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Abstract: We discuss balanced truncation model reduction of constrained mechanical systems.
The incorporation of the algebraic constraints leads to linear differential-algebraic control
systems of index 2 or 3. Then for the square-root method in balanced truncation, the solution
of projected Lyapunov equations is required. In this paper we discuss how to avoid the explicit
construction of the projectors and the formulation of a projection-avoiding balanced truncation
method which is suitable for efficient numerical computations. We have implemented this method
in the Matlab package M-M.E.S.S. and present some numerical results for illustration.
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1. INTRODUCTION

In this paper we consider the class of second-order
differential-algebraic systems of the form

Mξ̈(t) = Kξ(t) +Dξ̇(t) +GT
3 µ3(t) +GT

2 µ2(t) +Bξu(t),

0 = G3ξ(t) +G2ξ̇(t),

y(t) = C1ξ(t) + C2ξ̇(t),
(1)

for the displacements ξ(t) ∈ Rnξ (i. e., ξ̇(t) and ξ̈(t)
represent the velocities and accelerations of the masses).
Here, M, K, D ∈ Rnξ×nξ are the possibly large and
sparse, symmetric positive definite (spd) mass, stiffness,
and damping matrices. Algebraic constraints are given
by the full row-rank constraint matrices G3 ∈ Rnµ×nξ ,
G2 ∈ Rnµ×nξ and corresponding Lagrange multipliers
µ2, µ3 ∈ Rnµ with nµ < nξ. Furthermore, Bξ ∈ Rnξ×m

is the input matrix corresponding to the input vector
u(t) ∈ Rm, and C1, C2 ∈ Rq×nξ are the output matrices
associated to the output vector y(t) ∈ Rq.

Systems of this structure arise in a large variety of appli-
cations, in particular in the modeling of constrained vi-
brational systems as depicted in Eich-Soellner and Führer
(1998); Mehrmann and Stykel (2005). Similar problems
arise for electrical networks (see, e. g., Riaza (2008); Reis
(2010)).

We focus on two most important special cases, namely:

i) The constraints act only on the velocity level, i. e.,
G3 = 0 and G2 has full row-rank. By setting ξ1(t) :=

� The second author is supported by the German Research Foun-
dation (DFG) within the priority program 1897: “Calm, Smooth,
Smart – Novel Approaches for Influencing Vibrations by Means of
Deliberately Introduced Dissipation”.

ξ(t), ξ2(t) := ξ̇(t), µ(t) := µ2(t), and linearizing, we
obtain[

Inξ 0 0

0 M 0
0 0 0

]

︸ ︷︷ ︸
=:E

[
ξ̇1(t)

ξ̇2(t)
µ̇(t)

]

︸ ︷︷ ︸
=:ẋ(t)

=

[
0 Inξ 0

K D GT
2

0 G2 0

]

︸ ︷︷ ︸
=:A2

[
ξ1(t)
ξ2(t)
µ(t)

]

︸ ︷︷ ︸
=:x(t)

+

[
0
Bξ

0

]

︸ ︷︷ ︸
=:B

u(t),

y(t) =
[
C1 C2 0

]
︸ ︷︷ ︸

=:C

[
ξ1(t)
ξ2(t)
µ(t)

]

︸ ︷︷ ︸
=:x(t)

,

(2)

which is a first-order differential-algebraic system of
index 2.

ii) The constraints act only on the position level, i. e.,
G2 = 0 and G3 has full row-rank. By setting ξ1(t) :=

ξ(t), ξ2(t) := ξ̇(t), µ(t) := µ3(t), and linearizing (1),
we obtain[
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K D GT
3
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ξ1(t)
ξ2(t)
µ(t)
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=:x(t)
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Bξ
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=:B
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C1 C2 0
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︸ ︷︷ ︸

=:C

[
ξ1(t)
ξ2(t)
µ(t)

]

︸ ︷︷ ︸
=:x(t)

,

(3)

which is a first-order differential-algebraic system of
index 3.

The two most frequently applied modern MOR methods
are balanced truncation (see Moore (1981); Tombs and
Postlethwaite (1987)) and rational interpolation of the
transfer function by the iterative rational Krylov algorithm
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ii) The constraints act only on the position level, i. e.,
G2 = 0 and G3 has full row-rank. By setting ξ1(t) :=

ξ(t), ξ2(t) := ξ̇(t), µ(t) := µ3(t), and linearizing (1),
we obtain[

Inξ 0 0

0 M 0
0 0 0

]

︸ ︷︷ ︸
=:E

[
ξ̇1(t)

ξ̇2(t)
µ̇(t)

]

︸ ︷︷ ︸
=:ẋ(t)

=

[
0 Inξ 0

K D GT
3

G3 0 0

]

︸ ︷︷ ︸
=:A3

[
ξ1(t)
ξ2(t)
µ(t)

]

︸ ︷︷ ︸
=:x(t)

+

[
0
Bξ

0

]

︸ ︷︷ ︸
=:B

u(t),

y(t) =
[
C1 C2 0

]
︸ ︷︷ ︸

=:C

[
ξ1(t)
ξ2(t)
µ(t)

]

︸ ︷︷ ︸
=:x(t)

,

(3)

which is a first-order differential-algebraic system of
index 3.

