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Summary

Songbirds (Passeri) are one of the few known orders of animals capable of vocal learning.
The male zebra finch (Taeniopygia guttata), a model organism for the neurobiological basis of
speech, performs a highly stereotyped courtship song of about one second in length. Juvenile
finches learn their song through imitation of their fathers (or other conspecific males) during
overlapping sensory and sensorimotor periods and continue to improve until they reach adult-
hood, after which the song becomes stable. The finch’s vocal organ, the syrinx, is controlled by
an interconnected set of brain nuclei that can be subdivided into pathways required for song
production and song learning. Of these nuclei, HVC (a premotor cortical area) and Area X (a
striatopallidal area) are of particular interest. HVC has been identified as a neuronal sequence
generator at the apex of the sensorimotor hierarchy, and Area X has been shown to constitute
the center of the reinforcement learning apparatus used during vocal learning. The micro-
circuits of both nuclei have been analyzed extensively using electrophysiological methods and
light microscopy-based neuroanatomy, but a detailed analysis of their synaptic wiring based on

high-throughput serial block-face electron microscopy (SBEM) is lacking.

Volume electron microscopy datasets of HVC and Area X were therefore acquired to test well-
defined anatomical hypotheses about their synaptic connectivity as predicted by mechanistic
circuit models:

1) That the neuronal sequence generator located in HVC is based on direct synaptic connec-
tions between the sequence neurons, as predicted by the synfire chain hypothesis.

2) That efference copy and context signal axons in Area X have different synaptic targets, as
predicted by a recent reinforcement learning model of the basal-ganglia.

Both hypotheses were found to be consistent with the acquired data, supporting the notion
that structural neurobiology, otherwise known as connectomics, enables powerful tests of neu-
robiological hypotheses.

To help overcome the technological challenges faced during the analysis of large volume EM
datasets, a new annotation workflow (GraphWalker) was implemented that allows neurite re-
construction to proceed at least an order of magnitude faster than the current state-of-the-art.
Additionally, a machine learning-based computational pipeline (SyConn) was developed and
used to derive the first synaptic wiring diagram of the vertebrate basal-ganglia from one of the

acquired Area X datasets.



Zusammenfassung

Singvogel (Passert) sind eine der wenigen Tierordnungen die in der Lage sind neuartige
Vokalisationen zu erlernen. Der ménnliche Zebrafink (Taeniopygia guttata), ist ein Model-
lorganismus fiir die Erforschung der neurobiologischen Grundlagen von Sprache, und erlernt
einen hochgradig stereotypen Balzgesang von ungefahr einer Sekunde Lange. Jungfinken imi-
tieren dabei den Gesang ihres Vaters (oder eines anderen konspezifischen ménnlichen Vogels)
in einer sensorischen und sensorimotorischen Lernphase bis zum Erwachsenenalter, wonach
der Gesang stabil bleibt. Das Gesangsorgan der Vogel, die Syrinx, wird durch miteinander
verschaltete Hirnkerne kontrolliert, die zwei Verarbeitungsstrangen zugewiesen werden konnen:
einem Pfad zustandig fiir die Gesangsproduktion und einem fiir das Erlernen. Zwei Hirnkerne
sind dabei von besonderem Interesse, das pramotorische kortikale HVC und die striatopallidale
Area X, da HVC als neuronaler Sequenzgenerator an der Spitze der sensorimotorischen Verar-
beitungshierarchie identifiziert wurde, und Area X das Zentrum des Verstarkungslernapparates
fiir das Gesangslernen darstellt. Die Mikroschaltkreise dieser zwei Hirnkerne wurden mittels
elektrophysiologischer Methoden und lichtmikroskopie-basierter Neuroanatomie ausgiebig un-
tersucht, allerdings fehlt eine detaillierte Analyse der synaptischen Verschaltung auf der Basis
von serieller Hochdurchsatzelektronenmikroskopie der Blockoberfliche (SBEM). Volumen EM
Datensétze von HVC und Area X wurden daher aufgenommen um klar definierte anatomische
Hypothesen zur synaptischen Verschaltung zu testen, basierend auf den Vorhersagen von mech-
anistischen Schaltkreismodellen:

1) Dass der in HVC lokalisierte neuronale Sequenzgenerator auf direkten synaptischen Verbindun-
gen zwischen den Schrittmacherzellen basiert, vorhergesagt von der synfire chain Hypothese.
2) Dass Efferenzkopie- und Kontextsignal tragende Axone in Area X unterschiedliche synaptis-
che Ziele haben, vorhergesagt durch ein aktuelles Verstarkungslernmodell der Basalganglien.
Die in dieser Arbeit gewonnenen Daten waren konsistent mit beiden Modellen; was zeigt,
dass die strukturelle Neurobiologie, auch bekannt als connectomics, machtige Hypothesen-
tests in der Neurobiologie ermoglicht. Um die technologischen Herausforderungen bei der
Analyse von grofien Volumen EM Datensatzen besser meistern zu kénnen wurde ein neues
Verfahren entwickelt (GraphWalker), das das Rekonstruieren von Neuriten um mindestens eine
GroBenordnung beschleunigt. Zudem wurde anhand von einem der Area X Datenséitze das
erste synaptische Verschaltungsdiagramm der Wirbeltier-Basalganglien erzeugt, wozu ein auf

maschinellem Lernen basierendes Computersystem entwickelt wurde (SyConn).
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Chapter 1

Introduction

1.1 Structural neurobiology with the electron micro-

scope

1.1.1 From synapses to the first connectome

In 1888 Santiago Ramoén y Cajal presented evidence for the “neuron doctrine,” the notion that
the brain consists of separated cells that interact at synapses (Sherrington, 1906), by studying
the cerebellum of birds with Golgi staining (Cajal, 1888). However, “reticularists,” proponents
of the idea that the brain consists of a cellular syncitium, could not be convinced initially
(reviewed in Cimino, 1999). Only electron microscopy (EM) provided sufficient resolution
to demonstrate unambiguously that the central nervous system’s neurons are separated at
their synaptic clefts (Palade and Palay, 1954). However, the high resolution of the electron
microscope was both a benefit and a drawback, as it could reveal details never seen before but
restricted datasets to small regions. In 1986, John White et al. presented for the first time a
wiring diagram (or ” connectome”) of the complete Caenorhabditis elegans hermaphrodite brain,
based on serial section transmission electron microscopy (ssTEM) (White et al., 1986). The

imaging of the serial sections and the tracing of all 302 neurons required several years of work,
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2 Chapter 1. Introduction

illustrating the difficulties the pioneers of structural neurobiology faced. At this point, volume
electron microscopy was a completely manual process, despite first attempts by Leighton in
1981 to automate in-chamber ultramicrotomy and perform alternating cutting and block-face

imaging (Leighton, 1981).

1.1.2 Automated volume electron microscopy

The technological progress of the last decades also led to new developments for volume EM,
resulting in automation of many of the previously manual steps (see Briggman and Bock, 2012,
for a comprehensive review). Apart from electron tomography, which is limited in its field of
view (Mahamid and Baumeister, 2012), all currently used volume electron microscopy tech-
niques are based on sample sectioning and subsequent 2D-imaging to construct a 3D-image.
Two main techniques can be distinguished: block-face imaging, where the sample is alternat-
ingly ablated and imaged, and serial section imaging, where thin sections are cut, collected and
imaged independently. Two inherent advantages of section imaging techniques over block-face
imaging are that the imaging can easily be parallelized if several electron microscopes are avail-
able, and that section quality can be evaluated before the time-consuming imaging step. The
serial sectioning approach with the highest degree of automation is currently the Automatic
Tape-collecting Ultra-Microtome (ATUM), an extension of a conventional diamond-knife ultra-
microtome that was build by Kenneth Hayworth in his garage and applied to brain tissue in
Jeff Lichtman’s laboratory (Kasthuri et al., 2015). Thin sections are collected on a tape that
is later mounted in short lengths onto silicon wavers for scanning EM (SEM) imaging, since

TEM imaging is not compatible with the Kapton tape typically used.

However, despite the mentioned advantages of the serial sectioning approaches, imaging of the
heavy metal-stained tissue block-face usually offers better data quality because of the higher
z-resolution and smaller number of artifacts. Many problems of the non-block-face methods,
such as section wrinkles or difficult image alignment, can be avoided (Wanner et al., 2015).
The block-face imaging method that offers the highest resolution (5 x 5 x 5 nm voxel size)

is focused ion-beam (FIB) SEM (Knott et al., 2008), in which the top layer of the sample is
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milled away by means of targeted Ga™ ions. The main disadvantage of FIB-SEM for structural
neurobiology is currently the limited size of an individual dataset (Wanner et al., 2015), but
near-lossless sample partitioning through a ”hot-knife” and parallel FIB-SEM imaging of the

individual chunks might overcome this limitation (Hayworth et al., 2015).

Diamond knife-based serial block-face electron microscopy (DiK-SBEM, or simply SBEM)
makes use of an in-chamber ultramicrotome to alternate cutting and imaging. As mentioned
previously, it was devised by Leighton in 1981, but was not successfully demonstrated until
2004 in Winfried Denk’s laboratory (Denk and Horstmann, 2004). SBEM does not suffer from
the limited field of view of FIB-SEM but is typically used at a lower resolution (10 x 10 x 25
nm voxel size) because of cutting difficulties at high electron doses (Wanner et al., 2015).

In addition to the aforementioned problems, three main factors can be identified that practically

limit the acquisition of large volume EM datasets:

1. Sample staining difficulties for samples exceeding several hundreds of micrometers.
2. Cutting or image acquisition process reliability.

3. Insufficient imaging speeds.

While the first problem has been solved for brains up to the size of the entire mouse brain
by increasing the penetration limit of the commonly used en-bloc heavy-metal fixation and
staining (Mikula et al., 2012; Mikula and Denk, 2015), image acquisition speed and reliability
have remained unsolved problems for years. However, despite a lack of published datasets,
technological solutions for the imaging problem are in sight. Zeiss has developed a novel multi-
beam SEM that parallelizes the acquisition of a single micrograph over up to 91 electron beams
(Kemen et al., 2015). There are also ongoing attempts to parallelize dataset acquisition over
multiple microscopes (Hayworth et al., 2015). Despite these dramatic advances that will be
reflected in increasing dataset sizes, data analysis remains a challenge, and dense connectomic
analysis of datasets over a volume of (100 Hm)3 appears almost insurmountable (Helmstaedter,

2013) using the current manual analysis methods as illustrated in the following paragraph.



4 Chapter 1. Introduction

1.1.3 The data analysis bottleneck(s)

a
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Figure 1.1: Steps in wiring diagram extraction from volume EM datasets. (a) Necessary analysis
steps for a connectome. (b) Estimated manual annotation times for dense (i.e. all neurites in a given
volume) analysis. Shown are skeletonization times for the neurite reconstruction step, the fastest
method up to date (Berning et al., 2015). Data from (Dorkenwald et al., 2017).

The C. elegans hermaphrodite connectome (White et al., 1986) was reconstructed manually
from printed electron micrographs with color pens after it was realized in Sydney Brenner’s
laboratory that computer graphics were not yet capable enough, although an attempt was made
to build a computer system to assist the reconstructions (reviewed in Emmons, 2015). Despite
the relatively small size of the C. elegans connectome of only 302 neurons and 7,000 connections
(White et al., 1986), the reconstruction still took 15 years from project start to publication
(Emmons, 2015). In comparison to C. elegans, the fruit fly (Drosophila melanogaster) brain has
about 135,000 neurons (Alivisatos et al., 2012) and the brain of a mouse has about 71,000,000
neurons (Herculano-Houzel et al., 2006), which demonstrates that dense connectomic analysis

is not feasible with manual approaches.

Despite many attempts over the last decade to automate neurite reconstructions (Berning et al.,
2015; Nunez-Iglesias et al., 2014; Huang and Jain, 2013; Helmstaedter et al., 2013; Beier et al.,
2017), there is still no reconstruction method that is faster than manual neuron skeletonization

combined with automated neurite ”outgrowing” to obtain a full volume representation (Bern-
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ing et al., 2015; Helmstaedter et al., 2013). This lack of suitable automated methods can be
explained by the extremely low voxel-wise error rates that are required when the neurite recon-
struction problem is viewed as a 3D image segmentation problem, where each voxel has to be
assigned to a neuron or background. The simplest segmentation algorithm available, connected
component analysis, requires that all neurites are separated by boundary voxels, and a single
voxel error can falsely merge two neurons over an entire dataset, rendering their reconstructions
useless without manual correction.

However, automated neurite reconstruction is not the only unsolved problem in data analysis,
and somewhat surprisingly, the dense manual analysis of synapses is about as time consum-
ing as neurite reconstruction (see Fig. 1.1 for estimates of various dataset sizes; Dorkenwald
et al., 2017). The high cost of synapse analysis can be explained by the high density of contact
sites between neurites in the neuropil, about 15 contacts per pm?’ for extracellular space (ECS)
preserved samples (Dorkenwald et al., 2017), all of which require inspection. Steadily growing
datasets make it increasingly difficult to manually annotate the compartments (e.g. axons,
dendrites, somata and spines) of all contained cells or assign a cell type label to the neurons
(Fig. 1.1), illustrating further that structural neurobiology depends critically on progress in

automated analysis.

1.1.4 Limits and promises of structural neurobiology

Despite the profound insights that were gained in our understanding of neurons and synapses
from studies performed after the initial availability of electron microscopy (see section 1.1.1),
breakthroughs in light microscopy (LM) have started to dominate neuroscience research (re-
viewed in Evanko et al., 2011) and interest in EM-based circuit reconstruction has been fading
(Helmstaedter et al., 2008). However, recent advances in automation for the collection of vol-
ume EM datasets have triggered interest again (Briggman and Bock, 2012; Denk et al., 2012)
and could also help to overcome the single animal and dataset (n = 1) study problem that still
plagues the field by enabling intra- and interspecies comparative connectomics (Bumbarger

et al., 2013).
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Despite these advances, the most obvious limitation of an EM dataset, regardless of its size or
resolution, remains the lack of temporal physiological information. Experiments that combine
optophysiological measurements such as two-photon imaging of Ca?™ indicators (Helmchen and
Denk, 2005) with volume electron microscopy of the same cells therefore appear very powerful
(reviewed in Helmstaedter et al., 2008). This approach is further supported by the uncertainty
of whether biophysical models of cells and their connectivity, as reconstructed from volume
electron microscopy datasets, will ever be able to reproduce even short timescale network ac-
tivity. The question of network activity reproduction leads to the fundamental question of
how information is stored in a network of neurons. The structural neurobiologist is tempted
to answer this question with the statement that information is simply stored in the synapses;
however, it is obvious that such a view is a gross oversimplification that neglects a plethora

of evidence about the importance of mechanisms that cannot be identified directly by volume

EM, such as:

e Genetic and epigenetic factors influencing information processing of neurons (Levenson

and Sweatt, 2005)
e Biophysical factors, such as membrane receptor distributions (Lai and Jan, 2006)

e Volume conductance and direct electric coupling over gap junctions (Agnati and Fuxe,

2014), but see (Pallotto et al., 2015) for evidence of gap junction identification

While this list is certainly not complete, the long-term success of EM connectomics will be
determined by the degree to which these and other factors can be systematically correlated with
the ultrastructure of a neuron and its wiring. The establishment of such systematic correlations,
if they exist, will always depend on physiological ground truth. However, even without the
option to simulate neuronal networks bottom-up from volume EM datasets, a possibility which
seems still far away, volume EM datasets can be used in exploratory approaches or to test
defined anatomical circuit hypotheses. The next paragraphs will introduce the male zebra finch
and its remarkable singing behavior as a basis for the description of the anatomical hypotheses

studied in this thesis.
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1.2 Vocal learning and song production in the zebra

finch

1.2.1 Male zebra finches learn their song by imitation

Songbirds, and in particular zebra finches, are a promi-
nent model organism to study the neuroscience of
learned behaviors (Mooney, 2009).  Songbirds are
some of only a few nonhuman animal species that
produce learned vocalizations; other examples include
elephants, bats, pinnipeds, and parrots (Petkov and
Jarvis, 2012; Wang et al., 2014). Interest in songbird
research strengthened after the discovery that malfunc-
tions in the Forkhead box protein P2 (FoXP2) tran-
scription factor affect both zebra finch song and human
speech, hinting at possible similarities in the underly-

ing brain circuits (reviewed in Vargha-Khadem et al.,

=

Figur-e- 1.2: Adult mae zebra finch. 2005). Developmentally, zebra finch song learning can
By O. Kornfeld. be subdivided into overlapping phases: an initial sen-
sory period (up to about 35 days post hatching, dph)
followed by a sensorimotor period including different qualitative song stages (babbling or sub-
song and plastic song) which culminate in the adult crystallized song at about 90 to 120 dph
(Immelmann, 1969; Price, 1979). The adult song is highly structured and can be subdivided
into bouts of stereotyped song motifs of up to 1 s duration, with each motif consisting of sev-
eral syllables. Some of these syllables can be further partitioned into notes separated by short
pauses (Mooney, 2009). While male zebra finches naturally keep their own song motif fixed
for their entire life following development, they are still capable of modifying it in conditional

auditory feedback (CAF) paradigms (Andalman and Fee, 2009; Tumer and Brainard, 2007)

that enable controlled learning settings. Importantly, it seems like the neural mechanism for
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the adult modification and juvenile song acquisition are largely overlapping (Olveczky et al.,
2011) and make use of the same neuronal machinery. This neuronal machinery, in its entirety

called the song system, will be further discussed in the next sections.

