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Abstract

Long-distance quantum communication requires a highly efficient interface between
light and matter. This thesis describes optical Fabry—Perot microcavities based on
COs laser-machined mirror substrates that are ideal to couple single photons and single
atoms. The surfaces of the mirrors show ultra-low roughness, which enables cavities
with a finesse of up to 1.9 x 10°. Because of the small radii of curvature on the order of
100 pm achieved with this technique, deviations from the paraxial approximation become
relevant, resulting in a frequency splitting of polarization eigenmodes. A theoretical
model has been derived and confirmed by measured values and this understanding can
be used to tailor this frequency splitting for specific applications. A prime application
for these cavities is heralded entanglement generation between single atoms and telecom-
wavelength photons, which is proposed and analyzed in this thesis. In a theoretical study
of a quantum repeater protocol based on this scheme and cavity-assisted quantum gates,
remote entanglement is generated faster than without repeater nodes if the distance
between the end nodes exceeds 50 km.

Zusammenfassung

Quantenkommunikation iiber lange Distanzen erfordert eine hocheffiziente Schnittstelle
zwischen Licht und Materie. In der vorliegenden Arbeit werden optische Fabry-Perot-
Mikroresonatoren beschrieben, deren Spiegelsubstrate mit einem COs-Laser bearbeitet
wurden und die ideal geignet sind, um einzelne Photonen und einzelne Atomen miteinan-
der zu koppeln. Die Spiegeloberflichen zeichnen sich durch extrem niedrige Rauhigkeiten
aus, sodass Resonatoren mit einer Finesse von bis zu 1.9 x 10° erreicht werden. Aufgrund
der kleinen Kriimmungsradien in der Gréflenordnung von 100 pm, die mit dieser Methode
erreicht wurden, werden Abweichungen von der paraxialen Naherung relevant, die zu
einer Frequenzufspaltung der Polarisationseigenmoden fithren. Es wurde ein theoreti-
sches Modell erstellt und mit Messungen verifiziert, das benutzt werden kann, um die
Frequenzaufspaltung zu kontrollieren. Eine wichtige Anwendung fiir diese Resonatoren
ist die angekiindigte Verschrinkungserzeugung zwischen Einzelatomen und Photonen
bei Telekomwellenléingen, die in dieser Arbeit vorgeschlagen und untersucht wird. In
einer theoretischen Analyse eines Quantenrepeaterprotokolls, das auf diesem Schema
und resonatorunterstiitzten Quantengattern basiert, wird Verschrankung zwischen zwei
Orten schneller erzeugt als ohne Repeaterstationen, wenn die Entfernung zwischen diesen
50 km iibersteigt.






Contents

1 Introduction

2 Cavity QED and optical microcavities

2.1 Single-sided cavities . . . . .. ... oo
2.2 Optical microcavities . . . . . . . . . . . ...
2.3 High-finesse Fabry—Perot cavities . . . . . . ... ... ... ... ....
2.4 Cavity geometry . . . . . ..
2.4.1 Mode matching . . . . . ... ... L
2.4.2  Optimized cavity geometries . . . . .. ... ... ... ... ..

3 Fabrication and characterization of CO5 laser-machined cavities

3.1 COg laser machining of glass . . . . . . .. ... ... ... ...
3.2 Fabrication setup . . . . . . ..o
3.2.1 COglaser . . . . . . . . . e
3.2.2 Substrate alignment . . . . ... .. ... ... L.
3.2.3 Characterization of structures . . . . . . . . ... ... ... ...
3.3 Fabricationresults . . . . . . ... ... o
3.3.1 Materials and substrates . . . . . .. ... ... . ...
3.3.2 Diameter, depth and radius of curvature . . . . . . .. ... ...
3.3.3 Eccentricity . . . . . ... Lo
3.3.4 Surface roughness . . . . .. ... .. 0 oL
3.3.5 Photonic crystal fibers . . . . .. ...
3.4 Coating . . . . . . o
3.4.1 Annealing . . . . ...
3.5 Finesse. . . . . . e
3.5.1 Characterization methods . . . . . . ... ... ... .......
3.5.2 Reference mirrors . . . . . . . .. ...
3.5.3 Fibercavities . . . . . . . ...
3.5.4 CO4 laser machined substrates . . . . . . ... ... ... ....
3.5.5  Mode mixing as model for cavity finesse . . . . . . ... ... ..
3.6 Comparison of results to other approaches . . . . . . . ... ... ....

4 Frequency splitting of polarization eigenmodes

4.1 Potential sources . . . . ... L oL
4.2 Nomnparaxial corrections . . . . . . . . . . . ... ...
4.3 Experimental setup . . . . . ... L Lo
4.3.1 Characterization of reference mirror . . . . .. .. ... ... ..
4.3.2 Determination of mirror geometry . . . . . .. ... ... ...
4.3.3 Frequency splitting . . . . . . .. ... L

11
12
13
15
18
21
24

27
28
33
33
36
37
37
37
40
48
50
52
o7
58
59
60
62
62
65
66
69

71
71
73
77
77
80
84



Contents

4.4 Results. . . . . . . 85
4.4.1 Phaseshift . ... ... .. ... 85
4.4.2 Fiberrotation. . . . . . ... ... ... 86
4.4.3 Higher-order transverse modes . . . . . .. ... .. .. ..... 87

4.5 Discussion . . . ...l e 90

5 A quantum-repeater scheme at telecom wavelength 93

5.1 Quantum repeaters . . . . . . . . .. ... 93
5.1.1 Performance criteria . . . . . .. ... oL 94
5.1.2  Other approaches . . . . . . . ... ... L. 96

