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The sequence of a large number of MHC-presented epitopes is

not present as such in the original antigen because it has been

re-shuffled by the proteasome or other proteases. Why do

proteases throw a spanner in the works of our model of antigen

tagging and immune recognition? We describe in this review

what we know about the immunological relevance of post-

translationally spliced epitopes and why proteases seem to

have a second (dark) personality, which is keen to create new

peptide bonds.
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Introduction
Epitopes can have their sequence re-shuffled by pro-

teases, post-translationally modified, trimmed and

bended onto MHC class I (MHC-I) molecules. Trans-

formations can be so disguising that antigens might have

trouble even recognizing themselves due to these non-

canonical peptides. Nonetheless, the immune system

seems to be able to selectively identify them non-canoni-

cal epitopes and use them for patrolling the status of the

cell [1,2].

A growing number of studies about non-canonical epi-

topes has in part whipped out what we learned from

textbooks about antigen presentation. For instance,

intrinsic characteristics of non-canonical epitopes, espe-

cially of those derived from peptide splicing, force the

boundaries of our conceptualization of the immunological

self [3]. For example, a pre-requisite for streamlined
www.sciencedirect.com 
CD8+ T cells patrolling by recognizing antigenic spliced

peptides is that their generation is tightly regulated.

Indeed, if an arbitrary peptide fragment were ligated to

another fragment we would likely have dramatic pro-

blems during thymocyte selection in the thymus due

to an immense variety of spliced peptides presented by

cortical and medullary thymic epithelial cells (cTECs and

mTECs, respectively) and other medullary professional

antigen presenting cells (APCs). According to the thymic

selection models [4], only a handful of thymocytes would

survive the negative selection with such an immense

antigenic peptides’ variety presented by professional

APCs. In agreement with the pre-requisite for stream-

lined patrolling by CD8+ T cells, there is a growing body

of evidence that peptide splicing — and in particular

proteasome-catalyzed peptide splicing (PCPS) — is not

a random process, and only a minor portion of the theo-

retical spliced peptide is generated and presented to T

cells. What these driving forces are, and implications they

can have on the immune response is still to be fully

understood.

The MHC-I antigen presentation pathway is on the

contrary well described (Figure 1). CD8+ T cell activity

is strongly regulated by which epitopes are presented

onto MHC-I complexes, that is, the MHC-I immuno-

peptidome. Alterations of the MHC-I immunopeptidome

affect the cytotoxic CD8+ T cell response against viruses

and the efficacy of anti-cancer immunotherapies [5��,6,7].
The immunopeptidome is influenced by several factors

(see Figure 1) including antigen availability and charac-

teristics [8,9], proteasome processing [1], transport into

the endoplasmic reticulum (ER) and loading to the pep-

tide loading complex (PLC) [10��], trimming by ER

amino peptidases (ERAPs) [7,11], as well as affinity to

different MHC-I allotypes’ clefts [12].

Part of the MHC-I immunopeptidome can derive from

non-canonical reading frames [13], polymorphic or

mutated sequences [2,14,15], non-coding sequences

and DRiPs [16,17], or post-translationally modified pep-

tides [18,19]. The predominant non-canonical peptide

population seems to be, however, represented by spliced

peptides. Indeed, in the MHC-I immunopeptidomes of

human EBV-immortalized B cells and primary fibroblasts

around 20–30% of peptides are produced by PCPS [20��].
Although the average number of molecules of spliced

peptides bound to MHC-I complexes is smaller than that

of non-spliced peptides [20��], spliced epitopes can be

presented onto MHC-I complexes in the amount
Current Opinion in Immunology 2018, 52:81–86
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Antigen processing and presentation by MHC-I complexes to CD8+ T cells. In this pathway, the majority of the antigens are processed by

proteasome, which produces spliced and non-spliced peptides in the cytosol. Peptides are further degraded by amino-peptidases, thereby

regenerating the cellular amino acid pool. Few peptides, however, are transported into the endoplasmic reticulum (ER) through the transporters

associated with antigen processing (TAPs), which is part of the peptide-loading complex (PLC). There, peptides can be trimmed by ER-resident

aminopeptidases (ERAPs). MHC-I-peptide complexes undergo modifications, and are transported through the Golgi to the cell surface. There, they

can be recognized by the T cell receptor (TCR), and induce CD8+ T cells priming/activation.
comparable to non-spliced epitopes [21]. For example,

