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Abstract: A mechanical system consisting of a rigid body and attached Kirchhoff plates under
the action of three independent controls torques is considered. The equations of motion of such
model are derived in the form of a system of coupled nonlinear ordinary and partial differential
equations. The operator form of this system is represented as an abstract differential equation in
a Hilbert space. A feedback control law is constructed such that the corresponding infinitesimal

generator is dissipative.
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1. INTRODUCTION

Problems of the aerospace industry and robotics stimulate
the development of new methods for mathematical mod-
eling and control design for complex mechanical systems
with elastic elements. In particular, it is a well-known fact
that the vibrations of flexible parts of satellites influence
significantly their dynamics, so that a rigid body model is
not acceptable in stability and control investigations for
such distributed parameter systems (see, e.g., Brereton
and Modi (1968); Lips and Modi (1980); Skaar et al.
(1986)). This brings the motivation for studying the con-
trollability and stabilization issues for infinite-dimensional
mathematical models of flexible structures with strings,
beams, and plates. Without pretending to be complete,
we refer to the monographs in this area by Krabs (1992);
Lagnese et al. (1994); Déger and Zuazua (2006); Meurer
(2013); Zuyev (2015).

The stabilization problem for a thin plate with boundary
control has already received attention in Lagnese (1989);
Lasiecka and Triggiani (1991); Horn and Lasiecka (1995);
Guo and Zhou (2016) A mathematical model of a rigid
body with the Kirchhoff plate has been considered in the
paper by Zuyev (2010). It is assumed there that the body
rotates around the fixed axis and its angular acceleration is
taken as the control. The reachable sets for the linearized
representation of such a system with modal coordinates
have been analysed by Zuyev and Novikova (2015).

The purpose of our present paper is to derive a nonlinear
model of a rotating rigid body with two Kirchhoff plates
and propose a stabilizing feedback control for this model.
We will consider spatial rotations of the system and treat
the three independent torques, applied to the body, as
control inputs. This framework is considered as a math-
ematical model of a satellite with solar panels controlled
by jet thrusters or flywheels.

2. NONLINEAR MODEL OF THE ROTATIONAL
MOTION

Consider a mechanical system that consists of a rigid body
and two elastic plates (Fig. 1).
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Fig. 1. Rigid body with elastic plates.

Let (g1,92,93) be the unit vectors of a fixed Cartesian
frame. Suppose that the rigid body is endowed with two
Cartesian frames Oy 112923 and Oqz) 25z}, and their basis
vectors (e1, ez, e3) and (e], €5, e4), respectively, are related
as ) = —ey, ef = —eq, and e = —e3.

Let M = fie1+ faea+ f3es be the torque of external forces
applied to the rigid body. We will treat the components
(fi, f2, f3)T € R? as control inputs and consider the
problem of defining a state feedback law in order to stabilize
the moving frame (ey, ea, e3) in the direction of (g1, g2, 93)
and to damp the wvibrations of the plates. Note that a
similar problem for an absolutely rigid body was solved
in the book by Zubov (1975), and the problem of partial
stabilization was considered by Zuyev (2001) and Kovalev
et al. (2009).
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In this paper, we assume that two rectangular plates are
attached to the rigid body, so that in the undeformed state
their median surfaces are located on the planes Oiz1xo
and Oqzxh, respectively. At time ¢, the coordinates of a
point P on the median surface of the first plate can be
represented in the frame Ojx1x273 as

P = (.’,Cl,lCQ,U}l(.’I]l,xQ,t)), (:I:l,xQ) S Ql = [0711] X [0712]
Similarly, the coordinates of a point K on the median
surface of the second plate are as follows (in the frame
Oqx xhah):

K= (x/lvw/27w2(xll7x/2ﬂt))7 (x117$/2) €y = [071/1] x [071/2]'
Thus, the functions wy(x1,zo,t) and ws(x),xh,t) define

the transverse displacements for the case of small defor-
mations of the plates.