5.2 Entanglement generation at telecom wavelength . . . . . .. .. ... .. 97
5.2.1 Cascaded scheme . . . . . . ... ... oL 98
5.2.2 Implementation with 8Rb . . . . . . . .. ... .. .. ... ... 100
5.23 Fidelity . . . . .. 105
5.2.4 Indistinguishability . . . . . . .. ... 0oL 109

5.3 Entanglement swapping . . . . . .. .. L Lo 112

5.4 Quantum repeater performance . . . . . .. ... ... ... ... ... 116
5.4.1 Successrate . . . ... 117
5.4.2 Required memory time . . . . . . .. ... 120
5.4.3 Secret-keyrate . . .. ... Lo 122
5.4.4 Entanglement purification . . . . . .. ... ..o 126

6 Summary and outlook 131



1 Introduction

Thought experiments involving distant quantum objects that had become entangled due
to local interactions were the key to deduce the seemingly paradoxical behavior predicted
by quantum mechanics [1-3]. The goal of quantum communication is to bring these
experiments into the realm of reality by transporting quantum states over long distances.
Triggered by the discovery of Bell’s inequalities [4], quantum communication has started
as the effort to verify these quantum mechanical predictions [5] and since then they
have been subject to increasingly stringent tests [6-10]. Besides these investigations
of fundamental questions, there have also been numerous proposals for applications
of quantum communication protocols. Of these, quantum key distribution [11, 12]
has attracted the most attention, because of its immediate applicability. It promises
the distribution of a physically secure key without requiring assumptions about the
transmission channel and in case of device-independent protocols [13, 14] even trust
in the key-generating devices themselves can be significantly relaxed. In addition to
the secure transfer of classical information, the development of quantum computing
might add the demand to transfer quantum information. The quantum state resulting
from a complex calculation could be deterministically transferred to another location
by the means of quantum teleportation [15]. This would ultimately enable distributed
quantum computing [16], which would connect several smaller quantum computers to
solve a complex problem and has been proposed as one of the roads toward a large-scale
quantum computer [17].

Light in the visible and near infrared spectrum is the obvious choice as the physical
system to implement quantum communication, because quantum states encoded in
photonic states can travel at the speed of light to cover large distances with minimal
decoherence, allowing for the generation of widely separated entangled states [18].
But even at optimized wavelengths, photons are eventually scattered or absorbed in
any medium, limiting the distance for quantum communication protocols. There are
two possibilities to circumvent this limitation. At night, satellite relays could enable
quantum communication between distant locations through the vacuum in space [19].
The alternative is to divide a transmission line into parts with nodes running a quantum
repeater protocol in between [20], which could enhance the communication rate. In
combination with photons at telecom wavelength, this could extend the ability to perform
quantum communication via optical fiber links between distant locations.

However, quantum repeater protocols require the ability to store a quantum state and
then retrieve it on demand, which cannot be done in purely photonic systems. Therefore,
a material quantum system is necessary that offers a long coherence time and that can
be efficiently interfaced with photonic states. This has triggered very active and ongoing
research into light-matter interfaces at the quantum level and very different physical
systems have been developed that could meet these demands. These include many-body
systems like atomic ensembles [21-24] and ion-doped solids [25], single-particle-like states
in solid state systems embedded in nanophotonic structures [26-28], and neutral atoms



1 Introduction

and ions coupled to optical resonators [29-32]. Yet, no system has been demonstrated
with a combination of efficiency and coherence time that is sufficient to implement a
quantum repeater protocol that accomplishes a quantum communication task faster than
without a repeater.

Single neutral atoms in high-finesse Fabry—Perot cavities show great promise toward this
goal: They enable strong coupling between light and matter [33], have been demonstrated
to be an efficient interface between qubits encoded in photons and atoms [34-37], and
possess states suitable for low-decoherence qubit storage [38, 39]. However, experiments
with atoms in optical cavities have not been performed at telecom wavelength so far, due
to the lack of suitable transitions from ground states of atoms that are easily laser cooled.
If this is not addressed, the range of a repeater system would be severely limited and
likely offer no benefit compared to a photonic system operating at telecom wavelength.
Although there is active research into wavelength conversion at the single photon level
[40, 41], such approaches would come at the price of increased technological overhead and
reduced efficiency. The alternative is to use atomic transitions at telecom wavelength
between excited states to perform quantum communication directly at the correct
wavelength [42]. In this thesis, a cascaded scheme is proposed to efficiently generate
heralded entanglement of a photon at telecom wavelength with a single atom. The scheme
utilizes one cavity at telecom wavelength to enhance the emission of single photons
entangled with the atom into a single-mode fiber with near-unity efficiency. A second
cavity, orthogonal to the first, enhances and heralds the transfer of the unstable state
created by the entanglement generation process to a stable, long-lived state. With cavity-
mediated atom-atom gates [43], this scheme could be extended to a quantum repeater
protocol with all functionality integrated into one experimental platform consisting of a
quantum repeater node and linear optics.

