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Abstract
We present a new, fast method for computing the inspiral trajectory and 
gravitational waves from extreme mass-ratio inspirals that can incorporate 
all known and future self-force results. Using near-identity (averaging) 
transformations we formulate equations  of motion that do not explicitly 
depend upon the orbital phases of the inspiral, making them fast to evaluate, 
and whose solutions track the evolving constants of motion, orbital phases and 
waveform phase of a full self-force inspiral with errors of at most order O(η), 
where η is the small mass ratio. As a concrete example, we implement these 
equations for inspirals of non-spinning binaries. Our code computes inspiral 
trajectories in milliseconds which, depending on the mass-ratio, is a speed up 
of 2–5 orders of magnitude over previous self-force inspiral models which 
take minutes to hours to evaluate. Computing two-year duration waveforms 
using our new model we find a mismatch smaller than  ∼10−4 with respect to 
waveforms computed using slower full self-force models. The speed of our 
new approach is comparable with kludge models but has the added benefit 
of easily incorporating self-force results which will, once known, allow the 
waveform phase to be tracked to sub-radian accuracy over an inspiral.

Keywords: binary black holes, gravitational self-force,  
near-identity transform, extreme mass-ratio inspirals
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1. Introduction

Deducing the parameters of gravitational-wave sources requires accurate theoretical wave-
form templates. One challenging class of systems to model are extreme mass-ratio inspirals 
(EMRIs), a key source for future space-based detectors such as LISA [1]. These binary sys-
tems, composed of a stellar mass compact object in orbit about a massive 105–107M� black 
hole, will radiate tens to hundreds of thousands of gravitational wave cycles whilst in the 
millihertz band of the detector [2]. These sources, unlike the compact binaries detected with 
ground-based detectors [3, 4], will generally not have circularized resulting in a complicated 
waveform with a rich morphology [5].

For a typical EMRI we expect the gravitational-wave strain induced in the detector to have 
a very low instantaneous signal-to-noise ratio (SNR). Instead the data can be processed using 
matched filtering techniques which allow the build-up of the SNR over time. This approach 
involves comparing the signal against expected theoretical waveform templates. Ideally the 
waveform templates will have two important properties. First, to avoid significant loss of 
SNR, they need to be accurate, ideally with a phase accuracy of a fraction of a radian over 
hundreds of thousands of wave cycles. Second, due to the large parameter space of possible 
EMRI configurations, they need to be rapid to generate, ideally on a sub-second timescale.

The ‘self-force’ and ‘kludge’ modeling approaches have arisen to meet these requirements, 
focusing on either accuracy or speed of computation, respectively. There is some overlap 
between these two methods and both are based in black hole perturbation theory, which 
expands the Einstein field equations in powers of the mass ratio around an analytically known 
black hole solution.

The primary aim of the self-force approach is to reach the sub-radian accuracy goal. 
Obtaining this level of accuracy requires calculating the local radiation reaction force, or ‘self-
force’ [6]. The equations of motion and regularization procedures employed by this method 
are now well understood [7–10] and many concrete calculations have been made recently 
[11–15]. Depending on the orbital configuration, computing the self-force at an instance along 
a worldline takes minutes to days and even if the self-force along all possible worldlines is 
precomputed solving the equations of motion can take minutes or hours due to the need to 
resolve oscillations in the inspiral trajectory on the orbital timescale.

On the other hand, the primary goal of the ‘kludge’ approach is a rapid speed of computa-
tion [16–18]. The inspiral is computed by combining fits to (orbit-averaged) numerical flux 
data with post-Newtonian expansions. As the equations of motion only depend on orbit-aver-
aged quantities there is no need to resolve the inspiral on the orbital timescale. This results in 
a very rapid computation of the inspiral, with the tradeoff that it does not capture the physics 
necessary to reach the sub-radian accuracy goal. Initially developed to scope out the data 
analysis task these models have, over the years, been improving in accuracy by incorporating 
ever more physics [19, 20].

In this work we develop and implement a new framework for computing EMRI waveform 
templates that can both easily incorporate current, and future, self-force results, and also be 
evaluated on a timescale comparable to kludge models. We achieve this by applying near-
identity (averaging) transformations (NITs) to the self-forced equations of motion. Before we 
describe this technique let us first discuss why self-force inspirals are slow to evaluate.

Within the self-force approach the secondary is treated as a point particle and the inspiral 
trajectory is computed by calculating the (self-)force this particle experiences due to its inter-
action with its own metric perturbation. At each instant the self-force is a functional of the past, 
inspiralling, worldline because radiation that was emitted at an earlier time can backscatter off 
the spacetime curvature to interact with the particle later on. This dependence on the history 
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of the particle is what makes the self-force challenging to calculate. A self-consistent inspiral 
can be computed by directly coupling the equations of motion and the field equations and this 
has been achieved for a toy model involving a scalar charge in orbit about a Schwarzschild 
black hole [21] (stability issues have so far prevented a similar calculation in the gravitational 
case [22]). This method is very slow to compute making it infeasible for generating banks of 
waveform templates (but still important as the gold-standard against which faster methods 
can be tested). An alternative approach is to approximate the self-force at each instant by the 
self-force for a particle moving along the unique geodesic tangent to the worldline at that 
instant [23–26]. The advantage of this approach is that the self-force can be computed and 
interpolated across a, now finite dimensional, parameter space in a preprocessing step. Using 
the geodesic self-force, rather than the self-force computed using the true inspiral, reduces the 
equations of motion to a finite dimensional phase space and it is to these equations of motion 
that we apply our method. The error in the gravitational wave phase induced by using the 
geodesic, rather then the true, self-force contributes at O(η0). Formally, this contributes to 
the second-order in the mass-ratio dissipative corrections, but initial calculations in the scalar-
field case suggest the coefficient of this correction term is small [27].

The crucial feature of the equations of motion that makes numerically finding their solution 
slow is that they depend explicitly upon the orbital phase(s). As a consequence, a numerical 
integrator must resolve features of the inspiral on the orbital timescale. With a typical EMRI 
undergoing on the order of 105–106 orbits whilst in the detector band, resolving the orbital 
timescale results in inspiral calculations than take minutes to hours depending upon the mass-
ratio of the binary [25]. We circumvent this problem by transforming the equations of motion 
to a new set of variables via a near identity transformation. This transformation has two impor-
tant properties: (i) the resulting equations of motion no longer depend explicitly on the orbital 
phase and (ii) the transformation is small (hence ‘near identity’) such that the solution to the 
transformed equations of motion remains always close to the solution to the original equa-
tions of motion. The first of these properties allows the transformed equations of motion to be 
numerically solved in milliseconds, rather than minutes or hours as for the original equations. 
The second property ensures that the resulting solution encapsulates all the self-force physics 
that the original, slow to compute, solution did. The explicit form of the NIT is derived by 
positing a general form, with undetermined functions, for a transformation which obeys the 
second property (that the transformation is ‘small’), substituting into the original equations of 
motion, and changing variables before finally choosing the undetermined functions such that 
they cancel the dependence on the orbital phase in the equations of motion.

Near identity transformations are not new. They have a rich history being applied to 
dynamical systems, and in particular planetary dynamics, stretching back more than a century 
[28, 29]. Sometimes called near-identity averaging transformations, the effect of the transfor-
mation is to average over the short-timescale physics to produce an equation of motion which 
captures the long-term secular evolution of the system without the need to resolve the shorter 
timescale. Averaged equations of motion such as this are ideally suited to the EMRI problem 
where the main concern is accurately tracking the long-term evolution of the waveform phase. 
Near identity transformations are closely related to two-timescale expansions, which have 
been applied in both the PN [30–33] and self-force regimes [6, 34, 35]. The two methods 
produce equivalent results, but sometimes one is easier to use. It also seems likely that there 
is a close relation with the dynamical renormalization group methods of [36] when applied to 
an expansion in the mass-ratio.

The existence of an averaging NIT depends only on minimal conditions on the form of the 
equations of motion which can always be achieved when the unperturbed system is integrable. 
When an averaging NIT exists it is normally not unique. In section 2 we derive a general form 
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for the NITs and discuss different choices that can be made for their form. The NIT method 
is applicable to inspirals in Kerr spacetime away from orbital resonances, but as a first imple-
mentation we compute generic inspirals in Schwarzschild spacetime. Our particular choice 
of variables, implementation details and waveform generation approach are discussed in sec-
tion 3. In section 4 we discuss our numerical results, showing that the solution to the trans-
formed equations of motion remain close to the solution to the original self-force equation of 
motion and that the new equations of motion can be solved orders of magnitude more quickly 
than the originals. We also compute quadrupole waveforms from the NIT and full self-force 
inspirals and show that the overlap between the two is excellent. We finish with some conclud-
ing remarks in section 5. Throughout this article we use geometric units such that the speed of 
light and the gravitational constant are equal to unity.

2. Averaged equations of motion

In this section, we derive the near identity transform needed to produce averaged equations of 
motion for a very generic system. Because of the general nature, this discussion is quite 
abstract. Readers more interested in the results could skip ahead to the summary in section 2.8.

2.1. EMRI equations of motion

We start from the self-force corrected equations of motion for an extreme mass-ratio inspiral 
in first-order form,

Ṗj = 0 + εF(1)
j (�P,�q) + ε2F(2)

j (�P,�q) +O(ε3), (1a)

q̇i = Ωi(�P) + εf (1)
i (�P,�q) + ε2f (2)

i (�P,�q) +O(ε3), (1b)

Ṡk = s(0)
k (�P,�q) + εs(1)

k (�P,�q) + ε2s(2)
k (�P,�q) +O(ε3), (1c)

where ε is some small parameter, which we purposefully leave unspecified. The obvious 
choice would be the small mass-ratio η := m2/m1, but we could also take the symmetric 
mass-ratio (or something else).

The �P = {P1, . . . , Pjmax} is some set of ‘geodesic’ constants of motion (i.e. quantities that 
do not change along a geodesic), which together specify a zeroth-order trajectory in phase 
space. These could be the actions, energy, angular momentum, eccentricity, angle between the 
secondary spin and total angular momentum, etc. This set can also include quantities that only 
acquire evolutionary terms at second order such as the primary mass and spin.

The �q = {q1, . . . , qimax} are some set of ‘phases’ that specify where along a zeroth-order 
trajectory the system currently is. Together �P  and �q  should uniquely specify a point in phase 
space for the system. We require these phase to satisfy two properties: (1) All functions on the 
RHS are 2π periodic in these phases, (2) the zeroth-order term in their evolution equation (i.e. 
their ‘frequencies’, �Ω), are independent of the phases �q  themselves. Such a choice is guaran-
teed to exist if the zeroth-order system is integrable (such as the equations of motion for a test 
gyroscope in Kerr spacetime), in which case action-angle variables will satisfy the required 
property [6]. However, we stress that any other choice that satisfies the required properties 
will work for us.

The �S = {S1, . . . , Skmax} are a set of quantities that are extrinsic to the EMRI’s dynamics 
in the sense that the RHS functions in the evolution equations do not depend on them. They 
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may or may not be extrinsic to the binary itself. The most relevant examples here are the t and 
φ coordinates of the secondary. Due to symmetries of the background spacetime they cannot 
appear explicitly in the equations of motion. Besides these it can also include truly extrinsic 
quantities such as the center-of-mass velocity of the binary.

Finally, the over dots represent differentiation with respect to some ‘time’ parameter used 
for the evolution of the inspiral. This could be the background Boyer–Lindquist time coordi-
nate, proper time, or something more abstract such as Mino time [37].

2.2. Near identity transform

Our objective is to rewrite (1) in a form where the right hand side is completely indepen-
dent of the phases �q . For this we use a tool that has a long history in the study of dynamical 
systems—and planetary dynamics in particular—the near identity transform (NIT). This type 
of transform has previously appeared, though not necessarily by this name, in various studies 
of EMRIs [38–41]. The presentation here closely follows that of Kevorkian and Cole [42]. 
Focusing on the intrinsic quantities first (the extrinsic quantities �S  will be dealt with in sec-
tion 2.7), the idea is to introduce a small transformation of our phase space coordinates,

P̃j = Pj + εY(1)
j (�P,�q) + ε2Y(2)

j (�P,�q) +O(ε3), (2a)

q̃i = qi + εX(1)
i (�P,�q) + ε2X(2)

i (�P,�q) +O(ε3), (2b)

where we require the X(n)
i  and Y(n)

j  to be smooth periodic functions of the phases �q . 
Consequently, the difference between the tilded and untilded variables will always be O(ε), 
anywhere in the phase space.