The two most frequently applied modern MOR methods
are balanced truncation (see Moore (1981); Tombs and
Postlethwaite (1987)) and rational interpolation of the
transfer function by the iterative rational Krylov algorithm
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(IRKA) from Gugercin et al. (2008). Both approaches have
also been extended to general descriptor systems in Stykel
(2004); Gugercin et al. (2013). In this case one has to
apply certain projections to the model in order to decouple
the differential from the algebraic equations. However, the
computation and application of the projectors can be very
demanding in terms of computational complexity, as well
as memory requirements and also rises some robustness
issues if the number of constraints, i. e., the number of
rows in G2 or G3 become large.

In case of structured systems of the form (2) there exists
an easier approach. It is possible to explicitly construct
the projector onto the differential part of the system from
the given problem data. In this way the the algebraic
equations can be eliminated following Heinkenschloss et al.
(2008); Gugercin et al. (2013). Then, exploiting certain
technical properties of the projector, one can directly
apply the methods for ODE systems to the projected
system. This procedure has, however, only been studied
for structured first-order systems of index two. Note that
both approaches are essentially projecting to the same
subspace. They only differ in the topology underlying the
projection. The classical Stykel-type spectral projection is
orthogonal in the state-space equipped with the standard
Euclidean inner product. The projection derived from the
problem structure is oblique in this setting, but orthogonal
in the inner product induced by the mass matrix. In the
context of the linearized Navier-Stokes equations discussed
in Heinkenschloss et al. (2008), the projection is in fact the
discretized version of the well known Leray projection to
the divergence-free velocity functions.

Until now there only exist first investigations for both
the second-order index-2 or index-3 systems as in (1).
This paper is mainly devoted to closing the gap in the
open software and also to the generation of a unifying
framework for these kind of systems. Here, we will focus
on balanced truncation model reduction using the software
infrastructure in M-M.E.S.S., but in principle our results
can also be directly applied to obtain a generalized version
of IRKA following the lines of Gugercin et al. (2013), see
also Ahmad and Benner (2014).

The paper is structured as follows. In Section 2 we will
repeat some preliminaries, in particular we briefly re-
view balanced truncation model reduction and the low-
rank ADI method to solve the arising large-scale Lya-
punov equations. Furthermore, we will introduce the gen-
eral projection technique to reduce structured differential-
algebraic systems to ODE systems. In Section 3 we will
describe details about carrying out this projection with the
focus on resolving certain numerical difficulties. Finally, we
present computational results in Section 4 and summarize
the paper in Section 5.

2. PRELIMINARIES

In this section we briefly review some fundamental con-
cepts and results including balanced truncation, the low-
rank alternating directions implicit (ADI) iteration for the
solution of the arising Lyapunov equations, and projec-
tion techniques for descriptor systems that will be used
throughout this paper.

2.1 Balanced Truncation and Low-Rank ADI

Among all other techniques of model order reduction, the
method of balanced truncation is particularly attractive
due to the availability of an a priori error bound, and
the guaranteed stability of the reduced order model (see,
e.g., Antoulas (2005) and references therein). The low-
rank ADI method for the solution of large-scale Lyapunov
equations is a desirable solver since it does only rely
on basic linear algebra manipulations and in contrast
to projection based methods does not pose additional
requirements on the system properties. We will discuss
these two in the current section.

A Short Introduction to Balanced Truncation for General-
ized State Space Systems In Antoulas (2005) four general
approaches for computing the balancing and truncating
transformations are described, among which we will focus
on the square root method. For a linear time-invariant
dynamical system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(4)

with E, A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n, state
x(t) ∈ Rn, input u(t) ∈ Rp, and output y(t) ∈ Rm at
time t ≥ 0, we want to repeat the basic procedure here.
In this section we assume that E is nonsingular and we
describe how to pull the structured DAEs back to this case
in the later sections. Moreover, we assume the system to
be asymptotically stable. The key idea in the square root
method is to perform a simultaneous diagonalization of the
two system Gramians, whose diagonal entries will then be
the decreasingly ordered Hankel singular values (HSVs)
of the system. Then the states corresponding to small
HSVs are truncated, leading to a much smaller system.
The well-known balanced truncation error bound is then
simply formed by twice the sum of the truncated HSVs.

The two system Gramians are computed as the solutions of
the controllability and observability Lyapunov equations

APET + EPAT = −BBT , (5a)

ATQE + ETQA = −CTC. (5b)

Let P = RRT and Q = SST be symmetric factorizations
of these Gramians. In the case where n is large, E and A
are sparse, and m, p � n, then S and R are usually of
low rank and can be computed by a low-rank solver for
the large-scale equations (5). Here, we will focus on the
low-rank ADI, see Kürschner (2016) for the most recent
formulation.

The avoidance of the explicit application of the projectors
is the main problem that we discuss here. This can be
solved by a careful initialization of the ADI algorithm.
The main operation in ADI is the solution of shifted
linear systems of equations, as in the rational Krylov
subspace method (RKSM) for computing the Gramian
factors, see Druskin et al. (2011). Therefore, everything we
present here carries over to RKSM and model reduction
via IRKA as well (see Gugercin et al. (2013); Ahmad and
Benner (2014)).

