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Abstract
Certain dynamical black hole solutions can be mapped to static spacetimes 
by conformal metric transformations. This mapping provides a physical 
link between the conformal Killing horizon of the dynamical black hole 
and the Killing horizon of the static spacetime. Using the Vaidya spacetime 
as an example, we show how this conformal relation can be used to derive 
thermodynamic properties of such dynamical black holes. Although these 
horizons are defined quasi-locally and can be located by local experiments, 
they are distinct from other popular notions of quasi-local horizons such 
as apparent horizons. Thus in the dynamical Vaidya spacetime describing 
constant accretion of null dust, the conformal Killing horizon, which is null 
by construction, is the natural horizon to describe the black hole.

Keywords: black holes, horizons, thermodynamics

1. Introduction

The detection of gravitational waves from merging binary black holes [1] marks the first 
observations of truly dynamical black holes in our universe. However, even in standard gen-
eral relativity, there is still no fully satisfactory notion of a dynamical black hole [2]. The 
notion of an event horizon depends on the future evolution of the spacetime and its asymptotic 
structure. It is by definition unobservable to any observer, even one that falls into the black 
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hole [3]. The notion of an apparent horizon, while quasi-local and in principle observable, 
depends on a choice of spacetime foliation and is thus non-unique. Attempts have been made 
to address this ambiguity [4–6], but a conclusive answer remains elusive in all but the most 
symmetrical spacetimes.

As observational techniques improve, the examination of spacetime structure near black 
hole horizons comes into the realm of observational possibility. Gravitational waves already 
provide one such technique and very long baseline interferometry provides another [7]. In 
this way, a number of theories that postulate physical structure at, or nearby black hole hori-
zons become observationally testable [8]. As the sophistication of theoretical models also 
improves, the issue of where such structure should form, if it forms at all, is of central impor-
tance. The existence of quasi-local or even explicitly local conditions that dictate the existence 
of a horizon are a pre-requisite of any such locally causal model. Recently, the possibility of 
using curvature invariants to locate horizons has been raised and important theorems govern-
ing their existence have been proven in stationary spacetimes [9].

An important feature widely believed to be associated with black holes is their thermody-
namic properties. For black hole thermodynamics an unambiguous identification of the rel-
evant horizon appears essential. The area of the horizon is associated with black hole entropy 
and broad features of Hawking radiation are determined by evaluating functions on the black 
hole horizon [10]. In this thermodynamic sense, the horizon is closely related to black hole 
thermodynamic properties. In static spacetimes, the consensus opinion is that the relevant 
horizon is a Killing horizon of the associated static Killing vector field. For static spacetimes 
a number of techniques exist to calculate the emission of Hawking radiation or compute the 
entropy. Here we will take the relatively standard position that if a static Killing horizon exists, 
then it represents the correct surface to use when calculating thermodynamic properties.

In the dynamical case, however, the issue of which surface correctly defines the black hole 
and its thermodynamic properties remains open. In fact, even the issue of how to calculate the 
correct thermodynamic properties for dynamical black holes remains open. For example, there 
is still ambiguity about how the classical surface gravity should be calculated and how this is 
related to any Hawking emission spectra [11]. It is to this issue that we turn our attention here.

A special class exists of dynamical spacetimes which admit conformal Killing vector fields. 
For these spacetimes there exists a conformal transformation that can map the spacetime to 
a static spacetime. In the case where the static spacetime admits a Killing horizon, then the 
corresponding structure in the dynamical spacetime is the conformal Killing horizon. This 
conformal Killing horizon is by definition a null hypersurface in the dynamical spacetime and 
cannot coincide with the dynamical horizon of [12] which is by definition spacelike. In fact, it 
is not expected that the conformal Killing horizon will coincide with any of the popular quasi-
local horizons based on trapped surfaces, such as trapping horizons or apparent horizons, 
which are typically spacelike when their area is increasing.

Dynamical spacetimes admitting conformal Killing horizons are of particular interest 
because the existence of this conformal mapping provides a mechanism to translate proper-
ties of the dynamical spacetimes to static spacetimes. Standard techniques can then be used to 
derive the relevant physical observables in the static spacetime. In fact, following an argument 
of Dicke [13], later extended by other authors [14–16], and extended to the semi-classical 
regime [17], the outcomes of physical experiments are equivalently mapped to each other, 
provided due care is taken over how the conformal transformation affects the coupling of 
the geometrical spacetime and the matter degrees of freedom that constitute experimental 
apparatus. Observables that are constructed from the spacetime metric must be compared to 
fiducial standard units constructed from matter degrees of freedom such as photons emitted by 
atomic transitions or elementary particle masses. If these are scaled in a corresponding way to 
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the metric, then physical results will remain the same. This physical equivalence provides the 
necessary structure for investigating dynamical spacetimes with conformal Killing horizons.