MHC-I-bound spliced epitopes have been found to

prime a specific CD8+ T cell response during Listeria
monocytogenes infection [22�]. Furthermore, a specific acti-

vation of CD8+ T cells toward spliced epitopes derived

from tumor-associated antigens is detectable in mela-

noma patients [21] and has led to a regression of the

tumor mass in a melanoma patient and a leukemia murine

model [23,24]. As a consequence, spliced peptides are

interesting novel candidates for anti-viral vaccine devel-

opment [25] and anti-cancer immunotherapies [1,26].

The molecular base of the double life of
proteasome (and other proteases?) in
permanent balance between cleavages and
ligations
How does it come, however, that the proteasome and

possibly other proteases in human cells seem to break and

build again peptides so efficiently? We already know that

PCPS efficiency is preserved along evolution [27] and that

there are factors that promote PCPS. For instance, in vitro
assays suggest that the proteasome favors the ligation of

some peptide motifs [27,28], and where the proteasome
Current Opinion in Immunology 2018, 52:81–86 
prefers to cleave, it does not often splice [27]. However, to

understand why the proteasome catalyzes so often PCPS,

we need some information about its structure. The pro-

teasome core particle is a barrel-shaped multi-subunit

complex. In its internal cavity, it can accumulate up to

200–300 small peptides [29], or 2–3 proteins [30,31]. It has

three pairs of catalytic subunits (b1, b2, and b5). The

active site’s threonine nucleophiles face the proteasome

internal channel and are surrounded by the non-primed

and primed substrate-binding sites (Figure 2a). The sub-

strate degradation rate is driven by the proteolytic-site

activity as well as by the peptide transport along the

internal channel [29]. The catalytic subunit substitution,

which is the hallmark differentiating proteasome isoforms,

affects — at least at a quantitative level — cleavage-site

preferences and the substrate degradation rate [29,32,33].

It also impacts PCPS, although, likely, only in a substrate-

specific manner [21,27,34]. In cells, PCPS can occur via

either transpeptidation or condensation [21,35], although

the frequency of the latter mechanism still needs to be

assessed. In in vitro assays, PCPS can efficiently occur by

splicing fragments derived from the same molecule — cis
PCPS — and from different molecules — trans PCPS —
www.sciencedirect.com
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Figure 2

16nm

gates

10
nm

N

N N

N

C

C

C

C

antechamber
(59nm3)

antechamber
(59nm3)

chamber
(84nm3)

PSP-P1

PSP-P1

cleavages by Thr1

spliced peptides

trans PCPS

PSP-P1PSP-P1′

PSP-P1′

PSP-P1′

normal cis PCPS reverse cis PCPS
intervening sequences

(a) (b)

Current Opinion in Immunology

Molecular base for the unexpected high frequency of peptide splicing. (a) The human 20S core particle of the proteasome is shown based on the

structure generated by [45]. The chains B, C, H, I, J, Q, R, S, Y and Z are hidden from the structure in order to see the inner proteasome cavities

with the central chamber and its two antechambers. The a and b subunits are colored in grey and blue, respectively. As an example of a catalytic

subunit, he b2 subunit is shown in pink with its active site threonine in red. (b) Proteasome-generated spliced peptides can be formed by: firstly,

cis PCPS, when the two splice-reactants derive from the same polypeptide molecule; the ligation can occur in normal order, that is, following the

orientation from N-terminus to C-terminus of the parental protein (normal cis PCPS), or in the reverse order (reverse cis PCPS); secondly, trans