To perform the balancing operation we compute the sin-
gular value decomposition
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(IRKA) from Gugercin et al. (2008). Both approaches have
also been extended to general descriptor systems in Stykel
(2004); Gugercin et al. (2013). In this case one has to
apply certain projections to the model in order to decouple
the differential from the algebraic equations. However, the
computation and application of the projectors can be very
demanding in terms of computational complexity, as well
as memory requirements and also rises some robustness
issues if the number of constraints, i. e., the number of
rows in G2 or G3 become large.

In case of structured systems of the form (2) there exists
an easier approach. It is possible to explicitly construct
the projector onto the differential part of the system from
the given problem data. In this way the the algebraic
equations can be eliminated following Heinkenschloss et al.
(2008); Gugercin et al. (2013). Then, exploiting certain
technical properties of the projector, one can directly
apply the methods for ODE systems to the projected
system. This procedure has, however, only been studied
for structured first-order systems of index two. Note that
both approaches are essentially projecting to the same
subspace. They only differ in the topology underlying the
projection. The classical Stykel-type spectral projection is
orthogonal in the state-space equipped with the standard
Euclidean inner product. The projection derived from the
problem structure is oblique in this setting, but orthogonal
in the inner product induced by the mass matrix. In the
context of the linearized Navier-Stokes equations discussed
in Heinkenschloss et al. (2008), the projection is in fact the
discretized version of the well known Leray projection to
the divergence-free velocity functions.

Until now there only exist first investigations for both
the second-order index-2 or index-3 systems as in (1).
This paper is mainly devoted to closing the gap in the
open software and also to the generation of a unifying
framework for these kind of systems. Here, we will focus
on balanced truncation model reduction using the software
infrastructure in M-M.E.S.S., but in principle our results
can also be directly applied to obtain a generalized version
of IRKA following the lines of Gugercin et al. (2013), see
also Ahmad and Benner (2014).

The paper is structured as follows. In Section 2 we will
repeat some preliminaries, in particular we briefly re-
view balanced truncation model reduction and the low-
rank ADI method to solve the arising large-scale Lya-
punov equations. Furthermore, we will introduce the gen-
eral projection technique to reduce structured differential-
algebraic systems to ODE systems. In Section 3 we will
describe details about carrying out this projection with the
focus on resolving certain numerical difficulties. Finally, we
present computational results in Section 4 and summarize
the paper in Section 5.

2. PRELIMINARIES

In this section we briefly review some fundamental con-
cepts and results including balanced truncation, the low-
rank alternating directions implicit (ADI) iteration for the
solution of the arising Lyapunov equations, and projec-
tion techniques for descriptor systems that will be used
throughout this paper.

2.1 Balanced Truncation and Low-Rank ADI

Among all other techniques of model order reduction, the
method of balanced truncation is particularly attractive
due to the availability of an a priori error bound, and
the guaranteed stability of the reduced order model (see,
e.g., Antoulas (2005) and references therein). The low-
rank ADI method for the solution of large-scale Lyapunov
equations is a desirable solver since it does only rely
on basic linear algebra manipulations and in contrast
to projection based methods does not pose additional
requirements on the system properties. We will discuss
these two in the current section.

A Short Introduction to Balanced Truncation for General-
ized State Space Systems In Antoulas (2005) four general
approaches for computing the balancing and truncating
transformations are described, among which we will focus
on the square root method. For a linear time-invariant
dynamical system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(4)

with E, A ∈ Rn×n, B ∈ Rn×p and C ∈ Rm×n, state
x(t) ∈ Rn, input u(t) ∈ Rp, and output y(t) ∈ Rm at
time t ≥ 0, we want to repeat the basic procedure here.
In this section we assume that E is nonsingular and we
describe how to pull the structured DAEs back to this case
in the later sections. Moreover, we assume the system to
be asymptotically stable. The key idea in the square root
method is to perform a simultaneous diagonalization of the
two system Gramians, whose diagonal entries will then be
the decreasingly ordered Hankel singular values (HSVs)
of the system. Then the states corresponding to small
HSVs are truncated, leading to a much smaller system.
The well-known balanced truncation error bound is then
simply formed by twice the sum of the truncated HSVs.

The two system Gramians are computed as the solutions of
the controllability and observability Lyapunov equations

APET + EPAT = −BBT , (5a)

ATQE + ETQA = −CTC. (5b)

Let P = RRT and Q = SST be symmetric factorizations
of these Gramians. In the case where n is large, E and A
are sparse, and m, p � n, then S and R are usually of
low rank and can be computed by a low-rank solver for
the large-scale equations (5). Here, we will focus on the
low-rank ADI, see Kürschner (2016) for the most recent
formulation.

The avoidance of the explicit application of the projectors
is the main problem that we discuss here. This can be
solved by a careful initialization of the ADI algorithm.
The main operation in ADI is the solution of shifted
linear systems of equations, as in the rational Krylov
subspace method (RKSM) for computing the Gramian
factors, see Druskin et al. (2011). Therefore, everything we
present here carries over to RKSM and model reduction
via IRKA as well (see Gugercin et al. (2013); Ahmad and
Benner (2014)).