In order to describe the motion of the considered mechan-
ical system, we assume that the center of mass of the rigid
body (point O) is fixed and expand the vectors OO; and
OO with respect to the moving frames:

001 = d161 + d2€2 + d363, OOQ = dllell + d’26,2 + dgeé
Then the absolute velocities of the points P and K are,
respectively,

Vp =W X Tp+wiez, Vg =w X Tg — Waes, (1)
where w = wie; +woes+wses is the angular velocity vector
of the rigid body,

rp = (71 +di)er + (z2 +d2)ea + (wy +dz)es, (2)

ri = —() +di)er — (25 +dy)ea — (w2 + di)es.  (3)

According to the Kirchhoff plate model (cf. Lagnese
(1989)), we write the following partial differential equa-
tions with respect to wy and ws:

o (2N . :
w1+a1 87,1‘%+67$§ wp = (a:1+d1)w2—(z2+d2)w1,

for (1‘1,%2) S Ql,

(4)

L[ 02 9%\
. ! U . / ! .
w2 + a3 <8x’12 + 85”?) wp = (2 +dy)we — (5 + dy)wn,
for (27, xh) € Qa,
3 (5)
o Ejh¥ . . -
where aj = p, (1207 is the stiffness parameter of the j-th

plate, E; is Young’s modulus, v; is Poisson’s ratio, p; is
the area density, and h; is the thickness of the j-th plate.
The right-hand sides of (4) and (5) contains the inertia
forces because of the rotational motion of the rigid body
(cf. Lurie (2002)). In the differential equations (4) and (5),
only linear terms with respect to the displacements, angu-
lar velocities, and derivatives of these quantities are taken
into account (this is the linearized model of the plates’
vibrations).

We assume that the plates are supported at their bound-
aries, which yields the following boundary conditions:
6211}]‘

2
I {q,

wj|agj =0, =0, j7=1,2. (6)

dw; . ..
Here awnj is the normal derivative of w; evaluated at
20,

the boundarj;f of Q;.

To derive the equations of motion of the rigid body-carrier,
we exploit the angular momentum equation with respect
to the fixed point O (see, e.g., Lurie (2002)):

K+wxK=M, (7)
where K = K¢ —|—K262 + Kses is the angular momentum

of the system, and K stands for the local derivative of K
in the moving frame (e, ea, €3), i.e.

K:Klel +K262+K3€3. (8)
In the sequel, we use formulas (2) to express the angular

momentum K for the mechanical system under consider-
ation:

K:Iw+Kp1—|—Kp2, (9)
where I is the tensor of inertia of the rigid body, and
Kpl = /’r'p X vpplda:, Kpg = /TK X UKde.’E/.

Ql Q2

We will assume that (ej, es,e3) are the principal axes of
inertia of the rigid body to simplify computations, so that
I = diag(1y, I, I3). Thus, the angular momentum (9) can
be rewritten as follows:

2
K :(I + J)UJ + Z /wn (-TQ + d2n) pndx €1—
n:lﬂn

2
- an/wn (.'1/'1 +d1n)d$ﬁ'€2 +K§7
n=1 O,

(10)

where J = (J;;) is the tensor of inertia for the mechanical
system with “frozen” plates (i.e. when the plates are
considered as rigid bodies),

2
Jii = Z Pn / (w2 + don)” + d3,,) d,
n=1

Qp
2
Jig = Jo1 = — an /(331 + din) (2 + day)dz,
n=1 I

2
Joo = Z Pn / ((z1 + din)* + d3,,) dz,
n=1

Qp
2
Jaz = Jz2 = — Z Pndzn /(m + dan)dr,
n=1 Q,
2
Jsz =) Pn/ (21 + din)? + (2 + d24)?) da,
n=1

Qn
2

Ja1 = Ji3 = — andSn /(551 + dip)dz,
n=1 Q,
and the term Kj is of order O(||w|| (JJin || + ||w2||)> for

small ;. By computing the local derivative (in the
sense of (8)) for the angular momentum K given by
formula (10), we get:

2
Ky = (Ju+D)ir+Jiaa+ 1303+ Y | pn / i (x9+day ) de,

n=1 O
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2
Ky = J21w1+(=]22+[2)w2+=]23w3*z Pn/ﬂ'}n(ilfﬁrdln)d%
n=1 Qn
Ky = J31n + Jaows + (Ja3 + I3)ws, (11)
where the nonlinear terms with respect to the derivatives
of w; and w,, are omitted.