PCPS, when the two splice-reactants originate from two distinct protein molecules or two distinct proteins.
(Figure 2b) [27,28,36]. According to the transpeptidation

model [35], the proteasome’s catalytic N-terminal threo-

nine nucleophile breaks the peptide bond of the residue

(PSP-P1) of the protein — thereby forming an acyl-

enzyme intermediate with the N-terminal splice-reactant,

coupled to the release of the intervening sequence — and,

instead of catalyzing the canonical peptide hydrolysis, it

catalyzes the ligation between the PSP-P1 residue of the

N-terminal splice-reactant with the residue PSP-P10 of the

C-terminal splice-reactant (Figure 2b). Proteasome-medi-

ated transpeptidation can also result in isopeptide bond

formation when a lysine side chain reacts with an acyl

enzyme intermediate. Although it has also been shown

that such peptides can induce an immune response, this

process however remains to be observed in vivo [37].

Proteasome-generated sliced epitopes are however not

the only examples of spliced epitopes. Indeed, Delong

and colleagues [38��] identified some hybrid insulin pep-

tides (HIPs), derived from the ligation of a fragment of

proinsulin with peptides originating from other antigens

present in the granules of the pancreatic b cells. These

trans spliced epitopes are presented by MHC-II com-

plexes, thereby triggering a specific response in CD4+ T

cells in type 1 diabetic patients [38��,39]. In general,

extracellular antigens can be internalized, processed by

proteolysis in the lysosome, bind the MHC class II

molecules, and then circulate to the cell surface and back
www.sciencedirect.com 
to the lysosome [40]. Although the lysosomal proteases

also rely on (thio)ester intermediates, the enzyme cata-

lyzing the production of the HIPs is still unknown.

Why do proteases (frequently) behave as ligases, too? In

principle, any protease that uses a nucleophile to pro-

mote hydrolysis through an ester intermediate can cat-

alyze transpeptidation. Hence any protease could play a

role in the formation of spliced peptides. Although it is

not understood why the proteasome in particular seems

to catalyze this process so efficiently, we can speculate

on the reasons. Transpeptidation efficiency depends

highly on three factors: firstly, high concentration of

the amine nucleophile must be present in order to favor

the formation of a novel peptide-bond over hydrolysis;

secondly, the ester needs to have a sufficient lifetime in

order to allow the reaction and peptide bond formation

over hydrolysis; thirdly, the active site in which this

ester intermediate is formed must be sufficiently acces-

sible for nucleophiles to react. The proteasome struc-

ture can favor all these three conditions, as it’s a closed

barrel that could have a high local concentration of

peptide products, and use substrate-binding sites in

proximity to the proteasome’s catalytic N-terminal thre-

onine nucleophile. Another result of peptides confine-

ment in the proteasome barrel could be the fact that

trans PCPS seems to occur less frequently than cis PCPS

[27,28,36].
Current Opinion in Immunology 2018, 52:81–86
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Figure 3
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Example of zwitter peptide potentially generated from both EBV and myelin antigens. The theoretical zwitter peptide [GPR][LLLLLL] can be

generated from both, the EBV antigen LMP1 and the human myelin protein MOG, through cis peptide splicing. This zwitter peptide is predicted to

bind the HLA-B*07:02 variant with an IC50 of 58 nM, and it is one of the 13 peptides that are predicted to strongly bind to the most common

MHC-I molecules. In this analysis the binding affinity is predicted applying the SMM prediction method [46], filtered for peptides with rank � 1. The

13 theoretical zwitter peptides are predicted to bind one of the following variants: HLA-A*01:01, HLA-A*02:01, HLA-B*07:02, HLA-B*08:01, or HLA-