To perform the balancing operation we compute the sin-
gular value decomposition
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Algorithm 1: LR-ADI iteration for the Lyapunov equation (5a).

Input : E, A ∈ Rn×n, B ∈ Rn×m, proper shift parameters
{α1, . . . , αjmax} ⊂ C<0 := {α ∈ C | Re(α) < 0}, and a
tolerance 0 < τ � 1 for the normalized residual.

Output: Z ∈ Rn×mjmax such that P ≈ ZZT , where P solves (5a).

Initialize W0 := B, Z0 :=
[ ]

, and j := 1.

while ‖WT
j−1Wj−1‖ ≥ τ‖BTB‖ do

Solve (A+ αjE)Vj = Wj−1 for Vj .
if Im(αj) = 0 then

Set Wj := Wj−1 − 2Re(αj)EVj .

Set Zj :=
[
Zj−1

√
−2αjVj

]
.

else

Set γj := 2
√

−Re(αj), δj :=
Re(αj)
Im(αj)

, and

ϕj := γj
√

(δ2j + 1).

Set Wj+1 := Wj−1 + γ2
jE (Re(Vj) + δj Im(Vj)).

Set Zj+1 :=
[
Zj−1 γj (Re(Vj) + δj Im(Vj)) ϕj Im(Vj)

]
.

Set j := j + 1.

Set j := j + 1.

STER = UΣV = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T
1

V T
2

]
, (6)

where Σ1 = diag(σ1, . . . , σr) contains the HSVs we want
to keep, whereas Σ2 = diag(σr+1, . . . , σn) contains the
HSVs we want to truncate. Using R, S, U1, V1, and Σ1 we
can then construct the left and right projection matrices,
that are balancing and truncating the system at the same
time as

TL = SU1Σ
− 1

2
1 , TR = RV1Σ

− 1
2

1 . (7)

The desired reduced order model

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(8)

is computed as Ê = TT
L ETR = Ir, Â = TT

L ATR, B̂ = TT
L B

and Ĉ = CTR and we get the error bound

‖y − ŷ‖L2(R≥0,Rp) ≤

(
2

n∑
i=r+1

σi

)
‖u‖L2(R≥0,Rm)

for inputs u ∈ L2(R≥0,Rm) and R≥0 := [0,∞).

Low-Rank Alternating Directions Implicit Iteration Low-
rank ADI can be understood as a clever low-rank for-
mulation of a relaxation based fixed point iteration for
the Lyapunov operator. For the sake of simplicity we will
simply use the most recent formulation as a recipe in
Algorithm 1. A detailed derivation and a discussion of the
state-of-the-art of the shift parameter problem is available
in Kürschner (2016). Note that Algorithm 1 expects the
shifts to be proper, i. e., they are either real or come in
pairs of two consecutive complex conjugate shifts in the
ordered set {α1, . . . , αjmax

}.

2.2 Balanced Truncation for Stokes-like Systems

We follow the projection idea of Heinkenschloss et al.
(2008) for systems of the form[

E 0
0 0

] [
v̇(t)
ṗ(t)

]
=

[
A HT

G 0

] [
v(t)
p(t)

]
+

[
Bv

0

]
u(t),

y(t) = Cvv(t) + Cpp(t).

(9)

Here v(t) ∈ Rnv and p(t) ∈ Rnp for each t ≥ 0. We assume
that E ∈ Rnv×nv is spd, A ∈ Rnv×nv , G, H ∈ Rnp×nv ,
Bv ∈ Rnv×m, Cv ∈ Rq×nv , and Cp ∈ Rq×np . As in
Heinkenschloss et al. (2008), for now, we assume that
G = H. The extension to the case G �= H is covered
by Gugercin et al. (2013).

From (9) we obtain Gv(t) = 0 implying Gv̇(t) = 0 and
thus,

0 = GE−1Av(t) +GE−1GT p(t) +GE−1Bvu(t).

This yields

p(t) = −
(
GE−1GT

)−1
GE−1Av(t)

−
(
GE−1GT

)−1
GE−1Bvu(t).

Defining the matrices

Π := Inv
−GT

(
GE−1GT

)−1
GE−1,

C := Cv − Cp

(
GE−1GT

)−1
GE−1A,

D := −Cp

(
GE−1GT

)−1
GE−1Bv,

(10)

and inserting p(t) into (9), we obtain

Ev̇(t) = ΠAv(t) + ΠBvu(t),

y(t) = Cv(t) +Du(t).
(11)

In the following we will frequently use the following result.

Proposition 1. (Heinkenschloss et al. (2008)). The matrix
Π is a projector onto imΠ = kerGE−1 along kerΠ =
imGT and it holds

ΠE = EΠT . (12)

In particular, it can be shown that

Gv(t) = 0 ⇔ ΠT v(t) = v(t). (13)

By using (12) and (13), (11) can be reformulated as

ΠEΠT v̇(t) = ΠAΠT v(t) + ΠBvu(t), (14)

y(t) = CΠT v(t) +Du(t).