1.2.2 Nuclear organization of the song system in the bird brain

a
/w{gm HVC,
to RA
to Area X
from HVC
from LMAN \
o from VTA \
= \ INT (FS and LTS)
MSN (D1,D2) ACh
J3
syrinx O
JI & :
P <€—> A to DLM GPi  GPe
b song motif syllables

0.25s

Figure 1.3: The songbird brain and zebra finch song. (a) Schematic of the two main brain pathways
that can be related to singing: the song motor pathway (SMP), responsible for the production of
learned song, and the anterior forebrain path (AFP), required for song syllable changes and necessary
for juvenile song learning. Also shown are the most important cell types within HVC and Area X,
the two brain nuclei studied in this thesis, and main song system afferents and efferents of these
areas. INT: Interneuron; FS: Fast-spiking; LTS: low-threshold-spiking; MSN: medium spiny neuron;
D1 and D2: dopamine receptor types; ACh: cholinergic neuron; GPi and GPe: pallidal-like neurons
of direct and indirect pathway. (b) Spectrogram of zebra finch song, including introductory calls at
the beginning, followed by syllables that can be grouped into the stereotyped song motif (recorded by
the author in the laboratory of R.H. Hahnloser, ETH, Zurich).

The parts of the songbird brain that directly relate to singing can be subdivided functionally

into areas required for the production of birdsong (song motor pathway, SMT) and areas that
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are only required for its acquisition or modification in adulthood (anterior forebrain pathway,
AFP), as depicted in Fig. 1.3 (Mooney, 2009). Auditory areas are clearly necessary for the
sensory period and refinement phases of song learning. However, song production does not rely
acutely on auditory regions, as demonstrated by deafening experiments, although song does
deteriorate over longer time-scales without auditory feedback (Lombardino and Nottebohm,
2000). Lesions in the SMT always lead to severely degraded song (Nottebohm et al., 1976).
In contrast, lesions in the AFP in adult birds do not alter the singing behavior immediately
(Nottebohm et al., 1976; Andalman and Fee, 2009), although such birds have an impaired
ability to adapt their song, especially the spectral structure of individual syllables (Tumer
and Brainard, 2007; Andalman and Fee, 2009). While the separation of the song system into
these two pathways allows the relation of function to macroscale anatomical structures in
the songbird brain, it should not be forgotten that this dual pathway picture is certainly an
oversimplification, especially given that both pathways diverge from and converge to the same

brain areas, namely HVC and the robust nucleus of the archipallium, or RA.

1.2.3 HVC, the cortical song sequence generator

Macro-anatomical and functional characterization

HVC (letter-based proper name, see Reiner et al., 2004) is a brain area of the songbird caudal
nidopallium with a volume of approximately 0.4 mm?3 (Kornfeld et al., 2017; Wang et al.,
2002) that can be identified in all songbird species (Mooney, 2009). It was first described
by Nottebohm et al. in 1976 in canaries and was associated with song production through
lesion studies (Nottebohm et al., 1976). It was shown later that electrical stimulation of both
HVC and RA elicits complex vocalizations that are part of the bird’s own song (Vicario and
Simpson, 1995). The importance of HVC was further realized through its placement at the
apex of the sensorimotor hierarchy: it receives afferents mostly from auditory regions (NIf,

CM), but projects into the primary motor area RA and Area X of the AFP (Mooney, 2009).
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The neurons of HVC and their dynamics during singing

Three main neuronal cell types were described for HVC: small RA-projecting cells with
spiny dendrites (HVCR, ), large basal-ganglia projecting neurons with densely spiny dendrites
(HVCx), and large interneurons with smooth dendrites that do not project out of HVC
(HVCinT) (Mooney, 2000; Kubota and Taniguchi, 1998; Dutar et al., 1998). Additionally,
a small population of <1 % of cells required for temporal song modifications projects to the
caudal mesopallium (CM)(Akutagawa and Konishi, 2010; Roberts et al., 2017), but these cells
do not form local axon collaterals (Roberts et al., 2017). HVCR s neurons are by far the largest
cell population with about 40,000 cells per hemisphere (Wang et al., 2002). Roughly half of
these cells are active during singing (Fee et al., 2004), but only with a single, stereotyped burst
of action potentials (Hahnloser et al., 2002). Only about 10,000 HVCx (Nordeen and Nordeen,
1988) and even fewer HVCiyt (Wild et al., 2005) neurons have been found. HVCyx neurons
exhibit a sparse, stereotyped time code of up to four AP bursts per song motif (Kozhevnikov
and Fee, 2007), while HVCyNT neurons are almost continuously active during singing (Hahn-
loser et al., 2002; Long et al., 2010; Kozhevnikov and Fee, 2007). What is known about the
wiring of the described neurons inside HVC? This question, and how the wiring might explain

their dynamics, will be discussed in the next section.

Models of HVC’s sequence generator

HVC’s critical role in song production from a macroanatomical perspective (Nottebohm et al.,
1976), together with the discovery of the previously introduced (section 1.2.3) ultra-sparse time
code of the HVCR A neurons (Hahnloser et al., 2002; Long et al., 2010), led to the development
of many models about how the circuit might operate (Gibb et al., 2009b; Cannon et al., 2015;
Armstrong and Abarbanel, 2016; Jin et al., 2007). Two main anatomically relevant models of
HVC can be distilled from the ideas of the past years, one putting emphasis on the inhibitory
connectivity (Fig. 1.4 a), and the other focusing on structured feed-forward excitatory con-
nectivity (Fig. 1.4 b, c¢) usually related to Moshe Abeles’ synchronous firing chain (synfire
chain) model (Abeles et al., 1993; Abeles, 1982). The HVCx neurons have been found to be
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Figure 1.4: Two extreme views on how the neurons in HVC might be wired for sequence generation.
See also Kosche et al. for a more physiological interpretation (Kosche et al., 2015). (a) Structured
inhibitory connectivity, with gaps in connectivity, which allows downstream excitatory HVCRa to
burst (Gibb et al., 2009b) when driven by unstructured global excitation. Numbers indicate the
relative burst times of the HVCR neurons. Connections from HVCRa neurons onto interneurons
"back in time” were left out for clarity. (b) Structured excitatory connections with global inhibition.
(c) Excitatory connections of (b), shown in connectivity matrix notation.

unnecessary for song production in a targeted neuronal death study (Scharff et al., 2000) and
are therefore not considered further. It should be noted that there is a substantial amount of
controversy about both HVC’s role and the involvement of other brain structures in sequence
generation (Hamaguchi et al., 2016; Amador et al., 2013; Gibb et al., 2009a) which in part
motivates the anatomical investigations of this thesis. These two opposing views are presented
for illustrative purposes, but an intermediate model is also plausible in which structured inhi-
bition and excitation cooperate (Kosche et al., 2015). What is the current evidence supporting
the different models? Long et al. collected the first data in favor of the structured excitatory
connectivity in 2010 by using intracellular microdrive recordings from the HVC of singing ze-
bra finches (Long et al., 2010). The temporally sharp depolarization (about 5 ms) before the
action-potential burst, in combination with the observation that cooling slows down singing
linearly (Long and Fee, 2008), was interpreted as evidence for converging excitatory synaptic
inputs likely emerging from other HVCRr p neurons. The feed-forward connectivity pattern has
been further supported by comparisons of recurrent vs feed-forward models of HVC and esti-

mates of their compatibility with linear song stretching (Pehlevan et al., 2015). However, no
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study has been able to rule out the model that the rapid depolarization is caused by disin-
hibition, and conflicting and weak evidence for direct connectivity between HVCR s neurons
from electrophysiological slice recordings (Kosche et al., 2015; Mooney and Prather, 2005) has
spurred doubts. Robust synaptic connectivity between HVCra and HVCyym has also been
demonstrated (Kosche et al., 2015) and supports an intermediate model. One of the objectives
of this thesis is therefore to clarify the extent of homotypic HVCR A connectivity and to evaluate
whether an excitatory synaptic chain model is still a plausible explanation for the sparse time
code of HVC. Interestingly, there is a prominent projection from HVC to the basal-ganglia part
of the song system (Area X) that likely makes use of HVC’s timing signals for spectral song

learning. This feature is the subject of the second topic investigated by this thesis.

1.2.4 Area X, the basal-ganglia element of the song system
Macro-anatomical and functional characterization

Area X is a brain nucleus located in the medial striatum (Wang et al., 2014; Gale and Perkel,
2010) and its volume has been estimated to be about 1.3 mm3 (Simpson and Vicario, 1991).
Two major cortical input areas, HVC and LMAN, project to it, and a single, main efferent
projection targets the dorso-lateral medial thalamus (DLM) which projects back to LMAN,
making Area X part of a closed topographic cortico-basal-ganglia-thalamo-cortical loop (re-
viewed in Mooney, 2009; Gale and Perkel, 2010). Lesion studies have shown that it is not
required for normal adult zebra finch song production, but is necessary for song learning in ju-
veniles (Sohrabji et al., 1990) and spectral syllable changes in adult birds (Brainard and Doupe,
2000). Of particular significance is one of the aforementioned CAF studies that combined the
adult song learning paradigm with transient inactivation of the AFP output (Andalman and
Fee, 2009). The pitch of individual harmonic stack syllables was shifted through real time
auditory feedback, punishing, for example through unpleasant white noise playback, the sylla-
ble renditions with a slight down-pitch variation. Over the course of hours, birds adapted the
pitch of the targeted syllable to escape the negative feedback. Inactivation of the AFP output

then led to an immediate return to the baseline pitch, illustrating that the motor bias must be
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memorized in the AFP (Andalman and Fee, 2009).

The neurons of Area X and their dynamics during singing

Area X was first recognized as a striatal brain area because of its large population of medium-
sized neurons with spiny dendrites (MSNs) and the expression of well-known genetic markers
(Bottjer and Alexander, 1995). Similar to striatal areas in other vertebrates, the majority of
Area X neurons (about 400,000 per hemisphere) are rarely active MSNs (Carrillo and Doupe,
2004; Burek et al., 1991) that fire mostly with sparse bursts during singing (Goldberg and
Fee, 2010). Additionally, three different types of interneurons have been identified so far: fast-
spiking, parvalbumin-positive neurons (FS); low-threshold-spiking, somatostatin-positive neu-
rons (LTS); and tonically active, cholinergic neurons (ACh) (Goldberg and Fee, 2010; Perkel
et al., 2002). Interestingly, Area X also contains about 3,000 cells typically found in other
vertebrates in the pallidum (Luo and Perkel, 1999; Farries et al., 2005; Person et al., 2008; Car-
rillo and Doupe, 2004), large neurons resembling the pallidal cells from the direct and indirect
basal-ganglia pathway (Carrillo and Doupe, 2004) that fire at high frequencies (Goldberg et al.,
2010). Furthermore, it was recently found that Area X also contains rare glutamatergic neu-
rons, which could be a functional analog to the neurons in the mammalian subthalamic nucleus
(STN) (Budzillo et al., 2017). In mammals, the STN is part of the hyper-direct pathway that
enables fast cortical control of the GP neurons (Jahanshahi et al., 2015).

The songbird Area X can therefore be considered an amalgamation of the highly conserved
vertebrate basal-ganglia structures (Grillner and Robertson, 2016) specialized in its function
on spectral song syllable optimization (Ali et al., 2013). As is the case for the mammalian
basal-ganglia (Graybiel, 2008), Area X seems to implement reinforcement learning (RL) (Fee

and Goldberg, 2011), i.e. learning that is based on trial-and-error and feedback evaluation.

A reinforcement learning model of Area X

In 2011, Fee and Goldberg proposed a novel RL-model for Area X that distinguishes precisely

the different roles of efference copy and context signals for learning (Fee and Goldberg, 2011;



14 Chapter 1. Introduction

a b c
static song exploratory song change improved song
(Hve) ’:@) HVC
DA <naptic sirengthening _
(aen)
.\ MsN ) - LmsN /@sn
L 4 o @
| /(/):n:q\\ (/ﬁ;\ﬁ
| oy LM DLM p
L {MAN\ \_ /@ @ LM@
\__r A 4
to RA to RA to RA
t L [ ] b
53 .m 49 .ﬂ 49 n
d
before learning after learning
he _l 5 I
MSN Il
o 1L LI N L]
2R AN HVC to MSN #TEE 8T
e synaptic strengthening
giiiy s
DAERY -
- spine
synapse —_—
shaft synapse MSN MSN

oy
LMAN

Figure 1.5: Illustration of the RL model of Area X as proposed by Goldberg and Fee (Fee and
Goldberg, 2011). (a) During the female-directed crystallized adult song (baseline), there are no changes
made to the spectral syllable composition. (b) During undirected (practice) song, zebra finches inject
more variability into their song by means of seemingly randomly bursting LMAN neurons that project
to nucleus RA, which also receives the stereotyped time-control signal from HVC. If the injected
variability leads to the release of DA in Area X (corresponding to positive song changes, the valence of
which is determined in the auditory system), the HVC synapses on MSNs that were previously made
eligible through LMAN activity are strengthened. (c) The strengthened HVC to MSN synapses now
increase the spiking probability of the postsynaptic MSN to reproduce the previously random change.
(d) Schematic neuronal activity before and after learning. (e) Proposed anatomical implementation
of the model at the synaptic level.
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Fee, 2014) down to the level of individual synapses impinging on MSNs, which are assumed to
be the central information store. In this model, the glutamatergic synapses formed by Area X-
projecting HVC neurons are strengthened with a dopamine (DA) dependent plasticity rule (Fig.
1.5) after coincidence detection and DA release (Ding and Perkel, 2004). The basal-ganglia-
thalamo-cortical loop formed between Area X, DLM, and LMAN acts as the RL-experimenter
that injects variability into the song (by biasing the neuronal activity of the principal neurons
inside of RA) (Kao et al., 2005) and in parallel correlates this exploratory activity with both the
song context provided by HVC and DA release (Gadagkar et al., 2016). In the case of positive
song changes (DA release in Area X), synaptic strengthening occurs and the song will be biased
during future renditions in the direction of the previous random exploration. This seems to
be implemented with a closed topographic loop (Luo et al., 2001), which would ensure that
the directed bias activates the same syringeal muscles (over RA) as the previously exploratory
activity. Since the neurons in LMAN transmit the bias to RA, and also the efference copy to
Area X, their synapses on the MSNs are unsuitable for synaptic plasticity according to the
model: Synaptic strengthening of LMAN’s efference copy synapses would lead to uncontrolled
positive feedback of neuronal activity in the loop. This is in contrast to HVC’s context synapses,
which are not part of the loop, and therefore candidates for synaptic strengthening. What does
this distinction between efference copy (LMAN) and context (HVC) synapses mean for the
individual synapses? Repeated activation of HVC-MSN synapses, made eligible for plasticity
by the activity of LMAN-MSN synapses (through depolarization and removal of a Mg-NMDA
receptor block) on the same MSN dendrite followed by DA release, would strengthen these
synapses. Even without activation of LMAN, the context synapses might then be able to drive
the MSNs, with the consequence that they would bias the song as described before. While
highly speculative, specific testable anatomical predictions can be inferred from the model. For
instance, in order to provide an eligibility trace to many spine synapses that listen to diverse
context signals from different HVC axons, context synapses (emerging from HVCyx axons)
should target the spines of MSNs, while efference copy synapses (emerging from LMANy axons)

should target the dendritic shafts of MSNs.



Chapter 2

Objectives

2.1 Anatomical hypotheses tested

2.1.1 HVCRA neurons are predicted to be connected, forming a

synaptic chain

Evidence that the ultra-sparse time code of HVCR s neurons (Hahnloser et al., 2002) is the
result of direct synaptic connections between these neurons is so far mainly based on indirect

observations:
1. HVCRA bursts are accompanied by a sharp depolarization instead of a slow ramp-up
(Long et al., 2010).

2. Cooling of HVC slows down song production almost linearly, indicating that the circuit

is contained in HVC (Long and Fee, 2008).
3. Feed-forward models of the HVC circuitry are a better explanation for the linear song

stretching than recurrent models (Pehlevan et al., 2015).

While these observations support the synaptic chain model of the sequence generating circuit

in HVC, there exists no anatomical data confirming these connections. On the contrary, studies

16
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based on pairwise electrophysiology report conflicting connection probabilities (Kosche et al.,
2015; Mooney and Prather, 2005). One goal of this thesis is therefore to analyze the homotypic

HVCRA neuron connectivity anatomically, using volume EM based on SBEM.

2.1.2 HVC and LMAN axons are predicted to synapse differently

onto MSNs in Area X

As illustrated in section 1.2.4, the postulated RL-model of the basal-ganglia by Fee and Gold-
berg predicts different functional roles for Area X-projecting axons originating from LMAN
(efference copy) and HVC (context). The second objective of this thesis is to test whether
these postulated functional differences are reflected in the anatomy, and more precisely, whether
LMAN axons form synapses with dendritic shafts of MSNs and HVC axons target the dendritic

spines of MSNs.

