], as implemented by the authors of [21] to handle partial matchings
based on a greedy rounding procedure, the MatchEig method [11], and the
MatchALS method [21]. In our experiments we first consider synthetic data in
a wide range of different configurations, followed by experiments on real-world
data. In order to quantify the consistency of the pairwise matchings we define
the cycle-error ecycle as follows:

ecycle(W ) =
1

k3

∑

i,j,j∈[k]

‖(Pik)Rik,:(Pkj):,Ckj
− (Pij)Rik,Ckj

‖F , (6)

where for i, j ∈ [k], the sets Rij ⊆ [mi] and Cij ⊆ [mj ] denote the indices of
non-zero rows and columns of Pij , respectively. We use the ground truth error
egt (gt-error) to measure the discrepancy between a given W and the ground
truth pairwise matchings Wgt, which we define as egt(W ) = ‖W −Wgt‖F .

5.1 Synthetic Data

For our synthetic data experiments we generate the pairwise matchings W for
a given number of objects k, the universe size d, the observation rate ρ, and
the error rate σ as follows: For each i ∈ [k], we sample a random partial per-
mutation matrix Pi ∈ Pmid that fulfills Pi1d = 1mi . Then, to mimic non-
matchings, we replace each row of Pi with probability 1−ρ with a zero row.
Eventually, the ground truth matrix of cycle-consistent matchings is obtained
as Wgt = [Pij ]i,j∈[k] = [PiP

T
j ]i,j∈[k]. Now, in order to obtain the noisy matrix

of pairwise matchings W , we perturb each block Pij of Wgt individually by ran-
domly selecting a proportion of σ of the rows of Pij , and then shuffle the selected
rows. Note that we perturb Wgt in a symmetric fashion. For each evaluated con-
figuration, we draw 100 samples of W and report the averaged results.

Results: The results of this experiments are shown in Fig. 4, where the rows
show the cycle-error, the gt-error, and the number of matchings (#matchings);
and the columns show four different evaluation scenarios where in each scenario
a different parameter varies along the horizontal axis. While the MatchEig
and MatchALS methods generally result in a non-zero cycle-error, meaning
that the resulting matchings are not cycle-consistent, the NmfSync method
guarantees cycle-consistent matchings. It can be seen that the overall result
quality of NmfSync is superior compared to the other methods (considering
both the gt-error and the cycle-error, i.e. the first two rows in Fig. 4).

5.2 Real Data

In our second set of experiments we consider real-world matching problems based
on the Graffiti [63], EPFL [64] and the Middlebury [65] datasets, all of which



Synchronisation of Partial Multi-Matchings via Non-negative Factorisations 13

come with ground truth registrations. To obtain the pairwise matchings W , we
first extract SIFT features [66] from the images, and then obtain the pairwise
matchings based on RANSAC [67]. Our evaluations are based on the protocol
of [11], where further details are described. Note that for processing the large
instances #17 and #18 of the Middlebury dataset we approximate the LAP
in (5) using on a greedy method (cf. [11]).

Results: In Fig. 5 we show quantitative results. The first three rows show the
cycle-error versus the precision (the number of correct matchings divided by the
number of predicted matchings) for the individual problem instances #1 to #18.
Each method is represented by a disk that is coloured according to the legend,
where the size of each disk is proportional to the relative number of matchings.
Our NmfSync method always achieves cycle-consistency, while at the same
time achieving a higher precision than its competitors in almost all cases. For
the moderately-sized problem instances #1 to #16, where m is between 2299 and
18,843, all methods have comparable runtimes, with MatchALS being slower
in instances #10, #14, #15 and #16. Note that we were not able to evaluate
MatchALS on the very large instances #17 and #18 since it run out of memory
(cf. Sec. 5.3).

5.3 Discussion & Limitations

Due to the pruning of uncertain matchings in NmfSync based on the choice of θ
(Sec. 4.3), the total number of obtained matchings of NmfSync varies depending
on the input quality. For example, the third column in Fig. 4 illustrates that when
increasing the error rate while keeping the other parameters fixed, the number
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Fig. 4. Quantitative results for synthetic data for different varying parameters on the
horizontal axis (the number of objects k, the observation rate ρ, the error rate σ,
and the universe size d). Note that the cycle-error of NmfSync is always 0. For the
synthetic data experiments, the cycle-error of Spectral is also 0. Considering both the
gt-error and the cycle-error, NmfSync is clearly superior compared to its competitors.
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of matchings returned by NmfSync is decreasing. This reflects that our method
implicitly takes into account the increased corruption rate of the input. Note
that the other methods also incorporate a pruning of uncertain matches.

Our synthetic data experiments suggest that our method is particularly well-
suited for cases when only limited data is available. In the real data experiments,
our method achieves significantly better results compared to its competitors in
terms of cycle-error and precision.

The spectral decomposition and the NMF algorithm have equal per-iteration
computational complexities, i.e. O(m2d). While the Auction algorithm [33] for
solving the LAP has (roughly) cubic worst-case complexity [68], the analysis
in [69] suggests that the average complexity is in the regime O(m2 logm). In
contrast to MatchALS, our method never requires the computation of the dense
and large m × m matrix V H (cf. Alg. 1), such that NmfSync is much more
memory efficient. With that, our method is able to handle very large problem
instances, as we show in Fig. 5 for instances #17 and #18, where m ≈ 200,000.

6 Conclusions

Based on a non-negative factorisation of the matrix of pairwise matchings, we
have presented the NmfSync method for the synchronisation of partial permu-
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Fig. 5. Results for the datasets Graffiti (#1–#8), EPFL (#9–#14), and Middle-
bury (#15–#18). The title of each plot shows the size of the pairwise matching matrix
m in parentheses. NmfSync always achieves a cycle-error of 0, and achieves a higher
precision in almost all cases. The bottom row shows the runtimes of the methods.
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tation matrices. In order to deal with the non-convexity of the resulting formu-
lation, we have proposed a novel scheme for rotating the solution of the spectral
relaxation such that it provides a suitable initialisation for the NMF. Moreover,
we have generalised the projection-after-rotation approach of the Spectral
method [8], so that it can handle partial matchings (Sec. 4.3). In contrast to
the MatchALS method [21], and the more recent MatchEig method [11],
our approach is guaranteed to produce a cycle-consistent solution. Since cycle-
consistency is an intrinsic property of the (unknown) true matchings, we argue
that it is important to achieve.
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