In order to rewrite the differential equations (7) in the
normal form with respect to w;, we compute the inverse

matrix J ' = J = (J;;):
- (2 padd linlen) (T3 + Ja3) — T3

Jin = D
- A JizJ.
Jig = Jo1 = 1:;)23,
G g (o X pudBalindan) S
13 31 D )
. I 2 pn @, linlon) (Is + Jas) — J2
Jny = (1 + > =1 Pnds, 1ln)2n)( 3+ J33) EY (12)
Jon = Jay = — (L + 301 pdd, linlan) Jas
23 32 D )
j33 — (Il + Zi:l pndgnllnl%)(b + ZZ=1 Pndgnllnlzn)
D )

2 2
D= (I + Z pnd3, linlan)(I2 + Z ondaplinlon) (I3 + J33)—

n=1 n=1

2 2
- J123(12 + Z Pndgnlllen) - J223(11 + andgnllnbn)-

n=1 n=1

Note that the denominator D in formulas (12) is strictly
positive at least for sufficiently small moments of inertia
of the plates J;; compared with the moments of inertia of
the carrier body I;. In particular, this condition is satisfied
for sufficiently small area densities p; (i.e., for sufficiently
thin plates). Thus, we assume that D # 0 in the sequel.
Then (7) can be written in the form

w1 (P
2)-7(2)
ws3 ¢3
with

$1 = f1 +ws [Jorwr + (Jaz2 + I2)ws + Jozws] —
— wa [Ja1w1 + Jzowa + (Ja3 + I3)ws] +

(13)

2
+ Z Pn /{ai(mz + dgn)Azwn — w3tn(z1 + din) Mz,
Qn

n=1

¢2 = fo +wy [Ja1wr + Jzows + (Ja3 + I3)ws] —
—ws [(J11 + I)wy + J1ows + Jisws] —

2
- Z Pn /{ai(xl + dln)Azwn + w3ty (z2 + dop ) }dz,
Qn

n=1

03 = f3 —wq [Joawr + (Jaz + I2)ws + Jogws] +
+wo [(J11 + 11wt + Jiowz + Jizws] +

2
+ Z Pn /{(Il + dip)wi1 + (22 + dop)ws Popde.
Qn

n=1

We write the Poisson kinematic equations to ensure the
condition that the frame (g1, g2, ¢g3) is fixed in the inertial
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space: §; = —w X g;, i = 1,3. Let g; = gine1 + gizea +
gizes, then the above Poisson equations take the following
coordinate form:
gl = W3giz — W2Gi3, Giz = W10i3 — W3gil,
Gi3 = W2gi1 — W1Gi2, i=1,3.
For the Cartesian frames (g1, g2, 93) and (e, ez, e3) of the
same orientation, the system of differential equations (4)—
(6), (13), (14) has the following particular solution with
Ji=Jfe=f3=0:
w(z,t) =0, w;(t)=0,

(14)

gij(t) = 51']', i,j = 1,:(3

15)
where d;; is the Kronecker symbol.

To study the stabilization problem for the equilib-
rium (15), we introduce new variables g;;(t) = gi;(t) — 0i;
and consider the equations of perturbed motion for (14):
g =wsfiz —wafis,  G1o = wigns — ws(Gn + 1),
g13 = w2(g11 + 1) — w112,
go1 = w3(ga2 + 1) — wagos,
Gz = w2g21 — wi1(gee + 1),
g31 = wsgs2 —wa(gas + 1), 3o = wi(gss + 1) —wsgs1,

g33 = W2031 — W1g32-

goo = W1g23 — W3g21,

(16)