2.2 Development of novel approaches for faster

data analysis

As laid out in section 1.1.3, faster data analysis through automation is a prerequisite for the
connectomic analysis of larger volume EM datasets of brain tissue. An objective of this thesis
was to advance automation and reduce human annotation times in the two most problematic

areas of dataset analysis, as shown before:

e Automated neurite reconstruction, i.e. the recovery of neuronal processes from a volume

EM dataset.

e Automated identification of ultrastructural features, including the location and type of
synapses, to reduce the manual time required for the construction of connectivity matrices

further.
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The synaptic anatomy of the sequence

generating circuit in HVC

18
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Publication of the results presented in this chapter

This chapter contains text and figures from the following peer-reviewed publication:

EM connectomics reveals axonal target variation in a sequence-generating network.
Kornfeld, J.*, Benezra, S. E.* Narayanan, R. T., Svara, F., Egger, R., Oberlaender, M., Denk,

W., Long, M.** eLife, 6:624364 (2017)

3k

* co-first authors; ** corresponding author

All experiments were performed by J. Kornfeld in the laboratory of W. Denk (MPI for medical
Research, Heidelberg; MPI of Neurobiology, Martinsried) unless explicitly stated otherwise.

The project was performed in collaboration with the laboratory of M. Long (NYU, NYC).
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Figure 3.1: Steps performed to obtain a SBEM dataset with retrogradely labeled HVCR s neurons.
After BDA injection (1), the animal was perfused (Cragg, 1980), the brain was extracted and a
single 200 ym thick section containing HVC was used for further processing (2). Standard HRP-DAB
staining was then applied to the brain slice (3), and a subsequent post-staining was applied using the
ROTO-UAc-PbAsp method for EM (4). SBEM was then performed (5), and the resulting individual
image tiles registered through affine transformations (6). Figure adapted from (Kornfeld et al., 2017),
originally created by J. Kuhl

3.1 Methods

3.1.1 Sample preparation and data acquisition

Retrograde labeling and EM staining

All steps up to the EM staining procedure were performed as part of a collaboration in the
laboratory of Michael Long, NYU, New York City, by S. Benezra and G. Kosche. Figure 3.1
illustrates the entire sample preparation process. 200 nL of 3 kDa biotinylated dextrane amine
(BDA) was injected with a glass pipette of 30-40 pym tip diameter (Nanoject, Drummond
Scientific, USA) into the left-hemisphere RA of a male zebra finch (adult, >90 dph) under
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isoflurane anesthesia (1-3 %). A carbostar (Carbostar-1, Kation Scientific, USA) electrode
was pointed at 2.3 mm lateral and 1.85 mm posterior to the midsagittal sinus, and the RA-
characteristic electrophysiological activity (Long and Fee, 2008) was used as an additional
criterion to identify the injection site. The bird was then perfused with an extracellular space
(ECS) preserving solution (0.07 M sodium cacodylate (Serva, Germany), 0.14 M sucrose (Sigma-
Aldrich, USA), 0.002 M CaCly (Sigma-Aldrich) with 2 % paraformaldehyde (PFA) and 2 %
glutaraldehyde (GA) (Serva) under high pressure to open the blood-brain barrier (Cragg, 1980).
A 200 pym slice of brain tissue containing HVC was cut from the extracted brain and post-fixed
in the same solution overnight. Several rinsing steps in 0.15 M cacodylate buffer (CB) were
performed and the sample was permeabilized in a 30 % sucrose solution (for cryo-protection)
in liquid nitrogen by freeze-thawing (single cycle). Intrinsic peroxidase-activity was inactivated
with a 3 % HgO9 solution. The sample was then immersed overnight at 4°C in an avidin-
peroxidase complex solution to tag it with the peroxidase complex (Vector Labs and Sigma-
Aldrich). The slice was then stained in a solution with 2.3 mM diaminobenzidine (DAB,
Sigma-Aldrich) with 0.01 % H9O9. After several CB rinsing steps, a ROTO stain was applied
(Briggman et al., 2011), as described in the following. In between each staining step, the sample
was rinsed multiple times, either with CB (after the first Osmium step) or with double-distilled
water (all other steps). Staining was started in 2 % OsOy (Serva) reduced with 2.5 % Potassium
hexacyanoferrate(II) (Sigma-Aldrich)(2 h), followed by immersion in 1 % Thiocarbohydrazide
@58°C (Sigma-Aldrich)(1 h), followed by 2 % OsOy4 (2 h), and 1.5 % Uranyl acetate in HoO
@53°C (Serva)(2 h), and 0.02 M Lead aspartate @53°C (Sigma-Aldrich)(2h)(Karnovsky, 1971;
Seligman et al., 1966; Walton, 1979). Water was then removed with an ethanol (Electron
Microscopy Sciences, USA) series (chilled, 10 min, 15 min, 10 min, 10 min, at 70 %, 100 %, 100
%, 100 %). Propylene oxide (Sigma-Aldrich) was used for epoxy-infiltration before the sample
was embedded in epon hard (Serva) and cured at 60°C for 48h (Glauert and Lewis, 1999).
The sample was trimmed, glued to an aluminum holder (custom made) and re-embedded into
epoxy. Before SBEM, the sample was trimmed again, this time to a pyramidal-shape, and then
gold coated for better conductivity. Finally, the surface was smoothed with an ultramicrotome

(Leica, Germany).
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SBEM acquisition parameters and image registration

A Zeiss UltraPlus field-emission cathode SEM (GEMINI column) equipped with an electrostatic
beam blanker and scan generator (Fibics Inc., Canada) was used for SBEM. The microscope was
outfitted with a custom in-chamber microtome (Denk and Horstmann, 2004) and back scatter
electrons were detected with a custom amplification system (J. Tritthardt) in high-vacuum.
Electron landing energy was set to 2 kV, the image scan rate was 5 MHz (effective imaging rate

2. Four overlapping image tiles (4400

2.1 MHz), and the electron dose 10.3 electrons per nm
pixels side length) were acquired per slice at a resolution of 11x11 nm, with a cutting thickness
of 29 nm. Global affine transformations were calculated for each image tile for a re-assembly
into a continuous volume (Scheffer et al., 2013)1, and these transformations were applied using

custom Python code. The transformed images were then converted to a KNOSSOS readable

dataset by cubing into 128x128x128 large raw data blocks using the KNOSSOS cuber?.

3.1.2 Data analysis

BDA labeling efficiency estimation

The labeling efficiency for HVCR A somata was determined by counting the number of darkly
stained cell bodies in the dataset, and dividing it by the number of expected HVCRp cell bodies

for the volume of the EM dataset using published cell counts (Wang et al., 2002).

Since different labeling efficiencies for axonal collaterals and somata were suspected, an inde-
pendent analysis was performed to estimate the labeling efficiency for axons. Three hundred
randomly distributed 1 pm3 boxes were selected, all labeled axons within each were traced, and
the path length was compared to the expected HVCRp axon path length for such a volume.
This expected path length was calculated by multiplying the total number of HVCR p neurons

in HVC with the LM-measured axon length, divided by the total HVC volume.

https://github.com/billkarsh/Alignment_Projects
’https://github.com/knossos-project/knossos_python_tools/tree/master/knossos_cuber


https://github.com/billkarsh/Alignment_Projects
https://github.com/knossos-project/knossos_python_tools/tree/master/knossos_cuber
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Neuron tracings

Raw image data analysis was performed with KNOSSOS? (Kornfeld et al., 2011; Helmstaedter
et al., 2011) by either annotators who received at least 10 h of training, or experts who had
at least one year experience. All neurites were traced as skeletons, except the ones used for
illustrative purposes (see Fig. 3.6 and 3.7), which were volume annotated. The twelve BDA
labeled HVCR A neurons were identified at their soma inside the EM volume and traced and
proofread in a review step by an expert annotator. Additionally, six BDA labeled axons were
traced from seed points (three seeds in myelinated parts, three seeds in unmyelinated parts)
and reconstructed with at least double redundancy by annotators. An expert resolved then
reconstruction discrepancies manually in a proofreading step, thereby creating a consensus
annotation. All synapses were identified on the nine axons by an expert, and an attempt was
made to reconstruct a stretch of the postsynaptic partner dendrite for each (regular annotators,
2x redundancy). Dendrites were then proofread by an expert, and dendrites were excluded when
only a short stretch could be reconstructed due to dataset artifacts or the dataset boundaries
(at least 10 pym required). To identify postsynaptic dendritic reconstructions that belonged
to the same cell but were independently created because of the presence of multiple synapses
between an axon and its partner, a spatial matching procedure was developed (based on an
efficient k-dimensional spatial tree look-up data structure?). If two skeleton nodes of different
dendritic tracings were closer than 400 nm, they were considered overlapping, and if more than
25 % of nodes overlapped, independent dendritic tracings were assumed to belong to the same

neuron.

Synapse annotations

Synapses were annotated by labeling the synaptic cleft in the principal viewing orientation
in which the synaptic contact was largest. Synaptic contact areas were then calculated by

taking the path length of the cleft annotation as the diameter of a circle. All incoming den-

3https://knossostool.org/
‘https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial .KDTree.html
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dritic synapses were classified by an expert as symmetric (inhibitory) or asymmetric (excita-
tory)(Colonnier, 1968; Gray, 1959). If the type of a synapse could not be inferred from a single
synapse, the axon was followed until a decision could be made. Synapse-type annotations
were validated in two ways. First, twenty synapses randomly sampled from the dendrite of
an HVCR neuron were classified independently by two experts. Second, fifty synapses were
sampled from the axons of two HVCNT, one HVCRr A and two HVCyx neurons. These cells were
identified by their somatic and dendritic appearance. The fifty synapses were then classified in

a blind test by an expert annotator.

Neuronal cell type identification by spine density

Neuronal cell types were identified from the traced dendritic stretches (see section 3.1.2) by
analysis of their spine density, for which ground truth data was established from LM reconstruc-
tions (LM experiments performed by S. Benezra). The spine density was estimated through
automatic spine counting (criteria: >1 pym length, spines with >1 incoming synapses from an
average of three synapse counts by independent annotators were removed). The synapse count-
ing was necessary to avoid the classification of dendritic interneuron protrusions as spines (see
Fig. 3.8 d). The neuron was then assigned to one of the three main classes of HVC by the spine
density: HVCynT for less than 0.11 spines per um path length, HVCR for values between 0.11
and 0.46, and HVCx in the case of a higher spine density. The average spine density was used
for classification in cases where multiple counts were made for dendrites of the same cell (see

section 3.1.2) that were traced from different synapses.

HVCRr axon soma-distance estimation

Since not all labeled HVCR A axons could be traced back to a soma due to the limitations of the
EM dataset, a Bayesian method was developed that allowed the estimation of a soma distance
for each orphaned axon. For this estimate, the variation of the number of axonal branch points
as a function of soma distance (Dy(r)) was exploited. The probability distribution over r was

calculated using
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P(r|N,1) oc P(N,1|r)Pa(r) (3.1)

with 1 being the length of an axonal branch, N the number of branch nodes, and P,(r) the
Bayesian prior. P4(r) was determined from LM reconstructions (LM experiments performed by
S. Benezra) using a Gaussian kernel density estimation (Python scipy.stats.gaussian_kde with
the Scott bandwidth selector®) and P(N,1|r) then calculated by assuming a Poisson distribution

of branch nodes, with a node-count expectation value A = Dy, (r)l:

Dy, (r)1Ne Do)

P(N,1Jr) = N (3.2)
whereby Dy (r) was determined with an exponential fit to LM measurements:
35.448 - ¢ TBmm + 0.613

min

Estimation of the fraction of homotypic HVCR A synapses

Two separate approaches were used to estimate the fraction of homotypic synapses.

First, a dendritic perspective was taken, and the number of labeled incoming HVCR 5 synapses
was counted (identified by an expert, scrutinized by another expert) and corrected with the
estimated axonal labeling efficiency (see section 3.1.2). Second, an axonic perspective was taken
by analyzing the postsynaptic partner type of outgoing synapses of HVCy p axons. For this, the
59 BDA-labeled axons identified for the estimation of the axon labeling efficiency (see section
3.1.2), were traced to the next two synapses (or the end of the dataset), and the post synaptic
partner cell type was determined as described in section 3.1.2. The outgoing synapse density
per type was then computed from these data, and an estimate of the total number of outgoing
homotypic HVCR A synapses calculated by extrapolation to the entire HVC-internal HVCR a

axon length, as measured from LM (LM experiments performed by S. Benezra).

Shttps://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.gaussian_kde.html
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3.2 Results

3.2.1 The jO256 dataset of HVC

To test the hypothesis that HVCR p neurons are synaptically connected anatomically (see objec-
tives section 2.1) as required by the synfire chain model, a SBEM dataset of HVC was acquired.

Since small volume EM datasets suffer often from the difficulty of identifying reconstructed neu-

a b

77 pm

1pm

Figure 3.2: Image quality and dimensions of the acquired j0256 dataset. (a) 3D-rendering indicating
dataset size. (b) Overview 2D xy-slice, showing the darkly labeled HVCR 4 neurons. Red arrows show
the BDA-labeled somata visible in this plane (see also inset). (c) xy-slice (EM imaging plane) at full
resolution. The red arrow indicates the white ECS, often not visible in conventionally stained EM
micrographs. (d) xz-reslice at full resolution. Note the slight jitter from top to bottom, in comparison
with c. Figure adapted from (Kornfeld et al., 2017).

ron fragments and assigning them to previously described cell types, a novel en-bloc staining
method was first developed that combines the ROTO protocol (reduced Osmium tetroxide,

RO; Thiocarbohydrazide, T; Osmium tetroxide, O; followed by Uranyl acetate, UAc; and Lead
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aspartate, PbAsp; see section 3.1.1) with retrograde labeling. A retrograde tracer (3 kDa BDA,
Reiner et al., 2000) was injected into the brain nucleus RA and was allowed to diffuse to HVC
and label a sub-population of HVCRr A neurons. An SBEM dataset of 166 x 166 x 77 um of a
central region of HVC was then acquired at a voxel size of 11 x 11 x 29 nm. Darkly stained
cells were visible in this dataset, as shown in Fig. 3.2 (for detailed acquisition parameters see
section 3.1.1). The dataset contained 563 somata, of which 449 were neuronal and 114 glial cell
bodies. 34 of the neuronal cell bodies were labeled with BDA and therefore were confirmed as
HVCRA neurons. Based on the morphology of the cell bodies and dendrites (see section 3.1.2),
259 cells were classified as putative HVCR A neurons. In addition, 22 neurons were suspected
to be HVCx cells and 61 were suspected to be HVCyn cells. A large population (n = 73)
of neuronal somata could not be further classified because they were located at the boundary
of the dataset, making it impossible to analyze their processes, or because of an inconclusive

appearance of their soma.

3.2.2 Synaptic afferents of HVCR A neurons

To analyze the synaptic afferents of HVCR p neurons, twelve labeled cells were reconstructed by
tracing their processes (skeletonizing) from their somata within the limits of the dataset (total
path length: 22.7 mm, mean 1.89 mm, s.d. 0.625 mm), followed by an identification of their
incoming synapses. For one of the twelve neurons, all incoming synapses were annotated (Fig.
3.3 a, total of 1,003 synapses) and classified as being asymmetric (excitatory) or symmetric
(inhibitory)(Colonnier, 1968; Gray, 1959). 396 asymmetric synapses were found (39.5 %), and
607 symmetric synapses (60.5 %). The synapse type classification was validated in two ways:
first, with an independent analysis of twenty randomly selected synapses from the dendrites
of an HVCRA neuron by two experts (19 of 20 were assigned the same type), and second,
through the blind classification of 50 synapses sampled from axons (8 HVCgp, 11 HVCx and
31 HVCyn) with known synaptic identity (asymmetric, n = 19; symmetric, n = 31; all correctly

classified) (see Fig. 3.3 b for example synapses).

The incoming synapse distribution of the single cell was then compared to the local HVCRa
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Figure 3.3: Analysis of the synaptic inputs of HVCR A neurons. (a) Annotated and classified dendritic
synapses of a BDA-labeled HVCRrp neuron, fully reconstructed in the extent of the j0256 dataset.
Found putative excitatory synapses are in gray, inhibitory synapses in blue. (b) Raw EM images
illustrating the ultrastructural differences between the asymmetric and symmetric synapse type in
this dataset, compare especially the number of synaptic vesicles and synaptic densities. Red arrows:
synaptic clefts. (c) Synapse type vs soma distance, gray shading indicates s.e.m. Figure adapted from
(Kornfeld et al., 2017).

neuron population by inspecting synapses from the dendrites of eight additional neurons, and
no significant difference could be found (p = 0.36, one-way ANOVA). To reduce the annotation
workload, short dendritic stretches were randomly sampled from these neurons (n = 97, first
and third quartile of stretch length 13.3 ym and 21.6 ym) and densely annotated as before.
This high amount of inhibitory input synapses (60.5 %) is surprising, given that the fraction
of inhibitory synapses that can be found on mammalian cortical neurons is usually less than
about 20 % (Beaulieu et al., 1992; Kasthuri et al., 2015; Peters, 2002). Similar to mammalian
principal neurons, inhibitory inputs were enriched close to the soma of the HVCR s neurons
(Anderson et al., 1994) (Fig. 3.3 ¢) (68 £ 4 % for less than 40 pm soma distance vs 57 + 2 %
for more than 40 ym; p <0.05, Wilcoxon rank-sum test). While this analysis provides a rough

categorization of the synaptics inputs, it could not reveal the exact cell type behind each input,
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an important piece of information for the understanding of circuit function.

