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The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor
quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type
nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum
conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial
charges calculated from density-functional theory are used to calculate the coupling elements. The partial
charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We
find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic
system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the
spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing
density along the effective molecular dipole axis and the distance between the molecules and the surface.
We also observe that the device performance strongly depends on the orientation of the molecular dipole
moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover,
the operating regime is identified where inscattering dominates over unwanted backscattering from the
molecular layer into the substrate.
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I. INTRODUCTION

A potential advantage of hybrid inorganic-organic sys-
tems over their individual constituents is that a synergistic
combination can lead to enhanced optoelectronic properties
and tunable functionality [1–9]. Typical components include
organic materials such as organic dye molecules, and
inorganic semiconductor nanostructures such as a quantum
well (QW) or a semiconductor surface [10–14]. Inorganic
semiconductors have several favorable properties, such as
high charge carrier mobilities and efficient carrier injection,
that could be beneficially combined with the high radiative
emission efficiency of organic molecules due to the strong
light-matter coupling. Furthermore, different types of exci-
tation processes can emerge in hybrid nanostructures, e.g.,
Frenkel-Wannier excitons [15,16] and hybrid charge-transfer
interface states (i.e., excitons with the electron and hole
located at different constituents of the inorganic-organic
heterostructure) [17,18]. In this work, we theoretically
study dipole-dipole-interaction-induced excitation transfer
pathways (so-called Förster coupling) from an electrically
pumped inorganic substrate across a two-dimensional
buffer-layer interface towards a layer consisting of organic
molecules.

Förster interaction is a nonradiative energy transfer [19]
where the excitation energy is transferred from an initially
excited donor dipole to an acceptor dipole via a nonretarded
dipole-dipole interaction. As a rule of thumb, it requires a
spectral overlap of the two dipole resonances in the
inorganic substrate and the organic adsorbate. It can couple
electronic states in an inorganic semiconductor nanostruc-
ture to Frenkel excitons in the organic component and
dominates if wave-function overlap between the organic
and the inorganic layer is negligible. Such excitation
transfer processes have been the object of experimental
[2,3,7,20,21] as well as theoretical studies [15,22,23].
However, since a thorough experimental characterization
of the underlying microscopic coupling mechanisms is
difficult, theoretical studies can extend knowledge towards
a detailed understanding of the excitation transfer dynamics
in hybrid systems.
In this paper, we derive the Coulomb-induced excitation

transfer rate from a ZnO quantum well into a monolayer of
organic molecules adsorbed on top of the semiconductor
substrate. Our approach represents the case of exciting the
optically active organic molecular layer by strong electrical
pumping of the semiconductor QW. We focus on the
coupling of electrically pumped—i.e., occupied—electron-
hole continuum states of the semiconductor to the molecu-
lar excitons. The semiconductor continuum covers a broad
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energy range, which makes the coupling efficiency less
sensitive to resonance energy mismatches between the
organic and inorganic components. We find that the effect
of interlayer coupling is determined by microscopic qua-
simomentum selection rules that depend on the geometry of
the hybrid structure. Therefore, the parameter studies
presented in this paper can help to increase the energy
transfer efficiency by geometry optimization of the hybrid
structure.
We use a density-matrix formalism (similar to

Ref. [23]) to study the excitation transfer in the composite
inorganic-organic system. For the interactions, we include
interlayer Coulomb coupling (Förster type and electro-
static), as well as intermolecular coupling within the
organic layer. The intermolecular coupling leads to the
formation of bands in the organic system, which is
particularly relevant in the case of densely packed
molecular films, and thus for small intermolecular dis-
tances. Besides the dipole-dipole excitation transfer con-
tributions to the Coulomb Hamiltonian, all electrostatic
monopole-monopole coupling terms are also considered,
resulting in electrostatic shifts in the resonance energies
that strongly depend on the molecular coverage. The
microscopic Coulomb coupling elements are calculated
using (transition) partial charges [24,25] obtained from
density-functional theory (DFT). This approach allows for
a more accurate modeling of Coulomb interaction proc-
esses for small distances between the interacting constitu-
ents compared to a simple point-dipole approximation.
We assume a periodic arrangement of the molecules in the
organic layer, as in Ref. [23]. In this way, it is possible to
consistently treat both the semiconductor and molecular
quantities using a quasimomentum representation [23].
This work is organized as follows: First, we illustrate the

theoretical treatment of the model system employing a
partial-charge approximation of the Coulomb coupling
elements (Sec. II). In Sec. III, equations of motion for
the excitation transfer are derived for the system density
operator, and the scattering rate is deduced. Finally, we
present the numerical evaluation using microscopic input
parameters obtained from DFT calculations (Sec. IV).

II. MODEL SYSTEM AND HAMILTONIAN

A. Model system and input parameters

In the considered model system, flat ladder-type quarter-
phenyl (L4P) molecules [26] are arranged in a quasi-
two-dimensional film on a ZnO QW; see Fig. 1(a). The
microscopic input parameters are taken from DFT calcu-
lations. The adsorption geometry is calculated for an organic
film of weakly bonded L4P molecules relaxed on top of a
ZnOð101̄0Þ surface. This geometry is kept fixed for deriving
the partial charges of the organic and inorganic component in
separate DFT calculations in vacuum. The DFT calculations
employ the hybrid exchange-correlation (xc) functional

Heyd-Scuseria-Ernzerhof (HSE06) [27] as implemented in
the FHI-aims code [28–30].We use tight numerical settings for
all calculations. Relativistic effects are accounted for by the
atomic zeroth-order regular approximation approach [28].
The substrate is modeled using the slab approach, where a
ZnO unit cell with a z extension corresponding to a QW
thickness of 4.3 nm is defined and repeated periodically. The
periodic images of the slab are separated by a vacuum layer
>30 Å in the z direction. Potential electrostatic interactions
between periodic images are compensated for by a dipole
correction [31]. For the integrations over the Brillouin zone
for obtaining the transition partial charges, we use a k-point
grid with a density of 4 points per Å−1 in the directions
corresponding to the surface plane. Van der Waals inter-
actions are taken into account by means of the Tkatchenko-
Scheffler (TS) scheme [32]. For the ZnO surface, the TS
parametrization of Ref. [33] is used (see Refs. [34,35] for
details).

B. Hamiltonian

We focus on the energetically lowest allowed electronic
transitions between the highest occupied molecular
orbital (HOMO, H) and lowest unoccupied molecular
orbital (LUMO, L) in the molecules and between
the valence and conduction bands in the semiconductor
substrate. The Hamilton operator of the hybrid system
for calculating the transfer rate consists of three parts:
Ĥ ¼ Ĥ0 þ Ĥm-m

C þ Ĥm-s
C .

The Hamiltonian

Ĥ0 ¼ Ĥm
0 þ Ĥs

0 ¼
X
A;ν

ενAâ
†
A;νâA;ν þ

X
λ;k

εkλ â
†
λ;kâλ;k ð1Þ

contains the free-particle energies ενA and ε
k
λ of the carriers in

the molecular layer and in the semiconductor bands,
respectively. The index A (running over H and L) denotes
the molecular orbital of the νth molecule with the electronic
wave function ψA;ν. Since we assume identical molecules,
ενA ≡ εA holds. λ includes the valence (v) and conduction (c)
band and k≡ kk the (two-dimensional) wave vector of a
semiconductor electron in the two-dimensional QW plane
with wave function ψλ;k in the envelope-function approxi-

mation [10]. âð†ÞA;ν and âð†Þλ;k are the annihilation (creation)

FIG. 1. (a) Model system consisting of a single layer of L4P
molecules adsorbed on a ZnO substrate. (b) Schematic of Förster
energy transfer from an electrically pumped semiconductor to a
molecule.
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operators for an electron in a molecule and in the semi-
conductor QW, respectively.
We consider two different contributions from the

Coulomb interaction. First, Ĥm-m
C describes the intermo-

lecular coupling between molecules in the organic layer:

