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Conformal Killing horizons and their thermodynamics
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Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric
transformations. This mapping provides a physical link between the conformal Killing horizon of
the dynamical black hole and a Killing horizon of the static spacetime. We show how this conformal
relation can be used to derive thermodynamic properties for the dynamical black holes. Although
these horizons are defined quasi-locally and can be located by local experiments, they are distinct
from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical
Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is
null by construction, is the natural horizon to describe the black hole.
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I. INTRODUCTION

The detection of gravitational waves from merging bi-
nary black holes ﬂ] marks the first observations of truly
dynamical black holes in our universe. However, even in
standard general relativity, there is still no fully satisfac-
tory notion of a dynamical black hole ﬂj] The notion of
an event horizon depends on the future evolution of the
spacetime and its asymptotic structure. It is by defini-
tion unobservable to any observer, even one that falls into
the black hole B] The notion of an apparent horizon,
while quasi-local and in principle observable, depends on
a choice of spacetime foliation and is thus non-unique.
Attempts have been made to address this ambiguity M,
], but a conclusive answer remains elusive in all but the
most symmetrical spacetimes.

As observational techniques improve, the examination
of spacetime structure near black hole horizons comes
into the realm of observational possibility. Gravitational
waves already provide one such technique and very long
baseline interferometry provides another ﬂﬂ] In this way,
a number of theories that postulate physical structure
at, or nearby black hole horizons become observationally
testable [§]. As the sophistication of theoretical models
also improves, the issue of where such structure should
form, if it forms at all, is of central importance. The
existence of quasi-local or even explicitly local conditions
that dictate the existence of a horizon are a pre-requisite
of any such locally causal model. Recently, the possibility
of using curvature invariants to locate horizons has been
raised and important theorems governing their existence
have been proven in stationary spacetimes E]

An important feature widely believed to be associ-
ated with black holes is their thermodynamic proper-
ties. For black hole thermodynamics an unambiguous
identification of the relevant horizon appears essential.
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The area of the horizon is associated with black hole en-
tropy and broad features of Hawking radiation are deter-
mined by evaluating functions on the black hole horizon
m] In this thermodynamic sense, the black hole hori-
zon is closely related to its thermodynamic properties. In
static spacetimes, the consensus opinion is that the rele-
vant horizon is a Killing horizon of the associated static
Killing vector field. For static spacetimes a number of
techniques exist to calculate the emission of Hawking ra-
diation or calculate the entropy. Here we will take the
relatively standard position that if a static Killing hori-
zon exists, then it is indeed the correct surface to use
when calculating thermodynamic properties.

In the dynamical case, however, the issue of which sur-
face correctly defines the black hole and its thermody-
namic properties remains open. In fact, even the issue of
how to calculate the correct thermodynamic properties
for dynamical black holes remains open. For example
there is still ambiguity about how the classical surface
gravity should be calculated and how this is related to
any Hawking emission spectra ] It is to this issue that
we turn our attention here.

A special class of dynamical spacetimes exist which ad-
mit a conformal Killing vector field. For these spacetimes
there exists a conformal transformation that can map the
spacetime to a static spacetime. In the case where the
static spacetime admits the structure of a Killing horizon,
the corresponding structure in the dynamical spacetime
is the conformal Killing horizon. This conformal Killing
horizon is by definition a null surface in the dynamical
spacetime and cannot coincide with the dynamical hori-
zon of [12] which is by definition spacelike. In fact, it
is not expected that the conformal Killing horizon will
coincide with any of the popular quasi-local horizon defi-
nitions based on trapped surfaces, such as trapping hori-
zons or apparent horizons, which are typically spacelike
when their area is increasing.

Dynamical spacetimes admitting conformal Killing
horizons are of particular interest because the existence of
this conformal mapping provides a mechanism to trans-
late properties of the dynamical spacetimes to static
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spacetimes. Standard techniques can then be used to de-
rive the relevant physical observables in the static space-
time. In fact, following an argument of Dicke ], later
extended by other authors ﬂﬁ—lﬁ], and extended to the
semi-classical regime ﬂﬂ], the outcomes of physical exper-
iments are equivalently mapped to each other, provided
due care is taken over how the conformal transformation
affects the coupling of the geometrical spacetime and the
matter degrees of freedom that constitute experimental
apparatus. This physical equivalence provides the nec-
essary structure for investigating dynamical spacetimes
with conformal Killing horizons.