However, the introduced BDA label allows for the identification of excitatory afferents that
originate with high probability from other HVCR p neurons (but see section 3.2.5 for a critical
discussion and a control experiment), a prerequisite for the synaptic chain model to generate the

temporally precise timing signals for singing. Double-labeled (i.e. pre- and post-synaptically
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Figure 3.4: Incoming homotypic synapses on HVCg 4 neurons. (a) Identified darkly labeled synapses
on two of the twelve reconstructed HVCR 4 dendrites in red. The insets show a small (top) and large
(bottom) homotypic synapse. Inset scale bars: 0.25 ym (b) Cumulative distributions of synapse sizes
for the three different synapse types that could be discriminated. Note that the symmetric synapses
had fewer large synapses compared to the excitatory synapses and the homotypic synapses. Figure
adapted from (Kornfeld et al., 2017).

stained) homotypic synapses between HVCRrp neurons were therefore searched on all twelve
HVCRA neuron reconstructions (see Fig. 3.4 a for two examples), and, in total, 44 such
synapses were identified on the dendrites, out of an estimated total of 3,817 £+ 925 (s.d.)
excitatory synapses (calculated from an estimated excitatory synapse density of 0.168 + 0.014
pm’l s.eem. and a total searched dendritic path length of about 22.7 mm). The synapse
sizes of all types (Fig. 3.4 b) followed a skewed distribution (many small synapses and few
large synapses, log-normal like), and the double-labeled synapses were not different in their
size distribution from all identified excitatory synapses (median size double-labeled: 0.21 me,
asymmetric: 0.17 HmQ, p >0.05, Wilcoxon rank-sum test). The inhibitory synapse distribution
appeared to have fewer large synapses, but this remains an anecdotal observation that should
be investigated in more detail in future studies. To calculate the overall fraction of excitatory

synapses that stem from other HVCR A neurons, a reliable estimate of the labeling efficiency of

the retrograde tracer was required. The somatic labeling efficiency was 14 %, as calculated from
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Figure 3.5: Labeling of the retrograde tracer. (a) Somatic labeling efficiency of the retrograde tracer.
Top view of the j0256 dataset, red spheres indicate a labeled neuron, therefore an HVCR 4 projector,
light red a morphologically identifed HVCR neuron and gray other neurons, HVCinT and HVCx.
Small gray spheres indicate glia. (b) Example of an incompletely labeled axon collateral. The black
regions of the reconstruction indicate strong label, the light regions almost invisible label, as illustrated
in the insets. Figure adapted from (Kornfeld et al., 2017).

the number of somata in the dataset that had recognizable staining compared to the number
of expected HVCR p neurons (expected value of labeled somata with perfect labeling efficiency
for a dataset of this size: 240 + 28, s.e.m.; based on a total of about 40,000 £+ 3,800 (s.e.m.)
HVCRA neurons (Wang et al., 2002), and a total HVC volume of 0.35 £+ 0.024 mm3, s.em., n

= 14, LM measurements performed by S. Benezra) (see Fig. 3.5).

This analysis indicates that only about 8 % of all excitatory synapses could be a part of a
synaptic chain for sequence generation. However, the labeling of axonal collaterals appeared to
be much less efficient than the somatic and dendritic labeling, as illustrated in Fig. 3.5 b. This
observation is not surprising, given that 3 kDa BDA is well known for its retrograde labeling
efficiency but not for its strong axonal collateral and terminal labeling (Reiner et al., 2000).
The axonal labeling efficiency was therefore quantified independently with a sparse sampling
approach to reduce annotation time. 300 cubes of 1 pm?’ size were randomly sampled from the

dataset and the total labeled axon path length contained was measured (38.6 um). The labeling
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efficiency could then be calculated from an estimate of the total HVCR 5 axon path length of
the nucleus (585.6 m) and its volume (about 0.35 mm3, see above), leading to a number of 7.6
+ 1.6 % (s.e.m.), about half the somatic labeling efficiency (14 %). Based on this estimate,
about 15 + 4 % (s.e.m.) of all excitatory synapses of an HVCRra neuron are homotypic and

might support a synaptic chain.

To have an independent mean for estimating the amount of homotypic connectivity, a transsy-
naptic tracing approach was taken and the synaptic targets of labeled (i.e. putative HVCRy)
axonal collaterals were analyzed. However, a method to reliably identify the type of an HVC
neuron based on its dendritic appearance first had to be established. This identification was
necessary because only a small fraction of the postsynaptic dendrites were expected to be

labeled by BDA, which would have allowed a direct identification.

3.2.3 Identifying HVC cell types from short dendritic reconstruc-

tions

5um S5um

Figure 3.6: Transsynaptic tracing approach used to analyze the synaptic targets of HVCR 4 axons.
First, all synapses are identified on an axon (left, red), and then all postsynaptic dendrites are traced,
either partially or completely, as illustrated for one synapse formed with an aspiny HVCinT dendrite.
Figure adapted from (Kornfeld et al., 2017).

The three main cell types of HVC (HVCRa, HVCinT and HVCy) can be distinguished by their



32 Chapter 3. The synaptic anatomy of the sequence generating circuit in HVC

dendritic spine density, as reported previously in several studies (Kubota and Taniguchi, 1998;
Dutar et al., 1998; Mooney, 2000). To confirm these results, the spine densities of dendritic
branches of known cell types were quantified from dendritic LM reconstructions (LM experi-
ments by S. Benzra, see Fig. 3.7 a). As expected, HVCiyT, HVCRA, and HVCx had largely
non-overlapping spine density distributions (Fig. 3.7 ¢). Interneuron dendrites were largely
aspinous (0.01 £ 0.01 spines per um, mean =+ s.d.), HVCx dendrites spiny (0.70 & 0.13 spines

per um) and HVCRp dendrites in between (0.21 £ 0.07 spines per um). A simple classification
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Figure 3.7: Spine density based classification of short dendritic reconstructions to identify the post-

synaptic targets of HVCR A axons. (a) LM micrographs (S. Benezra) showing dendrites from the three
main classes. (b) Volume reconstructions of three EM dendrites, colored by the classification method.
(c) and (d) show the frequency of measured spine density data for LM ground truth data (c) and

unknown EM data (d). Figure adapted from (Kornfeld et al., 2017).

scheme was then used to identify the EM dendrites (Fig. 3.7 b, d), based on thresholding
the spine density (see section 3.1.2). Interestingly, the EM spine density distributions were
broader, possibly because of the larger amount of different cells that were incorporated into the
analysis (n = 528 for EM dendpritic stretches, most likely from different cells, and n = 9 cells
for LM dendrites) and the presence of shorter dendritic stretches. The EM analysis revealed
further that some interneurons (those that could be clearly identified based on their outgoing

synapse type and somatic ultrastructure, see Fig. 3.8 a to ¢) appeared to have dendritic spines
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as well, with one case shown in Fig. 3.8 d. While these spines were similar geometrically,
the ultrastructure revealed that they received multiple synaptic contacts at their spine head.
This was in contrast to the excitatory cell types, which mainly received just a single synapse.
The synapses on all spines identified on the EM reconstructions were therefore counted (three
independent annotators), and spines that had more than one synapse on average were excluded

for the cell type classification. The EM spine density classification was validated by the correct

Figure 3.8: Morphological identification of interneurons in EM. (a) Skeleton reconstruction of a largely
aspiny HVCyn, soma approximated with a sphere. (b) Imaging plane EM cut-out of a symmetric
synapse formed by the neuron. (c) Different appearance of the soma of an HVCynT on the left side
(blue shading) and an HVCRa neuron, right side (red shading). (d) Short dendritic process of an
interneuron (blue shading) that receives four synapses and has a spine-like geometry. Figure adapted
from (Kornfeld et al., 2017).

classification of eleven interneuron dendrites that were identified based on other morphological
characteristics (soma morphology and symmetric outgoing synapses on their axons, since the
dendrites could be traced back to the soma), and the correct classification of 17 out of 18

HVCRA dendrites that were identified by the BDA-label.
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3.2.4 Postsynaptic targets of HVCR A axons

The established spine density classification method was then used to identify the synaptic
targets of three HVCRp axons that were connected to a soma in the EM dataset (axonal
path lengths: 1.37, 0.88 and 0.72 mm). 121 synapses were identified in total, of which 115
were formed on HVCynT and only six on excitatory cell types (four HVCR s and two HVCy).
While this finding is compatible with the high probability of HVCR s to HVCNT connectivity
found in an electrophysiological study based on pairwise patch-recordings in slices (Kosche
et al., 2015), it is in conflict with the previous estimate (15 %, see 3.2.2) of the fraction of
homotypic synapses. By definition, HVCR A neurons must receive on average the same number
of homotypic synapses as they form on other HVCR p neurons. When the density of HVCya
to HVCR A synapses from these 121 synapses is extrapolated to the estimate of total HVCR A
axonal path length in the brain nucleus, only about 20 homotypic synapses per HVCr A would

be expected, about six times fewer than estimated from the dendritic perspective.

The synaptic targets of BDA-labeled axons (putative HVCR axons) that could not be traced
back to their soma were analyzed next (path length: 0.56 + 0.27 mm, mean + s.d.; n = 6).
Three of these axons were traced from a labeled dendrite and four were partially myelinated.
Surprisingly, the number of synapses onto excitatory postsynaptic cells was thirteen times
higher for this population, from 5 % to 64.6 % (263 of 407 synapses). The number of putative
homotypic synapses increased in a similar way, from 3.3 % to 36.7 % (11-fold, 150 of 407
synapses). Additionally, multiple synapses from a labeled axon to a postsynaptic HVCRa
dendrite were found: 17 doubles, 3 triple and 1 quintuple out of 127 pairs. What could explain
this striking difference? Axon fragments that cannot be traced back to their soma inside the
dataset must be farther away from it (at least on average, but rare cases where a soma could
be found directly next to the boundaries of the dataset are possible). This relationship implies
that the axon fragment to soma distance should be quantified, requiring a local criterion that
can be translated into an estimate of the axon-soma distance. LM reconstructions (S. Benezra)
provided a hint: axonal branching is reduced with increased soma distance (see Fig. 3.9). This

relationship was also found for the EM reconstructions, where HVCRp axons that could be
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Figure 3.9: LM ground truth for the estimation of the axon fragment soma distance, data by S.
Benezra, Long laboratory. (a) Axon of a HVCRra neuron (soma in black) with all axonal branch
points labeled in orange. Dashed lines indicate the outline of HVC. (b) Axon length and branch nodes
vs distance from soma. Figure adapted from (Kornfeld et al., 2017).

followed to the soma had 12.4 + 3.7 branch points / mm (mean + s.d.; n = 3), much higher

than the orphaned fragments with 4.0 £+ 4.3 branch points / mm (mean £ s.d.; n = 6).

Bayesian inference was then used to obtain an estimate and its uncertainty of the fragment
soma distance for each orphaned fragment (see section 3.1.2 for details). In short, the axonal
length density as a function of soma distance was used as a prior, and the number of branches
per axon length was modeled with a Poisson distribution. The soma distance distribution for
each axon fragment (including the fragments that could be traced to a soma as a control) was
then inferred from its number of branch points and length. The uncertainty of the estimate
was given by the width of the distribution, see Fig. 3.10. The soma distance of the three axon
fragments that were connected to a soma was estimated to be below 100 um, validating the
approach for the given EM dataset size. It should be noted that a direct analysis on individual
axons seemed impossible given the small dataset size and the fact that there were almost no
excitatory post synaptic targets, but such an analysis would clearly have been the preferred

option.
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Figure 3.10: Axonal target variation as a function of soma distance, estimated using Bayesian in-
ference. (a)-(e) Skeleton reconstructions of axons of putative HVCra neurons, with their outgoing
synapses colored by postsynaptic type. (f) Area of active zone onto excitatory neurons, as a function
of soma distance, estimated using a Bayesian model; p <0.05, Pearson’s correlation. (f)-(i) Error bars
on the x-axis indicate the 0.16 quantile and 0.84 quantile of the Bayesian posterior distribution. Y-axis
error bars represent the s.e.m. of an assumed underlying Poisson distributed synapse count for (f),
(g) and (i), or the s.e.m. of an assumed underlying binomial count distribution (h). Figure adapted
from (Kornfeld et al., 2017).
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Since only a few (n = 9) axon fragments were inspected and so could have been affected by
selection bias, a separate and independent analysis was performed to estimate the fraction of
HVCRA homotypic connectivity from the axon perspective, in comparison with the dendritic
perspective (see section 3.2.2). To carry out this analysis, the 59 BDA-labeled axon fragments
identified in the 300 member set (see section 3.2.2) were traced until the first two synapses
were reached or the tracing terminated at the dataset boundaries. The postsynaptic cell type
of these synapses was then determined as described previously (see section 3.2.3). 105 synapses
were identified in total, with 65 being targeted interneurons, 22 HVCx neurons and 18 HVCya
neurons. An estimate was then found for the number of outgoing synapses per HVCR 5 neuron
of 1111 4+ 513 (s.d.) (based on a total average axon path length of 14.7 mm, and a synapse
density of 75.4 synapses / mm), leading to an estimate of about 191 + 88 (s.d.) HVCga
homotypic synapses per cell. This number translates to an estimate of 24 + 4 % (s.e.m.)
homotypic synapses as a percentage of all excitatory synapses, slightly larger than the estimate
obtained from the dendritic perspective (about 15 %). This difference might be due to the
strict acceptance policy for identifying double-labeled synapses for the dendritic estimate, or

could be caused by other uncertainties that were not accounted for.
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3.2.5 Could the orphaned axons belong to RAgvyvc neurons?
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Figure 3.11: Control experiment to estimate the number of RA gy neurons, performed by S. Benezra.
(a) Borders of nucleus RA, reconstructed from 100 pym thick sagittal sections. Dots represent RA v
neurons. Only a few cells in RA were labeled (<1 %) by the Dil injection into HVC. (b) Robust
labeling in Uva and NIf, in comparison to RA, demonstrating that the tracer is efficient. (c) A
confocal micrograph shows the small number of retrogradely labeled neurons in the posterior part of
RA. Figure adapted from (Kornfeld et al., 2017).

Roberts et al. (Roberts et al., 2008) estimated that there is a significant population of RAgyc
neurons, and the anterograde projections to HVC might therefore be labeled with BDA after
injection of BDA into RA. The number of RAgyc neurons was quantified by Dil injection
into HVC (LM experiments performed by S. Benezra) and compared to the number of HVCg z
neurons (about 40,000 per hemisphere). Only a small number of RAgyc neurons (125, 163,
171, n = 3 birds) were found, despite heavy labeling of other upstream areas such as NIf and

Uva (see Fig. 3.5). Each RAgyc neuron must therefore have an axon of about 4 m path length
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inside of HVC to account for the density of labeled axon in the dataset. This length, however,
appears unlikely, given that the strongly ramifying HVCRr axons have a path length of only
about 0.015 m. It should also be noted that 3 kDa BDA is known to be a better retrograde than
anterograde tracer in birds (Reiner et al., 2000), making it even less likely that a substantial

fraction of the orphaned axons originates from RAyyc neurons.

3.2.6 Postsynaptic targets of HVCx and HVCynT neurons

A preliminary analysis was carried out on the synaptic targets of the proximal axons of two
putative HVCx neurons and two axon fragments from HVCiyT neurons in a similar way to
the previous sections. Due to the manual annotation efforts required for synapse counting on
spines (see section 3.1.2), the postsynaptic dendrites were only visually classified, but pure
visual classification does not necessarily sacrifice substantial accuracy as can be seen in Fig.
3.7 a and b. Similarly to the proximal HVCRra axons, the proximal HVCx axons almost
exclusively targeted (15 out of 17) smooth dendrites of HVCy, in addition to two putative
HVCRA neurons. HVCyyT axons had a very different ultrastructural appearance compared to
HVCRrA and HVCx axons, with thick caliber axons and a high density of synaptic vesicles and
synaptic sites (see Fig. 3.3). Interestingly, and in stark contrast to the HVCx and HVCRa
neurons, the 20 analyzed inhibitory synapses, sampled from axonal parts proximal to their
soma, targeted mainly spiny postsynaptic dendrites (5 HVCinT, 10 HVCRa, 5 HVCx). This
suggests that the axons of inhibitory and excitatory cells follow fundamentally different wiring

patterns in HVC.