Ĥm-m
C ¼ 1

2

X
A;B

X
νa≠νb

VA;νa
A;νa

B;νb
B;νb

â†A;νa â
†
B;νb

âB;νb âA;νa

þ
X
νa≠νb

VH;νa
L;νa

L;νb
H;νb

â†H;νa
â†L;νb âH;νb âL;νa ; ð2Þ

with the Coulomb coupling matrix element

VA;νa
A0;νa

B;νb
B0;νb

¼
Z

d3r
Z

d3r0ψ�
A;νa

ðrÞψ�
B;νb

ðr0Þ

× e2Gm-mðr; r0ÞψB0;νbðr0ÞψA0;νaðrÞ: ð3Þ

Gm-mðr; r0Þ denotes the Green’s functions for the Coulomb
interaction between two charges at r and r0, as it arises from
Poisson’s equation for interacting charges and is discussed
later in this section. Note that we distinguish two contribu-
tions in Eq. (2) [36]: The diagonal monopole-monopole
coupling (the first term) represents the electrostatic
Coulomb interaction between charge densities and gives
rise to an energy renormalization of the electronic states. The
off-diagonal Förster coupling (the second term) describes an
excitation energy transfer.
Second, the molecule-semiconductor (interlayer)

CoulombHamiltonian Ĥm-s
C describes the coupling between

the molecules and the electrons in the semiconductor
substrate; see Fig. 1(b):

Ĥm-s
C ¼

X
λ;k;k0

X
A;ν

Vλ;k
λ;k0

A;ν
A;νâ

†
λ;kâ

†
A;νâA;νâλ;k0

þ
�X

k;k0

X
ν

Vc;k
v;k0

H;ν
L;ν â

†
c;kâ

†
H;νâL;νâv;k0 þ H:c:

�
; ð4Þ

Vλ;k
λ0;k0

A;ν
B;ν ¼

Z
d3r

Z
d3r0ψ�

λ;kðrÞψ�
A;νðr0Þ

× e2Gm-sðr; r0ÞψB;νðr0Þψλ0;k0 ðrÞ: ð5Þ

Couplings such as the Coulomb interaction between the
semiconductor electrons within the QW substrate are not
considered here since our goal is to describe strong, inco-
herent electrical pumping of the semiconductor with large
carrier densities,which suppresses the formation ofWannier-
exciton-like bound states within the semiconductor.
The dielectric screening in the composite system is

taken into account by introducing effective dielectric
constants ϵm-m

eff ¼ϵmðϵsþϵmÞ=ðϵs−ϵmÞ for the intermolecu-
lar and ϵm-s

eff ¼ 1
2
ðϵsþ ϵmÞ for the interlayer Coulomb matrix

elements. The effective dielectric constants are derived
treating two half-spaces with different bulk dielectrics, ϵm

in the molecular layer and ϵs in the semiconductor sub-
strate. Electrostatic charges within one of the half-spaces
influence the electrostatic potential in the other half-space,
which can be described using the concept of image charges;
see Refs. [37,38]. The Green’s functions are given by

Gm-mðr;r0Þ¼ 1

4πϵ0

�
1

ϵmjr−r0j

−
1

ϵm-m
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−x0Þ2þðy−y0Þ2þðzþz0Þ2

p �
ð6Þ

for the intermolecular and

Gm-sðr; r0Þ ¼ 1

4πϵ0ϵ
m-s
eff

1

jr − r0j ð7Þ

for the interlayer Coulomb interaction.

C. Partial-charge approximation

A dipole approximation is a common procedure for
deriving Coulomb coupling elements for excitation energy
transfer (see, e.g., Refs. [39–43]). However, the approxi-
mation is questionable if the size of the interacting wave
functions is on the same order as the distance between the
two constituents (i.e., in the case of intermolecular cou-
pling). One way to overcome this limitation is the extended
dipole approximation [24]. Here, a well-known method
from the force-field community and quantum chemistry is
adapted, using partial charges that are obtained numerically
by fitting the electrostatic potential [44–52].
In Ref. [24], this partial-charge technique was used to

describe two strongly coupled pigments in light-harvesting
complexes, each given by a many-particle wave function
containing N electrons. Here, we have a Hamiltonian in
second quantization. We define the single-particle density
ρABν ðrÞ of the νth molecule as the product of two molecular
wave functions [53]: ρABν ðrÞ ¼ ψ�

A;νðrÞψB;νðrÞ. For A ≠ B, it
represents the HOMO-LUMO transition density. We intro-
duce the potential solving the Poisson equation with mirror
charges Δrϕ

BB0
νb ðrÞ¼e=ϵ0½ρBB0

νb ðrÞ=ϵm−ρBB0
νb ðx;y;−zÞ=ϵm-m

eff �,

ϕBB0
νb ðrÞ ¼ −

Z
d3r0eGm-mðr; r0ÞρBB0

νb ðr0Þ; ð8Þ

ofmolecule νb and approximate it by the potential generated
by point charges, the atomic partial charges qBB

0
j at the

atomic positions Rjνb
:

ϕBB0
νb ðrÞ ≈

X
j

Gm-mðr;Rjνb
ÞqBB0

j ; ð9Þ

whereRjνb
¼ Rνb þ rj is the sumof positionRνb ofmolecule

νb and the position rj of the jth atom of molecule νb relative
to Rνb . Assuming identical, uniformly oriented molecules,
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these relative positions rj and charges q
AB;ν
i ≡ qABi are equal

for all molecules. After introducing the same procedure of
generating partial charges for molecule νa, the Coulomb
coupling is expressed as the electrostatic interaction
between atomic partial charges [24]:

VA;νa
A0;νa

B;νb
B0;νb

≈
X
i;j

Gm-mðRiνa
;Rjνb

ÞqAA0
i qBB

0
j : ð10Þ

The concept of the partial-charge approximation for inter-
molecular Coulomb matrix elements can be extended to the
interfacial molecule-semiconductor coupling. Therefore, we
define the one-particle density of the semiconductor substrate
ρλλ

0
kk0 ðrÞ ¼ ψ�

λ;kðrÞψλ0;k0 ðrÞ. We introduce an electrostatic
potential for the nth unit cell of the semiconductor substrate
andapproximate it by thepotential of thepartial chargesqλλ

0
i at

the relative positions ri within one unit cell:

ϕλλ0;kk0
n ðrÞ ¼ −

1

Au:c:

Z
ðu:c:Þn

d3r0eGm-sðr;Ri þ r0Þu�λ;kðr0Þ

× uλ0;k0 ðr0Þeiðk
0−kÞ·r0kξ�λðZn þ z0Þξλ0 ðZn þ z0Þ

ð11Þ

≈
X
i

Gm-sðr; riÞqλλ0i ; ð12Þ

whereAu:c: denotes the area of the ZnOunit cell,Rn the lattice
vector connected to thenth unit cell with the z componentZn,
uλ;kðrÞ the lattice-periodic Bloch function, and ξ�λðzÞ the QW
envelope function in the z direction. Note that we neglect the
momentum dependence of the semiconductor partial charges
and take the value at the Γ point: qλλ

0;kk0
i ≈ qλλ

0;00
i ≡ qλλ

0
i . This

approximation is valid sinceweconsider only electronic states
close to the band edges (see Sec. IV).
To rewrite the matrix element in terms of the approx-

imative partial charges, the integral over r in Eq. (5) is
transformed into a sum of integrals over the single unit
cells, and the invariance of the Bloch functions under a
lattice translation is used:

Vλ;k
λ0;k0

A;ν
B;ν ≈

1

Nu:c:

XNu:c:

n¼1

eiðk
0−kÞ·Rnk

×
X
i;j

Gm-sðRν þ rj;Rn þ riÞqλλ0i qABj : ð13Þ

Nu:c: is the total number of unit cells in the QW.
In this way, the complex field distribution of the

molecules and the semiconductor outside the van der
Waals radius of the atoms are represented by point charges
at the atomic positions. The partial-charge technique can be
applied if the electrostatic potentials are known, e.g., from
DFT calculations. A detailed description of how the partial
charges are calculated in FHI-aims is given in Appendix A.
The partial charges obtained by a fitting to the electrostatic
potential from a DFT calculation give direct access to the

effective transition dipole moment by summing over the
charges at the atomic positions

dcv ¼
X
i

qcvi ri: ð14Þ

Analogously, the effective dipole moment of the L4P
molecule is given by:

dLH ¼
X
j

qLHj rj: ð15Þ

The full electrostatic potential is required for calculating
the partial charges qλλi and qAAj that enter the monopole-
monopole coupling elements. It is typically calculated by
solving the Poisson equation for the full density. In FHI-aims,
a very efficient algorithm is used that employs the multi-
pole moments of the density [54,55]. To approximate the
Förster-type coupling elements, we need to calculate the
transition partial charges qλλ

0
i (λ ≠ λ0) and qABj (A ≠ B) for

the involved electronic states (orbitals) or, rather, products
of states. They can be calculated analogous to the charges
calculated for the full potential once the transition potential
is calculated. Instead of using the full charge density as
input for this algorithm, we implement the option to
calculate a transition density. The charges are fitted to
the electrostatic potential calculated on different grids
based on these transition densities. The potential obtained
from a DFT calculation employing the hybrid xc functional
HSE06 [27] and the potential reconstructed from the partial
charges are shown in Fig. 2.

