Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional

MPG-Autoren
/persons/resource/persons21549

Ghiringhelli,  Luca M.
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

computation-05-00030-v3.pdf
(Verlagsversion), 286KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Seshaditya, A., Ghiringhelli, L. M., & Delle Site, L. (2017). Levy-Lieb-Based Monte Carlo Study of the Dimensionality Behaviour of the Electronic Kinetic Functional. Computation, 5(2): 30. doi:10.3390/computation5020030.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-5064-4
Zusammenfassung
We consider a gas of interacting electrons in the limit of nearly uniform density and treat the one dimensional (1D), two dimensional (2D) and three dimensional (3D) cases. We focus on the determination of the correlation part of the kinetic functional by employing a Monte Carlo sampling technique of electrons in space based on an analytic derivation via the Levy-Lieb constrained search principle. Of particular interest is the question of the behaviour of the functional as one passes from 1D to 3D; according to the basic principles of Density Functional Theory (DFT) the form of the universal functional should be independent of the dimensionality. However, in practice the straightforward use of current approximate functionals in different dimensions is problematic. Here, we show that going from the 3D to the 2D case the functional form is consistent (concave function) but in 1D becomes convex; such a drastic difference is peculiar of 1D electron systems as it is for other quantities. Given the interesting behaviour of the functional, this study represents a basic first-principle approach to the problem and suggests further investigations using highly accurate (though expensive) many-electron computational techniques, such as Quantum Monte Carlo.