3.3 Discussion

3.3.1 The role of homotypic HVCR A connectivity

Synaptic chain models of neuronal sequence generation (Abeles, 1982) rely on a wiring diagram

with excitatory feed-forward connectivity (in an idealized case with no "noisy” connections that
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do not adhere to the temporal wiring scheme), as described in section 1.2.3. This study and
previous electrophysiological work (Kosche et al., 2015) demonstrated that the most prominent
wiring pattern is the dense recurrent HVCR p and inhibitory interneuron connectivity, and that
the pairwise connection probability for homotypic connections is small (<1 %). However, such
low pairwise connection probabilities can be deceptive, since the overall fraction of homotypic
inputs of all excitatory synapses was estimated here to be almost 25 %, or about 200 per neuron.
This observation illustrates the importance of considering the total synaptic input of a neuron
instead of focusing on pairwise connection probabilities. However, it should be noted that the
remaining 75 % of the incoming HVCR 5 excitatory synapses could not be characterized in this
study. The sensorimotor cortical area NIf, the thalamic nucleus Uva, and other auditory areas
are known to project to HVC (reviewed in Mooney, 2009), but to what extent they drive the
HVCRA neurons is less clear. Inactivating NIf leads only to transient song degradation (Cardin
et al., 2005; Otchy et al., 2015) and auditory inputs were shown to be of little importance
(Vallentin and Long, 2015), similar to the contribution of HVCx neurons (Scharff et al., 2000).
Despite these cues, and the less clear role of Uva (Hamaguchi et al., 2016; Coleman and Vu,
2005), it remains to be tested whether direct excitatory connections from other HVCR p neurons
are the main driver of the temporally precise bursts. It could well be that an individual HVCR a
neuron makes use of any excitatory input that contributes to the "right timing” - this would be
consistent with the effect of transient NIf inactivation, which leads to song degradation (Otchy
et al., 2015). After permanent NIf lesions (Cardin et al., 2005), the lost excitatory synapses
would for example be replaced through homeostatic regulation with HVCRp synapses (Otchy
et al., 2015). Future experiments should clearly combine functional HVC activity imaging to
determine the burst time of individual HVCR 5 neurons, followed by large scale EM analysis of
the same tissue. Such an experiment would provide a better measure of how relevant excitatory
feed-forward connectivity between HVCR A neurons is, and whether the temporal succession of

activity over a neuron population can be inferred directly from synaptic connectivity.
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3.3.2 Hypotheses about the developing HVC

The wiring patterns described here were found in an adult bird with a mature HVC circuit,
but it is unclear how they develop. The low number of proximal homotypic synapses in the
adult HVC could be the result of genetically encoded dense local recurrent connectivity with
inhibitory interneurons: in the beginning of development, HVCR s neurons might form more
homotypic synapses on their proximal axonal parts, but these connections could then slowly be
pruned through Hebbian plasticity (Hebb, 1949) because of the strong local recurrent inhibition.
Alternatively, the observed connectivity patterns might arise from gradients in molecular cues.
It would therefore be of interest to perform experiments that elucidate whether the distance-

dependent connectivity pattern already exists in young animals.

3.3.3 Functional consequences of the observed wiring

The dense local recurrent inhibition is a feature often ascribed to winner-take-all (WTA) cir-
cuits, where the activation of a functionally grouped excitatory neuronal population leads to
a suppression of neighboring principal neurons through inhibition. Such circuits were intro-
duced as models for decision making (Hopfield and Tank, 1985), but were more recently also
employed as a theoretical framework for neuronal sequence generation (Mostafa and Indiveri,
2014). Interestingly, these models are based on local microcircuits with dense recurrent inhi-
bition that exhibit WTA dynamics, coupled through distal excitatory synapses formed by the
locally winning principal neurons (see Fig. 3.12). The synaptic architecture analysis of HVC in
this thesis shows that such a connectivity pattern might exist in HVC, but it should be noted
that the computations performed by the zebra finch HVC during song production are extremely
stereotyped. The assumed local WTA dynamics are therefore expected to always lead to the
same outcomes rather than selecting between different sequences. However, this functionality
might be different for birds with a more complex syllable repertoire and order (Jin, 2009). The
synaptic anatomy reported here is further in agreement with a modeling study performed by
Cannon et al., 2015 that is based on the idea of spatio-temporal activity patterns that cycle

through HVC. In this model, local inhibitory zones that are the result of the dense recurrent
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Figure 3.12: Hypothesized model of HVC function during song production and how inhibitory and
excitatory neurons may interact. It is proposed that the burst activity of HVCRa neurons cycles
through the brain area, driven by local suppression and distal excitation, consistent with Cannon
et al., 2015.

inhibition sharpen the excitatory pulse that travels through the network.

3.3.4 The neurite identification problem in the jO256 dataset

Despite the usage of a mainly retrograde tracer (3 kDa BDA), the cell type identification of
the orphaned HVCR p axons remained indirect and required extensive control experiments (see
section 3.2.5) to estimate the probability of confusion with RAgyc projecting axons. This
ambiguity was illustrative for the frequent problem of neurite identification in small volume
EM datasets, which also had to be solved for the identification of dendritic reconstructions (see
section 3.2.3). A larger HVC dataset would have had two significant advantages: it would have
allowed to follow all axons back to their somata, instead of performing a Bayesian analysis to
estimate the soma distance (section 3.1.2), and additionally would have increased the number
of cues (morphological, but also from connectivity) to infer the cell type for a reconstruction.
It is therefore concluded that the higher efforts required upfront for the acquisition of a larger
dataset might in fact be compensated later by the time saved by avoiding additional analyses

required for a smaller dataset.
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Publication of the results presented in this chapter

The results of this chapter had not yet been published in a peer-reviewed journal by the

submission time of this thesis.

All experiments were performed by J. Kornfeld in the laboratory of W. Denk (MPI for medical
Research, Heidelberg; MPI of Neurobiology, Martinsried) unless explicitly stated otherwise.

The project was performed in collaboration with the laboratory of M. Fee (MIT, Cambridge).
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4.1 Methods

4.1.1 Sample preparation and data acquisition

The same EM sample preparation procedure as described previously for the HVC dataset
(see section 3.1.1) was used with some small changes, the most notable being the lack of a
retrograde labeling procedure which greatly simplified the protocol. The Area X sample of the
j0251 dataset was taken from an adult male zebra finch (>120 dph) that was perfused by M.
Stetner in the laboratory of Michale Fee (MIT, Cambridge) using the fixation method described
earlier but with 1 % GA and 1 % PFA. The sample for the j0126 dataset was taken from an
adult male zebra finch (>120 dph) that was provided by the laboratory of M. Gahr (MPI for

Ornithology, Seewiesen).

The same microscope setup (Zeiss UltraPlus, see section 3.1.1) as described previously was used
for both datasets that were acquired for this chapter, j0126 and j0251. The different imaging

and SBEM parameters are described separately in the following sections.

Acquisition of the j0126 dataset

The j0126 dataset was acquired with a single image tile (10,240 by 10,240 pixels) per microtome
slice with a landing energy of 1.6 kV and an electron current of 1 nA at a scan rate of 3.3 MHz.
The lateral resolution of each image was 9 x 9 nm and the cutting thickness was set to 20
nm. The individual images were registered with custom MATLAB scripts (K. Briggman and
K. Borgens) by globally minimizing cross-correlation shifts between the layers. The registered
images were then converted to a cubed 3D image pyramid with a custom Python script! for
neurite reconstructions and synapse annotations with KNOSSOS, as described previously in

section 3.1.1.

Ihttps://github.com/knossos-project/knossos_cuber
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Dataset jO0251

The j0251 dataset was acquired with 16 overlapping (4 by 4) and equally sized image tiles (6,600
by 6,600 pixels) per microtome slice with a landing energy of 2 kV and an electron current of
1 nA, at a scan rate of 5 MHz and lateral resolution of 10 x 10 nm. The microtome cutting
thickness was set to 25 nm. Registration was performed as for the j256 dataset with affine
transformations based on the Karsh alignment framework? (Scheffer et al., 2013) and custom
Python scripts. Additionally, contrast limited adaptive histogram equalization (CLAHE)3 was
applied (gradient from the top to the bottom of the dataset, from a clip limit of 1.0 to 2.4) to
visually compensate for the effects of a degrading signal-to-noise ratio and frequent signal offset
shifts that were encountered during the acquisition. The data was then cubed to a KNOSSOS

readable format using custom Python scripts, as described for the other datasets.

4.1.2 Neurite reconstructions and synapse annotations

All skeleton and synapse reconstructions were performed with KNOSSOS* (Kornfeld et al.,
2011; Helmstaedter et al., 2011). Neurites were annotated similarly to the annotations of the
HVC j0256 dataset: seed coordinates were provided to at least two independent human anno-
tators. The redundant annotations were then automatically matched by comparing all tracings
of the entire dataset, since seeds from different locations could belong to the same neurons
(matching parameters as described previously, see section 3.1.2). The matched skeletons were
then reviewed by annotators and discrepancies were inspected and resolved, leading to a single
consensus skeleton tracing per neurite. Synapses were annotated as described in the previous
chapter (see section 3.1.2), in short by tracing of the synaptic junction and extrapolation to a
circle for area estimation. All further data analysis was performed using custom Python scripts

based on the open-source KNOSSOS utility package?.

’https://github.com/billkarsh/Alignment_Projects
3http://docs.opencv.org/trunk/d5/daf/tutorial_py_histogram_equalization.html
43ww . knossostool . org

Shttps://github.com/knossos-project/knossos_utils
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4.2 Results

4.2.1 Acquired SBEM datasets of Area X

dataset j0126 dataset j0251

Figure 4.1: Acquired datasets of the striatopallidal Area X from adult male zebra finches. Left: j0126,
which has a total size of about 0.7 TB and contains about 450 somata. Right: jO251, which has a total
size of about 10 TB and contains more than 10,000 somata. The insets show the image quality at the
location of synapses. Note that individual synaptic vesicles can be discriminated in both datasets.

To analyze the wiring of the zebra finch basal-ganglia Area X, two SBEM datasets from different
adult wild type male zebra finches were acquired. j0126 and j0251 are both from central regions
of Area X, and their main difference is dataset size, as illustrated in Fig. 4.1. Both datasets
were acquired with ECS preservation (Cragg, 1980) to improve the performance of automated
reconstruction algorithms (Pallotto et al., 2015). j0126 offers a slightly better image quality
at a voxel size of 9 x 9 x 20 nm, but has only about 4 % of the volume of j0251 (voxel size
of 10 x 10 x 25 nm), illustrating the progress made in dataset acquisition size over time. The
results of the following sections were derived from the j0126 dataset and are based on manual
analysis, since the computational approaches presented in the last chapter of this thesis had

not yet been established at the time of analysis. Similarly, a detailed analysis of j0251 cannot
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be part of this thesis due to time constraints.

4.2.2 Testing the structural predictions of a model of reinforcement

learning

One of the objectives of this thesis was to test the anatomical predictions of the RL model
described in the introduction (see 1.2.4). In short, the model predicts that context synapses
(from HVC axons) should be found making contact with the spine heads of MSNs, and efference
copy synapses (from LMAN axons) should contact the dendritic shafts. To test this hypothesis,
skeleton reconstructions were performed of MSNs and axons forming asymmetric synapses in
the j0126 dataset. Skeletons and synapses were manually annotated, as described previously

(see the methods section from the previous chapter, 3.1).

Morphological classification of excitatory axons in Area X

Context (HVC) and action (LMAN) axons were discriminated based on their morphology,
and LM tracing ground truth data was provided by M. Stetner (Fee Laboratory, MIT, Mas-
sachusetts) which enabled the visual classification of EM reconstructions. Fig. 4.2 a and b
show LM micrographs and their reconstructions, illustrating that HVC axons branch rarely
and are mostly straight inside of Area X, while LMAN axons form highly branched focal ar-
borizations. Both axon types were found to synapse onto MSNs (Fig. 4.2 ¢). Two exemplary
EM reconstructions of axons (Fig. 4.2 d, e), transsynaptically traced from MSNs, are shown
to illustrate the EM morphologies. To avoid misclassification, the further analyses presented
here were restricted to reconstructions that fell clearly into the two described morphological

categories.

Axon perspective on the hypothesis test

As a first step, axons that formed asymmetric synapses were skeletonized (traced from afferent

asymmetric synapses of MSNs). 11 were selected based on their morphology (5 putative LMAN
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a
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Figure 4.2: LM ground truth and EM tracings in Area X; LM data produced by M. Stetner, Fee
laboratory. (a) Top: A single LMAN-projection neuron was virally labeled with GFP. Middle: Only
a small volume is covered by its axon in X, which forms a dense terminal arborization. Bottom: LM
tracings of small LMAN axon fragments on the EM dataset size-scale. (b) Top: HVC projection
neurons labeled virally with GFP, with one of them projecting to Area X. Middle: Diffuse and largely
unbranched axon inside X. Bottom: Reconstructions as in (a). (c) EM MSN tracing with the typical
spiny dendrite (skeleton nodes adjusted to neurite thickness, see next chapter). The top inset shows
an asymmetric dendritic shaft synapse, the bottom a spine head synapse. (d) HVC-like axon forming
asymmetric synapses. (e) LMAN-Ilike axon forming asymmetric synapses.
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Figure 4.3: Axons forming asymmetric synapses with LMAN-like or HVC-like morphology target
different dendritic compartments. (a) Synapses annotated on 5 LMAN-like axons (branched) and
manually classified as spine or shaft synapse. (b) Synapses annotated on 6 HVC-like axons (straight,
unbranched) and manually classified as spine or shaft synapse. (c) Quantification of the fraction of
shaft synapses from 618 synapses. t-test, p <0.01. Error bars are s.d..

axons, and 6 putative HVC axons), and all their synapses were manually identified. It was then
analyzed for each synapse whether it targeted the postsynaptic neuron on a spine head or the
dendritic shaft (see Fig. 4.3). In total, 618 synapses were annotated in this way, whereby most
of them were found on p. LMAN axons, often enriched in parts of the axon with many branches.
Synapses on p. HVC axons were distributed more evenly, often at regular distances (about 5-10
nm). It was then tested whether LMAN-like axons targeted dendritic shafts more frequently,
and a significant difference was found, consistent with the predictions by the RL-model (see
section 1.2.4). However, LMAN-like axons showed a high fraction of spine head synapses (about
50 %), and HVC-like axons also formed shaft synapses (about 20 %), an observation for which
the model has no explanation. Since these axons were traced from asymmetric synapses of
MSNs, a potential selection bias could not be excluded. It is further likely that the axons also
form synapses with other cell types than MSNs (despite the other cell types being rare), and
synapse counting neglects the functional relevance of synapse sizes (Cossell et al., 2015). A

further analysis was therefore devised to address these concerns.
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Hypothesis test under the inclusion of synaptic areas
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Figure 4.4: Unbiased analysis of synaptic sizes of LMAN-like and HVC-like axons with MSNs. (a)
The central (10 pm)?’ subregion of jO126 was selected for a dense synapse analysis, and 662 synapses
were identified. Symmetric synapses are shown in red, asymmetric in green. The sphere diameter
was scaled with the synaptic areas to illustrate the size differences. A large pallidal-like soma is
located in the central subvolume of the dataset, attracting massive inhibitory synaptic terminals. (b)
”Connectivity matrix” with additional geometric synapse information, and cumulative synaptic areas
between the different cell types.

To eliminate any bias in the choice of the analyzed synapses and axons, the central (10 Hm)S
region of the j0126 dataset was selected for a dense manual synapse analysis. In total, 662
synapses were identified, of which 340 were classified as asymmetric and 322 as symmetric (see
Fig. 4.4 a). This set of synapses demonstrates an interesting difference when compared to cor-
tical tissue, which contains mainly asymmetric synapses (about 80 % of all synapses, reviewed
in DeFelipe and Farinas, 1992). The pre- and postsynaptic partners were reconstructed, and
260 synapses were identified with a partner that could be classified as pre-synaptically p. HVC
or p. LMAN and that belonged post-synaptically to a MSN. The synaptic contact area was
then estimated using manual synapse annotations (see section 4.1.2), and a striking dominance
of synaptic area was found for HVC-like axons and spine-head synapses of MSNs compared
to LMAN-like axons (about 11-fold difference). Similarly, when incorporating synaptic areas,
LMAN-like axons showed a stronger preference towards shaft synapses (about 70 %) compared
to pure synapse counts (compare to section 4.2.2). These data are again consistent with the
predictions arising from the RL-model and demonstrate that synapse counts alone should be

judged cautiously.



52 Chapter 4. An anatomical hypothesis test in the zebra finch basal-ganglia

4.2.3 Neuron reconstructions in the j0251 dataset

dendrite
axon

medium spiny neuron pallidal-like neuron 1'\

Figure 4.5: Skeleton reconstructions of neurons in the j0251 dataset of Area X. (a) MSN tracing,
where the inset shows dendritic spines. Note that the entire dendritic field of the neuron is included
in the dataset. (b) Tracing of a pallidal-like neuron that formed several autapses, one shown in the
inset. Even those very large neurons are almost entirely contained in this dataset.

In total, 30 neurons (10 MSNs and 20 putative pallidal-like neurons) were reconstructed in the
j0251 Area X dataset to evaluate traceability and generate ground truth for future automated
reconstruction approaches. Fig. 4.5 shows a MSN reconstruction with the typical spines on the
dendrite and an aspiny GP neuron. The size of the j0251 dataset enabled near-complete EM-
based tracings of MSNs and allowed the reconstruction of large portions of the biggest neurons
that can be found in Area X, the GP-like cells, showing the potential of this dataset for basal-
ganglia circuit analysis compared to the smaller j0126 image stack. While still preliminary,
this reconstruction allowed for the first observation of autapses for a GP neuron (at least to
the knowledge of the author, but see Karabelas and Purrura, 1980, for evidence of autapses
in substantia nigra pars reticulata neurons), raising the question whether they might be of
mechanistical relevance given the high-frequency firing patterns during singing interrupted by
short pauses (Goldberg et al., 2010). At the point of the submission of this thesis, no further
data analysis could be performed because of the tremendous manual effort required. This
limitation motivated to a large degree the work of the next chapter, which presents results

regarding how data analysis can be accelerated using machine learning algorithms that are
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combined with a proofreading workflow.