The inverse transformation is easily derived by requiring that that the composition with the 
original transformation is the identity and working order by order in ε,

qi = q̃i − εX(1)
i (�̃P, �̃q)

− ε2
(

X(2)
i (�̃P, �̃q)− ∂X(1)

i (�̃P, �̃q)
∂P̃j

Y(1)
j (�̃P, �̃q)− ∂X(1)

i (�̃P, �̃q)
∂q̃k

X(1)
k (�̃P, �̃q)

)
+O(ε3),

 

(3a)

Pj = P̃j − εY(1)
j (�̃P, �̃q)

− ε2
(

Y(2)
j (�̃P, �̃q)−

∂Y(1)
j (�̃P, �̃q)

∂P̃k
Y(1)

k (�̃P, �̃q)−
∂Y(1)

j (�̃P, �̃q)
∂q̃k

X(1)
k (�̃P, �̃q)

)
+O(ε3).

 

(3b)

2.3. Transformed equations of motion

By taking the time derivative of the NIT (2), substituting the EMRI equations of motion (1) 
and inverse NIT (3), and expanding in powers of ε we obtain the NIT transformed equations of 
motions

˙̃Pj = 0 + εF̃(1)
j (�̃P, �̃q) + ε2F̃(2)

j (�̃P, �̃q) +O(ε3), (4a)

˙̃qi = Ωi(
�̃P) + εf̃ (1)

i (�̃P, �̃q) + ε2 f̃ (2)
i (�̃P, �̃q) +O(ε3), (4b)
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with

F̃(1)
j = F(1)

j +
∂Y(1)

j

∂q̃i
Ωi, (5a)

f̃ (1)
i = f (1)

i +
∂X(1)

i

∂q̃k
Ωk −

∂Ωi

∂P̃j
Y(1)

j , (5b)

and

F̃(2)
j = F(2)

j +
∂Y(2)

j

∂q̃i
Ωi +

∂Y(1)
j

∂q̃i
f (1)
i +

∂Y(1)
j

∂P̃k
F(1)

k −
∂F̃(1)

j

∂P̃k
Y(1)

k −
∂F̃(1)

j

∂q̃k
X(1)

k ,

 

(6a)

f̃ (2)
i = f (2)

i +
∂X(2)

i

∂q̃k
Ωk +

∂X(1)
i

∂q̃k
f (1)
k +

∂X(1)
i

∂P̃j
F(1)

j − ∂ f̃ (1)
i

∂P̃k
Y(1)

k − ∂ f̃ (1)
i

∂q̃k
X(1)

k

− 1
2

∂2Ωi

∂P̃j∂P̃k
Y(1)

j Y(1)
k − ∂Ωi

∂P̃j
Y(2)

j .

 

(6b)

Here all functions on the right hand side are evaluated at �̃P  and �̃q , and we have adopted the 
convention that all repeated roman indices are summed over.

2.4. Cancellation of oscillating terms at O(ε)

To proceed it is useful to distinguish between oscillating and average pieces of functions. For 
this we recall that all functions appearing on the RHS of the equations of motion are 2π peri-
odic in all the phases. Consequently, we can decompose them into Fourier modes. If A(�P,�q) 
is such a function then we write its Fourier expansion,

A(�P,�q) =
∑

�κ∈ imax

A�κ(�P)ei�κ·�q. (7)

Based on this we can define decomposition of A in an average and an oscillatory part

A(�P,�q) = 〈A〉(�P) + Ă(�P,�q), (8)

with

〈A〉(�P) := A�0(
�P), (9)

Ă(�P,�q) :=
∑

�κ �=�0

A�κ(�P)ei�κ·�q.
 (10)

Using this notation the expression for F(1)
j  becomes

F̃(1)
j = F(1)

j +
∂Y(1)

j

∂q̃i
Ωi (11)

= F(1)
j +

∂Y̆(1)
j

∂q̃i
Ωi (12)

M van de Meent and N Warburton Class. Quantum Grav. 35 (2018) 144003
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= 〈F(1)
j 〉+

∑

�κ �=�0

(
F(1)

j,�κ + i
(
�κ · �Ω

)
Y(1)

j,�κ

)
ei�κ·�q.

 (13)

Consequently, we can eliminate the oscillatory part of F(1)
j  by choosing the the oscillatory part 

of Y(1)
j  such that

Y(1)
j,�κ (�P) :=

i

�κ · �Ω
F(1)

j,�κ (
�P). (14)

Obviously, this choice is only possible if �κ · �Ω �= 0 for all �κ such that F(1)
j,�κ �= 0. The sur-

faces in orbital phase space that fail to satisfy this condition are known as orbital resonances. 
Evolving through these points requires a separate treatment [38, 43]. For this work, we will 
assume no resonances occur along the inspiral. This is true generically if the primary black 
hole has no spin, or for equatorial or spherical inspirals into a spinning black hole. In all three 
cases the coefficients of the offending terms vanish by the virtue that the forcing terms depend 
on at most one orbital phase. However, for generic inspirals (featuring both eccentricity and 
inclination) into a spinning black hole resonances will have to be dealt with.

With the above choice for Y̆(1)
j  the expression for f̃ (1)

i  becomes

f̃ (1)
i = f (1)

i − ∂Ωi

∂Pj
Y(1)

j +
∂X(1)

i

∂qk
Ωk (15)

= 〈f (1)
i 〉 − ∂Ωi

∂Pj
〈Y(1)

j 〉+
∑
�κ �=0

(
f (1)
i,�κ − i

�κ · �Ω
∂Ωi

∂Pj
F(1)

j,�κ + i
(
�κ · �Ω

)
X(1)

i,�κ

)
ei�κ·�q.

 

(16)

Consequently, (in the absence of resonances) we can eliminate the oscillatory part of f̃ (1)
i  by 

choosing the oscillatory part of X̃(1)
i  such that

X(1)
i,�κ (

�P) =
i

�κ · �Ω
f (1)
i,�κ (�P) +

∂Ωi

∂Pj

1

(�κ · �Ω)2
F(1)

j,�κ (
�P). (17)

2.5. Cancellation of oscillating terms at O(ε2)

With the choice for Y̆(1)
j  above the oscillatory part of the expression for F̃(2)

j  becomes,

˘̃F(2)
j = F̆(2)

j +
∂Y̆(2)

j

∂q̃i
Ωi + {

∂Y̆(1)
j

∂q̃i
f (1)
i }+ {

∂Y(1)
j

∂P̃k
F(1)

k } −
∂〈F(1)

j 〉
∂P̃k

Y̆(1)
k

 (18)

=
∑
�κ �=0

(
F(2)

j,�κ + i
(
�κ · �Ω

)
Y(2)

j,�κ +
∂〈Y(1)

j 〉
∂P̃k

F(1)
k,�κ − i

∂〈F(1)
j 〉

∂P̃k

F(1)
k,�κ

�κ · �Ω

+
∑
�κ′ �=0

(
i
F(1)

k,�κ−�κ′

�κ′ · �Ω

(∂F(1)
j,�κ′

∂P̃k
−

F(1)
j�κ′

�κ′ · �Ω
∂
(
�κ′ · �Ω

)

∂P̃k

)
−

�κ′ ·�f (1)
�κ−�κ′

�κ′ · �Ω
F(1)

j,�κ′

))
ei�κ·�q,

 

(19)
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where we introduced the additional notation {·} to denote the oscillatory part of a product of 
functions. Consequently, when not at a resonance (i.e. �κ · �Ω �= 0), we can eliminate the the 

oscillatory part by choosing the the oscillatory part of Y(2)
j  such that

Y(2)
j,�κ =

i(
�κ · �Ω

)
(

F(2)
j,�κ +

∂〈Y(1)
j 〉

∂P̃k
F(1)

k,�κ − i
∂〈F(1)

j 〉
∂P̃k

F(1)
k,�κ

�κ · �Ω

+
∑
�κ′ �=0

(
i
F(1)

k,�κ−�κ′

�κ′ · �Ω

(∂F(1)
j,�κ′

∂P̃k
−

F(1)
j�κ′

�κ′ · �Ω
∂
(
�κ′ · �Ω

)

∂P̃k

)
−

�κ′ ·�f (1)
�κ−�κ′

�κ′ · �Ω
F(1)

j,�κ′

))
.

 

(20)

We continue in similar fashion with the oscillatory part of f̃ (2)
i . With the previous choices 

this reduces to,

˘̃f (2)
i = f̆ (2)

i +
∂X̆(2)

i

∂q̃k
Ωk + {∂X̆(1)

i

∂q̃k
f (1)
k }+ {∂X(1)

i

∂P̃j
F(1)

j } − ∂〈f (1)
i 〉

∂P̃k
Y̆(1)

k

+
∂Ωi

∂P̃j

∂〈Y(1)
j 〉

∂P̃k
Y̆(1)

k − 1
2

∂2Ωi

∂P̃j∂P̃k
{Y̆(1)

j Y̆(1)
k } − ∂Ωi

∂P̃j
Y̆(2)

j

 

(21)

=
∑
�κ �=0

(
f (2)
i,�κ + i

(
�κ · �Ω

)
X(2)

i,�κ +
∂〈X(1)

i 〉
∂P̃j

F(1)
j,�κ − ∂〈f (1)

i 〉
∂P̃k

Y(1)
k,�κ +

∂Ωi

∂P̃j

∂〈Y(1)
j 〉

∂P̃k
Y(1)

k,�κ

+
1
2

∂2Ωi

∂P̃j∂P̃k
〈Y(1)

j 〉Y(1)
k,�κ − ∂Ωi

∂P̃j
Y(2)

j,�κ

+
∑
�κ′ �=0

(
i
(
�κ′ ·�f (1)

�κ−�κ′

)
X(1)

i,�κ′ +
∂X(1)

i,�κ′

∂P̃j
F(1)

j,�κ−�κ′ −
1
2

∂2Ωi

∂P̃j∂P̃k
Y(1)

j,�κ′Y
(1)
k,�κ−�κ′

))
ei�κ·�q,

 (22)

where we have left the Y(n)
i , and X(1)

i  unexpanded if the explicit choices do not lead to a sim-
plification. Consequently, when �κ · �Ω �= 0 we can cancel the oscillatory part by choosing X̆(2)

i  
such that,

X(2)
i,�κ =

i(
�κ · �Ω

)
(

f (2)
i,�κ +

∂〈X(1)
i 〉

∂P̃j
F(1)

j,�κ − ∂〈f (1)
i 〉

∂P̃k
Y(1)

k,�κ +
∂Ωi

∂P̃j

∂〈Y(1)
j 〉

∂P̃k
Y(1)

k,�κ

+
1
2

∂2Ωi

∂P̃j∂P̃k
〈Y(1)

j 〉Y(1)
k,�κ − ∂Ωi

∂P̃j
Y(2)

j,�κ

+
∑
�κ′ �=0

(
i
(
�κ′ ·�f (1)

�κ−�κ′

)
X(1)

i,�κ′ +
∂X(1)

i,�κ′

∂P̃j
F(1)

j,�κ−�κ′ −
1
2

∂2Ωi

∂P̃j∂P̃k
Y(1)

j,�κ′Y
(1)
k,�κ−�κ′

))
.