B*40:01 (data not shown).
Theoretical impact of PCPS in recognizing the
immunological self
One major feature of peptide splicing is the theoretical

increase of the number of sequences that can be derived

from the antigen pool and be allocated in the MHC-I and

MHC-II clefts. This enlargement could have implica-

tions in the recognition of the immunological self by T

cells. Indeed, it could increase the risk of mimicry, which

is the phenomenon whereby two epitopes have sequence

similarities and are recognized by the same T cell clone

[1]. In particular, we name as ‘zwitter peptide’ a peptide

that can be derived from the human self-proteome as well

as from a pathogen proteome (Figure 3). In 2012, Calis

et al. [41] investigated the sequence overlap between

human self-peptides and a large set of non-self-peptides

derived from viruses and bacteria in the context of CD8+

T cell recognition. They found that less than 1% of all

theoretical possible 9-mer non-spliced peptides derived

from pathogens have a sequence identical to the theoret-

ical human non-spliced peptides, that is, are zwitter pep-

tides. If the zwitter antigenic peptides were presented

similarly by mTECs and other professional APCs in the

medullary thymus and by dendritic cells (DCs) in the

periphery, we would expect the absence, at the periphery,

of CD8+ T-cell clones recognizing, with high affinity, the

zwitter peptides presented by DCs, because they have

been eliminated during the thymic negative selection [4].

This phenomenon could in part explain the occurrence of

holes in the T cell repertoire and in their ability to tackle
Current Opinion in Immunology 2018, 52:81–86 
viral infections [41]. On the contrary, if the zwitter anti-

genic peptides were efficiently presented by DCs and

other APCs in the periphery but not by mTECs and other

professional APCs in the thymic medulla, we would

expect at the periphery the presence of potentially auto-

reactive CD8+ T-cell clones, which could be primed and

activated by DCs and other APCs in lymph nodes during

the pathogen infection and afterwards attack human cells

and participate to in an autoimmune response.

In multiple sclerosis, for instance, myelin-reactive CD8+

T cell are theorized to mediate the cytotoxic activity

against the oligodendrocytes leading to the characteristic

de-myelination and plaque formation. Furthermore, asso-

ciations between multiple sclerosis, some MHC-I variants

(e.g. HLA-B*07) and Epstein-Barr virus (EBV) infection

have been reported, and it has been hypothesized that an

EBV infection could trigger the priming of autoreactive

CD8+ T cell clones through mimicry [42]. Using a similar

approach as Calis et al. [41], we can compare the overlap of

theoretical 9mer peptides (either spliced or non-spliced)

derived from 24 human myelin proteins (MBP, MAG,

MOG, PLP and isoforms) and from 9 EBV antigens (i.e.

LMP1, LMP2, BMLF1, BMRF1, BZLF1, BRLF1,

BNRF1, BLLF1, EBNA3). All 27 peptides theoretically

common to myelin and EBV antigens are spliced pep-

tides, since there are no identical non-spliced peptide

sequences between these two sets of antigens. Among the

27 theoretical zwitter peptides, 13 peptides are predicted
www.sciencedirect.com
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to strongly bind to common MHC-I variants (see also

Figure 3). Of course, this preliminary computation

accounts for only the theoretical presence or absence of

a peptide in the immunopeptidome of APCs. To better

estimate the real prevalence of zwitter antigenic peptides

and their recognition by CD8+T cells, we should consider

the TCR degeneracy, the affinity/avidity of TCRs and

MHC-I-peptides, and the dynamics of the different steps

of the MHC-I antigen presentation (Figure 1) including

the, only partially described, driving forces of PCPS. This

preliminary in silico result, however, confirms that PCPS

could play a particularly relevant role in the central

tolerance, the occurrence of large holes in the T cell

repertoire, and the autoimmune response mediated by

CD8+ T cells.

Concluding remarks
The surprising evidences reported in the last years, which

suggest that MHC-I (and in part MHC-II) immunopep-

tidomes are populated by spliced peptides, need to be

confirmed by applying different approaches before under-

standing the magnitude of their immunological rele-

vance. However, the implications of peptide splicing

could exceed the edges of antigen presentation. If pep-

tide splicing were a common reaction for other proteases

rather than proteasome, we could speculate that post-

translationally spliced peptides (and why not spliced

proteins?) could be involved in other aspects of the

immune response and cell metabolism, as it has been

proved for proteasome-processed non-spliced peptides

and proteins [43,44]. If this hypothesis were correct,

peptide splicing could be a further regulatory layer in

the life of a cell and an organism.
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