In this formulation, the algebraic equations have been
successfully eliminated. However, since in general Π is a
singular matrix, the pencil λΠEΠT −ΠAΠT is a singular
pencil. This means, that besides differential equations, (14)
also contains some redundant equations that are trivially
fulfilled and will give no further information. To get rid of
the redundant part, we use the factorization

Π = ΘlΘ
T
r ,

where Θl, Θr ∈ Rnv×r, ΘT
r Θl = Ir, and r = rank(Π).

Then, the projected system (without redundant equations)
is given by

ΘT
r EΘr

˙̃v(t) = ΘT
r AΘrṽ(t) + ΘT

r Bvu(t),

y(t) = CΘrṽ(t) +Du(t),
(15)

where ṽ(t) = ΘT
l v(t). Note, that both ΘT

r EΘr and ΘT
r AΘr

are regular and (15) is in fact a system of ODEs just like
(4). Thus, it can directly be treated with the methods
from Section 2.1. In contrast to Heinkenschloss et al.
(2008) where the ADI formulation for differential algebraic
systems was used, we will formulate our results with
Algorithm 1. This will require some further modifications
as outlined below.
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3. BALANCED TRUNCATION FOR CONSTRAINED
MECHANICAL SYSTEMS

Employing similar ideas as presented in Section 2, we will
show how one can derive the projections for mechanical
systems (2) and (3), and later avoid their explicit use in
the algorithm.

3.1 Derivation of Π for the Index-2 Case

The system (2) exactly resembles (9) by setting

E : =

[
Inξ

0
0 M

]
, A :=

[
0 Inξ

K D

]
,

G : = [0 G2] , H := G,

Bv : =

[
0
Bξ

]
, Cv := [C1 C2] , Cp := 0,

and we are precisely in the framework of Section 2.2.
Note that for the particular linearization treated here, the
projector Π takes a special form, namely

Π = I2nξ
−GT

(
GE−1GT

)−1
GE−1 =

[
Inξ

0
0 Π2

]
(16)

with

Π2 := Inξ
−GT

2

(
G2M

−1GT
2

)−1
G2M

−1.

Here, the projector Π2 only acts on the velocities since
they contain the only constraints of the system. Note also
that Π2 has exactly the same structure as Π formulated
on the velocity level of the second-order system and thus
immediately inherits the properties of Proposition 1.

For theoretical considerations this completes the story, but
numerical implementations of the method require some
additional thoughts. These open issues will be addressed
in Section 3.3.

3.2 Derivation of Π for the Index-3 Case

The system (3) also resembles (9) by setting

E :=

[
Inξ

0
0 M

]
, A :=

[
0 Inξ

K D

]
,

G := [G3 0] , H := [0 G3] ,

Bv :=

[
0
Bξ

]
, Cv := [C1 C2] , Cp := 0.

(17)

Thus, using the two-sided projection approach by Gugercin
et al. (2013), this case is similarly easy to treat as the above
one. However, we can find a one-sided projection as follows.
To this end, we follow the same steps as in Section 2.2.

From the constraint equation G3ξ(t) = 0 we directly

obtain G3ξ̇(t) = 0 and also G3ξ̈(t) = 0. Inserting these
in (1) yields

0 = G3M
−1Kξ(t) +G3M

−1Dξ̇(t)

+G3M
−1GT

3 µ(t) +G3M
−1Bξu(t),

and hence we can write the Lagrange multiplier as

µ(t) = −
(
G3M

−1GT
3

)−1
G3M

−1Kξ(t)

−
(
G3M

−1GT
3

)−1
G3M

−1Dξ̇(t)

−
(
G3M

−1GT
3

)−1
G3M

−1Bξu(t).

We define

Π3 := Inξ
−GT

3

(
G3M

−1GT
3

)−1
G3M

−1,

and obtain

Mξ̈(t) = Π3Dξ̇(t) + Π3Kξ(t) + Π3Bξu(t).

Obviously Π3 is a projector and satisfies the equivalent
properties of Proposition 1. Furthermore, by direct calcu-
lation it can be verified that

G3ξ(t) = 0 ⇔ ΠT
3 ξ(t) = ξ(t),

and G3ξ̇(t) = 0 ⇔ ΠT
3 ξ̇(t) = ξ̇(t).

Therefore, similarly as for (14) we obtain

Π3MΠT
3 ξ̈(t) = Π3DΠT

3 ξ̇(t) + Π3KΠT
3 ξ(t) + Π3Bξu(t),

y(t) = C1Π
T
3 ξ(t) + C2Π

T
3 ξ̇(t).

Again, this system contains redundant equations, which
we eliminate using the factorization

Π3 = ΨlΨ
T
r ,

where Ψl, Ψr ∈ Rnξ×r, ΨT
r Ψl = Ir, and r = rank(Π3).

Then, the projected system (without redundant equations)
is

ΨT
r MΨr

¨̃
ξ(t) = ΨT

r DΨr
˙̃
ξ(t) + ΨT

r KΨr ξ̃(t) + ΨT
r Bξu(t),

y(t) = C1Ψr ξ̃(t) + C2Ψr
˙̃
ξ(t),

where ξ̃(t) = ΨT
l ξ(t) and therefore also

˙̃
ξ(t) = ΨT

l ξ̇(t) and
¨̃
ξ(t) = ΨT

l ξ̈(t).