As an explicit example of this equivalence, we exam-
ine here the calculation of the Hawking radiation. It
has been noted by a number of authors that the stan-
dard calculations of the Hawking effect enjoy a confor-
mal covariance, either in purely static cases E] or even
in dynamical spacetimes ﬂE, é] While a static black
hole has a constant temperature, the conformally related
dynamical black hole is expected to have a changing tem-
perature, but whose form is entirely determined by the
conformal factor and the static black hole temperature.
To take advantage of these conformal relations the rel-
evant horizon in the dynamical case is required to be
the null conformal Killing horizon, rather than any dy-
namical horizon, trapping horizon or apparent horizon.
The correct thermodynamic surface to define a dynam-
ical black hole is the conformal Killing horizon and not
the apparent horizon.

We show here how this conformal mapping can be
used to extract thermodynamic information about the
dynamical black hole. For this purpose it is important
to note that neither the static, nor dynamical spacetimes
are strictly required to be solutions of the Einstein equa-
tions with well-motivated stress-energy tensors, nor are
the spacetimes required to be isomorphic to one another
as is the case in conformally invariant spacetimes. Typi-
cally if one spacetime is a solution of the Einstein equa-
tions with a particular matter content, then conformally
transformed spacetimes will be solutions for conformally
transformed matter where the conformal factor will man-
ifest itself as a scalar field.

We use the conventions adopted in ] and ge-
ometrized units G = ¢ = 1.

II. BASIC DEFINITIONS

Let M be a smooth, D—dimensional Lorentzian man-
ifold (D > 4) covered by a set of local coordinate neigh-
bourhoods with coordinates (z*,a = 1,...,D) and en-
dowed with the metric g,,. Let ¢ : M — M be a
one-parameter group of isometries. Its generator,

o _ dz(N)
5 - dA 9

z*(A) = ¢a(z), (1)

is called a Killing vector field on M. By definition, it
satisfies the Killing equation

Legab = Va&p + Visa = 0. (2)

Here &, = gqp&® and the derivative operator V, is as-
sociated with the metric gq. In what follows, we shall
consider a stationary spacetime which has a Killing hori-
zon associated with £ ﬂm, @] Just outside the Killing
horizon £° is timelike, i.e., £%¢, < 0.

A Killing horizon is a null hypersurface H, which is a
smooth co-dimension one embedded submanifold of M
such that the Killing vector field £* is orthogonal to H.
This orthogonality condition can be written in the fol-
lowing Frobenius form:

g[avbgc] 2 0. (3)

Here and in what follows 2 denotes that the expression
is calculated on H. The orthogonality condition implies
that £ is null on H and the integral curves of £%, suitably
parametrized, are null geodesic generators of H.
Consider now a metric g, conformally related to ggup,

Fr=0 Q40 ()

Here Q2 is the conformal factor which is a smooth func-
tion on M. For this metric we have

LeGay = (LeD?) gap - (5)

This expression implies that if the conformal factor is
constant along the Killing orbits, i.e. if £0? = 0, then
&% is a Killing vector field for g,p. Otherwise, £* is called
a conformal Killing vector field for g, and it satisfies the
conformal Killing equation

Jab = Q2gab7

o 2 _
Legab = Va&o + Viéa = (In 92)7c §°Gab = = (V&) Gab -

D
(6)
Here
o = Garl’ = Q%& (7)
and the derivative operator V, is associated with the
metric gqp.

In analogy with a Killing horizon, one can define a
conformal Killing horizon [23, ] A conformal Killing
horizon is a null hypersurface H, which is a smooth co-
dimension one embedded submanifold of M such that
the Killing vector field £ is orthogonal to H.

Thus, we see that the conformal transformation (4
mathematically maps a Killing horizon H corresponding
to the Killing vector field £* for g,p to a conformal Killing
horizon H corresponding to the conformal Killing vector
field £ for gup-

IIT. AN EXAMPLE IN LINEAR VAIDYA
SPACETIME

Let us now consider an example of conformally static,
ingoing Vaidya space-time with D = 4 illustrating the



location of a conformal Killing horizon. The spacetime

metric reads [25-27]

9
d§2 - <1 _ M) d’UQ —+ 2dvdr + T2dw2 ) (8)
'
dw? = df? + sin? 0d¢? .