D. Transformation of molecular orbitals
into a Bloch basis

Following Ref. [23], we assume a lattice-periodic
arrangement of the organic molecules. Moreover, we
assume that the substrate unit cells match the molecule unit

FIG. 2. (a) Atomic structure of the ZnO (101̄0) surface.
(b) Electrostatic potential obtained from a DFT calculation
employing the hybrid xc functional HSE06 [27]. (c) Electrostatic
potential of the ZnO (101̄0) surface generated by the approximate
partial charges. The calculated electrostatic potential of (b) is well
represented by the reconstruction with partial charges. The unit
cell is periodically extended perpendicular to the surface.
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cell such that the molecular lattice vectors are integer
multiples of the substrate lattice vector, as illustrated in
Fig. 3. This assumption leads to an idealized model used
for the microscopic description. An extension to a disor-
dered molecular layer is planned for future work [56]. We
transform the molecular operators into a Bloch basis using
âA;ν ¼ 1=

ffiffiffiffiffiffiffi
Nm

p P
le

−il·Rνk âA;l (see Refs. [23,57]), where we
introduce the two-dimensional wave vectors l for the
molecular states. The wave vectors l are restricted to the
first Brillouin zone of the molecules; see Fig. 3. Nm is
the total number of molecules. For a sufficiently extended
molecular layer, we approximate [23]

X
ν

1

Nm
eiQ·Rνk ≈

X
m1;m2∈Z

δQ;m1b̃1þm2b̃2
≡X

Gm

δQ;Gm
; ð16Þ

withGm ¼ m1b̃1 þm2b̃2 being a lattice vector in molecular
reciprocal space (see Fig. 3). The molecular free-electron
part in the new basis reads

Ĥm
0 ¼

X
A

εA
X
l

â†A;lâA;l: ð17Þ

The intermolecular CoulombHamiltonian in themomentum
basis has the form

Ĥm-m
C ¼ 1

2

1

Nm

X
A;B

X
l1;…;l4

X
Gm

δl1−l4;l3−l2þGm
VA
A
B
Bðl2 − l3Þâ†A;l1 â

†
B;l2

âB;l3 âA;l4

þ 1

Nm

X
l1;…;l4

X
Gm

δl1−l4;l3−l2þGm
VH
L

L
Hðl2 − l3Þâ†H;l1

â†L;l2 âH;l3 âL;l4 ; ð18Þ

with the coupling element using partial charges,

VA
A0

B
B0 ðqÞ ¼

X
Δm-m≠0

eiq·Δm-mk
X
i;j

qAA
0

i qBB
0

j Gm-mðri; rj þ Δm-mÞ: ð19Þ

Here, the sum over Δm-m ≡ Rνb − Rνa runs over all difference vectors between the positions of two molecular unit cells
(with one cell at a fixed position). The Kronecker δ in Eq. (18) ensures momentum conservation, except for a reciprocal
lattice vector. The interlayer Coulomb Hamiltonian is also transformed into momentum representation:

Ĥm-s
C ¼ 1

Nu:c:

X
λ;k;k0

X
A;l;l0

X
Gm

δl−l0;k−k0þGm
Vλ
λ
A
Aðk0 − kÞâ†λ;kâ†A;lâA;l0 âλ;k0

þ 1

Nu:c:

�X
k;k0

X
l;l0

X
Gm

δl−l0;k−k0þGm
Vc
v
H
L ðk0 − kÞâ†c;kâ†H;lâL;l0 âv;k0 þ H:c:

�
; ð20Þ

with the redefined matrix elements

Vλ
λ0

A
A0 ðqÞ ¼

X
Δm-s

eiq·Δm-sk
X
i;j

qλλ
0

i qAA
0

j Gm-sðrj; ri þ Δm-sÞ: ð21Þ

The sum over Δm-s ≡ Ri − Rν runs over the positions Ri of all substrate unit cells relative to a fixed molecular position Rν.
The Kronecker δ in Eq. (20) ensures quasimomentum conservation during Förster transfer and imposes microscopic
momentum selection rules on the system. The change in momentum in the molecule has to match the momentum change in
the semiconductor substrate except for a reciprocal lattice vector Gm of the molecules; see Fig. 3 (right panel).

FIG. 3. Unit cells (u.c.’s, left panel) and Brillouin zones (BZs,
right panel) of the hybrid system with the maximum coverage of
one molecule per 12 substrate unit cells (6 × 2) (see
Refs. [23,38]). The momentum vector diagrams depicted in
the substrate and molecule BZs illustrate the microscopic
momentum selection rules of the interlayer coupling.
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In Fig. 4(a), the intermolecular Förster coupling element
VH
L

L
HðqÞ is plotted. It exhibits a dumbbell-like shape along

the x direction since the effective dipole moments [given in
Eq. (15)] of all uniformly oriented molecules in the organic
film point in the x direction, such that the maxima of the
coupling strength also lie along the x axis [23]. Figure 4(b)
shows the interlayer Förster coupling strength jVc

v
H
L ðqÞj.

The shape of the transfer element shows four lobes oriented
roughly along the diagonals since the effective dipole
moments obtained from the transition partial charges
[see Eqs. (14) and (15)] are oriented almost perpendicular
to each other along the coordinate axes: dLHkex, dcvkey.

E. Molecular exciton basis

The state jϕm
0 i denotes the ground state of the organic

layer where the HOMOs of all molecules are fully
occupied. A basis describing exciton states is defined using
the ground state and the annihilation (creation) operators

âð†ÞA;l for electrons in the molecule:

jl1; l2i≡ â†L;l1 âH;l2 jϕm
0 i: ð22Þ

Owing to the intermolecular Coulomb interaction, the
coupled excitonic states of the molecular layer are delo-
calized superpositions of the two-particle states:

jXm
α i ¼

X
l1;l2

cαl1;l2 jl1; l2i ¼
X
l;q

cαlþq;ljl þ q; li: ð23Þ

Here, the wave vectors of the exciton basis are given using
l≡ l2 and momentum transfer q≡ l1 − l2.
The eigenvalue problem for the molecular Frenkel

exciton states jXm
α i is given by ðĤm

0 þ Ĥm-m
C ÞjXm

α i ¼
ðEm

0 þ Em
α ÞjXm

α i, where we introduce the molecular eige-
nenergy Em

0 þ Em
α that solves the Schrödinger equation of

the molecular layer. Em
0 ¼ hϕm

0 jĤm
0 þ Ĥm-m

C jϕm
0 i denotes

the constant ground-state energy.

A representation of the eigenproblem in the two-particle
basis has the form

hl þ q; ljĤm
0 þ Ĥm-m

C jXm
α i ¼ ðEm

0 þ Em
α Þcαlþq;l; ð24Þ

where the left-hand side of the equation depends on the
coefficients cαlþq;l, according to Eq. (23). Using the
Hamiltonian in momentum representation (as derived in
Sec. II D), the left-hand side of this equation is evaluated
numerically using the discrete wave vectors li and qj (with
each having Nm

d values). The calculation is shown in
Appendix B. The full molecular eigenproblem is block
diagonal with respect to qj, leading to an analytical solution
for the eigenenergies Em

α¼qj;n and the eigenvector compo-

nents c
α¼qj;n
liþqj;li

. Two solutions emerge. The Nm
d − 1 excitonic

basis states corresponding to the degenerate eigenvalue
Em
− are pairwise antisymmetric linear combinations of the

two-particle basis functions with the equal momentum
transfer qj:

jXm
qj;ni¼

ffiffiffiffiffiffiffi
Nm

Nm
d

s
1ffiffiffi
2

p ðjl1þqj; l1i− jlnþ1þqj; lnþ1iÞ ð25Þ

for n ∈ f1;…; Nm
d − 1g. The nondegenerate eigenvalue

Em
qjþ belongs to a fully symmetric eigenvector:

jXm
qjþi ¼

ffiffiffiffiffiffiffi
Nm

p
Nm

d

XNm
d

i¼1

jli þ qj; lii: ð26Þ

It appears that, in contrast to Em
qjþ, the degenerate eigene-

nergy Em
− is dispersionless, i.e., it does not depend on qj.