The realization of a quantum repeater that follows this concept and outperforms direct
transmission requires cavities with the following properties: First, the cavities need to
have a large coupling strength to the atomic transitions involved in the scheme to ensure
a high success probability for emitting photons into the cavities. Second, the cavities
need to be single-sided and efficiently couple to a single spatial mode such that almost
all generated photons can be collected and distributed to other nodes and detectors.
Third, the physical size of the cavities needs to be small enough that it is possible to
simultaneously couple an atom to the modes of two perpendicular cavities without the
cavity mirrors occluding each other. Satisfying these requirements in one system is very
difficult with mirrors based on superpolished substrates and a new type of resonator is
required. A recent technological development in this direction has been the invention of
COg laser machined mirrors [44-46]. These enable high-finesse mirrors with extremely
small radii of curvature [47] and thus tight confinement of the cavity mode to enhance
the coupling between a single atom and a single photon to unprecedented values [48].
This high coupling strength would enable cavities that reach the strong-coupling regime
even if one of the mirrors is highly transmissive for single-sided operation despite the
intrinsic losses of the mirrors. If the mirror substrate is the end facet of an optical
fiber [44], the cavity diameter is more than an order of magnitude smaller than for
superpolished substrates, facilitating the integration into microscopic systems [48] and
enabling new cavity geometries. With an optimized overlap between the mode of such
a cavity with the mode of a single-mode fiber, emitted photons would be intrinsically
fiber-coupled and could be transmitted over long distances without the use of free-space



optics while profiting from the rapid developments in fiber-optic communication. In
order to realize such cavities that would be suitable for a quantum repeater with single
atoms, the project described in this thesis was concerned with fabricating fiber mirrors
adapted to single-atom experiments, developing improvements in the fabrication method,
and exploring the new capabilities that the resulting system would have.

A potential issue for quantum communication experiments with fiber cavities was
the frequency splitting of polarization eigenmodes. One distinct feature of high-finesse
Fabry—Perot cavities is that degeneracy of their polarization eigenmodes can be achieved
[49]. Then, the coupling of the cavity to external, propagating modes is independent of
polarization, and the polarization-specific interaction of the atom with the cavity mode
only depends on the internal structure of the atom. This allows to encode quantum
information in the polarization states of single photons for transfer between nodes in a
network [50]. In contrast to cavities based on superpolished substrates, fiber cavities
were shown to have a much larger typical splitting of polarization eigenmodes [44, 48],
resulting in detrimental effects on experiments [51]. It is therefore essential for future
experiments with this type of cavity to understand and control the source of this splitting.
During the work described in this thesis, a theoretical model was developed that explains
the dominant source of the frequency splitting between polarization eigenmodes to be of
geometrical origin and the fabricated cavities were used to validate this model. From
the results, it is immediately evident how this splitting can be controlled and tailored
to specific applications. Although investigated in the context of COs laser-machined
mirrors, the results are not limited to them but apply to all microscopic, high-finesse
Fabry—Perot resonators.

The experimentally determined characteristics of the COy laser machined cavities
presented in this work enable an estimation of the performance of a quantum repeater that
utilizes these cavities according to the presented proposal. Under a few realistic, additional
assumptions, this repeater would generate entanglement between nodes separated by
100 km faster than without repeater nodes. This shows that the demonstration of a
quantum repeater with single atoms in optical cavities is in reach with current technology.

This thesis is organized in the following way: A brief review of cavity quantum
electrodynamics and the requirements for efficient light-matter coupling are given in
Ch. 2. The fabrication and characterization of CO9 laser machined mirrors and cavities
based on these are described in Ch. 3. The theoretical and experimental investigation
of the frequency splitting of polarization eigenmodes is the subject of Ch. 4. Ch. 5 is
concerned with the proposal for a quantum repeater protocol based on the fabricated
cavities. The results are summarized and perspectives for future research are discussed

in Ch. 6.






2 Cavity QED and optical microcavities

Cavity quantum electrodynamics (QED) describes the interaction of quantum emitters,
like single atoms, with a quantized field in a cavity. In the case of an emitter with a
dominant dipole emission pattern that is near resonant with the cavity field, the dipole
approximation and the rotating-wave approximation can be applied and the system can
be described with the Jaynes-Cummings model [52]. In this model the coupling between
light and matter can be described by the interaction Hamiltonian

Hing = hgoenam + hgTaInUuea (2‘1)

where o, is an operator that transfers the emitter from state |u) to excited state |e)
and ap, is the photon annihilation operator for cavity mode m. The coupling g between
the emitter and the cavity field is half the single-photon Rabi frequency and can be

calculated as
1 - =
%deu - B, (2.2)

g =
where dg, is the transition dipole matrix element between |u) and |e) and Ej, is the
electric field of a single photon confined to the cavity mode. Using the mode function
U(7) of the cavity normalized to its maximum value and the population decay rate I'ey
from |e) to |u), this expression can be rewritten as

3mel'oy
=4/ W(7) .

where V;, is the cavity mode volume, k the wavenumber of the resonant mode, and ¢
the speed of light. The magnitude of this coherent coupling has to be compared to the
coupling of the emitter and the cavity mode to the environment. As these processes
involve infinitely many modes, they are usually treated as incoherent decay with total
field decay rate k for the cavity mode and total population decay rate of the excited
state I'. A convenient figure of merit for the comparison of these rates to the coupling
strength in cavity QED is the single-emitter cooperativity C, defined as

2

g
C=—=. 2.4
T (2.4)
In this definition!, it is equal to half of the Purcell factor [53], which is the relative
strength of the emitter decaying via emission of a photon into the cavity compared
to free-space decay. To ensure efficient coupling of an atom to the cavity field, the

atom—cavity system should feature C' > 1.

!Note that multiple definitions of the cooperativity can be found in the literature, which differ by
factors of two.
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2 Cavity QED and optical microcavities

2.1 Single-sided cavities

In order to enable quantum communication with single atoms in optical cavities, efficient
coupling of the atom to the cavity field is not the only requirement, but this cavity field
also needs to be efficiently coupled to a single spatial mode that can be guided over long
distances to reach the next node in a quantum network. The coupling to one defined
external mode contributes to the total loss rate of the cavity field x and can be described
with the extrinsic loss rate kex. Its value has to be compared to the intrinsic loss rate xiy,
which quantifies the decay of the cavity field into undesired channels. These channels
are typically scattering and absorption in the cavity and can also include the coupling to
additional external modes that are well-defined, but are not part of a particular quantum
communication protocol and thus have the same effect as losses inside the cavity. A
cavity is called single-sided if the extrinsic losses dominate the intrinsic losses of the
cavity as well as the scattering rate of the atom, i.e., Kex > Kin, . The fabrication
technology for any type of cavity limits the intrinsic losses that can be achieved. These
losses can be compensated by increasing the extrinsic losses to maximize the probability
that a photon inside the cavity leaves it in the desired channel. However, this also
increases the total losses kK = kex + kin and thus reduces the cooperativity, such that a
tradeoff between single-sidedness and cooperativity has to be made.