4.3 Discussion

4.3.1 An anatomical test of a mechanistic learning model

Similar to the analysis performed in chapter 3, a volume EM dataset was used in combination
with specific predictions derived from a mechanistic functional model, without the knowledge
of a full wiring diagram. The limiting factor was not the amount of information contained
in the datasets, but rather the access to it, due to the manual annotation efforts required.
Aside from such technical difficulties, there is a further challenge with the strict hypothesis
driven approach: how to generate the anatomical predictions from a functional model? The
gap between the mechanistic model of song learning in the basal-ganglia and the anatomy of the
region seems large at first, but it was easily bridged with the incorporation of prior knowledge of
how physiology and structure are likely related. The model predicts that the context-carrying
HVC axons should drive MSNs and that the synaptic strength of these synapses is modulated,
while the efference copy signal carrying axons (LMAN) should pave the way for the plasticity
of the context synapses. A plethora of evidence points to the importance of dendritic spines
in synaptic plasticity, while shaft synapses might have more global effects (reviewed in Yuste
and Bonhoeffer, 2001). However, the demonstrated approach also exposes its fundamental
limitation: without any prior physiological knowledge or established links between structure

and function, it seems difficult to draw conclusions from the static EM data.

4.3.2 The neurite identification problem in the j0126 dataset

The manual analysis of the small j0126 dataset of Area X demonstrated again (as discussed
already in section 3.3.4 for HVC) that small EM datasets suffer from a severe neurite identifi-
cation problem. It was difficult to establish links between short EM reconstruction fragments

and assign them to known cell types based on known morphology, and novel ground truth had
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to be generated for both HVC (see section 3.2.3) and Area X (see section 4.2.2) to tackle a
problem that would hardly exist if all neurites could be traced to their original cell bodies.
While the j0251 dataset also contains many neurite fragments that cannot be traced to their
cell body, the additional spatial context will likely simplify the morphological identification of

neurons substantially.

4.3.3 The challenges and opportunities of large volume EM datasets

The first skeleton reconstructions in the larger Area X dataset (somewhat smaller in volume
to the recently published whole zebrafish brain, but at a significantly better resolution (Hilde-
brand et al., 2017), but see also (Svara, 2017) for a high-resolution zebrafish dataset) revealed
new technical difficulties, even for sparse neuron reconstructions. Single tracings of cells could
take more than 100 h for a single annotator. This brought the previously used crowd-sourcing
approach with student assistants to its limit, since each assistant usually works only a few hours
per month. The now somewhat classical reconstruction approach of redundant skeleton anno-
tations followed by the generation of a consensus skeleton, either automatically (Helmstaedter
et al., 2011) or manually (Kornfeld et al., 2017), must therefore be accelerated. Speedups could
be accomplished using automation, or manual tracing procedures could be modified to use a
”shotgun-tracing” approach that focuses on smaller fragments that are later combined, instead

of attempting that individual cells are completed by single annotators.

To overcome the aforementioned manual analysis challenges, novel methods were developed to
speed up neurite reconstructions and identify synapses automatically. These methods will be

presented in the next chapter of this thesis.
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Publication of the results presented in this chapter

Parts of this chapter contain text and figures from the following peer-reviewed publication:

Automated synaptic connectivity inference for volume electron microscopy.
Dorkenwald, S., Schubert, P., Killinger, M., Urban, G., Mikula, S., Svara, F., Kornfeld, J.*

Nature Methods, 14(4):435-442 (2017)

* corresponding author

All experiments were performed by J. Kornfeld in the laboratory of W. Denk, unless explicitly
stated otherwise. S. Dorkenwald and P. Schubert (student assistants) developed the SyConn

software framework together with J. Kornfeld.
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5.1 Methods and used data

5.1.1 GraphWalker

j0126 Google segmentation

The j0126 segmentation (referred to as version 3 or v3) used for the proofreading workflow was
provided by a group at Google Research (M. Januszewski, P. Li, J. Maitin-Shepard, A. Pope,
M. Tyka, T. Blakely and V. Jain) as part of a scientific collaboration. It was generated using
convolutional neural networks (CNNs) followed by graph-based active learning of agglomeration
(GALA, Nunez-Iglesias et al., 2014), optimized and trained on ground truth data provided by

the author of this thesis.

Implementation

The GraphWalker frontend was implemented in Python 2.7 as a plugin for KNOSSOS! (Korn-
feld et al., 2011; Helmstaedter et al., 2011) in a single Python module that can be distributed to
annotators. It uses the PythonQt framework? to create a graphical user interface and to inte-
grate the proofreading workflow into KNOSSOS (e.g. by adding keyboard shortcuts for efficient
annotation). The currently performed annotation is stored in memory as a networkx graph ob-
ject (Hagberg et al., 2008) and the undo and redo functionality is implemented with snapshots
stored on a stack. The frontend communicates with an extended version of Heidelbrain (origi-
nally developed by F. Svara) through a RESTful HTTP API. Heidelbrain is a Python Django
application® that provides annotator management capabilities, such as time tracking and task
management. It was extended with a Neodj graph database* that stores the segmentation
supervoxel graph of the analyzed dataset and the created annotations. The Neo4j database is

internally accessed via the py2neo connector library from Djang05. The plugin fetches precom-

Ihttps://knossostool.org/
’https://sourceforge.net/projects/pythonqt/
3https://djangoproject.com
‘https://neo4j.com/

Shttp://py2neo.org/v3/
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puted supervoxel meshes for display in KNOSSOS from the Google BrainMaps service after

Oauth2 authentication with a Google service account.

GraphWalker evaluation

To evaluate GraphWalker, ten neurons that were reconstructed through skeletonization in the
j0126 dataset were picked randomly as a ground truth test set. The same neurons were skele-
tonized independently by an expert annotator to be able to compare the reconstruction speed
and accuracy against expert skeletonization. The reconstruction speed was determined by elim-
inating all skeleton nodes from the ground truth skeletons that were more than 1 ym away from
the tested skeleton (combined re-skeletonized supervoxels for GraphWalker reconstructions and
expert skeleton for control). The total annotation time of the tested skeleton was then divided

by the remaining path length in mm.

The reconstruction accuracy was quantified by measuring two separate quantities:

e The fraction of the recovered path length of the ground truth annotation.

e The number of false mergers shorter than 10 um and between 10 and 50 um.

The fraction of recovered path length was computed by eliminating for the test reconstructions
all parts of the matching ground truth skeleton that were more than 1 ym away from the
reconstruction, and then dividing the remaining path length by the total ground truth skeleton
path length. False mergers were visually identified and validated in KNOSSOS by comparing

the ground truth skeleton with either the GraphWalker reconstruction or the expert skeleton.

5.1.2 Synaptic connectivity inference of the j0126 dataset

The full Python source code of the latest version of the SyConn software package is available

as a Github source code repository® and the source code snapshot used for the data presented

6https://github.com/StructuralNeurobiologyLab/SyConn
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in this thesis can be found on the project website’.

Skeleton annotations

All neurites were skeletonized with the KNOSSOS annotation software by at least two inde-

pendent annotators, as described in detail previously (see sections 4.1.2 and 3.1.2).

CNN ground truth annotations

KNOSSOS was also used to generate volume annotations for the training of CNNs in subvolumes

of the j0126 dataset. The following data categories and volumina were annotated:

e 988 pm?’ of synaptic junctions, vesicle clouds and mitochondria, with one ID each, and

everything else as background.
e 941 pm?’ of binary synaptic junction type labels.

o 81 pm?’ of neurite reconstructions, with one ID per neurite, and ECS and membranes as

background.

e 603 pm?’ of myelin, with separate IDs for the interior of the axon and the myelin itself, and
everything else as background. The annotations were performed on 2-fold downsampled

data.

Additionally, coordinates from the centers of the somata in the j0126 dataset were tagged,
and all voxels around them in a 1.7 ym radius were used as labels for the prediction of soma
locations. The dense neurite reconstructions were converted to the neurite barrier ground truth

with a Gaussian gradient magnitude filter to detect neurite boundaries.

"https://structuralneurobiologylab.github.io/SyConn/
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CNN classifiers

Detailed hyperparameters of the employed CNN-architectures are provided in the source code®
and journal publication supplementary material (Dorkenwald et al., 2017). In short, 6-layered
(synaptic junctions, vesicle clouds, mitochondria, barrier) CNNs with <200,000 parameters
were used for an initial prediction, followed by a second CNN for a recursion with either 6
layers (synaptic junctions, vesicle clouds, mitochondria, <200,000 parameters) or 10 layers
(barrier, about 1,000,000 parameters) that had the original raw data and the prediction from
the previous stage as input. Cell bodies, myelin and synapse types were predicted with a single
stage CNN (cell bodies: 8 layers, about 260,000 parameters, synapse types: 6 layers, about

190,000 parameters, myelin: 6 layers, about 170,000 parameters).

Post-processing of CNN-predicted probability maps

Thresholding and connected component analysis followed by size filtering (threshold and min-
imum size determined on the test set) was used to obtain synaptic junction, vesicle cloud and
mitochondria objects from the voxel-based probability maps that were generated by the CNNs.
Myelinated axons were found by averaging the probability map of the myelin CNN in a local
environment (90 x 90 x 100 nm?) around each skeleton node of an axon. The node was declared
to be myelinated if a threshold (@myehn = 0.39) was exceeded. To remove remaining small false
positives, a running majority vote was applied along the skeleton (window length 4 um). The
probability maps of the synapse type classifier were used to assign a type prediction to each
previously identified synaptic junction object by taking the ratio of the sum of class probabili-
ties within the object, followed by determination of the optimal threshold (see Fig. 5.8) on the
test set. Somata were identified by thresholding the soma and blood vessel probability maps
(Osoma = 0.20, O, = 0.08), followed by binary closing (10 iterations) of the binarized blood

vessel map, which was then used to mask false positive soma predictions.

8https://github.com/StructuralNeurobiologyLab/SyConn
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Assessment of classifier performance

The quality of the extracted connected components (henceforth called objects) of synaptic
junctions, vesicle clouds and mitochondria was assessed by visual comparison of the objects
with the underlying raw data or independently generated annotations. More precisely, the recall
of synaptic junctions and vesicle clouds was estimated by inspecting the locations of consensus
synapses that were labeled by three annotators that followed skeletonized axons for predicted
objects. Locations were compared in the same way as for mitochondria, where the coordinates
were labeled independently and then later compared with the predicted objects. The precision
was determined by randomly sampling and inspecting synaptic junction, vesicle cloud, and
mitochondria objects from the entire j0126 dataset. Because of the ambiguity of whether a
small contact is synaptic or not, false positives were only accepted when two experts agreed
that a contact was synaptic. The soma precision and recall were determined in a similar way,
predicted soma-locations were inspected for false positives and human annotated soma locations
were compared to the predictions. The automated synapse type (symmetric vs asymmetric)
prediction quality was tested on manually classified synapses, for which synapses of ambiguous
type (defined by a lack of agreement between two experts) were excluded. The identification
of myelinated parts of axons was evaluated on short manual tracings from myelinated axons
(recall), and skeleton nodes that were predicted to be myelinated (precision) were compared
to the raw image data to determine the correctness of the automatic assignment. All F scores
were calculated as F1 scores, defined as the harmonic mean of precision and recall (Powers,

2011).

Conversion of skeletons to volume reconstructions

The CNN-predicted barrier probability map was used as input for a raycasting algorithm that
sent out rays from a point along the manually traced skeleton while excluding a double-cone
shape (20 rays, 18°) that was interpolated to a maximum node distance of 50 nm. The end
point for each ray was defined by reaching a threshold (Oray = 2.2) on the cumulated barrier

probability that the ray encountered on its way. Additional rays (19 instead of 9) were sent
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out for skeleton end nodes, with a slightly adapted angle (135° instead of 30°) to increase the
node density at endings of neurites. Outliers were then filtered to remove hull points with little
support from others: those with a median neighbor-point distance >1.4 times greater compared
to the other points which emerged from the same source skeleton node, and those that had less

than 20 other points in their vicinity (220 nm radius).

Assigning objects to neurites

The generated ultrastructural objects (synaptic junctions, vesicle clouds and mitochondria)
were assigned to neurite reconstructions by comparing object surface points with hull points
from the neurite volume reconstructions using the scalar product (relative side of object surface
point to a plane defined by the raycasting vector as normal vector, see section 5.1.2). For

synaptic junction objects, it was tested whether they overlap with the neurite hull points.

Contact site detection and classification

Contact sites between neurite reconstructions were identified by measuring proximity between
all hull points of all pairs of available neurites with a k-dimensional tree data structure for better
computational efficiency. Hull points that were at maximum 60 nm away were considered,
and all such hull points that were closer than 300 nm to each other were connected in an
undirected graph. Connected component analysis was then performed to identify the hull
points of individual contact sites, and the convex hull was used to calculate the contact site
area (half of the convex hull surface area was used as estimate of the contact area). The
proximity of the so-derived contact sites to the CNN predicted synaptic junction and vesicle
cloud objects was then calculated, and contact sites with a predicted synaptic junction (<40
nm, <80 nm for vesicle clouds) were further examined. To avoid the manual tweaking of many
heuristic parameters, a RFC was trained on whether contact sites constitute synapses based on

various local features, as listed in table 5.1.
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Table 5.1: Listing of used RFC features; shortened list of cell type features for brevity; consult
the supplementary material of (Dorkenwald et al., 2017) for details. Histogram features were
calculated from a breadth-first-search starting at each node and stopping after 6 ym.

RFC \ Features

Synapse filter | Mean contact area

Absolute and relative overlap with synaptic junction (in pm2)
Minimum hull distance

Spines Mean, s.d. and count of 10 histogram bins of node radii
Number and mean size of mitochondria, vesicle clouds, synaptic junctions
Distance to next branch node

Distance to next end node

Compartments | All spine features plus:

Number of spine heads

Mean and s.d. of spine head size

Mean of spine head probability

Cell types 17 derived features, from predictions of the other RFCs

20 global neural shape descriptors

12 statistics of assigned ultrastructural objects

8 synapse type based features

RFC prediction of neurite compartments and cell types

For the prediction of neurite compartments (axons, dendrites, spines and somata), features
(see Table 5.1) were computed for local environments around skeletons nodes, and RFCs were
trained on the different classifications tasks. Predictions were made on a skeleton node level,
and the results were evaluated on a set of manually annotated nodes. For cell types, the feature
set was extended with global neurite properties to improve the classification (see Table 5.1 for

an overview).

Connectivity matrix construction

Based on the contact sites that were predicted to be synaptic, a connectivity matrix was
constructed, sorted by the automatically inferred cell types. The predicted synapse types were
used to assign for each neurite the outgoing synapse type by majority voting according to Dale’s
rule (Strata and Harvey, 1999). The column of the incoming synapses for the excitatory axon
(EA) cell class was omitted, since no dendrites were found for these neurites (external cortical
afferents to the basal-ganglia, but see Budzillo et al., 2017 for a rare excitatory cell type located

inside of Area X). Individual matrix elements were rendered slightly enlarged (3 by 3 pixels)
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for improved visibility.

5.2 Results

5.2.1 GraphWalker: A segmentation proofreading workflow
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Figure 5.1: Graphical user interface of GraphWalker plugin. Shown are on the left side the four
KNOSSOS data viewports (XY, XZ, YZ and the 3D view), and located on the right, the Graph-
Walker v2 control panel (red box), currently in proofreading mode. Note that 2D and 3D renderings
(supervoxel meshes) of the same neurites are visible to the annotator for decision making.

KNOSSOS? (Kornfeld et al., 2011; Helmstaedter et al., 2011), originally developed for fast
skeleton tracing (Helmstaedter et al., 2011), was extended with a Python plugin (GraphWalker)
that adds a novel proofreading workflow to KNOSSOS. M. Januszewski contributed important
ideas to the development of GraphWalker, as part of a scientific collaboration with Google

Research. A short overview about GraphWalker is provided in the next section, followed by

9https://knossostool.org/
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an illustration of the reconstruction principle and an evaluation of the accuracy and speed of

neurite reconstructions generated with GraphWalker.

The KNOSSOS graphical user interface (GUI) was extended by a small window (see Fig. 5.1),
the GraphWalker front end. It allows the user to control and perform proofreading of an existing
automatic segmentation, such as the j0126 v3 segmentation that was supplied by Google. All
data shown and analyzed in this chapter are based on this segmentation, but GraphWalker is
in principle compatible with all automatic segmentations that provide a supervoxel graph of an
EM dataset where probabilities of supervoxel edges are available. The workflow is organized in

three phases, reflected by separate operation modes that change the GUI:

1. Proofreading, during which the annotator actively grows the reconstruction.
2. Review, during which the annotator inspects the reconstruction and can correct errors.

3. Task management, during which the annotator requests a new task and submits the

task to the GraphWalker back end.

The GraphWalker back end communicates with two separate entities. Firstly, a version of the
Heidelbrain annotator management server (programmed originally by F. Svara), which was
extended to record the work time of GraphWalker annotations and store them in a graph
databasel?. Second, the Google Brainmaps API provides 3D meshes to display in KNOSSOS
for version 2 of GraphWalker (version 1 was based on skeletons automatically computed from
the segmentation). Fig. 5.2 illustrates the architecture of GraphWalker and shows how the

different components interact.