Later, we show that the corresponding antisymmetric
eigenvectors form dark states, such that only the symmetric
eigenstates contribute to the charge transfer across the
hybrid interface.
Here, only a single-excitation basis for molecular exci-

tons is considered, which is a reasonable assumption since
the molecular lifetimes in such hybrid systems (tens to
hundreds of picoseconds [6]) are smaller or of the sameorder
as the mean excitation transfer times from the electrically
pumped substrate into the organic layer, as detailed in
Sec. IV. The validity of this assumption is questionable
only in the case of very strong interlayer coupling and the
resulting comparably long exciton lifetimes in the molecu-
lar layer.

III. EQUATIONS OF MOTION OF THE
HYBRID SYSTEM

Now we focus on the transfer of semiconductor excita-
tions to the molecules. The equations of motion in the
excitonic basis are derived using thevonNeumann equation:

FIG. 4. (a) Contour plot showing the magnitude of the
intermolecular Förster coupling element VH

L
L
HðqÞ in meV over

all q values belonging to the first-molecule Brillouin zone for the
maximum coverage of one molecule per 12 substrate unit cells
(6 × 2). (b) Contour plot for the coupling strength jVc

v
H
L ðqÞj of the

interlayer Förster interaction in meV.
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iℏ
∂
∂t trs½hajÔsρ̂jbi� ¼ trs½hajÔs½Ĥ; ρ̂�−jbi� ð27Þ

for the density operator ρ̂≡ ρ̂m ⊗ ρ̂s. a and b are states of
the molecular system and Ôs is an operator of the semi-
conductor system or the identity. In the following, we are
interested in the population of the molecular system
ρmqj;n ≡ trs½hXm

qj;njρ̂jXm
qj;ni�, assuming approximative spatial

homogeneity in the molecular layer (an identical qj index).
We introduce the assisted molecule-semiconductor coher-
ence σk;k

0
qj;n ≡ trs½â†c;kâv;k0 hXm

qj;njρ̂jϕm
0 i�.We do not express the

full system Hamiltonian Ĥ in the new basis since it is
sufficient to evaluate how the Hamiltonian acts on the new
basis states. The equation ofmotion for the exciton density is
given by

∂
∂t ρ

m
qj;n ¼ −

2

ℏ
1

Nu:c:
c̃qj;n

X
k;k0

X
Gm

δqj;k0−kþGm

× Im

�
Vc
v
H
L ðk0 − kÞσk;k0qj;n

�
; ð28Þ

where we define c̃qj;n ≡ ðNm=Nm
d Þ
P

ic
qj;n
liþqj;li

. The

Kronecker δ ensures momentum conservation during inter-
layer Förster transfer; see Fig. 3. Obviously, the molecule-
semiconductor coherence between the layers is the source
term of the molecular occupation. c̃qj;n ¼ 1ffiffi

2
p − 1ffiffi

2
p vanishes

for the antisymmetric solution of the molecular eigenpro-
blem [see Eq. (B10) in Appendix B], such that only the
symmetric (bright) states contribute:

∂
∂t ρ

m
qjþ ¼ −

2

ℏ

ffiffiffiffiffiffiffi
Nm

d

p
Nu:c:

X
k;k0

X
Gm

δqj;k0−kþGm

× Im

�
Vc
v
H
L ðk0 − kÞσk;k0qjþ

�
; ð29Þ

∂
∂t σ

k;k0
qjþ ¼ i

ℏ
ðεkc − εk

0
v − Em

qjþ þ Vm-s
monoÞσk;k

0
qjþ

þ i
ℏ

ffiffiffiffiffiffiffi
Nm

d

p
Nu:c:

X
Gm

δqj;k0−kþGm
Vc
v
H
L
�ðk0 − kÞ

× ½ð1 − fh;k0 Þð1 − fe;kÞρmqjþ − fh;k0fe;kρm0 �; ð30Þ

with ρm0 ≡ trs½hϕm
0 jρ̂jϕm

0 i�. The constant shift

Vm-s
mono ≡ Nm

Nu:c:
½Vc

c
H
Hð0Þ − Vv

v
H
Hð0Þ�

þ
�
1 −

1

2
n2Dh Au:c:

�
½Vv

v
H
Hð0Þ − Vv

v
L
Lð0Þ�

þ 1

2
n2De Au:c:½Vc

c
H
Hð0Þ − Vc

c
L
Lð0Þ� ð31Þ

represents the monopole-monopole interaction, where
n2De or h ¼ Ne or h=AQW is the two-dimensional carrier density
for electrons (e) and holes (h). It describes the self-energy
due to the electrostatic coupling of the electronic states in
the molecular layer and the semiconductor substrate.
For the derivation of the above equations of motion, spatial
homogeneity for the fixed semiconductor populations
is assumed using hâ†λ;kâλ;k0 i ¼ δk;k0 hâ†λ;kâλ;ki. As a conse-
quence, inhomogeneousmonopole-monopole contributions
are neglected. A Hartree-Fock factorization is applied to the
semiconductor part, and we set δk−k0;Gm

¼ δk;k0δGm;0 since
only those k states close to the Γ point are relevant. The
coherences hâ†v;kâc;k0 i are assumed to decay rapidly, such

that hâ†v;k1 âc;k2ihâ
†
c;k3

âv;k4i ≈ 0. Moreover, the system is
assumed to be in the thermodynamic quasiequilibrium
within the valence and conduction bands, such that the
subband carrier populations are described by Fermi distri-
bution functions, fi;k ¼ fexp ½ðεki − μiÞ=ðkBTiÞ� þ 1g−1,
with i ¼ e; h for electrons and holes [10,58] (see Fig. 5).
μi denotes the carrier quasiequilibrium chemical potential
in the respective bands, and Ti is the nonequilibrium
temperature, which can be different for electrons and
holes. We focus on situations where only those states
close to the Γ point (k ¼ 0) are populated. Therefore, a
description of the band structure around theΓ point using the
effective-mass approximation is possible with effective
masses m�

v<0 and m�
c>0 and εkh¼−ðℏ2k2Þ=ð2m�

vÞ¼−εkv,
εke ¼ ðℏ2k2Þ=ð2m�

cÞ ¼ εkc − εsgap. The effectivemassesm�
v ¼

−8.3035m0 of the valence and m�
c ¼ 1.4463m0 of the

conduction-band electrons are obtained from a fit to
the DFT band structure of ZnO surface bands [23]. The
chemical potential for each band of a two-band system is
calculated using [10,59]

μi ¼ kBTi ln

�
exp

�
πℏ2n2Di
mikBTi

�
− 1

�
: ð32Þ

FIG. 5. Fermi functions of (a),(c) electrons and (b),(d) holes for
the parameter set given in Table I and (a),(b) varying temperatures
and (c),(d) charge carrier concentrations.
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The electron-hole states in the semiconductor substrate
form a continuum, thus allowing us to solve Eq. (30) for the
assisted molecular exciton-substrate polarization σk;k

0
qjþ in

the Markov approximation:

σk;k
0

qjþ ¼ −iπ
ffiffiffiffiffiffiffi
Nm

d

p
Nu:c:

X
Gm

δqj;k0−kþGm
Vc
v
H
L
�ðk0 − kÞ

× (fh;k0fe;kρm0 − ð1 − fh;k0 Þð1 − fe;kÞρmqjþ)

× δðεke þ εk
0

h − ΔqjÞ; ð33Þ

where we introduce Δqj ≡ Em
qjþ − εsgap − Vm-s

mono. This solu-
tion is inserted into the equation of motion for the
homogeneous molecule density ρmqjþ [Eq. (29)]:

∂
∂t ρ

m
qjþ ¼ 2π

ℏ
Nm

d

N2
u:c:

X
k;k0

X
Gm

δqj;k0−kþGm
jVc

v
H
L ðk0 − kÞj2

× (fh;k0fe;kρm0 − ð1 − fh;k0 Þð1 − fe;kÞρmqjþ)

× δðεke þ εk
0
h − ΔqjÞ: ð34Þ

This equation of motion for the transfer from the semi-
conductor electron-hole continuum to the molecular
system allows us to derive microscopic rate equations
for (Coulomb) scattering processes in the heterostructure
similar to Refs. [60,61].