A basic element of quantum communication and the first step in a quantum repeater
protocol is the generation of entanglement between a single atom and a single photon
[34]. The theoretical description of its implementation by means of fast excitation [54]
illustrates the requirements mentioned above for efficient quantum communication. The
atom is excited by an external laser with a short m-pulse and can then decay to two
degenerate ground states by the emission of a single photon in one of two degenerate
polarization modes of a single-sided cavity. The single photon leaves the cavity in one
particular spatial mode with high probability, resulting in entanglement between the
polarization of the photon leaving the cavity and the atomic state. The system can be
modeled as depicted in Fig. 2.1 and is characterized by the decay rates I'1 2 from the
excited states to the ground states that form the atomic qubit, the corresponding cavity
coupling strengths g1 2, the extrinsic cavity decay rate rex, and the loss rates caused
either by unwanted cavity decay ki, or atomic decay to the initial state I'g and to other
atomic states I',. The probability of such a system to emit a photon into the cavity Pe.ay
can be expressed as a function that solely depends on the cooperativity [55]

2 Ceff

P, =—"
W20 + 1

(2.5)
As the process involves two degenerate cavity-enhanced transitions, the effective coop-
erativity is the sum of the cooperativities of the individual transitions Ceg = Cy + Cs.
After the emission of a photon into the cavity, the photon can be reabsorbed by the
atom and spontaneously decay [56]. Therefore, the rate of the photon leaving the cavity
in the desired mode 2kex does not only compete with cavity decay caused by other loss
channels 2k;, but also with free-space decay rate of the atom I'. Hence, the probability
Pout to get an entangled photon out of the cavity in the desired mode is

Rex 2Ceff
Py = . 2.6
O T ex + Kin +1/2 <2Ceﬁ+1> (2.6)

12



2.2 Optical microcavities

(a)

Figure 2.1: (a) Single photon production in a single-sided cavity (depicted here as a
Fabry—Perot cavity). The cavity field is primarily lost by the coupling to
one defined mode with the extrinsic loss rate key, but a small fraction of the
cavity field is lost to the environment, constituting the intrinsic loss rate xiy.
There is a coherent coupling between the cavity field and a single atom (g).
Atomic excitation can be lost via emission into free space at a rate I'. An
external laser beam with Rabi frequency (2 is used to excite the atom. (b)
Level scheme for the production of atom-photon entanglement. The atom
is prepared in state |0) and coupled to state |e) by the external laser. The
cavity has degenerate polarization eigenmodes and the system is oriented
in such a way that the two polarization modes couple this state to |1) and
|2) with vacuum Rabi frequency 2g; 2. The atom can decay by free-space
emission into states |0), |1), and |2) with rates I'g, I'1, and T'y, respectively.
Decay to all other states is modeled by an additional decay rate I'y,.

To optimize the efficiency of this entanglement generation scheme, one has to maximize
the effective cooperativity Ceg and the directivity x = kex/(k + I'/2). The former could
be achieved by decreasing the cavity decay rate, but the latter sets a limit to that. If
the intrinsic losses ki, are set by the fabrication process, the only way to increase y is to
increase the extrinsic losses and accept a decrease in cooperativity. For this reason, it
is important to minimize the intrinsic losses of the cavity, such that a x close to unity
can be achieved at high cooperativity. The intrinsic loss rate of a cavity is therefore one
of the most important figures of merit in the fabrication process of cavities suitable for
quantum information processing.

2.2 Optical microcavities

The bright prospects of atomic systems coupled to optical cavities for quantum commu-
nication have spawned numerous efforts to develop microscopic cavities with small mode
volumes and low intrinsic losses to achieve high cooperativity. These approaches fall into
two categories: open resonators with direct access to the mode, which allow placing the
emitter at the position of maximal field strength, and monolithic resonators with atoms
coupled to their evanescent field.

The second category encompasses resonators inside transparent media that rely on
refractive index differences to contain the light inside the resonator. By using resonators

13



2 Cavity QED and optical microcavities

with microscopic extent, the cavity fields can have strong transverse confinement and
extremely small mode volumes. Since placing the atom inside the medium would disturb
the atom, it cannot be placed in the resonator itself, but needs to be in the evanescent
field close to the resonator surface.

The first examples of this category featuring strong coupling to atoms were whispering-
gallery modes in fused silica microtoroids [57]. Since then, whispering gallery modes have
also been used in bottle microresonators [58] and microspheres [59]. These resonators
have the advantage of low intrinsic losses and tunable coupling to an external mode
by placing a nanofiber close to the resonator at varying distances. Although these
resonators cannot be single-sided due to the running-wave mode, nonparaxial effects lead
to spin-orbit coupling of the light and enable chiral interfaces that link the polarization
of the light to the propagation direction, which can be used for directional emission [60].
However, trapping atoms near these resonators at the required distance is difficult and
has not been achieved so far. This limits the interaction time of single atoms with the
resonators and prevents long-time storage of qubits in these systems.