Any choice of m(v) will give a solution of the Einstein
equations sourced by null dust, but here we consider the
following linear mass function:

m(v) = M+ u(v - vy). (9)

where M > 0 and vy are constants and u = dm/dv
plays the role of a mass flux parameter, vanishing in the
static limit[] The full causal structure of this spacetime
is discussed in m, @] Here we take the quasi-local ap-
proach of assuming this metric only in some quasi-local
region where our experiments are to be performedﬂ This
Vaidya space-time has a conformal Killing vector field

5 + Elge (10)

satisfying the conformal Killing equation (@). Note that
there is a freedom to rescale this conformal Killing field
by a constant c¢: £€* — c£®. The normalization chosen
here ensures that in the static limit, u — 0, £ becomes
a Killing vector field of a Schwarzschild spacetime with
unit norm at infinity. This conformal Killing vector field
is null at the conformal Killing horizon given by

m(v)

IV [2/““ —m(v) (1 - 2%@)] =0. (11)

For the above form of m(v), Eq. (II)) has solutions at

§a§a =

m(v)

r:ﬂ(u 1—16;L). (12)

This equation has real solutions if x4 < 1/16 and these
two solutions define two conformal Killing horizons. The
negative sign choice in Eq. (I2]) maps smoothly to the
standard Killing horizon in the static limit © — 0 and
the positive sign choice becomes infinitely large in the
Schwarzschild limit. In addition to the two conformal
Killing horizons, there is also a single spherically sym-
metric trapping horizon, which occurs at r = 2m(v), in-
side the inner conformal Killing horizon. This coincides

Approximate values for the parameter p in cases of astrophysical
relevance are given in Iﬁ] For example, for a solar mass black
hole accreting at the Eddington rate, u would take a dimension-
less value on the order of 10721, In the limit = 0 this describes
a Schwarzschild solution of mass M.

For definiteness we could consider attaching this spacetime to a
Schwarzschild spacetime of mass M in the past, before vp, and
in the future, after a time v1, with a mass M + p(vi — vo), but
this is not necessary for our purposes here.

with the negative sign choice in Eq. (I2)) in the static
limit. Henceforth, in what follows, we concentrate on
this negative sign choice. Note that one can locate the
conformal Killing horizon of the Vaidya space-time by
using the scalar polynomial curvature invariants of @]
The conformal factor needed to transform the metric
@) into a static spacetime, using equation (), is
2
2 = % . (13)
m(v)r
In this case the vector field ([I0) will become a static
Killing vector field of the metric g,5. The coordinate r
will not be the areal radius coordinate and the metric de-
pends explicitly on the coordinate v. Again, this confor-
mal factor has a normalization freedom under rescaling
by a constant and the normalization choice here is chosen
to have dimensionless conformal factor and a finite non-
vanishing result in the limit 4 — 0, so that M is the local
mass. The resulting spacetime is not asymptotically flat
as ) is not unity at infinity. In fact there are two Killing
horizons of the resultant spacetime and the Killing vector
field ([T is only timelike between them.

IV. THERMODYNAMIC PROPERTIES

On the conformal Killing horizon the conformal Killing
vector coincides with the outgoing radial null vector field.
In this linear Vaidya case, the change of the mass func-
tion along the horizon is proportional to the same mass
function

Lem = — 14
¢ i (14)
and the change in the horizon area is proportional to the
area
2uA
LeA=—-. 15
¢ i (15)
Both of these vanish in the static limit of © — 0 as ex-
pected, a result due to the choice of finite normalization
in (I0). Since the mass function represents the energy of
the black hole and one quarter of the area represents the
entropy in the standard picture of black hole thermody-
namics, an effective thermodynamic temperature can be
obtained by taking the ratio of these two.