We consider a modified energy functional

3
1 ~2
ng-i-U—f—i E Qig;;

ij=1

(17)
with positive parameters «;, where

1
T= 3 Lw? + Tow3 + Tzw? + /vfppldx + /U%(pgdl’
ol Qs
is the kinetic energy of the system, and

2
U = %Z /(Awn(x,t))zaipndx
n:lﬂn
is the potential energy of elastic deformations according to
the Kirchhoff model. Here A = 8872% + 887% is the Laplace

operator. For future use, we introduce the Lyapunov
functional V' as a quadratic approximation of &:

2V = (11 + Jll)wf + (IQ + J22)w§ + (13 + Jgg)wg + 2J1owiwa+

3 2
+2J13wiws3 + 2J23wows + Z aigfj + an / wid‘%‘i’

i,7=1 n=1 O

n=1

2
+> pn / {2t [w1(dan + 2) — wa(din + 1)) + a2 (Awn)? } da.
Qn

(18)

Let us compute the time derivative of the functional (17)
along the trajectories of (4), (13), (16):

V= (K1 — Q2ga3 + a3§32> W1+(K2 + 1013 — a3§31) wa+

+ (K?, + ango1 — a1§12> w3+
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+Z/{AwnAwn wnAzwn}anpndx (19)
n= 1Q
where the expressions for K; are given by (11). If the

partial derivatives of w;(z,t) of the fourth order in x
and the first order in ¢ are continuous and the boundary
conditions (6) are satisfied, then the integration by parts
in formula (19) leads to the following identities:

/ {AwnAwn—wnAan}dxzo, n=12.

Using these identities and expressing K; from the equa-
tion (7), we rewrite formula (19) as

V=(fi—(wxK,e1) — a2§23 + a3gs2) w1+
+(fo— (wx K,e2) + a1§13 — a3gs1) wa+
+(fs — (w x K, e3) + azgo1 — @1§12) w3.

To stabilize the trivial solution of the system (4)—(6), (13),
(16), we define a feedback control from the condition

V = —k(w? +wi +wd) <0, (20)
where k 1s a positive constant. 1t is easy to see that condi-
tion (20) corresponds to the following choice of controls:

fi=—kwi + (w x K,e1) + azgas — a3gsz,

fo = —kws + (wx K,e3) — a1d13 + 3731,
f3 = —kws + (w x K, e3) + a1G12 — @2go1. (21)
Note that the time-derivative (20) is not negative definite,
and the finite-dimensional method described by Zuyev
(2016) is not directly applicable to establish strictly de-

creasing behavior of V' along the trajectories of the closed-
loop system.

3. OPERATOR FORM OF THE DYNAMICAL
EQUATIONS

To formulate our main result, we rewrite the equations
of motion of the mechanical system under consideration
in the operator form. We introduce the real linear space
H = H2() x H2(Q) x L2(Q;) x L*(Qy) x R'2, whose
elements are denoted as

Uy
U1
e= || un € B (), vn € L*(Q), n=1,2,
w
g
g1
w1 5 - g12 0
w=[|w2| €R’, g= . € R”.
w3 ~:
933

Here H 2(Q,,) is the Sobolev space of the functions u €
H?(Q,) having zero trace on 9<,,. The inner product of

up u

1 2

Uy Uy

1 uy 2 us
& =13 cHad &€=| 3| cH

Vg Uy

1 2

w w

~1 ~2

g g

is defined as

::ﬁfpn/{aiAu;@oAuiw>+v£@wﬁcw+

e+ b+ 72)
~(wBvn(a) + whol(x ))(dmm)}m

—|—((I—|—J w,w ) Z ozzgmg”
4,j=1
Using the Cauchy—Schwarz and Friedrichs’ inequalities, it
can be shown that the norm ||{||g = /(&, §)  is equivalent
to the standard norm in H2(Q,) x L2(Q,) x R'2. Thus,
(H,(-,-) ) is a Hilbert space.