An alternative are photonic crystal cavities, which can be designed to feature extremely
low mode volumes with a reasonable quality factor [61]. The resulting high coupling
strength has been used to reach the intermediate coupling regime with quantum dots
placed inside the mode [62]. Unperturbed neutral atoms cannot be placed inside a
photonic crystal cavity, but can be trapped in the evanescent field, resulting in very large
light-atom coupling [31]. However, resonators fabricated so far suffer from high intrinsic
losses, such that single-sided operations are not possible without increasing the loss rate
above the value necessary for high cooperativity.

Instead of a small mode volume, there is also the possibility to ensure strong transverse
confinement along the whole resonator length using optical nanofibers [63]. Fiber Bragg
gratings in the untapered part of the fiber create a cavity inside the fiber?, which can
be coupled strongly to single atoms trapped along the fiber [32]. The length of this
cavity has the advantage that many atoms can be trapped along its axis [64] with similar
coupling strength. However, for quantum communication, this type of cavity has the
disadvantage of small cavity decay rates compared to the atomic decay.

In contrast to monolithic resonators, open resonators offer direct access to the mode,
such that objects can be placed directly at the position of highest intensity. This
enables coupling to larger objects like atomic ensembles [65-68], ion crystals [69], or
micromechanical objects [70, 71]. For single emitters, an open geometry enables relatively
easy trapping of neutral atoms [72, 73] and single ions [74] inside the resonator, far from
any perturbing surface. The open geometry also enables optical access from multiple
directions for cooling, optical pumping, and imaging of atoms in the cavity [75].

The most simple open-cavity design is the Fabry—Perot cavity with two parallel
mirrors facing each other. Compared to more complex designs like ring cavities [65],
Fabry—Perot cavities are compact and enable the smallest mode volumes. Additionally,
the polarization eigenmodes of Fabry—Perot cavities can be degenerate even for the
very narrow lines of cavities with ultra-low losses [49], which provides full control over

2 A cavity inside an optical fiber is often referred to as fiber cavity. This is ambiguous with cavities
consisting of two mirrors on the end facets of optical fibers, which are sometimes also called fiber
cavities. The more accurate term for the latter type of cavity would therefore be fiber Fabry—Perot
cavities. Nevertheless, for conciseness, the term fiber cavity will always refer to the second type, when
it is used throughout this thesis.

14



2.3 High-finesse Fabry—Perot cavities

the polarization of the cavity modes. These cavities optimized for high cooperativity
with a single atom and single-sided operation are therefore ideally suited for quantum
communication experiments.

2.3 High-finesse Fabry—Perot cavities

To design the optimal Fabry—Perot cavity for a particular experiment, its mode volume
and losses need to be considered. In the paraxial approximation, a fundamental mode
of a Fabry-Perot cavity with length L and mode waist® wy has a mode volume of
Vi = mw3L/4. An emitter placed at the field maximum of such a mode therefore has a

coupling strength of (see Eq. (2.3))
6¢cl ey
= . 2.7
o0l = |/ Tt (27)

The most efficient way to gain information about the field inside the cavity is to
detect light leaking out of the cavity via the mirror with the higher transmission T,
which is called the output coupler. In such a configuration, the decay rate Koc = Kex
corresponding to the transmission of this mirror leads to the desired signal. It should
therefore be distinguished from all other decay rates, which describe loss of information
to the environment. This loss can either be caused by transmission 7T}, of the other
mirror, called the high reflector, or by parasitic losses £ due to scattering from the mirror
surface, absorption in the coating, or clipping caused by finite mirror size. These losses
can be treated with a composite decay rate ki, and the total loss rate x is then described
by

7 Toc+ (T + 0) = 57—
In the last step, the finesse was introduced, which is a measure for the reflectivity of
the mirrors and is defined by the ratio of the free spectral range vpsr = ¢/(2L) and the
cavity linewidth Awv:

(2.8)

K = Koc + Kin =

F_ VPSR 27
- Av ~ Toc+Thr+£'
The relative error of the approximation made here is on the order of 1/F and can be
neglected for high finesse cavities.
Inserting Egs. (2.7) and (2.8) into Eq. (2.4) yields the cooperativity for an emitter
placed at the intensity maximum of a mode in a Fabry—Perot cavity

(2.9)

12F Teu
C=———= . 2.10
kw2 T ( )

For a closed transition, I' = I'g,, and the cooperativity only depends on the mode waist
compared to the wavenumber of the mode, kwp, and the finesse. If the transition is not
closed, but decay from the excited state to other states can occur, the cooperativity is
reduced by the relative decay strength Iy, /T" < 1.

By varying the thickness and number of layers of a dielectric coating, the transmissions
Toc and Ty, of the two mirrors can be freely chosen. The scattering, absorption, and

3The 1/e field radius or 1/e* intensity radius at the waist of the mode.
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2 Cavity QED and optical microcavities
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Figure 2.2: Influence of the transmission of the output coupler on the photon output
probability. The solid line is the analytic result of Eq. (2.6). The dashed line
indicates the probability for the atom to emit a photon into the cavity, which
limits the efficiency in case of high transmission of the output coupler and
therefore lower finesse of the cavity. The dotted line denotes the probability
of a photon in the cavity to leave it through the output coupler, which limits
the total success probability in the case of it having low transmission. The
crosses are results of numeric simulations that confirm the analytic results.
The calculations were made using g = 27 x 100 MHz, I' = 27 x 6.0 MHz,
I'h=T9=5/12xT, Tty + £L =50ppm and L = 100 pm.

clipping losses of the mirrors set a lower limit for x;, and a non-zero transmission of the
high reflector is required to be able to perform transmission measurements of the cavity.
If kiy is then fixed, T, needs to be set to a value high enough to enable single-sided
operation, but low enough to retain high finesse and high cooperativity.