Similarly to (16), the desired one-sided projector Π ∈
R2nξ×2nξ for application in (3) attains the form

Π =

[
Π3 0
0 Π3

]
.

3.3 Formulation of the Projection-Avoiding BT Algorithms

The main contribution in Heinkenschloss et al. (2008);
Gugercin et al. (2013) is to show how the MOR can
be carried out without explicitly forming the projected
systems or the projection operators. In the formulation
of the ADI in Algorithm 1 a few additional algorithmic
subtleties arise that will be addressed in this section.

Initialization of Residual Factors In the formulation of
the LR-ADI in Algorithm 1, we initialize the residual
simply by assigning the right hand side factor W0 = B. In
the framework of Section 2.2 this becomes the projected
right hand side factor W0 = ΠBv. It is an easy task to
check that in fact Θ = E−1ΠBv solves the saddle point
system [

E GT

G 0

] [
Θ
Λ

]
=

[
Bv

0

]
, (18)

and thus the initial residual is W0 = EΘ and can be
computed without explicit usage of Π. After this initial-
ization the update formula can be used without addi-
tional treatment since the updates are already projected
by construction and thus all subsequent residual factors
will automatically be invariant under projection with Π.
This is obviously possible in the index-2 case introduced
in Section 3.1. In Gugercin et al. (2013) one of the con-
tributions is to show that the symmetry with respect to
G in Heinkenschloss et al. (2008) is in fact not necessary.
Thus, observing that the index-3 model in (3) is just the
non-symmetric variant, we can do the same here.

Proceedings of the 9th MATHMOD
Vienna, Austria, February 21-23, 2018

4



	 Jens Saak  et al. / IFAC PapersOnLine 51-2 (2018) 661–666	 665

3. BALANCED TRUNCATION FOR CONSTRAINED
MECHANICAL SYSTEMS

Employing similar ideas as presented in Section 2, we will
show how one can derive the projections for mechanical
systems (2) and (3), and later avoid their explicit use in
the algorithm.

3.1 Derivation of Π for the Index-2 Case

The system (2) exactly resembles (9) by setting

E : =

[
Inξ

0
0 M

]
, A :=

[
0 Inξ

K D

]
,

G : = [0 G2] , H := G,

Bv : =

[
0
Bξ

]
, Cv := [C1 C2] , Cp := 0,

and we are precisely in the framework of Section 2.2.
Note that for the particular linearization treated here, the
projector Π takes a special form, namely

Π = I2nξ
−GT

(
GE−1GT

)−1
GE−1 =

[
Inξ

0
0 Π2

]
(16)

with

Π2 := Inξ
−GT

2

(
G2M

−1GT
2

)−1
G2M

−1.

Here, the projector Π2 only acts on the velocities since
they contain the only constraints of the system. Note also
that Π2 has exactly the same structure as Π formulated
on the velocity level of the second-order system and thus
immediately inherits the properties of Proposition 1.

For theoretical considerations this completes the story, but
numerical implementations of the method require some
additional thoughts. These open issues will be addressed
in Section 3.3.

3.2 Derivation of Π for the Index-3 Case

The system (3) also resembles (9) by setting

E :=

[
Inξ

0
0 M

]
, A :=

[
0 Inξ

K D

]
,

G := [G3 0] , H := [0 G3] ,

Bv :=

[
0
Bξ

]
, Cv := [C1 C2] , Cp := 0.

(17)

Thus, using the two-sided projection approach by Gugercin
et al. (2013), this case is similarly easy to treat as the above
one. However, we can find a one-sided projection as follows.
To this end, we follow the same steps as in Section 2.2.

From the constraint equation G3ξ(t) = 0 we directly

obtain G3ξ̇(t) = 0 and also G3ξ̈(t) = 0. Inserting these
in (1) yields

0 = G3M
−1Kξ(t) +G3M

−1Dξ̇(t)

+G3M
−1GT

3 µ(t) +G3M
−1Bξu(t),

and hence we can write the Lagrange multiplier as

µ(t) = −
(
G3M

−1GT
3

)−1
G3M

−1Kξ(t)

−
(
G3M

−1GT
3

)−1
G3M

−1Dξ̇(t)

−
(
G3M

−1GT
3

)−1
G3M

−1Bξu(t).

We define

Π3 := Inξ
−GT

3

(
G3M

−1GT
3

)−1
G3M

−1,

and obtain

Mξ̈(t) = Π3Dξ̇(t) + Π3Kξ(t) + Π3Bξu(t).

Obviously Π3 is a projector and satisfies the equivalent
properties of Proposition 1. Furthermore, by direct calcu-
lation it can be verified that

G3ξ(t) = 0 ⇔ ΠT
3 ξ(t) = ξ(t),

and G3ξ̇(t) = 0 ⇔ ΠT
3 ξ̇(t) = ξ̇(t).

Therefore, similarly as for (14) we obtain

Π3MΠT
3 ξ̈(t) = Π3DΠT

3 ξ̇(t) + Π3KΠT
3 ξ(t) + Π3Bξu(t),

y(t) = C1Π
T
3 ξ(t) + C2Π

T
3 ξ̇(t).