 

(23)

2.6. Freedom in average pieces of transformation

With the oscillatory pieces removed by the choices in the previous sections, the remaining 
average parts of the tilded forcing terms become,

F̃(1)
j = 〈F(1)

j 〉, (24a)
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f̃ (1)
i = 〈f (1)

i 〉 − ∂Ωi

∂P̃j
〈Y(1)

j 〉, (24b)

and

F̃(2)
j = 〈F(2)

j 〉+ 〈
∂Y̆(1)

j

∂q̃i
f̆ (1)
i 〉+ 〈

∂Y̆(1)
j

∂P̃k
F̆(1)

k 〉+
∂〈Y(1)

j 〉
∂P̃k

〈F(1)
k 〉 −

∂〈F(1)
j 〉

∂P̃k
〈Y(1)

k 〉,
 

(25a)

f̃ (2)
i = 〈f (2)

i 〉 − ∂Ωi

∂P̃j
〈Y(2)

j 〉+ 〈∂X̆(1)
i

∂q̃k
f̆ (1)
k 〉+ 〈∂X̆(1)

i

∂P̃j
F̆(1)

j 〉+ ∂〈X(1)
i 〉

∂P̃j
〈F(1)

j 〉

− ∂〈f (1)
i 〉

∂P̃k
〈Y(1)

k 〉+ ∂Ωi

∂P̃j

∂〈Y(1)
j 〉

∂P̃k
〈Y(1)

k 〉+ 1
2

∂2Ωi

∂P̃j∂P̃k

(
〈Y(1)

j 〉〈Y(1)
k 〉 − 〈Y̆(1)

j Y̆(1)
k 〉

)
.

 (25b)

We have thus achieved our primary goal: effective equations of motion where the forcing 
terms do not depend on the phases. Beyond this there is still considerable freedom due to 
the unconstrained average parts of the near identity transformation 〈�X(n)〉 and 〈�Y(n)〉. Various 
choices can significantly simplify the equations of motion. We discuss some possibilities in 
the following subsections.

2.6.1. No average terms in NIT. The easiest choice is to simply not include any average terms 
in the near identity transformation, i.e. set 〈�X(n)〉 = 〈�Y(n)〉 = 0. Unlike some of the options 
below this choice is available regardless of the particular details of the original equations of 
motion. With this choice the NIT’d forcing functions become,

F̃(1)
j = 〈F(1)

j 〉, (26a)

f̃ (1)
i = 〈f (1)

i 〉, (26b)

F̃(2)
j = 〈F(2)

j 〉+ 〈
∂Y̆(1)

j

∂q̃i
f̆ (1)
i 〉+ 〈

∂Y̆(1)
j

∂P̃k
F̆(1)

k 〉, (26c)

f̃ (2)
i = 〈f (2)

i 〉+ 〈∂X̆(1)
i

∂q̃k
f̆ (1)
k 〉+ 〈∂X̆(1)

i

∂P̃j
F̆(1)

j 〉 − 1
2

∂2Ωi

∂P̃j∂P̃k
〈Y̆(1)

j Y̆(1)
k 〉. (26d)

2.6.2. Elimination of 
�̃f (2) using 〈�X (1)〉. The equations (26) are already quite simple, except 

for the expression for �̃f (2). We can improve on this by noting that 〈�X(1)〉 appears in the forcing 

functions only through �̃f (2). Hence we can eliminate �̃f (2) by solving a set of uncoupled first 
order PDEs,

〈F(1)
j 〉∂〈X

(1)
i 〉

∂P̃j
=

∂Ωi

∂P̃j
〈Y(2)

j 〉 − 〈f (2)
i 〉 − 〈∂X̆(1)

i

∂q̃k
f̆ (1)
k 〉 − 〈∂X̆(1)

i

∂P̃j
F̆(1)

j 〉+ ∂〈f (1)
i 〉

∂P̃k
〈Y(1)

k 〉

− ∂Ωi

∂P̃j

∂〈Y(1)
j 〉

∂P̃k
〈Y(1)

k 〉 − 1
2

∂2Ωi

∂P̃j∂P̃k

(
〈Y(1)

j 〉〈Y(1)
k 〉 − 〈Y̆(1)

j Y̆(1)
k 〉

)
.

 

(27)

Although it may not be possible to provide an explicit solution, it is clear that solutions to these 
PDEs will exist. Given a numerical realization of the RHS, numerical integration of these 
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equations should be straightforward. Combining this choice with 〈�Y(1)〉 = 〈�Y(2)〉 = 〈�X(2)〉 = 0, 
we obtain the fairly simple expressions

F̃(1)
j = 〈F(1)

j 〉, (28a)

f̃ (1)
i = 〈f (1)

i 〉, (28b)

F̃(2)
j = 〈F(2)

j 〉+ 〈
∂Y̆(1)

j

∂q̃i
f̆ (1)
i 〉+ 〈

∂Y̆(1)
j

∂P̃k
F̆(1)

k 〉, (28c)

f̃ (2)
i = 0. (28d)

This is the choice we will use in the practical implementation in section 3. We further note that 
if one would continue the NIT to higher orders in ε, this choice can be made at arbitrary order 

to eliminate �̃f (n) using the freedom in 〈�X(n−1)〉.

2.6.3. Elimination of post-adiabatic dissipative terms using 〈�Y (n)〉. In the same spirit as the 
previous option we can try to eliminate �̃F(2) using 〈�Y(1)〉. This again requires solving a set of 
first order PDEs, which are now coupled,

〈F(1)
k 〉

∂〈Y(1)
j 〉

∂P̃k
−

∂〈F(1)
j 〉

∂P̃k
〈Y(1)

k 〉+ 〈
∂Y̆(1)

j

∂q̃i
f̆ (1)
i 〉+ 〈

∂Y̆(1)
j

∂P̃k
F̆(1)

k 〉+ 〈F(2)
j 〉 = 0.

 

(29)

Solutions to these equations should still exist, at the very least locally/numerically. Moreover, 
if one would continue the NIT to higher orders in ε, this choice can be made at arbitrary 
order to eliminate �̃F(n) using the freedom in 〈�Y(n−1)〉. Together with the option of eliminat-

ing all �̃f (n) terms with n � 2 using the freedom in 〈�X(n−1)〉, this means that in principle (and 
provided there are no non-perturbative—e.g. e−α/ε—terms) we can find NIT’d equations of 
motion that are linear in ε,

˙̃Pj = 0 + εF̃(1)
j (�̃P), (30a)

˙̃qi = Ωi(
�̃P) + εf̃ (1)

i (�̃P). (30b)

Note that whilst the equations of motion now appear simpler, unless ∂Ωi

∂P̃j
= 0, the solutions 

for 〈Y(1)
j 〉 will appear explicitly in the expression for f̃ (1)

i . Furthermore, even if ∂Ωi

∂P̃j
�= 0 the 

solutions for 〈Y(1)
j 〉 will appear explicitly in the expressions for the extrinsic parameters—see 

equation (42) in the section on the treatment of the extrinsic parameters.

2.6.4. Elimination of 
�̃f (n) using 〈�Y (n)〉. The expressions for f̃ (n)

i  all depend on 〈�Y(n)〉 only 
through a term of the form,

∂Ωi

∂P̃j
〈Y(n)

j 〉. (31)

Consequently, if there exists a left-inverse for the matrix ∂Ωi

∂P̃j
 (i.e. if there exists a matrix Ai

k  

such that Ai
k
∂Ωi

∂P̃j
= δ j

k), we can solve the equation  �̃f (n) = 0 for 〈�Y(n)〉. This choice eliminates 
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all �̃f (n) terms, yielding the following forcing functions (with some abuse of notation we write 
∂P̃j

∂Ωi
 for the left-inverse of ∂Ωi

∂P̃j
)

f̃ (n)
i = 0, (32a)

F̃(1)
j = 〈F(1)

j 〉, (32b)

F̃(2)
j = 〈F(2)

j 〉+ 〈
∂Y̆(1)

j

∂q̃i
f̆ (1)
i 〉+ 〈

∂Y̆(1)
j

∂P̃k
F̆(1)

k 〉

+ 〈F(1)
k 〉 ∂

∂P̃k

( ∂P̃j

∂Ωi
〈f (1)

i 〉
)
−

∂〈F(1)
j 〉

∂P̃k

∂P̃k

∂Ωi
〈f (1)

i 〉.

 

(32c)

However, the existence of a left-inverse of ∂Ωi

∂P̃j
 is not always guaranteed. Section 3 shows a 

trivial way in which this can happen. Namely, if one chooses the ‘time’ parameter along the 

trajectory such that one of the Ωi  is constant as a function of �P , then the rank of ∂Ωi

∂P̃j
 is smaller 

then imax and no left-inverse exists. Barring that particularly pathological situation, we nor-
mally have less (intrinsic) phases than ‘constants of motion’ (i.e. imax < jmax), because—due 
to symmetries of the background—some phases conjugate to the actions will be extrinsic to 

the local dynamics. Consequently, we should generically expect the left-inverse of ∂Ωi

∂P̃j
 to exist.

However, one may still worry that the left-inverse of ∂Ωi

∂P̃j
 may fail to exist on local nodes 

in the parameter space. One particular reason to worry about this, is the occurrence of isof-
requency pairs of orbits—pairs of physically distinct orbits with the same orbital frequencies 
Ωr , Ωθ, and Ωφ—in some regions of orbital parameter space, but not others. On the boundary 

between two such regions ∂Ωi

∂P̃j
 will become singular. In [44], the existence of isofrequency 

orbits in Kerr spacetime was shown when the frequencies are measured w.r.t. coordinate time 
(no such pairings seem to exist for Mino time frequencies [38]). However, unless there are 
external perturbations that break axisymmetry, the φ-phase is extrinsic to the local dynamics. 

So we would only need the matrix ∂Ωi

∂P̃j
 two have rank 2 when restricted to i ∈ {r, θ} in order 

for the choice in this subsection to be available. We have not proven so, but this seems likely 
to be satisfied.

A nice aspect of obtaining the forcing functions in the form (32) is that it allows one to 
directly read off the successive terms in the post-adiabatic (PA) expansion of the inspiral from 
the �̃F(n) terms. To evolve the orbit at adiabatic (0PA, n  =  1) order, we just need the average 
changes of the constants of motion. At 1PA, in addition, we need the local first order self-force 
correction and the average changes of the constants of motion at second order. In this way, 
NIT reproduces the results from the two-timescale expansion of [6].

2.7. Evolution of extrinsic quantities

We now turn our attention to the evolution the quantities extrinsic to dynamics, �S . Since, by 
definition, these quantities do not appear explicitly in the equations of motion we only need 
their equations of motions up to terms of order ε,

Ṡk = s(0)
k (�P,�q) + εs(1)

k (�P,�q) +O(ε2). (33)
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By substituting the inverse NIT (3) and re-expanding in ε we can write this as an equa-
tion involving only the NIT’d variables �̃P  and �̃q ,

Ṡk = s(0)
k + ε

(
s(1)

k −
∂s(0)

k

∂P̃j
Y(1)

j −
∂s(0)

k

∂q̃q
X(1)

i

)
+O(ε2), (34)

where all functions on the RHS are now understood to be functions of �̃P  and �̃q .
We would like to recast these equations in an ‘averaged’ form that is independent of the 

dynamic phases �̃q . To this end we introduce a new set of transformed extrinsic coordinates �̃S , 
defined by the transformation,

S̃k = Sk + Z(0)
k (�̃P, �̃q) + εZ(1)

k (�̃P, �̃q) +O(ε2). (35)

Note that this is not a near-identity transform due to the inclusion of the Z(0)
k  term at zeroth 

order. This means that for the production of waveforms it will be necessary to know the details 
of this transformation.

By taking the time derivative of (35) and substituting the equations of motion for �S  we 
obtain equations of motion for �̃S ,

˙̃Sk = s̃(0)
k + εs̃(1)

k +O(ε2), (36)

with

s̃(0)
k := s(0)

k +
∂Z(0)

k

∂q̃i
Ωi, (37)

s̃(1)
k := s(1)

k −
∂s(0)

k

∂P̃j
Y(1)

j −
∂s(0)

k

∂q̃i
X(1)

i +
∂Z(0)

k

∂q̃i
f̃ (1)
i +

∂Z(0)
k

∂P̃j
F̃(1)

j +
∂Z(1)

k

∂q̃i
Ωi.

 (38)

We can eliminate the oscillatory parts of the forcing functions ̃s(n)
k  by solving the equations

s̆(0)
k +

∂Z̆(0)
k

∂q̃i
Ωi = 0, (39)

s̆(1)
k − {

∂s(0)
k

∂P̃j
Y(1)

j } − {
∂s̆(0)

k

∂q̃i
X(1)

i }+
∂Z̆(0)

k

∂q̃i
f̃ (1)
i +

∂Z̆(0)
k

∂P̃j
F̃(1)

j +
∂Z̆(1)

k

∂q̃i
Ωi = 0

 (40)

for the oscillatory parts of the transformation, Z̆(n)
k . Solutions for both equations clearly exist. 