The influence of T, on single photon production by fast excitation described by
Eq. (2.6) is depicted in Fig. 2.2, which shows the probability to generate a single
entangled photon per trial as a function of the transmission of the output coupler for one
set of parameters. If the transmission of the output coupler is too low, the cooperativity
is high and the photon is emitted into the cavity with high probability, but the photon
is lost most of the time instead of leaving the cavity through the output coupler. If the
transmission of the output coupler is too high, any photon inside the cavity is efficiently
coupled to a single external mode, but the low cooperativity prevents efficient coupling of
the atom to the cavity. Therefore, the only parameter that can increase the cooperativity
without compromising the single-sidedness of the cavity is the transverse size of the
mode. Minimizing kwgy while maintaining low intrinsic losses is thus the path to follow
to maximize efficiency.

The cooperativity has no explicit length dependence®. As a consequence, efficient

4There is an implicit length dependence, because the mode waist depends on the length (see Sec 2.4).
However, the length dependence of the waist can in principle always be eliminated by adjusting the
curvature of the mirrors.
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Figure 2.3: Success probability of a photon leaving the cavity through the output coupler
with varying cavity length. The radii of curvature of the mirrors are adjusted
to keep the mode waist constant at wp = 4.0 pm (requires a near concentric
geometry for long cavities). The solid lines are the analytic results for fast
excitation (red, Eq. (2.6)) and an adiabatic control pulse (blue, Eq. (2.11)).
The crosses denote simulation results. For adiabatic driving, the result is
independent of the length. In the limit of very short cavities, the probability
reaches the same value for fast excitation as in the adiabatic case. x decreases
with cavity length, but I' is constant, such that the probability of free-space
decay increases with cavity length for fast excitation. The dashed vertical line
indicates the cavity length, where 2k = I" and the fast-excitation efficiency is
exactly half the efficiency for adiabatic driving. The calculations were made
with A = 780nm, I' = 27 x 6.0 MHz, I'y =T9 =5/12 x I, T},; + £ = 50 ppm
and T, = 1000 ppm.

coupling of an atom to the cavity is possible at any cavity length. However, the ratio
2koc /T does depend on the cavity length. If the system is in a state where an excitation
can oscillate between the excited state of the atom and a photon in the cavity, this ratio
determines the probability of free-space decay compared to transmission through the
output coupler. Therefore, any scheme that puts the system in such a state will benefit
from a short cavity (see Fig. 2.3), because the probability for a photon to leave the
cavity via the output coupler is increased. Instead of using fast excitation, atom-photon
entanglement can also be generated with an adiabatic control pulse [55, 76], in analogy
to stimulated Raman adiabatic passage [77]. This scheme avoids reexcitation of the atom
and therefore I' can be eliminated in Eq. (2.6) such that

Rex 2Ce
Py = . 2.11
out Kex T Kin <2Ceﬁ + 1) ( )

However, this requires the duration of the control pulse t. to be much longer than the
timescale set by the coupling strength ¢. > 1/g [77] and thus reduces the available
bandwidth range for the generated photons. A short cavity is therefore not necessary
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2 Cavity QED and optical microcavities

Figure 2.4: Parameters relevant for the geometry of a (fiber) Fabry—Perot cavity. The
radii of curvature Ry and Ry of the two mirrors and the cavity length L
determine the waist wg of the mode. If these radii are different, the position
of the waist is not in the center of the cavity and the coupling rate of an
emitter placed at the center is reduced by the increased mode radius there.
The mode radii on the two mirrors w1 and w2 have to be compared to
the finite mirror diameter d,,. For a fiber cavity, the mode radius of the
fiber mode wy and the refractive index of the fiber material n; are additional
parameters that influence the coupling of the cavity mode to the fiber mode
on each side.

to construct an efficient light-matter interface, but it enhances the variety of possible
schemes and the bandwidth range of the system.

2.4 Cavity geometry

The parameters that describe the mode of a Fabry—Perot cavity are depicted in Fig. 2.4.
As described in the previous section, a small mode waist is the key to a high-cooperativity
atom—cavity system with the reduced finesse that is required for a single-sided cavity. In
the paraxial approximation®, the mode waist wg of a Fabry-Perot cavity is a function of
the cavity length L, the radii of curvature of both mirrors Ry and Ry and the wavelength
A [79]

LA | g192(1 — g192)
wo = A | — . 2.12
’ ™ \/(91 + 92 — 29192)* (212)

Here, the dimensionless parameters g1 2 = 1 — L/R; 2 describe the geometry of the cavity
and \/L\/m sets the scale. Eq. (2.12) only results in real values for the mode waist
and thus a stable cavity, if 0 < g1g2 < 1. Within this stability region, the mode waist
generally decreases with the radii of curvature (see Fig. 2.5a), except at the edges of this
region, where the mode waist either diverges for a planar geometry, i.e., R = Ry = 00,

5The paraxial approximation requires kwo > 1 [78]. As this parameter is to be minimized, it is
questionable whether the paraxial approximation is valid for the cavities discussed here. This issue is
neglected here, but will be discussed in Sec. 4.2.
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2.4 Cavity geometry

or vanishes like it does in the concentric case, i.e., Ry = Ro = L/2, or if one of the radii
of curvatures approaches the cavity length. It would be tempting to operate a cavity
near the edge of the stability region, where a small mode waist can be achieved for any
cavity length. However, the mode size on the mirrors has to be considered, which is [79]

LA g2
o — A 2.13
ol \/ 7\ g1(1 — g192) (2.13)

on the mirror with radius of curvature R, and the same equation with g; and go exchanged
for the other mirror. The larger of the two as a function of the cavity geometry is shown
in Fig. 2.5b. One can see that near the edge of the stability region where the mode waist
vanishes, the mode size on at least one of the mirrors diverges and very large mirrors
would be needed. This is especially true for long cavities, because the cavity length
enters the scale factor. Producing such large mirrors with sufficiently low deviation from
the perfect shape is difficult and although there are promising efforts in that direction
[80], high finesse has not been reached for such cavities, yet.