IV. DISCUSSION OF THE INTERLAYER
TRANSFER RATE

From the equation of motion for the population ρmqjþ ¼
trs½hXm

qjþjρ̂jXm
qjþi� given in Eq. (34), the inscattering rate

Γin
qjþ ¼ 2π

ℏ
Nm

d

N2
u:c:

X
k;k0

X
Gm

δqj;k0−kþGm
jVc

v
H
L ðk0 − kÞj2

× fh;k0fe;kδðεke þ εk
0
h − ΔqjÞ ð35Þ

is identified as the transfer rate from the semiconductor
substrate into the exciton state Xmþ

qj of the molecular layer.
It is determined by the interlayer Förster coupling strength,
the Fermi functions fh;k0fe;k representing the quasiequili-
brium carrier distributions in the QW, and the momentum
and energy conservation. In the same way, the backscatter-
ing into the semiconductor layer is determined by

Γout
qjþ ¼ 2π

ℏ
Nm

d

N2
u:c:

X
k;k0

X
Gm

δqj;k0−kþGm
jVc

v
H
L ðk0 − kÞj2

× ð1 − fh;k0 Þð1 − fe;kÞδðεke þ εk
0

h − ΔqjÞ; ð36Þ

with the typical Pauli blocking terms preventing back-
scattering into the substrate when the relevant states are

already occupied. To obtain the total transfer rates involv-
ing all molecular exciton states, we sum over all numeri-
cally discrete qj vectors within the first Brillouin zone of
the molecules. The total rate scales linearly with the total
number of molecules Nm in the system. To numerically
evaluate the rate referring to one molecule (mean scattering
between the inorganic semiconductor QW and one mol-
ecule of the organic layer), we calculate Γin or out

tot =Nm.
For our analysis, while a parameter is varied, the other

material parameters are set as given in Table I.

A. Changing the detuning

First, we examine the transfer-rate dependence on
the detuning Δqj¼0 ≡ Δ0 ¼ Emþ

qj¼0 − εsgap − Vm-s
mono between

the renormalized resonances of the two constituents [see
Fig. 6(a)]. It enters the energy-conserving δ distribution in
Eqs. (35) and (36). Note that the intermolecular monopole-
monopole coupling leads to a substantial energy renorm-
alization for high molecular coverages. In the case of the
closest molecular packing without steric overlap of one
molecule per 6 × 2 substrate unit cells (see Fig. 3), we

TABLE I. Material parameters used for calculating the transfer
rates (if not varied in the plots).

L4P relative permittivity ϵm 1.0
ZnO relative permittivity [62] ϵs 7.9
ZnO band gap [62] εsgap 3.4 eV

2D electron density in ZnO n2De 1.5 × 1013=cm2

2D hole density in ZnO n2Dh 1.5 × 1013=cm2

Electron temperature in ZnO Te 10 K
Hole temperature in ZnO Th 10 K
Interlayer separation Δz 0.4 nm
Molecular coverage 10 × 10 unit cells2

Detuning Δ0 15 meV

FIG. 6. (a) Scheme of the system states of the semiconductor
(left) and molecule (right) for increasing detuning Δ0 ¼ Emþ

0 −
εsgap − Vm-s

mono (not true to scale). (b) Total in- and outscattering
rates from inorganic to organic component as functions of the
detuning between the renormalized resonances of the organic and
inorganic constituents.
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adjust the molecular gap εmgap by several tens of meV in order
to get the two exciton systems into resonance. Of course, in
the case of sparse molecular coverage, the intermolecular
monopole-monopole shifts have a much weaker effect. The
inorganic-organic resonance energy detuning can be con-
trolled by tuning the molecular structure (e.g., exchanging
ligands, etc. [6]). Furthermore, other corrections may be
important here beyond our simplemodel, which focuses only
on the transfer. Therefore, a variation of Δ0 [see Fig. 6(a)] is
justified for obtaining a qualitative understanding of the
involved transfer processes in these situations.
Figure 6(b) shows the total in- and outscattering rates as a

function of the detuning Δ0. The rates are in the range of
several ns−1. These values are consistent with experimentally
measured transfer times of 100–300 ps in similar hybrid
structures [2,6]. The inscattering rate into the molecular film
decreases for an increasing Δ0 and vanishes for detunings
larger than 30 meV, so a device operation up to 10–15 meV
should be efficient. By contrast, the outscattering rate has a
maximum at around 30 meV and drops to zero towards
higher (approximately 50 meV) and lower detunings (about
10 meV). This behavior can be understood by using the
scheme of system states shown in Fig. 6(a): The carrier
population in the semiconductor is depicted along the x axis
as a product of the Fermi function and the density of states.
The molecular states are discrete HOMO and LUMO levels
with two different detunings Δ0. (This simplified scheme
ignores that the molecular system also exhibits a flat band
structure due to the intermolecular Coulomb coupling.
However, the molecular bands cover a very small energy
range compared to the electrically pumped semiconductor
states.) Low detunings mean a close energetic match
between the resonances of the two constituents. This energy
matching enables an efficient inscattering into the molecular
layer since the semiconductor substrate exhibits a high
population filling where energy and momentum conserva-
tion are fulfilled. For higher detunings and increased energy
mismatch [see the right-hand side of Fig. 6(a)], the number
of available scattering partners in high-energy band states
decreases. Therefore, the inscattering rate shows a strong
decrease. Up to Δ0 ¼ 30 meV, the outscattering rate in
Fig. 6(b) shows the opposite behavior dictated by the Pauli
blocking terms that prevent backscattering. However, Pauli
blocking gets weaker with increased detuning, and the
outscattering rate increases until the energy mismatch
between the molecular and semiconductor gap is too large
to be bridged by any of the populated states in the semi-
conductor electron-hole continuum.
A more thorough discussion of the relevant processes in

reciprocal space that determine the rate for varying detun-
ings is given in Appendix C.

B. Influence of the molecular coverage

Figure 7 shows the excitation energy transfer rate from
the electrically pumped semiconductor substrate into the

molecular layer as a function of the molecular coverage
density for different aspect ratios of molecular coverage.
The aspect ratio nx:ny defines the ratio between the number
of semiconductor unit cells matching a molecular unit cell
in the x direction and the number in the y direction. We
calculate the transfer rate for a detuning of Δ0 ¼ 30 meV
since here a calculation over a large parameter range is
feasible. Other detunings show the same overall qualitative
behavior. For decreasing molecular coverages, the size of
the molecular unit cell in real space increases, whereas the
molecular Brillouin zone decreases [23]: The molecular
reciprocal grid points get denser until a quasicontinuous
density of reciprocal lattice vectors is achieved. This high
reciprocal grid density increases the interlayer Coulomb
coupling per molecule in the case of low molecular
coverages since more processes fulfill momentum conser-
vation. For very small coverages (the left-hand side of
Fig. 7), the distance between two neighboring molecules
is so large that they do not interact and the particular unit-
cell geometry defined by the aspect ratio is irrelevant.
Therefore, the transfer rates tend towards the same low-
coverage limit independent of the aspect ratio. However,
when going towards higher molecular coverage, the trans-
fer efficiency strongly depends on the aspect ratio. Here,
two processes are counteracting: On the one hand, increas-
ing the total number of molecules per 100 substrate unit
cells improves the coupling to the substrate since the
coverage density given as the number of molecules divided
by the number of semiconductor unit cells Nm=Nu:c: enters
the rate. On the other hand, the number of allowed
momentum transfer processes decreases for higher cover-
age due to the decreasing reciprocal grid density. The
dependence on the aspect ratio reflects the spatial orienta-
tion of the molecular transition dipole moment dHL along
the x axis [see Fig. 4(a)]. For aspect ratios less than 1, the
unit cell has a larger extent in the y direction than in the x
direction, thus increasing the number of unfavorable
scattering channels perpendicular to the dipole moment.