Solving the first equation is akin to solving equations of motion at the test body level, which 
in many cases can be done analytically. The second equation would have to be solved numer-

ically. However, in practice it is sufficient to know that it exists, since ̆s(1)
k  will only explicitly 

appear in the second order forcing term for S̃(1)
k . Consequently, it will only enter the waveform 

at order O(ε), and can thus be neglected.
The remaining forcing functions depend only on �̃P  and are given by,

s̃(0)
k = 〈s(0)

k 〉, (41)
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s̃(1)
k = 〈s(1)

k 〉 −
∂〈s(0)

k 〉
∂P̃j

〈Y(1)
j 〉 − 〈

∂s̆(0)
k

∂P̃j
Y̆(1)

j 〉 − 〈
∂s̆(0)

k

∂q̃i
X̆(1)

i 〉+
∂〈Z(0)

k 〉
∂P̃j

F̃(1)
j .

 

(42)

In principle, it is possible to eliminate the first order forcing term s̃(1)
k  completely by solving 

a first order linear partial differential equation for 〈Z(0)
k 〉. However, since 〈Z(0)

k 〉 will appear 
explicitly in any construction of the waveform, this is of little utility. Instead it is much easier 

to just set 〈Z(0)
k 〉 = 0.

2.8. Summary of NIT results

Using a set of averaging transformation we have recast the the small mass-ratio expanded 
equations of motion for a compact binary (1) in an orbit averaged form that is independent of 
the phases,

˙̃Pj = 0 + εF̃(1)
j (�̃P) + ε2F̃(2)

j (�̃P) +O(ε3), (43a)

˙̃qi = Ωi(
�̃P) + εf̃ (1)

i (�̃P) + ε2 f̃ (2)
i (�̃P) +O(ε3), (43b)

˙̃Sk = s̃(0)
k (�̃P) + εs̃(1)

k (�̃P) +O(ε2). (43c)

The forcing functions are given by

F̃(1)
j = 〈F(1)

j 〉, F̃(2)
j = 〈F(2)

j 〉+ 〈
∂Y̆(1)

j

∂q̃i
f̆ (1)
i 〉+ 〈

∂Y̆(1)
j

∂P̃k
F̆(1)

k 〉, (44)

f̃ (1)
i = 〈f (1)

i 〉, f̃ (2)
i = 0, (45)

s̃(0)
k = 〈s(0)

k 〉, s̃(1)
k = 〈s(1)

k 〉 − 〈
∂s̆(0)

k

∂P̃j
Y̆(1)

j 〉 − 〈
∂s̆(0)

k

∂q̃i
X̆(1)

i 〉, (46)

where

Y̆(1)
j =

∑
�κ �=0

i

�κ · �Ω
F(1)

j,�κ ei�κ·�q, (47)

X̆(1)
i =

∑
�κ �=0

( i

�κ · �Ω
f (1)
i,�κ +

1

(�κ · �Ω)2

∂Ωi

∂Pj
F(1)

j,�κ

)
ei�κ·�q. (48)

To recover the original variables (�P,�q,�S)—which are needed to construct the generated wave-
form—we need to apply the inverse transformation at leading order

Pj = P̃j +O(ε), (49)

qi = q̃i +O(ε), (50)

Sk = S̃k − Z(0)
k (�̃P, �̃q) +O(ε), (51)

where Z(0)
k  is found by solving (39), preferably analytically.
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This analysis independently confirms an important result from the two-timescale analysis 
of the same system [6]: to evolve the dynamics of the system over an O(ε−1) time making an 
error in the phases of at most O(ε), one needs the first order corrections to the equations of 
motion and the average dissipative corrections at second order.

Finally, we stress an important caveat: the transformation above is only possible if the 

terms 
F(1)

j,�κ

(�κ·�Ω)2  and 
f (1)
i,�κ

�κ·�Ω
 stay bounded everywhere along the inspiral. In other words, this pro-

cedure works only in the absence of orbital resonances. If resonances do occur, a different 
analysis is needed in the vicinity of the resonance [38, 43].

3. Schwarzschild case

The previous section was purposefully very abstract so that it is applicable to, e.g. generic 
inspirals into a rotating black hole away from orbital resonances. In this section we apply 
NITs to a concrete evolution problem: the evolution of a non-spinning extreme mass-ratio 
inspiral under the gravitational self-force.

3.1. Equations of motion

Our first task will be to find a set of equations of motion in the form of (1). For this we employ 
the method of osculating geodesics [23]. At each point in time, the trajectory of the second-
ary is described by a tangent geodesic in the background Schwarzschild spacetime generated 
by the primary. To describe such a geodesic we need two constants of motion and one phase. 
For the two constants of motion we use the semi-latus rectum p and eccentricity e. These are 
defined following Darwin [45, 46] using the periapsis and apoapsis distance rmin and rmax,

p :=
2rminrmax

(rmin + rmax)M
, e :=

rmax − rmin

rmax + rmin
 (52)

where M is the mass of the massive black hole. As the phase we use the relativistic anomaly ξ 
(also introduced by Darwin [45, 46]) defined by the relation

r =
pM

1 + e cos ξ
. (53)

To fully describe the trajectory of the secondary we also need two quantities extrinsic to the 
dynamics; the coordinate values of t and φ. The osculating geodesics evolution equations in 
these coordinates were provided by Pound and Poisson [23] and take the form

dξ
dχ

= 1 + ηfξ( p, e, ξ), (54a)

dp
dχ

= ηFp( p, e, ξ), (54b)

de
dχ

= ηFe( p, e, ξ), (54c)

dt
dχ

= ωt( p, e, ξ), (54d)
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dφ
dχ

= ωφ( p, e, ξ), (54e)

where η is the mass ratio m2/m1 and the ‘time’ parameter along the trajectory, χ, is defined 
such that when η = 0, dξ/dχ = 1. The full details of the functions fξ, Fp/e, and ωt,φ are given 
in appendix A. The equations (54) are of the form (1) with �q = {ξ}, �P = { p, e}, �S = {t,φ}, 
and ε = η. We can thus follow the procedure of section 2 (using the choices of section 2.6.2) 
to a find an averaged version of the equations of motion,

dξ̃
dχ

= 1 + ηf̃ (1)
ξ (p̃, ẽ) +O(η3), (55a)

dp̃
dχ

= ηF̃ (1)
p (p̃, ẽ) + η2F̃ (2)

p (p̃, ẽ) +O(η3), (55b)

dẽ
dχ

= ηF̃ (1)
e (p̃, ẽ) + η2F̃ (2)

e (p̃, ẽ) +O(η3), (55c)

d̃t
dχ

=
Tr(p̃, ẽ)

2π
+ ηf̃ (1)

t (p̃, ẽ) +O(η2), (55d)

dφ̃
dχ

=
Φr(p̃, ẽ)

2π
+ ηf̃ (1)

φ (p̃, ẽ) +O(η2), (55e)

where Tr(p,e) and Φr( p, e) are the radial period and total accumulated φ over such a period of 
a Schwarzschild geodesic described by ( p, e), and the averaged forcing functions are given by

f̃ (1)
ξ = 〈fξ〉, F̃ (1)

p = 〈Fp〉, F̃ (1)
e = 〈Fe〉, (56a)

F̃ (2)
p = −〈F̆p

∫
∂F̆p

∂p
dξ〉 − 〈F̆e

∫
∂F̆p

∂e
dξ〉 − 〈F̆pf̆ξ〉, (56b)

F̃ (2)
e = −〈F̆p

∫
∂F̆e

∂p
dξ〉 − 〈F̆e

∫
∂F̆e

∂e
dξ〉 − 〈F̆ef̆ξ〉, (56c)

f̃ (1)
t = 〈∂Z̆(0)

t

∂p
F̆p〉+ 〈∂Z̆(0)

t

∂e
F̆e〉, f̃ (1)

φ = 〈
∂Z̆(0)

φ

∂p
F̆p〉+ 〈

∂Z̆(0)
φ

∂e
F̆e〉. (56d)

The full details of the NIT need to achieve this form are given in appendix B, where we also 
give equation (56) written in terms of Fourier coefficients of the original forcing functions, a 
form which is particularly useful for practical implementation. In that appendix we also give 
the analytic formula for Tr and Φr .

3.2. Implementation

Constructing the functions, F̃ (1/2)
p/e , f̃ (1)

ξ/t/φ on the right-hand side of the NIT equations  of 

motion (55) requires knowledge of both the self-force and its derivatives with respect to the 
( p, e) orbital elements. At present there are no self-force codes that directly compute these 
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derivatives. Instead, we employ an analytic model for the self-force with numerically fitted 
coefficients in the range 0 � e � 0.2 and 6 + 2e < p � 12 from [24]. The analytic nature of 
the model makes it straightforward to take derivatives of the self-force with respect to p and 
e. A number of pre-processing, or offline, steps are applied to the full self-force model to con-
struct the NIT inspiral model. These offline steps only need to be computed once. The inspiral 
trajectory can then be rapidly evaluated in an online step for a given mass-ratio and initial 
parameters ( p0, e0). The steps that can be precomputed offline are:

 (i)  [Offline] Compute the gravitational self-force along geodesic orbits at many thousands of 
points in the ( p, e) parameter space using codes such as those presented in [11–13]. This 
step can takes days running on hundreds of processors and produces gigabytes of data. 
Once all the data is in hand it can be interpolated using a global [24] or local [25] fit to 
produce the rapidly evaluated functions Fp/e and fξ.

 (ii)  [Offline] Compute the coefficients in the Fourier expansion (8) of the functions Fp/e, fξ/t/φ 
on a grid of points in the ( p, e) parameter space. We choose to use a grid with regular 
spacing in p and e as it simplifies the construction of the two-dimensional interpolatants 
in step (iii). The decomposition into Fourier modes is performed using the efficient FFTW 
C-library [47]. With a spacing of ∆p = 0.05 and ∆e = 0.002 this step takes  ∼2.5 min. 
This step is the first step in the calculation presented in this work as the prior step was 
carried out in [24] and the fit made publicly available.

 (iii)  [Offline] Compute the averaged forcing functions F̃ (1/2)
p/e , f̃ (1)

ξ/t/φ at each point in the ( p, e) 
parameter space using the Fourier form of equation (56) given in equation (B.20a), and 
save the output to disk. This step takes less than 2 s and the stored data takes up  ∼2 
megabytes of disk space.

 (iv)  [Offline] Interpolate the grid of data for each of F̃ (1/2)
p/e , f̃ (1)

ξ/t/φ. In our implementation we 

use cubic spline interpolation from the GNU Scientific Library [48]. This step takes  ∼35 
milliseconds.

All the times quoted above are computed on a single core of a 2.5 GHz MacBook laptop. 
The online steps that can be computed rapidly for each set of initial conditions are:

 (v)  [Online] Compute an inspiral using equations (55). In our implementation we solve the 
ODEs using an adaptive Runge–Kutta algorithm from the GNU Scientific Library [48].

 (vi)  [Online] With the inspiral trajectory in hand, the waveform can be computed as outlined 
in the next subsection.

We discuss in the results section below the computation time of the online steps. An imple-
mentation of the above steps in the C++ programming language is publicly available as part 
of the the Black Hole Perturbation Toolkit [49]. The code is licensed under the open-source 
GNU Public Licence (GPL).

3.3. Waveform generation

In most approaches the method for computing the waveform is independent of the method 
used to compute the inspiral trajectory. Given an inspiral trajectory there are a number of ways 
to construct the associated gravitational waveform. The most robust method, but also the most 
computational expensive, is to use the trajectory as a source in a time-domain perturbation 
code, such as [11] (Schwarzschild) or [50, 51] (Kerr). Computing tens to hundreds of thou-
sands of waveform cycles using this method is infeasible, but for a smaller number of cycles 
this approach is an important benchmark for the methods outlined below.
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One alternative method is to stitch together a sequence of so-called ‘snapshot’ waveforms. 
Each snapshot is the waveform associated with a particle moving along a bound geodesic. 
The periodic nature of bound geodesics means these snapshots can be rapidly computed using 
frequency-domain perturbation codes. These snapshots can be precomputed and interpolated 
across the parameter space in an offline step. The waveform for a given inspiral can then be 
constructed by smoothly moving from one snapshot to the next. This method has been imple-
mented in e.g. [25].