As past single-atom cavity QED experiments were built with cavities in the near-planar
regime [35, 49, 54, 73, 76, 81-85], reducing the curvature of the mirrors would decrease
the mode waist as well as the size of the mode on the mirrors. Such cavities would
therefore not only provide higher cooperativity, but would also allow the use of smaller
mirrors and enable the combination of multiple cavities in new geometries. The minimum
mode size for a given cavity length L on the mirror where the mode is larger is / LA/,
which is reached in a confocal geometry, i.e., Ry = Ry = L. A further reduction in mode
waist and mode size on the mirrors could then be achieved by also reducing the length,
while keeping the confocal geometry.

However, there is a considerable drawback of reducing the cavity length to very small
values. Long Fabry—Perot cavities offer good optical access to an atom coupled to the
cavity mode, which allows to trap, cool, image, optically pump, or drive the atom with
laser beams on axes perpendicular to the cavity axis. A considerable reduction of the
optical access would hinder these operations and reduce the capabilities of the system.
Most critical in terms of scattering and mirror heating is trapping single atoms inside
the cavity with a far-offresonant optical dipole trap perpendicular to the cavity axis [73],
because it requires a high-power laser beam passing between the mirrors. It can therefore
be used to estimate the minimum required distance that will not excessively constrict
optical access. To get full control over the motion of the atom, a 3D-trap involving an
intra-cavity optical dipole trap is desirable [86]. Light from the intra-cavity trap will
be scattered and absorbed by the mirrors on a ppm-level and cannot be detuned by
more than a few THz to obtain a large region where the trapping sites coincide with the
antinodes of the cavity mode, where the coupling strength is maximal. A far off-resonant
trap, for example at a wavelength of 1064 nm for rubidium, has a detuning on the order
of 100 THz and will thus require two orders of magnitude more power to reach a trap
depth similar to the intra-cavity trap. If less than 1078 of its light intersected the mirrors,
scattering and absorption would be less than the intra-cavity trap and could therefore
not lead to excessive problems. Taking a Gaussian fundamental transverse mode, the
minimum required distance between the edges of the substrates can be calculated for
a given mirror diameter. For example, if the mirror substrates had the diameter of
standard optical fibers (125 pm), a minimum distance between the substrates of 40 pm
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Figure 2.5: (a) The mode waist as a function of the g-parameters in units of the scale

20

factor \/LA/m. The cavity is unstable in the red-shaded regions. The mode
waist diverges (indicated by blue) for a planar cavity and vanishes for a
concentric cavity (indicated by cyan) and when one and only one of the
g-parameters is zero. (b) Corresponding mode size on the mirror on which
the mode is larger. At the edge of the stability region, where the mode waist
vanishes, the mode size on at least one of the mirrors diverges (indicated
by blue). The mode size is minimal on the mirrors for a given length if the
cavity is confocal.
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Figure 2.6: Minimum distance between mirror substrates with a diameter of 1251m as a
function of the mode waist of an optical dipole trap at 1064 nm wavelength,
which is perpendicular to the cavity and has its focus in the center of the
cavity. The solid blue line corresponds to possible scattering and absorption
of 107® of the mode intensity, the green dashed line to 107!° and the red
dotted line to 1075, For these parameters, the optimum mode waist of the
trap is at 4.6 pm, which requires a distance of 40 pm between the mirror
edges.

would be required to fulfill the criterion explained above (see Fig. 2.6). As this calculation
assumed perfect alignment and the cavity length is slightly longer than the substrate
distance, due to the concave shape of the mirrors, a safety margin of at least 15pm
should be added on each side, such that the minimum cavity length for unproblematic
dipole trapping is around 70 pm.

Extending the system to include two crossed cavities with an atom coupled to both
simultaneously, requires at least one of the cavities to have a length exceeding the
mirror substrate diameter of the other cavity in order to avoid collisions between the
mirrors. A mirror substrate diameter of 125 um for one cavity would thus require a
cavity perpendicular to it to have a length L > 140 pm (see Fig. 2.7).

2.4.1 Mode matching

To achieve long distance quantum communication in optical fibers, the mode of the
cavity output must be matched to a single-mode optical fiber. For entangled photon
production [34] or storage of a photonic qubit [35], imperfect mode matching reduces
the efficiency of the protocol. Additionally, imperfect mode matching also reduces the
fidelity for schemes based on reflection of a single photon [36, 37, 87], exacerbated by the
spatial filtering of the fiber mode, which can lead to undesired interference effects [88,
89]. Therefore, it is essential to maximize the overlap of the cavity mode with a fiber
mode. This can be achieved by placing and adjusting optical elements between the cavity
and the fiber, which can be very sensitive to temperature changes. As an alternative,
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100 pm
|

Figure 2.7: The space required for two crossed cavities based on substrates with a
diameter of 125 pm. The short cavity (vertical) has a length of 70 pm to allow
a far off-resonant trap to be focused between the mirrors without excessive
scattering. The long cavity (horizontal) has to have a length L > 140 pm,
such that the short cavity fits between its mirrors.

using an optical fiber as mirror substrate can integrate the fiber coupling into the cavity
and provide intrinsic direct coupling between the cavity mode and the fiber mode. This
eliminates free parameters that need to be aligned, but requires incorporating fiber
coupling into the design process, as the mirrors need to be fabricated with the right radii
of curvature, such that good mode matching is possible.