The separation into front- and back end allows GraphWalker to run with moderate hardware
requirements on standard laptop computers, with essentially the same hardware requirements
as KNOSSOS. Since all data is stored remotely (raw image data, automatic segmentation and
the supervoxel graph), the maximum dataset size that can be proofread is mainly limited by

the scalability of the back end hardware used. A single virtualized Linux server proved to be

1056 https://neo4j.com/
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Figure 5.2: Front- and back end of GraphWalker. The KNOSSOS Python plugin interacts with the
Google Brainmaps API and a custom Python Django back end. All data are stored in a highly-scalable
graph database.

more than sufficient for the j0126 dataset with the Google v3 segmentation. All employed back
end software components additionally support distribution to multiple compute nodes and can
therefore run on scalable cloud computing infrastructure such as Amazon’s AWS, making it
possible to reconstruct EM datasets with this approach that are limited in size only by the

available storage.

Neurite reconstruction principle

During conventional skeletonization, neurites are followed through the dataset and nodes are
placed by the annotator to reconstruct the center line of the cells, thereby building a skeleton
reconstruction of the neuron step-by-step (Helmstaedter et al., 2011). This approach is fun-
damentally limited in reconstruction speed by the need to inspect all of the raw data locally.
Therefore, GraphWalker takes a different approach that naturally translates advances in auto-
mated segmentation into higher reconstruction speeds. Instead of following neurites through
the dataset, the annotator extends a neuron reconstruction under visual control by deciding
whether a presented automatically segmented cell fragment (i.e. supervoxel) should be added
to the already reconstructed part of the cell, as illustrated in Fig. 5.3. Hence, GraphWalker
is in principle a binary decision process, that additionally provides feedback to the annotator

about the global consequences of each decision. This should be contrasted with independent
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Figure 5.3: Example GraphWalker reconstruction of a myelinated axon, showing the first four manual
decision steps and how the neurite is extended. Left column: 3D visualization of the neurite, with
the current query fragment in red and the existing reconstruction of the cell of interest in gray. Note
how the auto-agglomeration dramatically reduces the number of decisions by adding small fragments
automatically.

binary decisions that hide the reconstruction progress of a neuron from the annotator. In prin-

ciple, such an approach could also lead to successful cell reconstructions; however, this was
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Figure 5.4: GraphWalker reconstruction principle. (a) Schematic of a supervoxel graph. Nodes
represent supervoxels, edges between two supervoxels indicate that they might belong to the same
neurite. The black subgraph belongs to the cell of interest that should be reconstructed, but one
supervoxel that is connected by an edge belongs to a different cell. (b) Visualization of neurite
mesh renderings of the supervoxel graph in (a), with edge locations indicated by red arrows. Note
how the red supervoxel deviates morphologically. (c) Schematic of first decisions of an annotator,
"walking” along the supervoxel graph. (d) Illustration of GraphWalker decision stack length over the
reconstruction process of a cell. Initially, the stack size increases, until the annotator slowly exhausts
it.

found to be problematic due to propagating errors, even when multiple redundant decisions
were used (Nguyen, 2014)11. Additionally, GraphWalker allows the user to control an auto-
agglomeration threshold that adds supervoxels with a high merge probability up to a cumulated
size limit (neurite length) without a time-consuming user query, while still allowing the user to
undo false decisions introduced this way. This feature was found to be particularly useful since

the tested segmentation contained many small neurite fragments that almost always belonged

Hgee http://brainpuzzler.org/ for the project website
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to the neurite of interest. This was a consequence of the intentionally high split-rate to avoid
merge errors on the level of individual supervoxels. Fig. 5.4 a, b shows a schematic of how
a neurite could be subdivided into fragments that are linked by edges in a supervoxel graph.
The annotator then decides for each edge whether it should be added to the cell of interest in
consecutive decisions that expand, and eventually exhaust, the edge decision stack (Fig. 5.4 c,
d). Algorithm 1 shows the basic principle as pseudo-code, excluding the auto-agglomeration

for simplicity.

Algorithm 1 Basic GraphWalker reconstruction algorithm.

Require: Initialize a decStack > The decision stack stores upcoming decisions
1: procedure GRAPHWALKER(startSV, SVgraph, decStack)
2 SVchildren < query SVgraph with startSV
3 push [startSV, SVchildren] onto decStack
4: while decStack not empty do > Repeat until decision stack is exhausted
5: currDec < pop decStack
6 querySV < currDec[l1]
7 if currDec is doMerge then > Manual merge decision by user
8 SVchildren < query SVgraph with querySV
9: push [querySV, SVchildren| onto decStack
10: else > Manual split decision by user, next decision follows
11: pass
12: return

Reconstruction quality

To evaluate the quality of the reconstructions that were created with GraphWalker based on
the v3 segmentation, GraphWalker neurites were compared to a test set of ten ground truth
skeletons (redundant annotations, followed by a consensus generation), and to independent
expert skeletons of the same cells. Fig. 5.5 a shows three of these test neurites (one axon and
two medium spiny neurons) in direct comparison with the corresponding ground truth skeletons
and the expert skeleton, illustrating that GraphWalker can be used to reconstruct a diverse
set of neurites. The two main error categories, added neurite fragments that do not belong to
the cell of interest, and missed neurite fragments, were analyzed separately. Fig. 5.5 b is an
evaluation of the missed neurite fragments, and shows mixed results for the fraction of ground

truth skeleton path length that could be recovered with GraphWalker: test neurite 3 and 10
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were completely reconstructed, while the majority of path length for test neurite 2 is missing
(see Fig. 5.5 ¢). Closer inspection revealed that the supervoxel graph was missing the edges
required to complete the reconstruction of this thin axon. This problem illustrates the danger
of pruning low merge probability edges to reduce the amount of decisions and proofreading

work: thin neurites appeared to be particularly affected, an error that is difficult to spot.

The number of false neuron mergers (either due to undiscovered errors during the auto-
agglomeration, false manual decisions or false mergers that already existed in the unmodifiable
supervoxels) was quantified and is shown in table 5.2. Interestingly, and in contrast to such
errors generated by fully automatic reconstruction results, almost all false mergers remained
small, i.e. did not merge large parts of a different cell. This can likely be explained by a higher

discovery probability for larger incorrectly added fragments by human annotators.

Table 5.2: Qualitative evaluation of the number and length of false mergers (i.e. incorrectly
added branches that do not belong to the test neurites). Small mergers: <10 um; Large mergers:
>10 um and <50 pm.

Test neurite Path length [um] Small mergers Large mergers

527
145
178
111
47
1165
882
764
97
199
Total 1115
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It is important to note that not all false merge errors can be discovered in this way, and that
errors could remain undiscovered by relying purely on their identification through a suspicious
shape in the 3D overview. As an example, tip-to-tip axon mergers can mainly be spotted
through local image data inspection, or, in a dataset that includes both somata, by resulting
global discrepancies. It remains to be determined to what extent such difficult to discover
errors would affect the overall reconstruction quality of a dataset. Additionally, the presented

results showed a somewhat unexpected error category: false splits due to missing edges in
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Figure 5.5: GraphWalker evaluation against ground truth skeletons. (a) Example GraphWalker
reconstructions (middle column), compared to ground truth skeletons (left column) and to a single
redundancy expert skeletonization (right column). Red circles highlight exemplary reconstruction
failures (merger or split). (b) Path length of ground truth skeleton recovered by expert skeletons and
GraphWalker reconstructions. (c¢) Shown is the skeleton reconstruction with the least recovered path
length from b (red circle), a thin axon. The inset shows the region (xy-view) in the j0126 dataset with
the overlaid supervoxels.

the supervoxel graph (see Fig. 5.5). These errors are difficult to fix, since they can only be

discovered in an active-search manner, instead of the relatively passive approach of deciding on



72 Chapter 5. Novel methods for connectomic analysis

supervoxel edges that are presented.

Reconstruction speed

a GraphWalker+v3 b
Expert skeleton 50
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Figure 5.6: GraphWalker reconstruction speed evaluation. (a) Absolute reconstruction speeds in h
per mm path length of ground truth skeleton, for expert skeletonization and GraphWalker reconstruc-
tion (performed by an expert) for the 10 test neurites. (b) Relative speed-up compared to expert
skeletonization.

The reconstruction speed was compared to that of an expert skeletonizing the same set of cells,
in order to avoid sampling bias: some neurons can be reconstructed faster than others due to
easier morphology, and some annotators trace cells faster than others. Fig. 5.6 a shows the
achieved speed for expert skeletonization (mean 4.4 h / mm, n = 10, consistent with previous
reports, Helmstaedter et al., 2011; Wanner et al., 2016) and GraphWalker (mean 0.26 h/mm,
n = 10) as hours per path length of ground truth neurite. This leads to an average speed-up
of about 25x over skeletonization (see Fig. 5.6 b), which is, to the knowledge of the author,
the first written report of a reconstruction method that outperforms manual skeletonization
significantly (Berning et al., 2015). Closer inspection shows that the speed for test neurite
5, the thin axon shown in 5.5 ¢, was the lowest measured. This can likely be explained by
the overhead of starting the task and the short fragment that could be recovered. The two
test neurites that achieved the highest speed-ups (6 and 7, see Fig. 5.6) are complex neurons
with many spines, demonstrating that the GraphWalker approach can perform well on cells

with highly branched neuronal morphologies. Despite these significant advances, it should
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be noted, that a reconstruction method must prove itself ultimately on the reconstruction of
an entire dataset (such as skeletonization of retina data Helmstaedter et al., 2013), and not
only on a small test, rendering the presented results somewhat preliminary. It is also less
clear whether redundant annotations would reduce the error rate significantly, given that the
presented decisions in the current process are correlated and that edges were missing in the

supervoxel graph.

5.2.2 Synaptic connectivity inference from neurite skeletons

Since GraphWalker was a relatively recent development, all of the annotations that were cre-
ated for this thesis were manual skeleton reconstructions. While these provide morphological
information, they are insufficient by themselves to analyze the wiring of a brain circuit due to
a lack of synapse information. While synapses can also be annotated manually, as described
in the previous chapters, this annotation is as about as time consuming as the neurite trac-
ing itself (see Fig. 1.1). Therefore, a computational framework was developed that can infer a
synaptic connectivity matrix automatically by using deep convolutional neural networks (based
on the ELEKTRONN library!'? (Killinger, 2016); M. Killinger and G. Urban, supervised by the
author of this thesis) and classical feature-based machine learning (random forest classifiers,
RFC). As detailed in the introduction (see section 1.1.3, Fig. 1.1), multiple analysis challenges
have to be solved for the extraction of a comprehensive wiring diagram from a volume EM
dataset of brain tissue. SyConn addresses all but the first step, the skeletonization of neurites,
thereby eliminating about half of the manual annotation effort otherwise required for dense
connectomic analysis. The first step of SyConn is the conversion of skeleton reconstructions to

volume reconstructions, a prerequisite for the reliable association of synapses with skeletons.

Converting skeleton to volume reconstructions

Since there is normally no information about the caliber of axons and dendrites collected dur-

ing skeletonization (due to the manual effort), synaptic connections cannot easily be identified

2http://elektronn.org/
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Figure 5.7: Conversion of skeletons to volume reconstructions. (a) Left: raw image data of j0126
(microscope imaging plane), right: predicted neurite barrier, cell interior in white, membranes and
extracellular space in black. (b) Cumulated barrier probability plotted against the traveled path length
of a single, example ray. The red line indicates the threshold for ray termination. (c) Exemplary
rendering of the detailed morphology of a skeletonized part of a dendrite, combined with raycasting to
reconstruct its 3D shape. (d) Dense skeletonization of a small test cube (left), with raycasting applied
(right). Figure partially adapted from (Dorkenwald et al., 2017).

from skeleton proximities in a dense reconstruction setting, as is illustrated with the follow-
ing thought experiment for which only skeletons shall be available. To identify all synapses
through the inspection of skeleton proximity sites, permissive distance thresholds have to be
used (ultimately depending on the maximum thickness of the neuronal processes) to avoid false
negatives of the nearby neurons. However, this leads to a large number of possible contacts that
require inspection (growing with the number of reconstructed neurites), making this approach
unfeasible for the dense reconstruction of EM datasets. This number can be dramatically re-
duced when the exact boundaries of the neurites are known, which is also a prerequisite for

the association of automatically identified synapse objects to the neurites. Therefore, the first
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step of SyConn consists of a CNN that predicts the interior regions and the barrier regions
(membrane regions + ECS, see Fig. 5.7 a) between neurites, which is an established approach
(Berning et al., 2015; Pallotto et al., 2015; Helmstaedter et al., 2013; Beier et al., 2017). Rays
emitted from the skeleton nodes then terminate in the barrier, essentially sampling the hull of
the skeleton reconstruction (Fig. 5.7 b, ¢). Fig. 5.7 d shows the result of applying this method
to a densely skeletonized cube of 125 pms in j0126. Using this approach, 612 manual skeleton
reconstructions were converted to volume reconstructions and used for the analyses described

in the following.

Automated ultrastructural analysis with CNNs

SBEM datasets from conventionally stained tissue blocks make many ultrastructural details
visible (see Fig. 5.7 a), and show essentially all cell biological features (Hughes et al., 2014), in
some cases even electric synapses (Pallotto et al., 2015). While these data could be analyzed
in principle, ultrastructure was often neglected in existing connectomic studies (Helmstaedter
et al., 2013; Wanner et al., 2016), either because a staining procedure with a different focus was
used (Helmstaedter et al., 2013) or because analysis was not feasible or seemed not necessary
(Wanner et al., 2016). Multiple CNNs were therefore designed and implemented to identify
ultrastructure automatically with computer vision, by first generating probability maps for
synaptic junctions, vesicle clouds and mitochondria (all three combined in a single, multichannel
output CNN; Fig. 5.8), synapse type (Fig. 5.8 ¢ to e) and myelin (Fig. 5.8 f). The synapse
type was predicted as either symmetric or asymmetric, based on the observations of Colonnier
(Colonnier, 1968) and Gray (Gray, 1959). These probability maps were then used to extract
discrete “objects” by thresholding and connected component analysis (except for the synapse
type probability map, which was used to assign a type to each synaptic junction object). Having
such an object representation made it easier to then combine these data with the neurite volume

reconstructions, as described in the following section.
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Figure 5.8: Detection of ultrastructure with CNNs in raw data. (a) EM micrograph with detected
mitochondria (blue), synaptic vesicle clouds (green) and synaptic junctions (red). The inset shows an
asymmetric synapse that was identified by the classifier. (b) Precision-recall curve for the aforemen-
tioned classification tasks, the optimal F1-score is encircled. The small jitter of the curve is the result
of the discrete ground truth set. (c,d) High-resolution asymmetric and symmetric synapse example of
this dataset. Note that it is easier to identify asymmetric synapses in the j0126 dataset compared to
the j0256 of HVC, see Fig. 3.3. (e) Classification of individual synaptic junctions by type. Shown is
a normalized histogram of the number of voxels sorted by their inferred probability of being classified
as symmetric for a test set of synaptic junction objects. The colors indicate the ground truth labels.
The black line shows the synapse-level classification accuracy for a varied threshold. (f) Visualization
of two myelinated axons (left), rendered with Amira from the probability maps for the myelin-interior
class (middle panel) and the myelin class (bottom panel). The top panel shows the raw image data
for comparison. Scale bar in a and fis 1 ym. Figure partially adapted from (Dorkenwald et al., 2017).
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Figure 5.9: Assignment of detected ultrastructure to reconstructed neurites. (a) Random points of
the detected ultrastructural objects were compared to random points sampled from the neurite hull
via the sign of the scalar product. (b) Exemplary spiny neurite. Raw skeleton tracing on the left,
and enriched neurite with hull on the right. (c) Visualization of myelinated regions (in black) of an
axon reconstruction. Scale bar in b 1 ym, in ¢ 10 ym and 1 ym for the micrographs. Figure partially
adapted from (Dorkenwald et al., 2017).

Enriching neurite skeletons with ultrastructural objects

To assign the previously identified objects to reconstructed neurites, random voxel samples from
the ultrastructural objects were compared with a set of closest hull points from the neurite (see
Fig. 5.9 a). Using this approach (section 5.1.2), excellent object-to-neurite assignment perfor-
mance was achieved (F1 scores of 0.99, 0.96, and 0.96 for synaptic junctions, vesicle clouds and
mitochondria, respectively; tested on a set of 22,167 human generated assignments). All 612
neurite reconstructions of the j0126 dataset were then augmented in this way (Fig. 5.9 b, ¢). It
was realized during inspection of the resulting neurite library that different neurites and their
cellular compartments (i.e. axons, dendrites and soma) had striking differences in these prop-
erties, opening the door to exploit these features for a further automatic classification approach
that targeted the heretofore manually performed identification of neuronal compartments and

cell types.
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Computational identification of neuronal compartments and cell types

a b
1.0 ;
1.0 #
Fy-— 5 //’—
m |
— o
o]
205 M Axon ® 0.5 1 m EA
= Dendrite o | W MSN
M Soma i SE
I INT
0 0 " r " v
0 10 20 0 10 20
Context range [um] Context range [um]
)‘I
¥ l‘ 'k -

—— f B Mitochondria

Figure 5.10: Classification of neurites based on morphology and ultrastructure. (a) Classification
performance for neuronal compartments as a function of local neurite context. (b) Same as in a, but
for the four main cell types in Area X. (¢) Example of an MSN, with different parts color coded by
their automatically inferred identity (colors as in a). (d) Pallidal-like neuron with all mitochondria
mapped. Scale bar in ¢ and d is 10 ym. Figure partially adapted from (Dorkenwald et al., 2017).