Another commonly used waveform generation algorithm is the ‘semi-relativistic approx-
imation’ [52] often used by kludge methods [16–18]. In this approach the Schwarzschild (or 
Boyer–Lindquist) coordinates of the inspiral trajectory are mapped to flat-space coordinates. 
The waveform is then constructed using the quadrupole formula (possibly with octupolar 
corrections). Despite the black hole to flat space coordinate map this method has been shown 
to produce surprisingly accurate results in the strong-field when compared to snapshot wave-
forms [17].

For our purposes it does not matter which waveform generation scheme we use so long as 
we use the same method with the full self-force and NIT inspiral to allow for a fair compariso n. 
Thus, we opt to use the semi-relativistic approximation in this work as it is the simplest to 
implement. Details of this method can be found in, e.g. [17, 53].

4. Results

The key feature of a NIT inspiral is that it can be evaluated rapidly and at the same time the 
evolving constants of motion, phases and extrinsic parameters remain within O(η) of an inspi-
ral computed using the full self-force. In this section we present numerical results which dem-
onstrate these two properties of the NIT inspiral. We also show that the waveform computed 
using the NIT inspiral trajectory is an excellent match with respect to the waveform computed 
using the full inspiral trajectory.

First, let us demonstrate the accuracy of the NIT inspiral method. Figure 1 gives an exam-
ple of the evolution of ( p, e) and (p̃, ẽ) for the full self-force and NIT inspirals, respectively. 
We compute the full inspiral trajectory using an osculating element prescription [23] cou-
pled to an interpolated self-force model [24]. The resulting full self-force inspiral trajectory 
clearly shows oscillations on the orbital timescale which, as discussed in the introduction, is 
what slows down the numerical computation of the trajectory. To compute the corresponding 
NIT inspiral we first transform the initial conditions ( p0, e0) using the first-order NIT equa-
tion (B.1a) up to O(η) to get (p̃0, ẽ0). We then numerically solve for the NIT inspiral using 
equations (55). The NIT inspiral trajectory is then a smooth curve with no oscillations that 
runs through the ‘average’ of the oscillating full self-force inspiral trajectory. The accuracy 
of the NIT inspiral trajectory can be illustrated by applying the inverse NIT transformation, 
equation (3), through O(η) and comparing to the full self-force trajectory. The inset of figure 1 
shows close agreement between the two inspiral trajectories. This comparison improves as the 
mass ratio is made smaller (we used a relatively large mass-ratio of η = 10−3 for figure 1 to 
make the oscillations in the full self-force inspiral clear).

The evolution of the phase and extrinsic parameters {ξ, t,ϕ} show similarly excellent 
agreement between the NIT and full self-force inspirals. Figure 2 shows sample results for an 
inspiral with η = 10−5. We find the difference in the phase, |ξ̃ − ξ|, remains less than 10−3 over 
the entire inspiral excluding the last few orbits where, with the onset of the plunge, the adi-
abatic approximation breaks down and with it the effectiveness of the NIT. To compare NIT’d 

extrinsic parameters, {̃t, ϕ̃}, with {t,ϕ} one must first restore the O(η0) oscillatory terms, Z(0)
t  
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and Z(0)
φ . These terms are given analytically in terms of elliptic integrals in equations (B.4) and 

(B.5) and they are quick to evaluate. We find |(̃t − Z(0)
t )− t|/M � 0.1 over the inspiral up to 

a few cycles before plunge. For the azimuthal phase we find |(ϕ̃− Z(0)
φ )− ϕ| � 10−2 radians 

over most of the inspiral.
The close agreement between the description of the full self-force inspiral { p, e, t,ϕ} and 

the description of the NIT inspiral {p̃, ẽ, t̃ − Z(0)
t , ϕ̃− Z(0)

φ } implies the NIT waveform is a 

good approximation to the full self-force waveform. To quantify this we compute waveforms 
using the kludge quadrupole approximation described in section 3.3 and calculate the mis-
match between the two waveforms, minimizing over phase and time shifts. To do this we use 
equation (4) of [54] assuming a flat noise spectral density for the detector (in practise we com-
pute the mismatch integral using the WaveformMatch function from the SimulationTools 
Mathematica package [55]). For our sample inspiral with ( p0, e0) = (11, 0.18) we find that the 
waveform mismatch is always less than 5 × 10−4 for mass ratios in the range 10−6 � η � 10−4 
over durations of 2 months to 2 years—see table 1. In figure 3 we show the full self-force and 
NIT inspiral trajectories, waveforms and waveform mismatch for an EMRI with M = 106M� 
and η = 10−5.

Having demonstrated that NIT inspirals and waveforms faithfully approximate the full 
self-force results, we now show the rapid speed at which NIT inspirals can be computed. In 
order to make a fair and detailed comparison between the two methods (and other methods for 
computing EMRI waveforms) it is worth considering the individual steps in the calculation 
and their computational time. The three steps are (i) compute the phase space trajectory, (ii) 

Figure 1. Inspiral trajectory for a binary with η = 10−3 and initial parameters 
( p0, e0) = (11, 0.18). This relatively large mass ratio was chosen to make the 
oscillations in the self-forced inspiral clear. The oscillating (blue) curve shows the 
trajectory of ( p, e) for the self-force inspiral. The smooth (orange) curve shows the 
trajectory of (p̃, ẽ) for the NIT inspiral. The solid (black) line shows the location of the 
separatrix between bound and plunging orbits. The inset figure shows a zoom in of the 
region inside the black rectangle. In the inset the dotted (red) curve shows the result of 
applying the inverse NIT, equation (3), through O(η) to the NIT trajectory. The inverse 
NIT trajectory and the self-force trajectory are in good agreement at this late stage of 
the inspiral. This agreement improves further for smaller mass ratios.
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compute the physical trajectory and (iii) compute the waveform. Let us examine each one in 
turn.

The full self-force equations of motion, (54), depend upon the orbital phase and so the 
numerical integrator must take many small steps in order to resolve oscillations on the orbital 
timescale. Consequently, computing the phase space trajectory { p, e, ξ} using the full self-
force method takes tens of seconds to hours depending on the initial conditions and the mass-
ratio (smaller mass-ratio binaries evolve more slowly and so accumulate more orbits before 
plunge). As the NIT equations of motion, (55), do not depend on the orbital phase they can be 
numerically integrated in milliseconds which, depending on the mass ratio, is 2-5 orders of 
magnitude faster than the full self-force method. In table 2 we give the computation time of 
the phase space inspirals and the speed up between the full self-force and NIT methods. The 

Figure 2. Difference in the full self-force extrinsic parameters t,φ and phase ξ and their 
NIT equivalents for a binary with initial parameters ( p0, e0) = (11, 0.18) and mass ratio 
η = 10−5. All the variables oscillate on the orbital timescale which is the origin of the 
noisy features in the curves. Apart from close to plunge, where the NIT breaks down, we 
find the full self-force and NIT inspiral are in excellent agreement with |ξ̃ − ξ| � 10−3, 
|(̃t − Z(0)

t )− t|/M � 0.1 and |(ϕ̃− Z(0)
φ )− ϕ| � 10−2.

Table 1. Waveform mismatch between the self-forced and NIT inspirals for an inspiral 
with initial parameters ( p0, e0) = (11, 0.18) and M = 106M�. No data is shown for the 
6 months and 2 years columns for η = 10−4 as this inspiral plunges after  ∼4 months. 
The dominant source of error in these results comes from interpolating the inspiral 
trajectory when computing the waveform. The mismatch can be further reduced, at the 
expense of computation time, by more densely sampling the NIT inspiral trajectory or 
using a higher-order interpolation method.

η 2 months 6 months 2 years

10−4 3.7 × 10−6 — —
10−5 1.2 × 10−7 4.2 × 10−6 1.9 × 10−5

10−6 2.1 × 10−9 5.0 × 10−7 4.6 × 10−4
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Figure 3. Comparison of a full self-force and NIT inspiral for a binary with 
M = 106M� and η = 10−5. The initial parameters of the full self-force inspiral are 
( p0, e0) = (11, 0.18) and the NIT inspiral’s initial parameters (p̃0, ẽ0) are computed 
using the inverse NIT transformation equation (3) through O(η). The inspiral lasts just 
under 2.5 years. (Top) the evolution of p (scale on left axis) and e (scale on right axis). 
(Top middle) Comparison of inspiral trajectories over two orbits after (left) 6 months 
and (right) 2 years. The (blue) solid curve shows the full self-force trajectory and the 
(red) dotted curve shows the NIT trajectory. In both plots the difference between the 
two trajectories is invisible to the eye. (Bottom middle) Comparison of quadrupolar 
waveforms after (left) 6 months and (right) 2 years. The (blue) solid curve shows 
the waveform from the full self-force inspiral and the (red) dotted curve shows the 
waveform from the NIT inspiral. The small amplitude solid (green) curve shows the 
small difference between the two waveforms. (Bottom) Waveform mismatch computed 
as a function of time. The mismatch remains small across the entire lifetime of the 
inspiral.
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millisecond computation time of the NIT model is comparable to kludge methods, but with 
the benefit of including self-force corrections.

In the full self-force method the computation of the physical trajectory is normally performed 
simultaneously with solving for the phase space trajectory as the equations for { p, e, ξ, t,φ} 
form a hierarchically coupled set of equations  (r is trivially computed using equation  (53) 
and without loss of generality θ = π/2). The addition of the {t,φ} equations adds little to 
the computation time as their righthand side is cheap to evaluate. Consequently, the second 
column of table 2 is also indicative of the time to compute the phase space and physical trajec-
tory simultaneously. Computing the physical trajectory using the NIT method is a two-step 
process. First {̃t, φ̃} are solved for simultaneously with the phase space variables {p̃, ẽ, ξ̃}. As 
with the full self-force method, this adds little computation time and the tilded variables are 
computed in milliseconds. To compute the physical trajectory, accurate to O(η), we need to 

add the oscillatory O(η0) terms, Z(0)
t/φ. These are given analytically in terms of elliptic integrals 

in equations (B.4) and (B.5) and are quick to evaluate. The total time required to compute the 
physical trajectory in the NIT prescription strongly depends on the sampling rate and duration 
of the desired waveform. For example, for a 2 month duration equally sampled at 5 s intervals 
(this equates to  ∼106 samples) computing the physical trajectory takes  ∼0.2 s. For kludge 
models the time to compute the physical inspiral depends on the model being used. Using the 
EMRI Kludge Suite [56] implementation of the various kludges, the Analytic Kludge [16] and 
Analytic Augmented Kludge [18] take around  ∼0.2 s for the same duration and sample rate. 
The Numerical Kludge takes  ∼4 s, which is longer as it directly solves the t and φ equations of 
motion (54d) and (54e).

Similar to the computation of the physical trajectory, the waveform computation time 
depends upon the duration and sample rate. Use the semi-relativistic approximation briefly 
described in section 3.3 with the same 2 month duration and 5 s sample rate we find the wave-
form takes  ∼1 s to compute. This time is the same for both the full self-force and NIT inspiral 
and is also comparable with kludge methods.

5. Discussion

In this paper we leveraged the existing machinery of near-identity transformations to obtain 
equations of motion for small mass-ratio binary systems that are independent of the orbital 
timescale degrees of freedom. The result is a system of equations that can be evolved at speeds 
similar to previously developed kludge models, while (in principle) accounting for all physics 
coming from a systematic expansion of the dynamics in the small mass-ratio—e.g. gravita-
tional self-forces or corrections due to secondary spin or higher multipoles. As a proof of 
principle we implemented these equations using the self-forced evolution model of [24]. The 
results show a speed-up of the phase space evolution of 2-5 orders of magnitude compared to 
evolution of the ‘full’ self-force dynamics, while the phase difference between the two models 
stays O(η). Comparing two-year duration waveforms produced from phase space evolutions 
from both models, we find that mismatches stay �10−4.