FIG. 7. Inscattering rates as functions of the molecular coverage
density for different aspect ratios of the molecular coverage.
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This situation leads to a weaker interaction for smaller
aspect ratios. Indeed, the transfer rate decreases by orders
of magnitude when increasing the molecular coverage
inside typical ranges (normalized to the molecule number).
This decrease is, of course, negative for the device
performance. The main reason for the decrease is the
smaller number of allowed transfer processes. For aspect
ratios greater than 1 that coincide with the dipole orienta-
tion, this effect is strongly attenuated—and is even inverted
in the case of 3∶1 coverage. Here, the increase in transfer
efficiency for high coverage dominates over the counter-
acting decrease of the allowed momentum transfer proc-
esses. Note that the maximum molecular coverage without
steric overlap is one molecule per 6 × 2 substrate unit cells
with an aspect ratio of 3∶1 (see the red curve in Fig. 7). This
configuration will most likely be in the experiment with
one—or even multiple—fully closed organic layers on top.
Here, we could show that dense coverage combined with a
high aspect ratio, as in the case of maximum coverage, is
advantageous for the device performance.

C. Tuning the electrical driving: Influence of the
carrier concentration

In Fig. 8, the in- and outscattering transfer rates are
depicted for increasing carrier concentrations in the semi-
conductor part. Through the chemical potential in Eq. (32),
the carrier densities enter the Fermi distribution of the
electron and hole continuum in the inorganic constituent.
Note that here, we consider the case of electrical pumping
through an injection current that equally increases the
electron and hole concentrations [59], as realized, e.g.,
by integrating the hybrid device into a p-i-n configuration.
However, situations with asymmetrical driving of the
different carrier densities are also possible [63], which
would lead to the same qualitative behavior but not be as
pronounced as in the case where both charge carrier
concentrations are tuned equally.

The transfer efficiency is highly sensitive to the
charge carrier concentration: As expected, the inscatter-
ing rate per molecule becomes larger for increasing
carrier densities due to the higher number of carriers
that are available as scattering partners. This effect
increases the number of carriers with energies fulfilling
energy conservation for transfer and thus provides an
increased transfer efficiency. First, the transfer rate
increases nonlinearly, then it enters a period of linear
growth at n2De or h ¼ 1.8 × 1013 cm−2, indicated by the
dashed gray line in Fig. 8. The initial nonlinear growth
of the rate for low carrier concentrations is attributed to
the energy and momentum conservation: At low n2De or h,
only a few scattering channels are available in the
absence of higher energy and momentum states.
With increasing carrier concentrations, the number of

possible scattering partners increases until the interaction
channels which are allowed by momentum and energy
conservation are saturated. Then the rate enters the linear
growing regime dictated simply by the constant growth of
the carrier density. Surprisingly, up to n2De or h ¼ 0.7×
1013 cm−2, the outscattering rate also increases before
decreasing again. The unexpected initial growth of the
outscattering rate is explained as follows: For very low
carrier densities, only electronic states close to the Γ point
are populated, whereas higher energy and momentum states
are not occupied; see Figs. 5(c) and 5(d). This effect
restricts the possible transfer processes to a small energy
and momentum range, thus reducing both the in- and
outscattering excitation transfer efficiency.
For increasing carrier concentrations, more electronic

states contribute. However, at a certain carrier concentra-
tion, Pauli blocking is reached in the semiconductor QW
and reduces the outscattering rate again: For larger carrier
concentrations, an increasing number of electron-hole
continuum states is occupied, thus preventing backscatter-
ing into the semiconductor layer; i.e., this process becomes
negligibly small.

D. Tuning the electrical driving:
Changing the carrier temperature

Figures 5(a) and 5(b) show that the temperature of the
charge carriers in the QW changes the carrier distribution in
the semiconductor bands considerably. To analyze the
interplay between the resonance energy detuning Δ0 and
the temperatures Te or h, we calculate 2D maps for the
inscattering [Fig. 9(a)] and outscattering rates [Fig. 9(c)]
that depend on temperature and detuning. For higher
temperatures, the in- and outgoing rates are less sensitive
to resonance energy detunings, and the transfer efficiency is
less dependent on the temperature.
Here, the increased population of high-energy band

states in the QWat higher temperatures results in increased
energy matching. This energetic match leads to a mono-
tonic increase of the backscattering rate with increasing

FIG. 8. Total in- and outscattering rates as functions of the
two-dimensional carrier concentration in the semiconductor
QW for an aspect ratio of 1∶1 (10 × 10 coverage) and a
charge carrier temperature of 10 K. The dashed gray line marks
the linear regime that the inscattering rate enters at
n2De or h ¼ 1.8 × 1013 cm−2.
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temperature; see Figs. 9(c) and 9(d). However, an interest-
ing feature occurs in the case of the inscattering rate; see
Fig. 9(a). To highlight this effect, we additionally plot cuts
through the 2D map at the fixed detunings Δ0 ¼ 15 meV
(the orange curve), 22.5 meV (the blue curve), and 30 meV
(the purple curve); see Fig. 9(b). The positions of the cuts
are marked by the dashed lines in the 2D map in Fig. 9(a).
For larger detunings where Δ0 > 25 meV [the upper

region in the 2Dmap of Fig. 9(a) and the purple curve in the
graph of Fig. 9(b)], the inscattering rate increases mono-
tonically with increasing temperature, as one would expect
due to the population of higher electronic states fulfilling
the energy-conservation condition. By contrast, for lower
detunings where Δ0 < 25 meV, the transfer rate shows a
slight increase at first but then drops down again when
going towards higher temperatures. Small detunings
between the semiconductor band gap and molecular gap
require a close energetic match that is fulfilled only by
lower energy states close to the Γ point.
However, in the high-temperature regime, the population

of the electron-hole continuum states close to the Γ point at
k ¼ 0 decreases, whereas in turn higher energy and
momentum states are occupied (see Fig. 5). This effect
decreases the transfer efficiency in the case of high
temperatures and small detunings. The backscattering rate
in Fig. 9(b) shows the opposite behavior: The higher the
detuning, the higher the backscattering efficiency.
However, this behavior only holds for temperatures above
30 K. Below that, the outscattering decreases for higher
detunings; see also the nonmonotonic shape of the out-
scattering curve in Fig. 6(b) for T ¼ 10 K. Here, the large
energetic detuning between the inorganic and organic
parts counteracts the fact that, at low temperatures, only
low-energy band states are populated.

E. Variation of the orientation and distance
of the molecular film

As discussed in Sec. II C, the validity of the partial-
charge technique exceeds the dipole-dipole approximation.
However, effective transition dipole moments can be
assigned to the partial charges belonging to one constituent
according to Eqs. (14) and (15): dcv ¼

P
iq

cv
i ri and

dLH ¼ P
jq

LH
j rj. Therefore, we expect a dependence of

the transfer efficiency on the orientation of the molecules
on top of the semiconductor surface. In the geometry found
by DFT calculations, the effective dipole moments of the
organic and inorganic constituents both lie in the QW
plane; however, they are oriented almost perpendicular.
Therefore, we rotate the molecules within their plane
around the vertical z axis. Figure 10(a) depicts the transfer
rate in the organic film that depends on the rotational angle
of the molecules around the z axis. Indeed, we observe a
cos2-like behavior with maxima at roughly 85° and 265°,
where the effective dipole moments are approximately
parallel. This behavior reflects the interlayer Förster cou-
pling element entering the rate in Eq. (35) squared. Note
that other parameters besides the simple cos dependence
of the interlayer coupling element also play a role when
rotating the molecules since the molecular band dispersion
—and therefore the energy matching condition—is also
altered due to the changed intermolecular coupling. Also,
the rate does not drop to zero for perpendicular effective
dipole moments, as one would expect for a pure dipole
interaction, since there is always a substantial remaining
coupling strength due to the spatial distribution of the
partial charges. At perpendicular dipole moments, the rate
is still around 24% of the maximum value at parallel
dipoles.
Figure 10(b) shows the transfer rate into the molecular

layer for an increasing distance Δz between the semi-
conductor substrate and the molecular adlayer. Different
separations between the QWand the adsorbed organic layer
can be realized experimentally, e.g., by inserting a spacer
layer of variable thickness [2]. As expected, we observe a
strong decrease of the transfer efficiency with increasing

FIG. 9. Total (a) inscattering and (c) outscattering rate as a
function of the charge carrier temperature T ¼ Te ¼ Th and the
energetic detuning Δ0. (b),(d) Cuts through the 2D plots (a) and
(c) (indicated by the dashed lines) at fixed detunings Δ0 ¼
15 meV (the orange curves), 22.5 meV (the blue curves), and
30 meV (the purple curves). The red circles mark the standard
values used throughout this work (see Table I).