As an explicit example of this equivalence, we examine here the calculation of the 
Hawking radiation. It has been noted by a number of authors that the standard calculations of 
the Hawking effect enjoy a conformal covariance, either in purely static cases [18] or even in 
dynamical spacetimes [19, 20]. While a static black hole has a constant temperature, the con-
formally related dynamical black hole is expected to have a changing temperature, but whose 
form is entirely determined by the conformal factor and the static black hole temperature. 
To take advantage of these conformal relations, the relevant horizon in the dynamical case is 
required to be the null conformal Killing horizon, rather than any dynamical horizon, trapping 
horizon or apparent horizon. The correct thermodynamic surface to define a dynamical black 
hole is the conformal Killing horizon and not the apparent horizon.

We show here how this conformal mapping can be used to extract thermodynamic infor-
mation about the dynamical black hole. For this purpose it is important to note that neither 
the static, nor dynamical spacetimes are strictly required to be solutions of the Einstein equa-
tions with well-motivated stress–energy tensors, nor are the spacetimes required to be iso-
morphic to one another as is the case in conformally invariant spacetimes. Typically if one 
spacetime is a solution of the Einstein equations with a particular matter content, then confor-
mally transformed spacetimes will be solutions for conformally transformed matter where the 
conformal factor will manifest itself as a scalar field.

We use the conventions adopted in [21] and geometrized units G  =  c  =  1.

2. Basic definitions

Let M be a smooth, D-dimensional Lorentzian manifold (D � 4) covered by a set of local 
coordinate neighbourhoods with coordinates (xa, a  =  1,...,D) and endowed with the metric 
gab. Let φλ : M → M be a one-parameter group of isometries. Its generator,

ξa =
dxa(λ)

dλ
, xa(λ) = φλ(xa), (1)

is called a Killing vector field on M. By definition, it satisfies the Killing equation

Lξgab = ∇aξb +∇bξa = 0. (2)

Here ξa = gabξ
b and the derivative operator ∇a is associated with the metric gab. In what fol-

lows, we shall consider a stationary spacetime which has a Killing horizon associated with ξa 
[10, 22]. Just outside the Killing horizon ξa is timelike, i.e. ξaξa < 0.

A Killing horizon is a null hypersurface H, which is a smooth co-dimension one embedded 
submanifold of M such that the conformal Killing vector field ξa is orthogonal to H. This 
orthogonality condition can be written in the following Frobenius form:

ξ[a∇bξc]
H
= 0. (3)

Here and in what follows H= denotes that the expression is calculated on H. The orthogonality 
condition implies that ξa is null on H and that the integral curves of ξa, suitably parametrized, 
are null geodesic generators of H.

Consider now a metric ḡab conformally related to gab,

ḡab = Ω2gab, ḡab = Ω−2gab, Ω �= 0. (4)

Here Ω2 is the conformal factor which is a smooth function on M. For this metric we have

Lξḡab =
(
LξΩ

2) gab. (5)
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This expression implies that if the conformal factor is constant along the Killing orbits, i.e. if 
LξΩ

2 = 0, then ξa is a Killing vector field for ḡab. Otherwise, ξa is called a conformal Killing 
vector field for ḡab and it satisfies the conformal Killing equation

Lξḡab = ∇̄aξ̄b + ∇̄bξ̄a =
(
lnΩ2)

,c ξ
c ḡab =

2
D
(∇̄cξ

c)ḡab. (6)

Here

ξ̄a = ḡabξ
b = Ω2ξa (7)

and the derivative operator ∇̄a is associated with the metric ḡab.
In analogy with a Killing horizon, one can define a conformal Killing horizon [23, 24]. 

A conformal Killing horizon is a null hypersurface H̄, which is a smooth co-dimension one 
embedded submanifold of M such that the Killing vector field ξa is orthogonal to H̄. This 
orthogonality is guaranteed since one can show that ξ̄[a∇̄bξ̄c] = Ω4ξ[a∇bξc].

Thus, we see that the conformal transformation (4) mathematically maps a Killing horizon 
H corresponding to the Killing vector field ξa for gab to a conformal Killing horizon H̄ corre-
sponding to the conformal Killing vector field ξa for ḡab.

3. An example in linear Vaidya spacetime

Let us now consider an example of conformally static, ingoing Vaidya space-time with D  =  4 
illustrating the location of a conformal Killing horizon. The spacetime metric reads [25–27]

ds̄2 = −
(

1 − 2m(v)
r

)
dv2 + 2dvdr + r2dω2,

dω2 = dθ2 + sin2 θdφ2.
 