We must however stress that the implemented model should be viewed as a proof of con-
cept. It does not provide an evolution model that is faithful up to O(η) errors in the phases. 
The main issue is that the model (like that of [24] on which it is based) is missing the second-
order forcing terms in the osculating geodesics evolution equations. Contributions to these 
functions include the second order self-force and the post-geodesic corrections to the first 
order self-force, neither of which have currently been calculated. Calculation of the second 
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order self-force is currently a topic of significant effort [57–66]. Preliminary investigations of 
the post-geodesic corrections to the first order self-force (using scalar toy models) suggest that 
the contribution may be negligibly small [27]. If not, we note that we are only interested in the 
corrections to the orbit averaged ‘fluxes’. In principle, one should be able to calculate this by 
comparing the time domain fluxes of adiabatic inspirals with the geodesic equivalent fluxes. 
Once calculations of these contributions become available (which will come at significant 
one-time offline computational cost), it will be trivial to include them in the NIT averaged 
inspiral model. Since this model already contains contributions to the second order averaged 
forcing functions from the oscillatory part of the first order self-force, we expect no additional 
online computation cost to include these effects in the inspiral calculation.

Another point to note is that our evolution model is applicable only during the inspiral 
phase of the binary evolution. It will breakdown as the last stable orbit is approached and adi-
abaticity is lost. This is not an issue for EMRIs detectable by LISA as the plunge, merger, and 
ringdown phases account for a very small fraction of the SNR compared to the inspiral. For 
binaries with more comparable mass components the loss of adiabaticity near the last stable 
orbit will limit the applicability of our approach though how far our model can be pushed 
towards comparable mass binaries remains to be quantified.

We also note that the implementation here is based on the dataset from [24], which covers 
only a part of the expected EMRI parameter space for non-spinning binaries. Self-force data 
for most of the non-spinning parameter space was published in [25]. The choice for using the 
older dataset of [24] was motivated by the fact that it included global analytical fits to the data. 
Consequently, this dataset lent it self well to calculating the phase space derivatives needed 
for some of the NIT averaged forcing functions. With some care it should also be possible to 
obtain the phase space derivatives numerically from the data of [25]. An alternative approach 
would be to calculate the phase space derivatives directly when the self-force is computed 
on a geodesic. This would involve calculating the spacetime derivatives of the self-force and 
some straight-forward algebra. Both are well within the technological capabilities of the state-
of-the-art self-force calculations. This approach may be particularly appealing for filling the 
EMRI parameter space for spinning binaries. That task will be computationally much more 
expensive than the non-spinning case, both due to the higher dimensionality of the parameter 
space and the higher computational costs for calculating the self-force on generic orbits [15].

Although our proof of principle was applied to non-spinning binaries, the averaging NIT 
can easily accommodate the addition of spin, both to the primary and secondary. When adding 
spin the equations of motion will involve more than one intrinsic phase. The general derivation 

Table 2. Comparison of the phase space trajectory computation time between the full 
self-force and NIT methods for a variety of mass ratios. All the inspirals start with initial 
parameters ( p0, e0) = (11, 0.18), or their NIT’d equivalent, and continue to plunge. The 
time to compute the full inspiral depends on the mass ratio and takes seconds to hours, 
owing to the need to resolve oscillations on the orbital timescale. By constrast, a NIT 
inspiral takes milliseconds to compute for any mass ratio. This results in a speed-up of 
two to five orders of magnitude, depending on the mass ratio.

Computation time

η Full inspiral NIT inspiral Inspiral speed up

10−3 6.2 s 0.008 s ∼700
10−4 43 s 0.008 s ∼5000
10−5 5 m40 s 0.008 s ∼40 000
10−6 42 m20 s 0.008 s ∼300 000
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of section 2 has shown that generically this does not pose any issues. The exception is when 
the frequencies of the different phases form resonant ratios, in which case the NIT breaks 
down. Unfortunately, such resonances will appear generically in EMRI evolutions [38, 43, 
67–70]. Resonance will therefore need to be dealt with separately. The simplest approach 
would be to simply switch back to the full evolution equations just before hitting the reso-
nance, evolving through the resonance, and switching back to the NIT averaged equations. 
This will undoubtedly work, but will come at a significant computational cost. We can already 
do a lot better by rather than switching back to the full equations of motion, using a NIT to 
eliminate all non-resonant oscillating terms as in [38]. By definition the resonant terms will 
only vary slowly in the vicinity of the resonance limiting the computational cost. However, 
the best solution would be obtained if one could implement the effects of the resonance as an 
instantaneous jump on the orbital parameters. The results of [43] and [38] suggest that this 
may be possible. In any case, however, the inclusion of resonances in fast-evolution models 
will require further consideration in future work.

Finally, we note that in this work we employed a simple model to produce a gravitational 
waveform from the inspiral dynamics. For our current purposes this was sufficient, as we were 
using the same waveform generation scheme for both evolutionary models that were compared. 
However, for application in EMRI data analysis a more realistic, and fast to compute, wave-
form model will be needed. One approach would be to utilize the two-timescale expansion of 
the waveform at infinity. At leading order this will be given by a function h(�P(t),�q(t),�S(t)) 
[6], which can be rewritten as function h̃(�̃P(t), �̃q(t), �̃S(t)). It is worth investigating whether an 
efficient numerical surrogate for this function can be build from the waveforms generated by 
particles on geodesic orbits. This will be pursued in future work.
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Appendix A. Schwarzschild forcing functions

The gravitational self-force (GSF) is defined as the correction to the geodesic equation for the 
trajectory of an object due to the object’s own influence on the gravitational field. Formally, 
this has a functional dependence on the past trajectory of the object. However, assuming no 
gravitational waves coming in from past null infinity and a fixed gauge, there should be a 
unique trajectory going through point each event xα in the background spacetime for each 
four-momentum pβ at that event. By taking this trajectory as the past for any point in (xα, pβ) 
in the (test particle) phase space, the GSF can be written as a (local) function of (xα, pβ) giv-
ing a closed and local equation of motion,

∇upµ = η2Fµ(xα, pβ), (A.1)

where we have extracted a factor of the mass-ratio squared such that we expect Fµ = O(η0). 
At leading order in η, one expects Fµ(xα, pβ) to coincide with the GSF generated by a particle 
whose past trajectory is a geodesic through (xα, pβ). Using the osculating geodesic formalism 
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(A.1) can be rewritten as a set of first order equations for the geodesic elements ( p, e, ξ, t,φ) 
[23],

dξ
dχ

= 1 + ηfξ( p, e, ξ), (A.2a)

dp
dχ

= ηFp( p, e, ξ), (A.2b)

de
dχ

= ηFe( p, e, ξ), (A.2c)

dt
dχ

= ωt( p, e, ξ), (A.2d)

dφ
dχ

= ωφ( p, e, ξ), (A.2e)

with

Fp =
2p3M( p − 3 − e2)

b2
+b2

−(1 + e cos ξ)2

(
p1/2Mbξ( p − 3 − e2 cos2 ξ)

(1 + e cos ξ)2 Fφ − e sin ξFr
)

,

 

(A.3)

Fe =
−2p5/2M2( p − 3 − e2)

b2
+b2

−(1 + e cos ξ)2

( ( p − 6 − 2e2) sin ξ

Mp1/2 Fr

−
( p − 6 − 2e2) cos ξ

(
b2
ξe cos ξ + 2( p − 3)

)
+ e( p2 − 10p + 12 + 4e2)

bξ(1 + e cos ξ)2 Fφ
)

,

 

(A.4)

fξ =
−p5/2M2( p − 3 − e2)

eb2
+b2

−(1 + e cos ξ)2

((( p − 6) cos ξ + 2e
)

p1/2M
Fr

−
sin ξ

(
( p − 6)

(
b2
ξe cos ξ + 2( p − 3)

)
− 4e3 cos ξ

)

bξ(1 + e cos ξ)2 Fφ
)

,

 

(A.5)

ωt =
a+a−p2

a2
ξbξ(1 + e cos ξ)2

, (A.6)

ωφ =

√
p

bξ
,  (A.7)

and where we introduced the following shorthand,

a+ :=
√

p − 2 + 2e, (A.8)

a− :=
√

p − 2 − 2e, (A.9)

aξ :=
√

p − 2 − 2e cos ξ, (A.10)
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b+ :=
√

p − 6 + 2e, (A.11)

b− :=
√

p − 6 − 2e, (A.12)

bξ :=
√

p − 6 − 2e cos ξ. (A.13)

Appendix B. An explicit NIT in Schwarzschild spacetime

The (near-identity) transform needed to reach the averaged form of the equations of motion 
(55) is given by,

ξ̃ = ξ + ηX(1)( p, e, ξ) + η2X(2)( p, e, ξ) +O(η3), (B.1a)

p̃ = p + ηY(1)
p ( p, e, ξ) + η2Y(2)

p ( p, e, ξ) +O(η3), (B.1b)

ẽ = e + ηY(1)
e ( p, e, ξ) + η2Y(2)

e ( p, e, ξ) +O(η3), (B.1c)

t̃ = t + Z(0)
t ( p, e, ξ) + ηZ(1)

t ( p, e, ξ) +O(η2), (B.1d)

φ̃ = φ+ Z(0)
φ ( p, e, ξ) + ηZ(1)

φ ( p, e, ξ) +O(η2). (B.1e)

The zeroth order functions Z(0)
t/φ are defined by the equations,

∂Z(0)
t

∂ξ
( p, e, ξ) = −ω̆t( p, e, ξ), (B.2)

∂Z(0)
φ

∂ξ
( p, e, ξ) = −ω̆φ( p, e, ξ). (B.3)

This can be solved analytically in terms of elliptic functions [45, 46],

Z(0)
t ( p, e, ξ) =

pa+a−
(1 − e2)b+

F(
ξ − π

2
|kr)−

pa+a−b+

(1 − e2)( p − 4)
E(

ξ − π

2
|kr)

− 2
(

a2
+a2

−
(1 − e2)( p − 4)

+ 3
)

a+a−

(1 − e)b+
Π(− 2e

1 − e
;
ξ − π

2
|kr)

− 8
a−

a+b+
Π(

4e
a2
+

;
ξ − π

2
|kr)

+
Tr( p, e)

2π
(ξ − π) +

epa+a−bξ
(1 − e2)( p − 4)(1 + e cos ξ)

sin ξ

 (B.4)

Z(0)
φ ( p, e, ξ) =

Φr( p, e)
2π

(ξ − π)− 2
√

p
b+

F(
ξ − π

2
|kr), (B.5)

where F(ϕ|k), E(ϕ|k), and Π(h;ϕ|k) are elliptic functions of first, second, and third kind 
(following the conventions for the arguments used in Mathematica), and we introduced the 
short-hand
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kr :=
4e

p − 6 + 2e
. (B.6)

Note that although the expressions for Z(0)
t/φ contain explicit linear terms ξ, these are canceled 

by secular contributions from the elliptic functions, and as a whole the Z(0)
t/φ are purely oscil-

latory functions of ξ.
Finally Tr(p,e) and Φr( p, e) are the radial period and the accumulated φ over one such 

period or a geodesic with semi-latus rectum p and eccentricity e,

Tr( p, e) =
2pa+a−b

(1 − e2)( p − 4)
E(kr)− 2p

a+a−
(1 − e2)b

K(kr) +
16a−

a+b
Π(

4e
p − 2 + 2e

|kr)

 (B.7)

−
4
(
8(1 − e2) + p(1 + 3e2 − p)

)
a+a−

(1 − e)(1 − e2)( p − 4)b
Π(− 2e

1 − e
|kr),

Φr( p, e) = 4
√

p
b

K(kr).
 