FIG. 10. (a) Total inscattering rate as a function of the rotational
angle of the molecules around the z axis. (b) Total inscattering
rates as functions of the interlayer separation between the
semiconductor QW and the molecular layer.
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interlayer separation since the interlayer Förster coupling
strength entering the transfer rate is decreasing for increas-
ing distances. Note that we do not depict the backscattering
rate: It shows the same qualitative behavior.

V. CONCLUSIONS

In this paper, we use a microscopic theory for calculating
the energy transfer rate from an electrically pumped
inorganic semiconductor substrate into an organic molecu-
lar film. Partial charges for both the semiconductor and the
molecules are obtained from DFT calculations of the
electrostatic potential and are used to model the micro-
scopic coupling elements beyond the common dipole-
dipole treatment. We show that the transfer efficiency
can be improved substantially by altering the geometric
arrangement of the hybrid system and by varying the
pumping strength. The effect of Förster coupling between
the two layers is governed by the orientation of the dipole
moments in the two constituents and microscopic momen-
tum and energy selection rules, making hybrid inorganic-
organic systems highly versatile building blocks for device
application.
For optimizing future devices, we recommend the

following guidelines: (i) Near-field effects should be
exploited by using short distances, and the dipoles of
the molecules and the semiconductor should be aligned.
(ii) In order to suppress the backscattering, further layers
of molecules with a smaller band gap should be added
to act as a cascade. (iii) The carrier concentration
operating point should be high enough that inscattering
outweighs outscattering, and the transition energy of the
molecules and the semiconductor should be aligned
accordingly.
In this work, it is shown that the interlayer Coulomb

coupling efficiency is governed by microscopic momentum
selection rules dictated by the strict periodic arrangement of
molecules on top of the ZnO substrate. However, in most
experimental realizations, the molecular layer exhibits
disorder that may be treated in future studies using a
density-matrix approach in position space instead of a
Bloch basis and introducing a molecular supercell similar
to Ref. [56]. Disorder in the molecular layer is expected
to relax the strict momentum selection rules, thus poten-
tially enhancing the transfer efficiency and making the
transfer rate less sensitive to changes in the molecular
coverage density.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from
the Deutsche Forschungsgemeinschaft (DFG) through SFB
951 under Projects No. B4 and No. B12. This work was
supported by the Academy of Finland through its Centres
of Excellence Programme under Projects No. 251748 and
No. 284621.

APPENDIX A: CONSTRUCTION OF
PARTIAL CHARGES

The parametrization of the density-matrix formalism
from the electronic structure obtained by DFT calculations
was previously developed for purely crystalline semicon-
ductor surfaces [64]. The optical excitations and the
electron relaxation dynamics of silicon surfaces are calcu-
lated by a DFT parametrization based on the band structure,
momentum-matrix elements, and phonon band structure
obtained with a (semi)local xc functional. The first-order
approximation for the Coulomb matrix elements is equiv-
alent to the dipole matrix elements between the semi-
conductor and the molecular system.
The challenge is to find reliable partial charges for the

molecule and the semiconductor. A simple method for
cluster calculations (molecules) as well as two methods for
solids (periodic boundary conditions) [25,65] is imple-
mented in the FHI-aims code [28].
The starting point for these methods is the calculation of

the electrostatic potential at a sufficiently high number of
grid points outside the van der Waals (vdW) radius of the
atoms [66] (defined as the radius of imaginary hard spheres
reflecting the contact distance of the atoms [66]). To define
a spatial region for the grid, two parameters are necessary: a
minimal and a maximal radius around the atoms. These
radii are defined as multiples of the vdW radius of the
atoms. The values for the vdW radii of most atoms in
the periodic table are taken from Refs. [67–69]. For the
generation of the points, cubic (Cartesian) grids are used.
For finite systems such as molecule ones, we generate
points within a cube encapsulating the spheres with the
maximal radius (multiple of the vdW radius) around all
atoms. For periodic boundary conditions, the unit cell is
used. Points within the superposition of the spheres with
the minimal radius (minimal multiple of the vdW radius)
are excluded.
For finite systems, we express the electrostatic potential

(ESP) by a sum of Coulomb potentials with charges qi, the
partial charges, at the atomic position ri:

Vmol
ESPðrÞ ¼

XNat

i¼1

qi
jr − rij

: ðA1Þ

The qi values are calculated by a least-squares fit
with the additional constraint of the constant total charge
qtot ¼

PNat
i¼1 qi. We use the method of Lagrange multipliers

to minimize the function

F¼
XNgrid

k¼1

(Vmol
ES;DFTðRkÞ−Vmol

ESPðRkÞ)2−λ

�
qtot−

XNat

i¼1

qi

�2

;

ðA2Þ
where VES;DFT is the electrostatic potential of a DFT
calculation.
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For periodic systems, long-range electrostatic inter-
actions have to be taken into account, and the potential
is defined only up to an arbitrary constant [25]. The partial-
charge methods implemented in this work solve these
problem by Ewald summation [70]. They were developed
by Campañá et al. [25] and further improved by Chen et al.
[65]. The potential generated by the partial charges cen-
tered on the atoms of the unit cell then reads

Vsolid
ESP ðrÞ¼

XNat

i¼1

X
T

qi
erfcðαjr− ri;T jÞ

jr− ri;T j

þ 4π

Vu:c:

XNat

i¼1

X
k

qi cos½kðr− riÞ�
e−ðk2=4α2Þ

k2
; ðA3Þ

where T ¼ n1a1 þ n2a2 þ n3a3 represents the real-space
translation vectors of the lattice vectors ai and ni ∈ Z.
k ¼ m1b1 þm2b2 þm3b3 is the reciprocal-space trans-
lation vector and bi indicates the reciprocal lattice vectors
with mi ∈ Z. Vu:c: is the volume of the unit cell. The
parameter α is defined as α ¼ ð ffiffiffi

π
p

=RcÞ, with Rc being the
cutoff radius of the Ewald summation [70]. The function to
minimize is [65]

FPBC ¼
XNgrid

k¼1

½Vsolid
DFTðRkÞ − (Vsolid

ESP ðRkÞ þ Voffset)�2

− λ

�
qtot −

XNat

i¼1

qi

�
þ β

XNat

i¼1

ðqi − qi0Þ2: ðA4Þ

Here, the arbitrary offset of the potential Voffset is an
additional fitting parameter. The constraint charges qi0
can be determined with other methods (e.g., Mulliken
charge analysis [71]). β is a weighting factor.