(8)

Any choice of m(v) will give a solution of the Einstein equations sourced by null dust, but here 
we consider the following linear mass function:

m(v) = M + µ(v − v0), (9)

where M � 0 and v0 are constants, and µ = dm/dv plays the role of a mass flux param-
eter, vanishing in the static limit3. The full causal structure of this spacetime is discussed in  
[26, 29]. Here we take the quasi-local approach of assuming this metric only in some quasi-
local region where our experiments are to be performed4. This Vaidya space-time has a 
 conformal Killing vector field

ξa =
m(v)

M
δa

v +
µr
M

δa
r , (10)

satisfying the conformal Killing equation (6). Note that there is a freedom to rescale this con-
formal Killing field by a constant c: ξa → c ξa. The normalization chosen here ensures that in 
the static limit, µ → 0, ξa becomes a Killing vector field, δa

v , of a Schwarzschild spacetime 
with unit norm at infinity. This conformal Killing vector field is null at the conformal Killing 
horizon given by

3 Approximate values for the parameter μ in cases of astrophysical relevance are given in [28]. For example, for a 
solar mass black hole accreting at the Eddington rate, μ would take a dimensionless value of the order of 10−21. In 
the limit µ = 0 this describes a Schwarzschild solution of mass M.
4 For definiteness we could consider attaching this spacetime to a Schwarzschild spacetime of mass M in the past, 
before v0, and in the future, after a time v1, with a mass M + µ(v1 − v0), but this is not necessary for our purposes 
here.

A B Nielsen and A A Shoom Class. Quantum Grav. 35 (2018) 105008
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ξaξa =
m(v)
M2

[
2µr − m(v)

(
1 − 2m(v)

r

)]
= 0. (11)

Note that one can locate the conformal Killing horizon of the Vaidya space-time by using the 
scalar polynomial curvature invariants of [30].

For the above form of m(v), equation (11) has solutions at

r =
m(v)
4µ

(
1 ±

√
1 − 16µ

)
. (12)

These solutions are real if µ � 1/16 and they define two conformal Killing horizons. The 
negative sign choice in equation (12) maps smoothly to the standard Killing horizon in the 
static limit µ → 0 and the positive sign choice becomes infinitely large in the Schwarzschild 
limit. In addition to the two conformal Killing horizons, there is also a single spherically sym-
metric trapping horizon, which occurs at r = 2m(v), inside the inner conformal Killing hori-
zon corre sponding to the negative sign choice in equation (12). In the static limit the trapping 
horizon coincides with the inner conformal Killing horizon. Henceforth, in what follows, we 
concentrate on this negative sign choice.

The conformal factor needed to transform the metric (8) into a static spacetime, using 
equation (4), is

Ω2 =
m(v)r
2M2 . (13)

In this case the vector field (10) becomes a static Killing vector field of the metric ḡab. The 
metric depends explicitly on the coordinate v and the coordinate r is not the areal radius 
coordinate. Again, this conformal factor has a normalization freedom under rescaling by a 
constant and our normalization is chosen to have dimensionless conformal factor and a finite 
non-vanishing result in the limit µ → 0, so that M is the local mass. The resulting spacetime is 
not asymptotically flat as Ω is not unity at infinity. In fact there are two Killing horizons of the 
resultant spacetime and the Killing vector field (10) is timelike between them.

4. Thermodynamic properties

On the conformal Killing horizon the conformal Killing vector coincides with the outgoing 
radial null vector field. In this linear Vaidya case, the change of the mass function along the 
horizon is proportional to the same mass function

Lξm =
µm
M (14)

and the change in the horizon area is proportional to the area

LξA =
2µA
M

. (15)

Due to the choice of finite normalization in (10), both of these vanish in the static limit of 
µ → 0. Since the mass function represents the energy of the black hole and one quarter of the 
area represents the entropy in the standard picture of black hole thermodynamics, an effective 
thermodynamic temperature can be obtained by taking the ratio of these two.

Teff =
4Lξm
LξA

=
2m
A

=
4µ2

πm(v)(1 − 8µ−
√

1 − 16µ)
. (16)

A B Nielsen and A A Shoom Class. Quantum Grav. 35 (2018) 105008
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In the static limit, µ → 0 this ratio is finite, and gives the expected temperature of a 
Schwarzschild black hole, T = 1/8πM . This is a purely formal result. A more operational 
quantity related to the Hawking radiation can be obtained from the geometric surface gravity, 
κ, and its relation to the Hawking temperature T = κ/2π.