(B.8)

The O(η) terms in the transformation are given by

X(1) = 〈X(1)〉 −
∫

f̆ξdξ, (B.9)

Y(1)
p = −

∫
F̆pdξ, (B.10)

Y(1)
e = −

∫
F̆edξ, (B.11)

Z(1)
t =

∫ (
{ω̆tfξ} − {∂Z̆t

(0)

∂p
Fp} − {∂Z̆t

(0)

∂e
Fe}

− 1
2π

∂Tr

∂p

∫
F̆pdξ − 1

2π
∂Tr

∂e

)
dξ,

 

(B.12)

Z(1)
φ =

∫ (
{ω̆φfξ} − {∂V̆(0)

∂p
Fp} − {∂V̆(0)

∂e
Fe}

− 1
2π

∂Φr

∂p

∫
F̆pdξ − 1

2π
∂Φr

∂e

∫
F̆edξ

)
dξ,

 

(B.13)

where 〈X(1)〉 satisfies the first-order PDE (no explicit solution is needed anywhere),

∂〈X(1)〉
∂p

〈Fp〉+
∂〈X(1)〉

∂e
〈Fe〉 = 〈F̆p

∫
∂ f̆ξ
∂p

dξ〉+ 〈F̆e

∫
∂ f̆ξ
∂e

dξ〉+ 〈f̆ξ f̆ξ〉 (B.14)

and the primitive 
∫
· dξ  of a purely oscillatory is chosen to be purely oscillatory. That is, given 

a Fourier decomposition

Ă =
∑
κ �=0

Aκeiκξ,
 (B.15)

its primitive is given by
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∫
Ădξ =

∑
κ �=0

Aκ

iκ
eiκξ. (B.16)

Finally, the second order terms in the transformation are given by

X(2) =

∫ (
{f̆ξfξ}+ {Fp

∫
∂ f̆ξ
∂p

dξ}+ {Fe

∫
∂ f̆ξ
∂e

dξ} − F̆p
∂〈X(1〉
∂p

− F̆e
∂〈X(1〉
∂e

− ∂〈fξ〉
∂p

∫
F̆pdξ − ∂〈fξ〉

∂e

∫
F̆edξ

)
dξ,

 

(B.17)

Y(2)
p =

∫ (
{F̆pfξ}+ {Fp

∫
∂F̆p

∂p
dξ}+ {Fe

∫
∂F̆p

∂e
dξ}

−
∂〈Fp〉
∂p

∫
F̆pdξ −

∂〈Fp〉
∂e

∫
F̆edξ

)
dξ,

 

(B.18)

Y(2)
e =

∫ (
{F̆efξ}+ {Fp

∫
∂F̆e

∂p
dξ}+ {Fe

∫
∂F̆e

∂e
dξ}

− ∂〈Fe〉
∂p

∫
F̆pdξ − ∂〈Fe〉

∂e

∫
F̆edξ

)
dξ.

 

(B.19)

To conclude this appendix we give explicit expressions for the averaged forcing functions 
in terms of the Fourier coefficients of the original forcing functions. Expanding the original 
forcing terms using equation (8), the averaged forcing functions in (56) are given by:

f̃ (1)
ξ = 〈fξ〉 = fξ,0, (B.20a)

F̃ (1)
p = 〈Fp〉 = Fp,0, (B.20b)

F̃ (1)
e = 〈Fe〉 = Fe,0, (B.20c)

f̃ (1)
t = 〈∂Z̆(0)

t

∂p
F̆p〉+ 〈∂Z̆(0)

t

∂e
F̆e〉 =

∑
κ �=0

(∂Z(0)
t,−κ

∂p
Fp,κ +

∂Z(0)
t,−κ

∂e
Fe,κ

)
, (B.20d)

f̃ (1)
φ = 〈

∂Z̆(0)
φ

∂p
F̆p〉+ 〈

∂Z̆(0)
φ

∂e
F̆e〉 =

∑
κ �=0

(∂Z(0)
φ,−κ

∂p
Fp,κ +

∂Z(0)
φ,−κ

∂e
Fe,κ

)
, (B.20e)

F̃ (2)
p = −〈F̆p

∫
∂F̆p

∂p
dξ〉 − 〈F̆e

∫
∂F̆p

∂e
dξ〉 − 〈F̆pf̆ξ〉

= −
∑
κ �=0

( i
κ
Fp,κ

∂Fp,−κ

∂p
+

i
κ
Fe,κ

∂Fp,−κ

∂e
+ Fp,κfξ,−κ

)
,

 

(B.20f)

F̃ (2)
e = −〈F̆p

∫
∂F̆e

∂p
dξ〉 − 〈F̆e

∫
∂F̆e

∂e
dξ〉 − 〈F̆ef̆ξ〉

= −
∑
κ �=0

( i
κ
Fp,κ

∂Fe,−κ

∂p
+

i
κ
Fe,κ

∂Fe,−κ

∂e
+ Fe,κfξ,−κ

)
.

 

(B.20g)

M van de Meent and N Warburton Class. Quantum Grav. 35 (2018) 144003



28

ORCID iDs

Maarten van de Meent  https://orcid.org/0000-0002-0242-2464
Niels Warburton  https://orcid.org/0000-0003-0914-8645

References

 [1] LISA Consortium 2017 LISA: Laser Interferometer Space Antenna (arXiv:1702.00786)
 [2] Babak S, Gair  J, Sesana A, Barausse E, Sopuerta C F, Berry C P L, Berti E, Amaro-Seoane P, 

Petiteau A and Klein A 2017 Science with the space-based interferometer LISA. V: extreme 
mass-ratio inspirals Phys. Rev. D 95 103012

 [3] Abbott B P et al (Virgo, LIGO Scientific) 2016 Observation of gravitational waves from a binary 
black hole merger Phys. Rev. Lett. 116 061102

 [4] Abbott B P et al (Virgo, LIGO Scientific) 2017 GW170817: observation of gravitational waves 
from a binary neutron star inspiral Phys. Rev. Lett. 119 161101

 [5] Drasco  S and Hughes  S  A 2006 Gravitational wave snapshots of generic extreme mass ratio 
inspirals Phys. Rev. D 73 024027

 [6] Hinderer T and Flanagan E E 2008 Two timescale analysis of extreme mass ratio inspirals in Kerr. 
I. Orbital motion Phys. Rev. D 78 064028

 [7] Poisson E, Pound A and Vega I 2011 The motion of point particles in curved spacetime Living Rev. 
Relativ. 14 7

 [8] Pound  A, Merlin  C and Barack  L 2014 Gravitational self-force from radiation-gauge metric 
perturbations Phys. Rev. D 89 024009

 [9] Merlin C, Ori A, Barack L, Pound A and van de Meent M 2016 Completion of metric reconstruction 
for a particle orbiting a Kerr black hole Phys. Rev. D 94 104066

 [10] van De Meent M 2017 The mass and angular momentum of reconstructed metric perturbations 
Class. Quantum Grav. 34 124003

 [11] Barack  L and Sago  N 2010 Gravitational self-force on a particle in eccentric orbit around a 
Schwarzschild black hole Phys. Rev. D 81 084021

 [12] Akcay  S, Warburton  N and Barack  L 2013 Frequency-domain algorithm for the Lorenz-gauge 
gravitational self-force Phys. Rev. D 88 104009

 [13] Osburn  T, Forseth  E, Evans  C  R and Hopper  S 2014 Lorenz gauge gravitational self-force 
calculations of eccentric binaries using a frequency domain procedure Phys. Rev. D 90 104031

 [14] van de Meent M 2016 Gravitational self-force on eccentric equatorial orbits around a Kerr black 
hole Phys. Rev. D 94 044034

 [15] van de Meent M 2017 Gravitational self-force on generic bound geodesics in Kerr spacetime
 [16] Barack L and Cutler C 2004 LISA capture sources: approximate waveforms, signal-to-noise ratios 

and parameter estimation accuracy Phys. Rev. D 69 082005
 [17] Babak S, Fang H, Gair J R, Glampedakis K and Hughes S A 2007 ‘Kludge’ gravitational waveforms 

for a test-body orbiting a Kerr black hole Phys. Rev. D 75 024005
  Babak S, Fang H, Gair J R, Glampedakis K and Hughes S A 2008 Phys. Rev. D 77 04990 (erratum)
 [18] Chua A J K, Moore C J and Gair J R 2017 Augmented kludge waveforms for detecting extreme-

mass-ratio inspirals Phys. Rev. D 96 044005
 [19] Huerta E A and Gair J R 2009 Influence of conservative corrections on parameter estimation for 

extreme-mass-ratio inspirals Phys. Rev. D 79 084021
  Huerta E A and Gair J R 2011 Phys. Rev. D 84 049903 (erratum)
 [20] Huerta E A and Gair J R 2011 Importance of including small body spin effects in the modelling of 

extreme and intermediate mass-ratio inspirals Phys. Rev. D 84 064023
 [21] Diener P, Vega I, Wardell B and Detweiler S 2012 Self-consistent orbital evolution of a particle 

around a Schwarzschild black hole Phys. Rev. Lett. 108 191102
 [22] Dolan  S  R and Barack  L 2013 Self-force via m-mode regularization and 2+1D evolution: III. 

Gravitational field on Schwarzschild spacetime Phys. Rev. D 87 084066
 [23] Pound A and Poisson E 2008 Osculating orbits in Schwarzschild spacetime, with an application to 

extreme mass-ratio inspirals Phys. Rev. D 77 044013
 [24] Warburton N, Akcay S, Barack L, Gair J R and Sago N 2012 Evolution of inspiral orbits around a 

Schwarzschild black hole Phys. Rev. D 85 061501

M van de Meent and N Warburton Class. Quantum Grav. 35 (2018) 144003

https://orcid.org/0000-0002-0242-2464
https://orcid.org/0000-0002-0242-2464
https://orcid.org/0000-0003-0914-8645
https://orcid.org/0000-0003-0914-8645
https://arxiv.org/abs/1702.00786
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevD.73.024027
https://doi.org/10.1103/PhysRevD.73.024027
https://doi.org/10.1103/PhysRevD.78.064028
https://doi.org/10.1103/PhysRevD.78.064028
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.94.104066
https://doi.org/10.1103/PhysRevD.94.104066
https://doi.org/10.1088/1361-6382/aa71c3
https://doi.org/10.1088/1361-6382/aa71c3
https://doi.org/10.1103/PhysRevD.81.084021
https://doi.org/10.1103/PhysRevD.81.084021
https://doi.org/10.1103/PhysRevD.88.104009
https://doi.org/10.1103/PhysRevD.88.104009
https://doi.org/10.1103/PhysRevD.90.104031
https://doi.org/10.1103/PhysRevD.90.104031
https://doi.org/10.1103/PhysRevD.94.044034
https://doi.org/10.1103/PhysRevD.94.044034
https://doi.org/10.1103/PhysRevD.69.082005
https://doi.org/10.1103/PhysRevD.69.082005
https://doi.org/10.1103/PhysRevD.75.024005
https://doi.org/10.1103/PhysRevD.75.024005
https://doi.org/10.1103/PhysRevD.77.049902
https://doi.org/10.1103/PhysRevD.77.049902
https://doi.org/10.1103/PhysRevD.96.044005
https://doi.org/10.1103/PhysRevD.96.044005
https://doi.org/10.1103/PhysRevD.79.084021
https://doi.org/10.1103/PhysRevD.79.084021
https://doi.org/10.1103/PhysRevD.84.049903
https://doi.org/10.1103/PhysRevD.84.049903
https://doi.org/10.1103/PhysRevD.84.064023
https://doi.org/10.1103/PhysRevD.84.064023
https://doi.org/10.1103/PhysRevLett.108.191102
https://doi.org/10.1103/PhysRevLett.108.191102
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1103/PhysRevD.87.084066
https://doi.org/10.1103/physrevd.77.044013
https://doi.org/10.1103/physrevd.77.044013
https://doi.org/10.1103/PhysRevD.85.061501
https://doi.org/10.1103/PhysRevD.85.061501


29

 [25] Osburn T, Warburton N and Evans C R 2016 Highly eccentric inspirals into a black hole Phys. Rev. 
D 93 064024

 [26] Warburton N, Osburn T and Evans C R 2017 Evolution of small-mass-ratio binaries with a spinning 
secondary Phys. Rev. D 96 084057

 [27] Warburton N 2017 Talk Presented at the 20th Capra Meeting (University of North Carolina at 
Chapel Hill)

 [28] Delaunay C 1860 Théorie du Mouvement de la Lune vol 1 (Paris: Maller-Bachelier)
 [29] von Zeipel H 1916 Récherches sur le mouvement des petites planètes Ark. Astron. Mat. Fys. (This 

reference is difficult to source. For a more recent exposition see, e.g. [71])
 [30] Damour  T, Gopakumar  A and Iyer  B  R 2004 Phasing of gravitational waves from inspiralling 

eccentric binaries Phys. Rev. D 70 064028
 [31] Klein  A, Cornish  N and Yunes  N 2013 Gravitational waveforms for precessing, quasicircular 

binaries via multiple scale analysis and uniform asymptotics: the near spin alignment case Phys. 
Rev. D 88 124015