APPENDIX B: CALCULATION OF THE
EIGENPROBLEM OF THE
MOLECULAR EXCITONS

The eigenproblem for the molecular excitons reads

hl þ q; ljðĤm
0 þ Ĥm-m

C ÞjXm
α i ¼ ðEm

0 þ Em
α Þcαlþq;l: ðB1Þ

For a sufficiently large material sample, the molecular
wave vectors are continuous, and the sums can be trans-
formed into two-dimensional integrals according to

X
l

→
NmAm

ð2πÞ2
Z

d2l; ðB2Þ

where Am denotes the area of one molecular unit cell.
Exploiting the lattice periodicity of the Coulomb coupling
elements in momentum space, we find

Em
α cαlþq;l ¼ cαlþq;l

�
εmgap − VH

H
H
Hð0Þ þ VH

H
L
Lð0Þ

þ Am

4π2

Z
d2l0½VH

H
H
Hðl0Þ − VH

L
L
Hðl0Þ�

�

þ Am

4π2

Z
d2l0cαl0þq;l0 ½VH

L
L
HðqÞ − VH

H
L
Lðl0 − lÞ�;

ðB3Þ

with εmgap ¼ εL − εH. To make the problem numerically
tractable, the continuous wave vectors are discretized.
Therefore, the integrals over the first BZ are rewritten into

sums over Nm
d small surface segments of size ΔA≡ Am

BZ
Nm

d
:

Z
d2l0fðl0Þ →

XNm
d

i¼1

ΔAfðliÞ: ðB4Þ

Moreover, we approximate VH
H

L
Lðl0 − lÞ ≈ VH

H
L
Lð0Þ in the

last line of Eq. (B3) since the variation of the monopole-
monopole coupling elements VH

H
L
L within the first BZ is

small (only a few percent). This approximation reduces the
complexity of the eigenproblem and we can derive the
eigenproblem for the energy Em

α and the coefficients cqliþqj;li

in matrix form. It is diagonal with respect to the momentum
transfer qj, yielding a block-diagonal form for the entire
index space ðli; qjÞ. We use the abbreviations

aqj ¼
1

Nm
d
½VH

L
L
HðqjÞ − VH

H
L
Lð0Þ�; ðB5Þ

dqj ≡ aqj þ εmgap − VH
H

H
Hð0Þ þ VH

H
L
Lð0Þ

þ 1

Nm
d

XNm
d

k¼1

½VH
H

H
HðlkÞ − VH

L
L
HðlkÞ�: ðB6Þ

Each Nm
d × Nm

d block for a given qj has the form

Em
qj

0
BBBBBBB@

c
qj
l1

c
qj
l2

..

.

c
qj
lNm

d

1
CCCCCCCA

¼

0
BBBBBBB@

dqj aqj � � � aqj

aqj
. .
. ..

.

..

. . .
.

aqj
aqj � � � aqj dqj

1
CCCCCCCA

0
BBBBBBB@

c
qj
l1

c
qj
l2

..

.

c
qj
lNm

d

1
CCCCCCCA
; ðB7Þ

with the eigenvector components abbreviated by c
qj
li
≡

c
qj
liþqj;li

. Note that they are defined only for wave-vector

sums li þ qj within the first BZ. If li þ qj exceeds the first
BZ, it is mapped back into the first BZ by means of a
reciprocal lattice vector.
This highly symmetric eigenproblem in matrix form can

be solved analytically. It has two eigenvalues:
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Em
− ¼ Em

qj;n¼1 ¼ � � � ¼ Em
qj;n¼Nm

d −1
¼ dqj − aqj ; ðB8Þ

Em
qjþ ¼ Em

qj;n¼Nm
d
¼ dqj þ ðNm

d − 1Þaqj : ðB9Þ

Em
− is ðNm

d − 1Þ-fold degenerate.
The ðNm

d − 1Þ eigenvectors belonging to Em−
qj are enu-

merated by n ∈ f1;…; Nm
d − 1g. Their normalized compo-

nents are given by

c
qj;n
li

¼ Nm
d

Nm
×

8>><
>>:

1ffiffi
2

p for i ¼ 1;

− 1ffiffi
2

p for i ¼ nþ 1;

0 otherwise:

ðB10Þ

The nondegenerate eigenvalue Em
qjþ has identical normal-

ized eigenvector components c
qj;n¼Nm

d
li

¼ ð ffiffiffiffiffiffiffi
Nm

d

p
=NmÞ for

all values of i.

APPENDIX C: RECIPROCAL-SPACE ANALYSIS
OF THE RATES FOR VARIOUS DETUNINGS

To understand the behavior of the in- and outscattering
transfer rate for various detunings, we analyze the indi-
vidual transfer rates Γin or out

qjþ that depend on the molecular
transfer vector qj. The individual transfer rates are summed
up for the total rates in Fig. 6(b). To enhance our under-
standing, we define the in- and outscattering Fermi factors
finqjþ and foutqjþ, respectively, as the sums over the products of
Fermi functions, which obey the δ conditions for momen-
tum and energy conservation of the transfer rates:

finqjþ ¼
X
k;k0

X
Gm

fh;k0fe;kδqj;k0−kþGm
δðεke þ εk

0
h − ΔqjÞ; ðC1Þ

foutqjþ ¼
X
k;k0

X
Gm

ð1 − fh;k0 Þð1 − fe;kÞδqj;k0−kþGm

× δðεke þ εk
0

h − ΔqjÞ: ðC2Þ

These Fermi factors give a good estimate of the pop-
ulation filling from the q-space regions defined by momen-
tum and energy conservation. Figures 11 and 12 show the
q-dependent in- and outscattering rates (left columns),
respectively, and the corresponding Fermi factors (right
columns) for increasing detuningsΔ0 of 10meV [Figs. 11(a)
and 12(a)], 20 meV [Figs. 11(b) and 12(b)], and 30 meV
[Figs. 11(c) and 12(c)]. In the case of low detuning,
Δ0 ¼ 10 meV, the inscattering Fermi factor [see Fig. 11(a),
right panel] shows a consistently high contribution over the
full range of possible momentum transfer q vectors within
the first-molecule Brillouin zone. This high value is due to
the close energetic match between the resonances of the
two constituents, as illustrated for the system states in
Fig. 6(a): For matching resonance energies (the left-hand
HOMO-LUMO system), an efficient inscattering into the

molecular film is possible because the bands of the ZnO
substrate are highly filled in the regions that obey energy and
momentum conservation for the transfer process to the
molecular system.
However, the contributing regions determined by the

inscattering Fermi factor (see the right column of Fig. 11)
shrink considerably for an increased detuning since the
number of scattering partners fulfilling the energy con-
servation decreases substantially; see the HOMO-LUMO
systems in Fig. 6(a). The decrease of scattering partners
occurs mainly along the x direction. The reason for
the decrease along the x direction is found in the q-
dependent intermolecular Förster coupling element
VH
L

L
HðqjÞ shown in Fig. 4(a): Caused by the molecular

dipole, the coupling element shows dumbbell-shaped
maxima along the x axis at the borders of the molecular
Brillouin zone, i.e., around qy ¼ 0 and qx ¼ �b̃1=2. (Here,
b̃1 is themolecular reciprocal lattice vector pointing in the x
direction.)
Correspondingly, the molecular eigenenergy Em

qjþ ∝
VH
L

L
HðqjÞ in the energy conservation shows maxima in

these areas of momentum transfer. This effect further
increases the energy difference Δqj ¼Em

qjþ−εsgap−Vm-s
mono

and leads to a reduced energy match. Thus, the inscattering
efficiency decreases for large detunings and reflects the

FIG. 11. Inscattering rates Γin
qjþ (left column) and Fermi factors

finqjþ (right column) for increasing resonance energy detuning Δ0

of (a) 10, (b) 20, and (c) 30 meV. The displayed q range reflects
the size of the first-molecule Brillouin zone for a coverage of one
molecule per 10 × 10 substrate unit cells. The molecular system,
despite exhibiting a band structure, is simplified to a two-level
system since we focus on the energy at q ¼ 0.
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reduced occupation in the relevant energetic region (see the
right column of Fig. 11).
The inscattering rates (see the left column of Fig. 11) are

reduced in the central region around q ¼ 0 for all detun-
ings, which is not explained by the Fermi factors alone.
This reduction is caused by the interlayer Förster coupling
element entering the transfer rate in Eq. (35). The matrix
element shows four lobes along the diagonals, with
vanishing coupling in the center [see Fig. 4(b)]. This form
is reflected in the transfer rate. Note that discrete contri-
butions are visible as sharp spots in the rather continuous
inscattering Fermi factors in Fig. 11. These discrete points
might appear as a consequence of the discrete molecular
positions in the periodic hybrid structure considered here,
similar to the patterned observables in x-ray diffraction
experiments probing the elastic scattering at crystalline
structures.
As expected, the opposite behavior is observed for the

outscattering rate and outscattering Fermi factors; see
Fig. 12. In the outscattering Fermi factor (the right column
of Fig. 12), the areawhere Pauli blocking prevents scattering
is decreased for increased detunings, which increases the
outscattering rate (the left column of Fig. 12). The out-
scattering rate decreases again for detunings larger than
30 meV. Here, the energy mismatch between the molecular
gap and the semiconductor band gap is larger than the energy
difference between any of the populated states in the
semiconductor electron-hole continuum.
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