We define an unbounded operator A : D(A) — H and a
bounded linear operator B : R* — H in the following way:

(22)

A:g= = A= | "2 | eH, (23)

€ §§SE

€ H, (24)

f1 uf
B:f=<fz>HBf= 2

fs

= (Jiws — Jiswr) [Jarwy + (Jaz + Lo)ws + Jasws] +
+(Jiowr — Jiws) [Js1wr + Jsaws + (Jas + Is)ws] +
+(Jigwa — Jiows) [(J11 + I1)wi + Jrows + Jizws] +

2
+y Pn/ (jzs[(% + din)wi + (22 + dog)wa] —
—[Jin (1 + dip) + Jia (22 + d2n)]w3) v () dz+

+ Z Pna / ( i1 (29 + dop) — Jio(x1 + dln)) A%y, (z)dr,

08 (2) = —a? A%, (x) + (21 + dln)wg -
ub (z) = v, (x), n=1,2,
331 = wsgiz — wadis, Gio = widis — ws(Gu1 + 1),
33y = wa(Gi1 + 1) — w1,
351 = w3(Goz + 1) — wagas, oo = wides — wWadar,
G55 = walo1 — wi(Joz + 1),
51 = waaz — wa(Gas + 1), G5 = wi(gas + 1) — w31,

g§3 = w2§31 - W1§32,

3
vl (x) = Z (j2k($1 +din) — Jig(za + dm)) Ir,
k=1

(332 + dQn)Wi

3
:Zjikf]w i:1a2737
k=1
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and the coefficients Ji; are given in (12). The domain of
definition of the nonlinear operator A has the form

Un € HY (), vn € H2(Q),
_ 2 2
dx3 o0, O3 o,
(25)

4. MAIN RESULT

We consider a nonlinear control system governed by the
following abstract differential equation in H:

d
() = Ag(t) + B, (26)

where £(t) € H is the state state, f € R3 is the control,
and the operators A and B are given by (23) and (24). If
the functions wi (z,t), we(x,t), w(t), §(t) define a classical
solution of system (4), (5), (6), (13), (16) with a control
f = f(t) on the interval t € T = [ty,T), T < +o0, then
by direct substitution we verify that the corresponding
function

(
e = |2t 27)
(
(

satisfies the equation (26) with f = f(¢) ont € Z. Thus, we
consider the differential equation (26) as a mathematical
model of the considered mechanical system.

Let us represent the feedback control (21) by an operator
G : H — R3 defined on the state space of system (26):

U
v fi
G:£E= Zj = f=Gr=|f5], (28)
" f3
g

£ = —ws (Jowi + (Jaz + I)ws + Jozws) —
—kwitaages—azgzatws (Jziwr + Jzows + (J33 + I3)ws) +

2
+ws Z Pn / (1 + din) vp(x)de,
n=1 Q.
f§ = —w (Ja1w1 + Jzowa + (J33 + I3)ws) —
—kwa—a1 iz+asgzitws ((Ji1 + I)wi + Jiaws + Jisws) +

2
+ws Z Pn / (w2 + dap) vn(2)de,
n=1 Q,
F5 = —wy (Ji1 + I)wy + Jrows + Jizws) —
—kwst+a1g12—azga1twi (Jarwr + (Ja2 + I2)wa + Jasws) —

2
- Z Pn /[(951 + din) w1 + (22 + d2p) w2lvg (v)dz,

Qp
where k and «; are arbitrary positive constants. Then the
closed-loop system (26) with f = G¢ takes the form

%g(t) = F¢(t), F=A+BG, (29)

where the domain of definition of the unbounded nonlinear
operator F': D(F) — H is dense in H, D(F) = D(A).

As it was noted above, the classical solutions of system (4),
(5), (6), (13), (16) correspond to the functions &(t) € D(A)
according to the rule (27). Then the condition V < 0
for the time derivative of the functional V along the
trajectories of the closed-loop system can be rewritten as

(F&&)p <0 (30)
for the corresponding element £ € D(F) = D(A). This is
a consequence of the definition of the functional V' in (18)
and the inner product (-, ) in (22). Thus, inequality (30)
implies the following result concerning the operator F' of
the closed-loop system (29).