Again, this system contains redundant equations, which
we eliminate using the factorization

Π3 = ΨlΨ
T
r ,

where Ψl, Ψr ∈ Rnξ×r, ΨT
r Ψl = Ir, and r = rank(Π3).

Then, the projected system (without redundant equations)
is

ΨT
r MΨr

¨̃
ξ(t) = ΨT

r DΨr
˙̃
ξ(t) + ΨT

r KΨr ξ̃(t) + ΨT
r Bξu(t),

y(t) = C1Ψr ξ̃(t) + C2Ψr
˙̃
ξ(t),

where ξ̃(t) = ΨT
l ξ(t) and therefore also

˙̃
ξ(t) = ΨT

l ξ̇(t) and
¨̃
ξ(t) = ΨT

l ξ̈(t).

Similarly to (16), the desired one-sided projector Π ∈
R2nξ×2nξ for application in (3) attains the form

Π =

[
Π3 0
0 Π3

]
.

3.3 Formulation of the Projection-Avoiding BT Algorithms

The main contribution in Heinkenschloss et al. (2008);
Gugercin et al. (2013) is to show how the MOR can
be carried out without explicitly forming the projected
systems or the projection operators. In the formulation
of the ADI in Algorithm 1 a few additional algorithmic
subtleties arise that will be addressed in this section.

Initialization of Residual Factors In the formulation of
the LR-ADI in Algorithm 1, we initialize the residual
simply by assigning the right hand side factor W0 = B. In
the framework of Section 2.2 this becomes the projected
right hand side factor W0 = ΠBv. It is an easy task to
check that in fact Θ = E−1ΠBv solves the saddle point
system [

E GT

G 0

] [
Θ
Λ

]
=

[
Bv

0

]
, (18)

and thus the initial residual is W0 = EΘ and can be
computed without explicit usage of Π. After this initial-
ization the update formula can be used without addi-
tional treatment since the updates are already projected
by construction and thus all subsequent residual factors
will automatically be invariant under projection with Π.
This is obviously possible in the index-2 case introduced
in Section 3.1. In Gugercin et al. (2013) one of the con-
tributions is to show that the symmetry with respect to
G in Heinkenschloss et al. (2008) is in fact not necessary.
Thus, observing that the index-3 model in (3) is just the
non-symmetric variant, we can do the same here.
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ADI Shift Parameter Computation For fast convergence,
Algorithm 1 relies on shift parameters that are often taken
as a subset of eigenvalue approximations of the matrix
pencil λE − A. The matrix pencil λ [E 0

0 0 ] −
[
A GT

G 0

]
in

(9) has 2nµ infinite eigenvalues. Therefore, direct usage
of Arnoldi’s method for the approximation of large magni-
tude eigenvalues is not possible. However, we can employ
the strategy introduced in Cliffe et al. (1994) looking at
the modified matrix pencil λ

[
E αGT

αG 0

]
−

[
A GT

G 0

]
which

moves all infinite eigenvalues to 1
α (α ∈ R) and keeps the

finite ones untouched. Although the original paper states
the theorem (Cliffe et al., 1994, Theorem 3.1) only for the
case G = H, the result also holds for G, H as in (17). This
is due to the fact that by swapping the first two block
columns in the matrices in (3) we obtain an equivalent
matrix pencil, which provides exactly the same structure
as in the index-2 case.

Now, first computing approximations to the small mag-
nitude eigenvalues and choosing 1

α close to them, enables
the use of Arnoldi’s method with the modified pencil. Only,
the matrix A2 in (2) is always singular and thus (Eich-
Soellner and Führer, 1998, Theorem 2.7.3) 1 must be used
to identify the nonzero finite spectra of the pencils λE−A2

and λE−A3 and, thus, always use A3 for the small magni-
tude eigenvalue computations. Note that P(α) = A2 +αE
is invertible for all α �= 0, although A2 is not, such that
the linear systems in the actual algorithm are well-posed
for all proper choices of α.

4. NUMERICAL RESULTS
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Fig. 1. Sigma plots of the original, reduced, and error
systems for Stykel’s example.

In this section we present some computational results of
our approach. We have tested it on three benchmark exam-
ples on a notebook with one Intel® Core™i7-3517U CPU
running at 1.90GHz with 2 cores and 4GB of RAM. The
experiments use Ubuntu 16.04.3 LTS, MATLAB® R2016b
and M-M.E.S.S.-1.0.1. The experiments will be included as
demonstration examples in the next M-M.E.S.S. release.
We show the sigma plots of the transfer functions of the
original system, the reduced one, and the error system
evaluated at frequencies ω. In our plots, σmax(·) refers to
the largest singular value of its matrix argument and G

1 The theorem originates in Simeon et al. (1993) but we prefer the
textbook reference.
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Fig. 2. Sigma plots of the original, reduced, and error
systems for the constrained Truhar/Veselić example.
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Fig. 3. Sigma plots of the original, reduced, and error
systems for our modified Truhar/Vesilić example.

denotes any of the transfer functions (Antoulas (2005))
under consideration.