_ 4Lem 2m 4y

 mm(v)(1 —8u — /T — 16p)
(16)
In the static limit, 4 — 0 this ratio is finite, and gives
the expected temperature of a Schwarzschild black hole,
T = 1/87M. This is a purely formal result. A more
operational quantity related to the Hawking radiation
can be obtained from the geometric surface gravity, x,
and its relation to the Hawking temperature T' = /2.
It has long been known that the geometric surface
gravity of a black hole can be defined in a confor-
mally invariant way HE] This conformal invariance

Ty = =
eff E&'A A




holds also for the dynamical spacetime case considered
here. A straightforward calculation of the %1, defined as

Va(°6) = —2k1&a (see Eq. (1) of [19]), yields

21+/1 — 164
M1 —/T=T16p)"

R1 = (17)

This value is constant, which may at first be surprising
for a dynamical spacetime, but recall that this value is
invariant under conformal transformations and therefore
takes the same value in the static spacetime related by
the conformal factor ([I3]). In the limit ;1 — 0, it takes the
value 1/4M which is the expected Schwarzschild value.
This factor is determined by the normalization of (0.
The standard value is for measurements made at infinity,
although it is possible to calculate the surface gravity at
other locations using the redshift factor HE] In the static
limit, to obtain this measurable temperature, the Killing
vector should be normalized to coincide with the four-
velocity of the observer at the observer’s location via the
freedom £* — £ = c&* with ¢ a constant.

For linear Vaidya, the normalization can be performed
in the static spacetime related to the Vaidya spacetime
by the conformal factor ([I3]), giving

£ = cgo = ! e (1)

(2 2222 -

with this prefactor evaluated at the location of the par-
ticular observer.

Using this normalization allows us to compute a geo-
metric surface gravity in the static spacetime for that par-
ticular observer. However, one further feature needs to be
considered. Since we want the static spacetime to encode
exactly the same physics as the linear Vaidya spacetime,
we require by the arguments of Dicke ] that the cou-
pling of geometry to matter be non-trivial in the static
spacetime. The geometric surface gravity will not be the
actual measured surface gravity since the measured sur-
face gravity will be a factor 1/ times this value. This
scaling ensures that the physical predictions of the two
conformal frames are equivalent ﬂﬂ] The surface gravity
for an observer following the trajectory of the conformal
Killing vector in the dynamical Vaidya spacetime will be
given by k = Qck, which gives

- ri/2 2p4/1 — 164
Vm2r —2m3 = 2uma? (1 — T —16p)

K

(19)

where this should be evaluated at the location of the
observer. The evaluation of this dynamical black hole
surface gravity is our main result. As can be checked by
inspection, this surface gravity is decreasing as the ob-
server moves along her/his trajectory and thus the mea-

sured Hawking temperature will decrease as the black
hole increases in mass, in line with intuitive expectations.

Strictly speaking this result is only valid in the re-
gion of spacetime described fully by the Vaidya metric
with mass function given by ([@). Since the Hawking ef-
fect is not an intrinsic property of a region of spacetime
but depends also on boundary conditions, this result also
depends on boundary conditions and these need to be
treated with some care when the observer is beyond the
region described by the Vaidya metric or particle produc-
tion is occurring outside this region. The static spacetime
that we have used for this result is rather unusual in that
it is not a solution of the Einstein equations, but the
conformally transformed Einstein equations. Its static
Killing horizon has an increasing Wald entropy M], al-
though constant area. The geometric surface gravity is
constant although the measured Hawking temperature is
decreasing.

V. DISCUSSION

We have argued that in the case of conformally static
spacetimes, the correct surface to identify the black
hole and its thermodynamic properties is the conformal
Killing horizon. Although quasi-local, this surface is null
by definition and does not coincide with the dynami-
cal horizon or apparent horizon. For a black hole that
eventually changes its mass accretion rate, this conformal
Killing horizon will not coincide with the event horizon
either. We have calculated an explicit example of the
linear Vaidya spacetime and shown how a time-varying
temperature can be derived. This result uses two main
ingredients. Firstly that in a static spacetime, the cor-
rect horizon for determining quasi-local physics is given
by the standard Killing horizon @] and secondly that
the physical predictions for conformally related space-
times are equivalent ﬂﬂ] Together these two concepts
allow a calculation of the Hawking effect in a dynamical
black hole spacetime.

The class of linear Vaidya spacetimes thus provides a
test bed for ideas about dynamical black holes, where
there is sufficient geometrical structure to guide us from
known static results. The relevant horizon surface is nei-
ther a null event horizon nor a quasi-local apparent hori-
zon, although it retains features of both. It is worth men-
tioning that the idea that the horizon should be null even
in dynamical spacetimes is compatible with discussions
in ﬂé] that argue the correct boundary for a definition
of the generalized second law should be a null boundary.
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