Theorem 1. The operator F : D(F) — H is dissipative

and D(F)=H.

We denote by Iy the identity operator on H. If F' is
closed and the image of Iy — AF coincides with H for
A > 0, then Theorem 1 implies that F' is the infinitesimal
generator of a strongly continuous semigroup of nonlinear
operators {S(t)};+>0 on H because of the Crandall-Liggett
theorem (cf. Barbu (1992)). Then the mild solution of
the Cauchy problem for (29) with the initial condition
£(0) = €9 is defined by the formula

() =8(t)e°, t=0, (31)
for any €° € H. Under these assumptions, the trivial
solution of the abstract differential equation (29) is sta-
ble in the sense of Lyapunov because of the dissipativity
inequality (F&,&),; < 0 (V < 0). Note that the mild
solutions given by formula (31) are classical if &Y € D(F).

5. NUMERICAL SIMULATIONS

In order to illustrate the transient behaviour of the pro-
posed controller, we perform a numerical simulation of the
closed-loop system (29). For this purpose we consider the
case of identical rectangular domains Qy = Qo = [0,11] X
[0,12] and introduce finite-dimensional approximations of
the displacements w; (21, x2,t) = ¢;({)Wi(21)Wa(z2), j =
1,2, for equations (4) and (5), respectively. Here W;(z) =

. (ﬂ'mjx
sin T
J

, € [0,l;], m; € N, are taken as eigenfunc-

tions of the Sturm-Liouville problem with the boundary
conditions W;(0) = W;(l;) =0, j = 1,2. Let us consider
the first flexible mode only (m; = mg = 1) and apply the
Ritz—Galerkin method (cf. Zuyev and Sawodny (2015)) for
the nonlinear closed-loop system (4)-(6), (13), (16), (21)
to derive its finite-dimensional approximation of the form

X(t) = ®(X(t), X(t)€R', (32)
whose state vector is

X = (§117§12a ...,§33,W1,W2,W3, q1, q2,q'1a q2) .
We choose the following initial data and parameters for
the simulation (the dimensions of physical quantities are
omitted to simplify notations):

X(O) = (07070303717170371>7130a"'70)a (33)

l
I, =2 =

s=ldi=di=0d=dy=1,ds=d; =0,

1
p=p2=1 ap=az =g, J=1I, a1 =ay=a3=1.
The above X(0) corresponds to an equilibrium of the
considered mechanical system with gy = ej, go = eg3,

and g3 = —es. In this case, the considered stabilization
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problem (steering the closed-loop system to its trivial
equilibrium) means rotation about the xj-axis by the
angle 7/2 with simultaneous damping of the vibration
modes. Fig. 2 shows the behavior of solutions to the

s IX @

0.89

— k=1
—— k=5

0.6

0.4

0.29

Fig. 2. Euclidean norm || X (¢)|| of the solution of (32), (33).

Cauchy problem (32), (33) for different values of the tuning
parameter k > 0 appearing in the feedback law (21). We
see that the proposed controller can be used to steer the
state of system (32) to zero as t — +oo, and the higher
value of k leads to faster convergence of X (¢) to X = 0.

6. CONCLUSIONS

In this paper, a new mathematical model of a controlled
mechanical system consisting of a rotating body and elas-
tic Kirchhoff plates has been introduced. The model is
described by the system of nonlinear ordinary and partial
differential equations (4)—(6), (13), (16), or, equivalently,
by the abstract differential equation (26) in the Hilbert
space H. A state feedback control has been proposed ex-
plicitly in the form (21) to ensure that the time derivative
of a Lyapunov functional is non-positive.

The main theoretical contribution of this work establishes
the dissipativity property for the infinitesimal generator
F in (29). Although numerical simulations illustrate the
efficiency of the proposed controller, the question about
asymptotic stability (or even partial asymptotic stability in
the sense of Zuyev (2003)) remains open for the infinite-
dimensional closed-loop dynamics.
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