First we consider the system from Mehrmann and Stykel
(2005) whose linearization has as a state-space dimension
of 12 001 and one input as well as one output. The Gramian
factors computed by Algorithm 1 have 33 and 26 columns,
respectively. The computation of the Gramian factors and
the resulting reduced-order model of order 9 took 1.04
seconds. Figure 1 shows the sigma plots of the transfer
functions of the original system and the reduced one, which
match very well.

The second example is the triple chain oscillator taken
from Truhar and Veselić (2009) with viscosities and iternal
damping set up as in Saak (2009). Here we consider
a version with 1500 masses in each chain and a total
system order of 9 008 due to 6 additional constraints. Our
constraints rigidly couple the masses number 1 and 750,
as well as 751 and 1500 in each chain. The input matrix
Bξ is the column of all ones just like the output matrix
C1 is the row of all ones. The matrix C2 is chosen as
the zero matrix. This simplifies the linearization and thus,
the reduced order model (compare (10)). For this example
the Gramian factors both have 301 columns, since the
maximal iteration number is reached, i. e., the factors have
not fully converged. Also the error bound inherits this
inexactness, since it needs to be evaluated with respect
to these approximate factors. Further, we prescribe a
maximum of 250 for the order of the reduced order model,
which is attained here. Therefore, the approximation can
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not be expected to be as precise as in the previous example.
The computation of the Gramian factors and the reduced
model took 5.1 seconds and the still very convincing results
can be found in Figure 2.

As the third example we choose an even more challenging
version of the second example. In this case, the three
chains contain only 151 masses. The remaining setup is as
before, but now we only have three constraints coupling
masses 1, 76, and 151 in a weighted sum in each chain.
The three inputs go to the 5th mass in the first, the
81st mass in the second, and the 146th mass in the third
chain, while the outputs are the displacements of the big
coupling mass, the last mass in the second chain and 38th
mass in the last chain. Together with the low internal
damping, this example leads to very bad conditioning
for the ADI procedure. The ADI iterations for both
Gramian factors hardly converge at all. The normalized
residual norms are O(10−1) after 300 iterations, each.
However, the reduction results are even better than for the
second example as Figure 3 clearly shows. For comparison,
this figure also contains the absolute error for the dense
reference computation (using lyapchol in MATLAB) with
explicit projection. Here, we fixed the reduced order to
300 for both approaches, rather than prescribing an error
tolerance.

5. CONCLUSIONS

The results presented in this paper show the feasibility of
the M-M.E.S.S. implementation of the implicit index re-
duction approach for balanced truncation model reduction
of constrained mechanical systems.

ACKNOWLEDGEMENTS

The authors would like to thank M.M. Uddin and M.I. Ah-
mad for their early experiments in Uddin (2015); Ah-
mad and Benner (2014) and the joint workshop contri-
bution Ahmad et al. (2014).

REFERENCES

Ahmad, M.I. and Benner, P. (2014). Interpolatory model
reduction techniques for linear second-order descriptor
systems. In Proc. European Control Conf. ECC 2014,
Strasbourg, 1075–1079. IEEE. doi:10.1109/ECC.2014.
6862210.

Ahmad, M.I., Saak, J., Uddin, M.M., and Voigt, M.
(2014). Model order reduction for structured second
order DAE systems. doi:10.5281/zenodo.838739. Poster
at Tegernsee Workshop 2014.

Antoulas, A.C. (2005). Approximation of Large-Scale
Dynamical Systems, volume 6 of Adv. Des. Control.
SIAM Publications, Philadelphia, PA. doi:10.1137/1.
9780898718713.

Cliffe, K.A., Garratt, T.J., and Spence, A. (1994). Eigen-
values of block matrices arising from problems in fluid
mechanics. SIAM J. Matrix Anal. Appl., 15(4), 1310–
1318. doi:10.1137/S0895479892233230.

Druskin, V., Knizhnerman, L., and Simoncini, V. (2011).
Analysis of the rational Krylov subspace and ADI meth-
ods for solving the Lyapunov equation. SIAM J. Numer.
Anal., 49(5), 1875–1898. doi:10.1137/100813257.

Eich-Soellner, E. and Führer, C. (1998). Numerical Meth-
ods in Multibody Dynamics. European Consortium
for Mathematics in Industry. B. G. Teubner GmbH,
Stuttgart. doi:10.1007/978-3-663-09828-7.

Gugercin, S., Antoulas, A.C., and Beattie, C.A. (2008).
H2 model reduction for large-scale dynamical systems.
SIAM J. Matrix Anal. Appl., 30(2), 609–638. doi:10.
1137/060666123.

Gugercin, S., Stykel, T., and Wyatt, S. (2013). Model
reduction of descriptor systems by interpolatory projec-
tion methods. SIAM J. Sci. Comput., 35(5), B1010–
B1033. doi:10.1137/130906635.

Heinkenschloss, M., Sorensen, D.C., and Sun, K. (2008).
Balanced truncation model reduction for a class of de-
scriptor systems with application to the Oseen equa-
tions. SIAM J. Sci. Comput., 30(2), 1038–1063. doi:
10.1137/070681910.
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