 [32] Will C M and Maitra M 2017 Relativistic orbits around spinning supermassive black holes. Secular 
evolution to 4.5 post-Newtonian order Phys. Rev. D 95 064003

 [33] Chatziioannou K, Klein A, Cornish N and Yunes N 2017 Analytic gravitational waveforms for 
generic precessing binary inspirals Phys. Rev. Lett. 118 051101

 [34] Pound  A and Poisson  E 2008 Multi-scale analysis of the electromagnetic self-force in a weak 
gravitational field Phys. Rev. D 77 044012

 [35] Mino Y and Price R 2008 Two-timescale adiabatic expansion of a scalar field model Phys. Rev. D 
77 064001

 [36] Galley C R and Rothstein I Z 2017 Deriving analytic solutions for compact binary inspirals without 
recourse to adiabatic approximations Phys. Rev. D 95 104054

 [37] Mino Y 2003 Perturbative approach to an orbital evolution around a supermassive black hole Phys. 
Rev. D 67 084027

 [38] van de Meent M 2014 Conditions for sustained orbital resonances in extreme mass ratio inspirals 
Phys. Rev. D 89 084033

 [39] van de Meent M 2014 Resonantly enhanced kicks from equatorial small mass-ratio inspirals Phys. 
Rev. D 90 044027

 [40] Vines J and Flanagan É É 2015 Is motion under the conservative self-force in black hole spacetimes 
an integrable Hamiltonian system? Phys. Rev. D 92 064039

 [41] Fujita R, Isoyama S, Le Tiec A, Nakano H, Sago N and Tanaka T 2017 Hamiltonian formulation of 
the conservative self-force dynamics in the Kerr geometry Class. Quantum Grav. 34 134001

 [42] Kevorkian J and Cole J D 1996 Multiple Scale and Singular Perturbation Methods vol 114 (New 
York: Springer)

 [43] Flanagan E E and Hinderer T 2012 Transient resonances in the inspirals of point particles into black 
holes Phys. Rev. Lett. 109 071102

 [44] Warburton N, Barack L and Sago N 2013 Isofrequency pairing of geodesic orbits in Kerr geometry 
Phys. Rev. D 87 084012

 [45] Darwin C 1959 The gravity field of a particle Proc. R. Soc. Lond. A 249 180–94
 [46] Darwin C 1961 The gravity field of a particle. II Proc. R. Soc. Lond. A 263 39–50
 [47] Frigo M and Johnson S G 2005 The design and implementation of FFTW3 Proc. IEEE 93 216–31 

(Special issue on ‘Program Generation, Optimization and Platform Adaptation’)
 [48] Galassi M and Gough B 2009 GNU Scientific Library: Reference Manual (GNU Manual (Network 

Theory)) (Boston, MA: Free Software Foundation)
 [49] Black Hole Perturbation Toolkit bhptoolkit.org
 [50] Sundararajan P A, Khanna G and Hughes S A 2007 Towards adiabatic waveforms for inspiral into 

Kerr black holes. I. A New model of the source for the time domain perturbation equation Phys. 
Rev. D 76 104005

 [51] Harms E, Bernuzzi S and Brügmann B 2013 Numerical solution of the 2  +  1 Teukolsky equation on 
a hyperboloidal and horizon penetrating foliation of Kerr and application to late-time decays 
Class. Quantum Grav. 30 115013

 [52] Ruffini R and Sasaki M 1981 On a semirelativistic treatment of the gravitational radiation from a 
mass thrusted into a black hole Prog. Theor. Phys. 66 1627–38

 [53] Gair  J  R, Kennefick  D  J and Larson  S  L 2005 Semi-relativistic approximation to gravitational 
radiation from encounters with black holes Phys. Rev. D 72 084009

  Gair J R, Kennefick D J and Larson S L 2006 Phys. Rev. D 74 109901 (erratum)

M van de Meent and N Warburton Class. Quantum Grav. 35 (2018) 144003

https://doi.org/10.1103/PhysRevD.93.064024
https://doi.org/10.1103/PhysRevD.93.064024
https://doi.org/10.1103/PhysRevD.96.084057
https://doi.org/10.1103/PhysRevD.96.084057
https://doi.org/10.1103/PhysRevD.70.064028
https://doi.org/10.1103/PhysRevD.70.064028
https://doi.org/10.1103/PhysRevD.88.124015
https://doi.org/10.1103/PhysRevD.88.124015
https://doi.org/10.1103/PhysRevD.95.064003
https://doi.org/10.1103/PhysRevD.95.064003
https://doi.org/10.1103/PhysRevLett.118.051101
https://doi.org/10.1103/PhysRevLett.118.051101
https://doi.org/10.1103/PhysRevD.77.044012
https://doi.org/10.1103/PhysRevD.77.044012
https://doi.org/10.1103/PhysRevD.77.064001
https://doi.org/10.1103/PhysRevD.77.064001
https://doi.org/10.1103/PhysRevD.95.104054
https://doi.org/10.1103/PhysRevD.95.104054
https://doi.org/10.1103/PhysRevD.67.084027
https://doi.org/10.1103/PhysRevD.67.084027
https://doi.org/10.1103/PhysRevD.89.084033
https://doi.org/10.1103/PhysRevD.89.084033
https://doi.org/10.1103/PhysRevD.90.044027
https://doi.org/10.1103/PhysRevD.90.044027
https://doi.org/10.1103/PhysRevD.92.064039
https://doi.org/10.1103/PhysRevD.92.064039
https://doi.org/10.1088/1361-6382/aa7342
https://doi.org/10.1088/1361-6382/aa7342
https://doi.org/10.1103/PhysRevLett.109.071102
https://doi.org/10.1103/PhysRevLett.109.071102
https://doi.org/10.1103/PhysRevD.87.084012
https://doi.org/10.1103/PhysRevD.87.084012
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1098/rspa.1961.0142
https://doi.org/10.1098/rspa.1961.0142
https://doi.org/10.1098/rspa.1961.0142
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
http://bhptoolkit.org
https://doi.org/10.1103/PhysRevD.76.104005
https://doi.org/10.1103/PhysRevD.76.104005
https://doi.org/10.1088/0264-9381/30/11/115013
https://doi.org/10.1088/0264-9381/30/11/115013
https://doi.org/10.1143/PTP.66.1627
https://doi.org/10.1143/PTP.66.1627
https://doi.org/10.1143/PTP.66.1627
https://doi.org/10.1103/PhysRevD.72.084009
https://doi.org/10.1103/PhysRevD.72.084009
https://doi.org/10.1103/PhysRevD.74.109901
https://doi.org/10.1103/PhysRevD.74.109901


30

 [54] Ohme F, Hannam M and Husa S 2011 Reliability of complete gravitational waveform models for 
compact binary coalescences Phys. Rev. D 84 064029

 [55] SimulationTools Mathematica package http://simulationtools.org/
 [56] EMRI Kludge Suite https://github.com/alvincjk/EMRI_Kludge_Suite
 [57] Pound A 2012 Second-order gravitational self-force Phys. Rev. Lett. 109 051101
 [58] Gralla S E 2012 Second order gravitational self force Phys. Rev. D 85 124011
 [59] Detweiler S 2012 Gravitational radiation reaction and second order perturbation theory Phys. Rev. 

D 85 044048
 [60] Pound  A 2012 Nonlinear gravitational self-force. I. Field outside a small body Phys. Rev. D 

86 084019
 [61] Pound A and Miller J 2014 Practical, covariant puncture for second-order self-force calculations 

Phys. Rev. D 89 104020
 [62] Pound  A 2014 Conservative effect of the second-order gravitational self-force on quasicircular 

orbits in Schwarzschild spacetime Phys. Rev. D 90 084039
 [63] Wardell B and Warburton N 2015 Applying the effective-source approach to frequency-domain 

self-force calculations: Lorenz–Gauge gravitational perturbations Phys. Rev. D 92 084019
 [64] Pound A 2015 Second-order perturbation theory: problems on large scales Phys. Rev. D 92 104047
 [65] Miller J, Wardell B and Pound A 2016 Second-order perturbation theory: the problem of infinite 

mode coupling Phys. Rev. D 94 104018
 [66] Pound A 2017 Nonlinear gravitational self-force: second-order equation of motion Phys. Rev. D 

95 104056
 [67] Berry C P L, Cole R H, Cañizares P and Gair  J R 2016 Importance of transient resonances in 

extreme-mass-ratio inspirals Phys. Rev. D 94 124042
 [68] Flanagan E E, Hughes S A and Ruangsri U 2014 Resonantly enhanced and diminished strong-field 

gravitational-wave fluxes Phys. Rev. D 89 084028
 [69] Ruangsri U and Hughes S A 2014 A census of transient orbital resonances encountered during 

binary inspiral Phys. Rev. D 89 084036
 [70] Brink J, Geyer M and Hinderer T 2015 Astrophysics of resonant orbits in the Kerr metric Phys. Rev. 

D 91 083001
 [71] Brouwer D 1959 Solution of the problem of artificial satellite theory without drag Astron. J. 64 378

M van de Meent and N Warburton Class. Quantum Grav. 35 (2018) 144003

https://doi.org/10.1103/PhysRevD.84.064029
https://doi.org/10.1103/PhysRevD.84.064029
http://simulationtools.org/
https://github.com/alvincjk/EMRI_Kludge_Suite
https://doi.org/10.1103/PhysRevLett.109.051101
https://doi.org/10.1103/PhysRevLett.109.051101
https://doi.org/10.1103/PhysRevD.85.124011
https://doi.org/10.1103/PhysRevD.85.124011
https://doi.org/10.1103/PhysRevD.85.044048
https://doi.org/10.1103/PhysRevD.85.044048
https://doi.org/10.1103/PhysRevD.86.084019
https://doi.org/10.1103/PhysRevD.86.084019
https://doi.org/10.1103/PhysRevD.89.104020
https://doi.org/10.1103/PhysRevD.89.104020
https://doi.org/10.1103/PhysRevD.90.084039
https://doi.org/10.1103/PhysRevD.90.084039
https://doi.org/10.1103/PhysRevD.92.084019
https://doi.org/10.1103/PhysRevD.92.084019
https://doi.org/10.1103/PhysRevD.92.104047
https://doi.org/10.1103/PhysRevD.92.104047
https://doi.org/10.1103/PhysRevD.94.104018
https://doi.org/10.1103/PhysRevD.94.104018
https://doi.org/10.1103/PhysRevD.95.104056
https://doi.org/10.1103/PhysRevD.95.104056
https://doi.org/10.1103/PhysRevD.94.124042
https://doi.org/10.1103/PhysRevD.94.124042
https://doi.org/10.1103/PhysRevD.89.084028
https://doi.org/10.1103/PhysRevD.89.084028
https://doi.org/10.1103/PhysRevD.89.084036
https://doi.org/10.1103/PhysRevD.89.084036
https://doi.org/10.1103/PhysRevD.91.083001
https://doi.org/10.1103/PhysRevD.91.083001
https://doi.org/10.1086/107958
https://doi.org/10.1086/107958

	Fast self-forced inspirals
	Abstract
	1. Introduction
	2. Averaged equations of motion
	2.1. EMRI equations of motion
	2.2. Near identity transform
	2.3. Transformed equations of motion
	2.4. Cancellation of oscillating terms at 
	2.5. Cancellation of oscillating terms at 
	2.6. Freedom in average pieces of transformation
	2.6.1. No average terms in NIT. 
	2.6.2. Elimination of  using ￼. 
	2.6.3. Elimination of post-adiabatic dissipative terms using . 
	2.6.4. Elimination of  using ￼. 

	2.7. Evolution of extrinsic quantities
	2.8. Summary of NIT results

	3. Schwarzschild case
	3.1. Equations of motion
	3.2. Implementation
	3.3. Waveform generation

	4. Results
	5. Discussion
	Acknowledgments
	Appendix A. Schwarzschild forcing functions
	Appendix B. An explicit NIT in Schwarzschild spacetime
	ORCID iDs
	References