The ultrastructural features were then combined with local morphological properties of the
neurites (e.g. caliber and variance of caliber, for more details see Table 5.1), and an RFC
was trained to label individual compartments of the reconstructed neurons as being part of
the axon, dendrite or soma, and on a finer scale, dendritic spine or shaft. This approach
could demonstrate that relatively local (see Fig. 5.10 a and b) neurite features are sufficient
to infer semantic neurite identity. Fig. 5.10 ¢ shows a reconstruction of an MSN with its
compartments automatically labeled, highlighting how strongly the axon and dendrites differ
in overall morphology. Different compartments varied also in their ultrastructural properties,
as shown in Fig. 5.10 d for mitochondria: for this cell type, the soma is densely filled, while

the neurites of the cell appear to have more clustered occurrences. These observations were
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then used to train an additional RFC with an extended feature set (Table 5.1) to automatically
classify the neurites into cell types. Since the number of reconstructions was limited, and some
Area X cell types are rare (Goldberg and Fee, 2010; Goldberg et al., 2010), leading to a lack of
example cases, classification was restricted to four main types: excitatory axons (EA), medium
spiny neurons (MSNs), interneurons (INT), and pallidal-like neurons (GP). It was possible in
many cases to identify the cell type again solely based on a local feature context (Fig. 5.10
b), but global features were used for the best performance (F1 scores MSN 0.97, EA 0.99, GP
0.92, INT 0.82; evaluated using leave-one-out on a manual test set of 456 cells). The lowest
performance values were obtained for the rare cell types (GP and INT), suggesting that a lack

of ground truth for these cases might affect their classification.

Computation of a synaptic wiring diagram of Area X

The volume reconstructions of the neurites were then used to extract contact sites between
cells (precision: 0.92, on n = 2,488 predicted contact sites and recall: 0.92, evaluated on n = 53
manually identified sites; all false negatives were small tip contacts), and these were then further
classified as synaptic or non-synaptic with an RFC to remove false positives. This additional
RFC was necessary due to the many edge cases that occur in a large and diverse dataset, that
would have required extensive manual threshold tweaking if neurites were assigned to identified
synapse objects with a simple heuristic. A synaptic connectivity matrix was then constructed,
sorted by the predicted cell types (see Fig. 5.11). The synapse detection performance was
evaluated on a sample of 2305 manually classified contact sites, and found to be 0.88 precision,

and 0.82 recall.

The biological plausibility of the computed connectivity matrix was then assessed by comparing
it to known pathways of the zebra finch and other vertebrate basal-ganglia, since the basal-
ganglia are an evolutionary highly conserved brain structure (Grillner and Robertson, 2016).
The main input pathways to the striatum are the numerous excitatory cortical afferents (Grill-
ner and Robertson, 2016), found for Area X using electrophysiology (Luo and Perkel, 1999;

Leblois et al., 2009). The dominance of these connections can also be seen in the connectivity
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Figure 5.11: Inferred synaptic wiring of the j0126 dataset, based on 612 skeletonized neurites that
were analyzed with SyConn. The insets on the right show EM images of example synapses with pre-
and post synaptic neurites that were automatically identified, next to 3D renderings of the outgrown
skeleton reconstructions. The axon is shown in red, the postsynaptic cell in gray. Note the diverse
ultrastructure of the different synapses. Figure partially adapted from (Dorkenwald et al., 2017).

matrix, with 1443 EA to MSN synapses, consistent with the electrophysiological data. MSN
to MSN connectivity was sparse, and only few synapses were found (127), in agreement with
reports from the mammal (Oorschot et al., 2013; Jaeger et al., 1994). This is in stark contrast to
the INT to MSN connectivity, as becomes immediately apparent from the matrix: the rows of

the identified INT axons are densely populated, and individual INT axons form synapses with
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a large set of the reconstructed MSNs. Given the small number of INTs, this predicts a high
pairwise INT to MSN connection probability, again consistent with findings in the mammalian
striatum (Kods and Tepper, 1999). The second order connectivity implication of this is a strong
feed-forward inhibition of MSNs through INTs, since INTs are also driven by EAs (note that the
few reconstructions contained almost no INT dendrites), as reported previously (Bennett and
Bolam, 1994). Since Area X also contains pallidal-like neurons (Luo and Perkel, 1999; Farries
et al., 2005), it becomes possible to follow the entire synaptic pathway through the basal-ganglia
with the connectivity matrix in Fig. 5.11. Despite the presence of only two reconstructed GP
dendrites, many of the MSNs were found to innervate them, consistent with the convergent
innervation from the striatum to the pallidum (Grillner and Robertson, 2016; Alexander and
Crutcher, 1990). Interestingly, the two GPs did not receive the same fraction of synapses from
other GPs (4.5 % vs 48.2 %, compared to total synaptic input). While highly speculative, given
the sample size, this observation could indicate that the two pallidal-like neurons are part of the
direct and indirect pathway (Farries et al., 2005). The described findings support the notion
that the automated identification of synapses and the construction of a wiring diagram from
skeletons is sufficiently advanced not to require additional human proofreading, but it became
also clear that analyses based on few (612, compared to an estimated number of 10,000 to

20,000 neurites in the j0126 dataset) reconstructions are problematic, especially for rare cell

types.

5.3 Discussion

5.3.1 GraphWalker: A segmentation proofreading workflow

The presented workflow was developed on the basis of an automatic segmentation of the j0126
Area X dataset that was generated by Google Research with CNNs, followed by GALA (Nunez-
Iglesias et al., 2014). GraphWalker requires a dataset that is fully segmented into supervoxels,
i.e. 3D regions that have a very high probability of belonging to the same object. The re-

lationships of these supervoxels can further be represented in an undirected graph, in which
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each supervoxel is a node and nodes that might belong together are connected through edges.
A proposal segmentation is then defined by subgraphs. In its current implementation, Graph-
Walker requires weighted edges, representing estimated supervoxel equivalence probabilities.
These weights were only used to order the query supervoxel presentation to the user, and are
therefore not essential. However, efficient proofreading (in both reconstruction quality and

speed) has multiple requirements towards the underlying automatic segmentation:

1. Automatically segmented neurite fragments should be as correct as possible, with essen-

tially no false mergers on the level of supervoxels.

2. The fragments should be as large as possible, without violating 1).

3. The number of proposed merge decisions should be small, i.e. only fragments that likely

belong to the currently reconstructed neuron should be presented.

4. The number of missing edges in the supervoxel graph should be small, i.e. only fragments

belonging to the same neuron should be linked by an edge, without violating 3).

These requirements are conflicting, and only an error-free automatic segmentation could satisfy
all together. Since this is currently not in sight, it is important to realize that the sole opti-
mization criterion for any automated procedure should be that it allows efficient proofreading
(i.e. a reduction of the “nuisance metric”; Arganda-Carreras et al., 2015). This holds true
up to the point that proofreading appears completely unnecessary, because remaining error
rates are deemed acceptable. The presented results illustrate that the GALA segmentation,
together with the applied GraphWalker proofreading procedure, remains problematic. While
a significant speed-up was achieved for the path length that was recovered correctly, further
experiments are required to demonstrate that the proposed workflow can be scaled to an entire

dataset and is able to lead to a dense segmentation that can be considered final.
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5.3.2 Synaptic connectivity inference from neurite skeletons

The massive growth of the field of machine learning, triggered by the recent success of deep
neural network architectures in solving real world problems (LeCun et al., 2015), also helped the
development of the SyConn framework (Dorkenwald et al., 2017): one of the key components
are the ultrastructure classifying CNNs that are based on ElektroNN (Killinger et al., 2015;
Killinger, 2016), a high-level deep learning library tailored to the needs of 3D image processing
that builds on the Theano framework (Theano Team et al., 2016). While increasingly complex
CNN models have won essentially all image classification competitions over recent years!?,
algorithms such as random forest classifiers still provide excellent performance for feature-vector
based classification problems (Breiman, 2001), and both approaches were therefore combined
in SyConn. The many different machine learning methods available now can essentially be
seen as a toolkit that enables the automated analysis of volume EM datasets: for identification
problems in raw image data, algorithms based on an at least partially convolutional neural
network architecture are likely the tool of choice, while problems derived from these data, e.g.
feature-vector based problems, can still be addressed with more conventional algorithms (such
as RFCs or other ensemble methods). SyConn is a demonstration of this principle, and as such
deviates from the currently favored end-to-end single model approach often taken in machine
learning research today. Instead of attempting to solve all problems with a single, very powerful
model, problems were addressed as they came up through the manual combination of many
different classifiers, forming together a machinery capable of inferring a wiring diagram from
existing neurite reconstructions. However, the biggest challenge in connectomic analysis, the
reconstruction of the wires, is not addressed by SyConn. A novel approach based on flood-
filling-networks (Januszewski et al., 2016), which outperformed all other methods so far on a

small test of j0126, appears to be promising.

Bsee e.g. https://www.kaggle.com/
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5.3.3 How accurate is accurate enough?

Different strategies were used so far to analyze volume EM datasets, with very different results
regarding the annotation accuracy. Two studies are exemplary: The work from Kasthuri in
cortex (Kasthuri et al., 2015), in which they labeled structures at extreme detail, with many
years of manual work and restricted to a small volume (1,500 pm?’), and a study by Helmstadter
(Helmstaedter et al., 2013), in which a piece of retina was analyzed by combining skeleton
tracings with machine learning to generate volume reconstruction of neurons. While Kasthuri
et al. itemized every synaptic vesicle, Helmstaedter et al. inferred the retinal wiring from the
contact surface of cells without the analysis of synapses. The latter is clearly a much less detailed
analysis, but also covers a volume that is almost three orders of magnitudes greater (1,200,000
pm?’). The only argument against increased reconstruction accuracy is the added manual or
computational effort, and the fact that this effort might not be in relation to the additionally
gained knowledge. However, given that it is currently even unclear how much knowledge about
a brain can be extracted from a static volume EM dataset, the question should be viewed
from a different perspective: which conclusions does the data and accuracy support, or in Karl
Popper’s terms, is a given accuracy sufficient to rule out a previously formulated hypothesis?
To illustrate this rather theoretical point of view, a simulation study of Rajan et al., 2016 can be
considered that discusses highly structured vs weakly structured circuits, which were analyzed
and compared for sequence generation and memory. If a circuit is only weakly structured,
i.e. the exact weight (size) of very few synapses determines its computation(s), a very high
reconstruction accuracy will be required to resolve these subtle differences, with the possibility
that the imaging modality used (the staining or volume EM acquisition parameters) proves
to be insufficient, even at the highest degree of analysis. It would indeed be quite possible
that a volume EM dataset cannot answer these question at all, e.g. if the circuit is weakly
structured, and all parameters are encoded in biophysical properties that are hidden from the
electron microscope. Despite these possible fundamental limitations of the analysis of volume
EM datasets, and the open question of the required analysis accuracy, the skeleton-based j0126
connectivity matrix created for this thesis (Dorkenwald et al., 2017) was fully consistent with

previously made electrophysiological observations of connectivity in Area X (Farries et al., 2005;
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Perkel et al., 2002; Leblois et al., 2009) and confirmed synaptic contacts between cell types that

were only assumed to exist from light microscopy data (Farries et al., 2005).



Chapter 6

Conclusions and outlook

6.1 Thesis achievements
This thesis had three main objectives:

1. The investigation of zebra finch HVC with volume EM, with a focus on the local synap-
tic connectivity of HVCR A neurons that might underly a synaptic chain responsible for

neuronal sequence generation.

2. The investigation of zebra finch Area X with volume EM, to test the anatomical predic-
tions of a basal-ganglia reinforcement learning model that explicitly discriminates between

context and efference copy signals.

3. The development of novel semi-automatic computational approaches to make the analysis

of volume EM datasets more efficient.

A SBEM dataset of a small portion of HVC was acquired and analyzed, and synaptic con-
nections between HVCRp neurons were identified that might form the anatomical substrate
of a functional synaptic chain. It was further discovered that HVCR Az neurons target mostly

interneurons in the region close to their soma, but target other HVCRr neurons at higher

86



6.2. Qutlook 87

soma-distances, a finding with interesting implications for how neuronal circuits might gener-

ate activity sequences.

Two SBEM datasets of the striatopallidal Area X were acquired to test the anatomical predic-
tions of a reinforcement learning model. The connectivity that was found between HVC and
LMAN excitatory afferents and MSNs was consistent with the model predictions, supporting

the notion of separate efference copy and context signals in reinforcement learning.

Based on the smaller SBEM dataset of Area X, novel methods using state-of-the-art machine
learning were developed that will significantly ease (through dramatic cost reductions) the
analysis of volume EM datasets in the future. First, a proofreading workflow was developed
in collaboration with Google Research, outperforming currently used neurite reconstruction
approaches in speed by more than an order of magnitude. Secondly, a synaptic connectiv-
ity inference pipeline (SyConn; Dorkenwald et al., 2017) was developed that shows how the
daunting task of manual synapse annotations can be fully automated at small remaining error
rates. SyConn was then used to generate the first synaptic wiring diagram of the vertebrate

basal-ganglia (Area X) based on volume EM.

6.2 Outlook

Despite the presented advances in our understanding of the neuronal sequence generator in
HVC, it remains to be determined whether excitatory synaptic feed-forward connectivity un-
derlies the ultra-sparse code observed in HVCRr neurons (Hahnloser et al., 2002) and what
the role is of the other neurons that can be found in HVC. Two-photon based functional Ca2t
imaging should therefore be combined in future experiments with connectomic analysis of the

same tissue for a more powerful hypothesis test.

While a first hypothesis test of the anatomical predictions of the reinforcement learning model of
Area X was performed, many anatomical features relevant for the model that can be inspected
in the existing datasets remain to be explored: Do LMAN axons target inhibitory interneurons

to suppress through feed-forward inhibition the activity they evoke in MSNs? Are there further
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differences in the targeted MSN compartments? Anatomical hypotheses can now be derived

directly from the mechanistic learning model and tested in the existing datasets.

The next step in semi-automated connectomic analysis will be the combination of curated
computer-generated neurite reconstructions with the automated synaptic connectivity infer-
ence pipeline that was presented in this thesis. This will enable for the first time the dense
connectomic analysis of a larger volume EM dataset without investing millions of Euros into

manual analyis.



List of abbreviations

ACh ... .. cholinergic neuron

ANOVA analysis of variance

AFP ... .. anterior forebrain pathway

ATUM Automatic Tape-collecting Ultra-Microtome
Area X Area X of the medial striatum

BDA ... .. biotinylated dextrane amine

CAF ... .. conditional auditory feedback

cB ...... cacodylate buffer

CLAHE contrast limited adaptive histogram equalization
CM . ... .. caudal mesopallium

CNN ... .. convolutional neural network

DA . ... .. Dopamine

DAB ... .. 3,3’-Diaminobenzidine

DLM ... .. dorso-lateral medial thalamus

DiK-SBEM diamond knife SBEM

EA ... ... excitatory axon

ECS ... .. extracellular space

EM . ... .. electron microscopy

FIB-SEM focused ion beam milling SEM

FoXP2 Forkhead box protein P2

FS .. ... .. fast-spiking, parvalbumin-positive neuron
GALA Graph-based active learning of agglomeration
GA ... ... glutaraldehyde

Gp ... ... pallidal-like neuron

GPie . . . .. pallidal-like neuron of direct, indirect pathway
Gur ... .. graphical user interface

HRP ... .. horseradish peroxidase

HVC ... .. letter-based proper name, see (Reiner et al., 2004)
INT . ... .. interneuron

kDa . ... .. kilo Dalton; molecular weight

kv ... ... kilovolts

LMAN lateral magnocellular nucleus of the anterior nidopallium
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LM ... ... light microscopy

LTS ... ... low-threshold-spiking, somatostatin-positive neuron
Mg ...... Magnesium

MSN ... .. medium spiny neuron

nA ... ... nanoampere

NIf ... ... interfacial nucleus of the nidopallium
nm . ... .. nanometer

NMDA . . . . N-methyl-D-aspartate

ns . ...... nanosecond

PbAsp . .. . Lead aspartate

PFA . . . .. paraformaldehyde

RFC . .. .. random forest classifier

RL ...... reinforcement learning

ROTO . ... reduced osmium, thiocarbohydrazide, osmium staining
SBEM . . . . serial block-face SEM

sd. ... ... standard deviation

s.em. . . . .. standard error of the mean

SEM ... .. scanning electron microscopy

SMP ... .. song motor pathway

STN .. ... subthalamic nucleus

ssTEM . . . . serial section TEM

™ ...... terabytes

TEM . .. .. transmission electron microscopy
UAc ... .. Uranyl acetate

Uva . ... .. nucleus uvaeformis of the thalamus
pm ... micrometer

VS ... versus

WTA . .. .. winner-take-all
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