It has long been known that the geometric surface gravity of a black hole can be defined 
in a conformally invariant way [19]. This conformal invariance holds also for the dynamical 
spacetime case considered here. A straightforward calculation of the conformally invariant 
surface gravity κ1, defined as ∇a(ξ

bξb) = −2κ1ξa (see equation (1) of [19]), yields

κ1 =
2µ

√
1 − 16µ

M(1 −
√

1 − 16µ)
. (17)

This value is constant, which may at first be surprising for a dynamical spacetime, but recall 
that this value is invariant under conformal transformations and therefore takes the same value 
in the static spacetime related by the conformal factor (13). In the limit µ → 0, it takes the 
value 1/4M which is the expected Schwarzschild value. This standard Schwarzschild value is 
for measurements made at infinity, although it is possible to calculate the surface gravity at 
other locations using the corresponding redshift factor [32]. In the static limit, to obtain this 
measurable temperature, the Killing vector should be normalized to coincide with the four-
velocity of the observer at the observer’s location via the freedom ξa → ξ̃a = c ξa with c a 
constant.

For linear Vaidya, the normalization can be performed in the static spacetime related to the 
Vaidya spacetime by the conformal factor (13), giving

ξ̃a = c ξa =
1√(

2m(v)
r

(
1 − 2m(v)

r

)
− 4µ

)ξa

 (18)

with this prefactor evaluated at the location of the particular observer5.
Using this normalization allows us to compute a geometric surface gravity in the static 

spacetime for that particular observer. However, one further feature needs to be considered. 
Since we want the static spacetime to encode exactly the same physics as the linear Vaidya 
spacetime, we require by the arguments of Dicke [13], that the coupling of geometry to mat-
ter be non-trivial in the static spacetime. The geometric surface gravity will not be the actual 
measured surface gravity since the measured surface gravity will be a factor Ω times this 
value. This scaling, in accordance with the surface gravity dimension 1/m, ensures that the 
physical predictions of the two conformal frames are equivalent [14]. The surface gravity for 
an observer following the trajectory of the conformal Killing vector in the dynamical Vaidya 
spacetime will be given by κ = Ω cκ1, which gives

κ =
r1/2

o√
m2ro − 2m3 − 2µmr2

o

2µ
√

1 − 16µ
(1 −

√
1 − 16µ)

, (19)

where ro defines the observer’s location6. The evaluation of this dynamical black hole surface 
gravity is our main result. As can be checked by inspection, this surface gravity is decreasing 
as the observer moves along her/his trajectory and thus the measured Hawking temperature 
will decrease as the black hole increases in mass, in line with intuitive expectations.

5 Note that this procedure is consistent with the method of [33] for obtaining the surface gravity in a non-asymptoti-
cally flat spacetime by considering the location where the Killing trajectory is also geodesic.
6 The same expression can be obtained directly in the linear Vaidya spacetime by using the corresponding redshift 
factor.
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Strictly speaking this result is only valid in the region of spacetime described fully by the 
Vaidya metric with the mass function given by (9). Since the Hawking effect is not an intrin-
sic property of a region of spacetime but depends also on boundary conditions, this result 
also depends on boundary conditions and these need to be treated with some care when the 
observer is beyond the region described by the Vaidya metric or particle production is occur-
ring outside this region. The static spacetime that we have used for this result is rather unusual 
in that it is not a solution of the Einstein equations, but the conformally transformed Einstein 
equations. Its static Killing horizon has an increasing Wald entropy [31], although constant 
area. The geometric surface gravity is constant although the measured Hawking temperature 
is decreasing.

5. Discussion

We have argued that in the case of conformally static spacetimes, the correct surface to identify 
the black hole and its thermodynamic properties is the conformal Killing horizon. Although 
quasi-local, this surface is null by definition and does not coincide with the dynamical horizon 
or apparent horizon. For a black hole that eventually changes its mass accretion rate, this con-
formal Killing horizon will not coincide with the event horizon either. We have calculated an 
explicit example of the linear Vaidya spacetime and shown how a time-varying temperature 
can be derived. This result uses two main ingredients. Firstly that in a static spacetime, the cor-
rect horizon for determining quasi-local physics is given by the standard Killing horizon [32] 
and secondly that the physical predictions for conformally related spacetimes are equivalent 
[14]. Together these two concepts allow a calculation of the Hawking effect in a dynamical 
black hole spacetime.

The class of linear Vaidya spacetimes thus provides a test bed for ideas about dynamical 
black holes, where there is sufficient geometrical structure to guide us from known static 
results. The relevant horizon surface is neither a null event horizon nor a quasi-local appar-
ent horizon, although it retains features of both. It is worth mentioning that the idea that the 
horizon should be null even in dynamical spacetimes is compatible with discussions in [34] 
that argue the correct boundary for a definition of the generalized second law should be a null 
boundary.
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