The mode launched from the end facet of a single-mode fiber, operated near the
multi-mode cutoff wavelength has an overlap > 99.5 % with a fundamental transverse
Gaussian mode that has its waist on the end facet [90]. Therefore the fiber mode can be
approximated by the corresponding Gaussian mode and the mode matching efficiency e
can be calculated as the overlap between this mode and the cavity mode [44, 91]:

. 4 (2.14)

( we M)2 + (knfwfwc,oc)2’

We,oc we 2R

where wy is the waist of the fiber mode, we o is the mode radius of the cavity mode on
the output coupler, ny¢ is the refractive index of the fiber and R is the radius of curvature
of the output coupler (see Fig. 2.4). The first term in the denominator characterizes
the mode size mismatch and is minimal with a value of 4 at wy = w.. The second
term characterizes the wavefront curvature mismatch, taking into account lensing by the
concave mirror surface. It vanishes for R — co and becomes worse for smaller radii of
curvature. It follows, that for symmetric cavities, which have equal radius of curvature
for both mirrors, best mode matching is achieved for very short cavities, because a large
radius of curvature can be chosen to match the cavity mode size to the fiber mode due to
the length-depending scale factor in Eq. (2.13). Longer cavities need to be asymmetric
to achieve good mode matching. By increasing the radius of curvature of the output
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Figure 2.8: Best mode matching efficiency between cavity mode and fiber mode with
the radii of curvature optimized for a given length and cavity asymmetry
expressed in the ratio of g1 and g2. A symmetric cavity, i.e., g1 = go is
only optimal for very short cavities. Long cavities need a high degree of
asymmetry to achieve good mode matching. The plot has been generated
using a fiber mode waist of w¢y = 3pm and a wavelength of A = 780 nm.

coupler, the waist of the cavity mode can be moved towards it, resulting in a less curved
wavefront on the mirror and thus higher mode matching efficiency (see Fig. 2.8). There
are, however, three disadvantages to this method. First, it decreases the mode matching
efficiency at the other mirror. This is not a severe issue for single-sided cavities, because
efficient detection is not possible at the high reflector, anyway, but it does reduce the
signal of transmission measurements. Second, the center of the cavity is the best place
to trap an atom inside the cavity in terms of optical access. Displacing the waist of the
cavity due to asymmetric radii of curvature results in a reduced coupling strength to
the cavity of an atom trapped at the center. Third, the mode size on the high reflector
becomes larger, such that a larger mirror is required on that side to prevent additional
losses.

A simple clipping model can be used to estimate the required mirror size by assuming
that the part of the mode that is inside of an effective mirror diameter is fully reflected
and everything else is lost. The clipping loss L for a mirror with diameter d,,, and
mode size on the mirror w, is then [44]

Lo = e T/ (2wd) (2.15)

Solving for dy, yields
dm = wer/—21n (Ly), (2.16)

which is the minimum mirror diameter to keep clipping losses below a given L. For
example, a cavity with a length L = 140 pm and symmetric radii of curvature could reach
a mode matching efficiency of at most 61 % and would require a mirror with d, > 32 um
to reach that value with £, < 1ppm. With an asymmetry of g;/go > 4.2, a mode
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2 Cavity QED and optical microcavities

matching efficiency exceeding 90 % could be reached, but the required mirror diameter
would increase to dy, > 45pum. The combination of cavity length and required mode
matching efficiency thus sets a minimum size for the mirror.

2.4.2 Optimized cavity geometries

Examples for optimized cavity geometries are listed in Tab. 2.1. To minimize the mode
size on the mirrors, these all feature a radius of curvature that is close to the cavity
length for the high reflector. This results in a near-confocal geometry for symmetric
radii of curvature and near-hemispherical in the highly asymmetric case. It is, however,
undesirable to operate exactly at the confocal or hemispherical point, because of two
reasons. First, these border the unstable region, such that fabrication tolerances and
deviations from the ideal paraxial case might result in an unstable cavity. Second, higher
order transverse modes of even order are degenerate with the fundamental transverse
mode at these points, resulting in a multi-mode output when an atom is resonant with
these modes. Hence, there should be a safety margin between the radius of curvature of
the high reflector and the cavity length, determined by the tolerance of mirror fabrication
and characterization.

In general, a tradeoff has to be made between cooperativity, mode matching efficiency,
and required mirror size. Depending on the application, the optimum geometry might be
different. The highest cooperativity is achieved for both radii of curvature smaller than
the cavity length, but this also results in the worst mode matching. A near-confocal
geometry, with both radii of curvature slightly larger than the length, results in the
smallest mode size on the mirrors for a given length. Increasing the radius of curvature
of the output coupler increases the mode matching, but reduces the cooperativity and
increases the mode size on the high reflector. The asymmetry of the mirror curvatures
can therefore be increased to improve the coupling to a single mode fiber until either the
coupling strength at the center of the cavity becomes too small, or the mode size on the
high reflector becomes larger than the usable area of the mirror. A fabrication process
should therefore be able to produce various radii of curvature and maximize the area
where deviations from a chosen curvature are minimal in order to prevent limitations by
the mirror size.

24



2.4 Cavity geometry

Cavity length Radius of curvature Cooperativity Mode matching Mirror size

L Ry Roc C €oc €hr dm
pm pm pm % % pm
70 50 50 61.9 57.9 57.9 22.9
100 100 29.8 78.8 78.8 22.4
100 200 24.0 94.2 62.9 28.1
100 400 21.6 97.3 57.3 30.3
140 110 110 26.8 55.7 55.7 31.6
170 170 17.0 61.0 61.0 31.2
170 340 12.7 84.5 38.8 43.0
170 800 11.2 89.7 33.3 47.4

Table 2.1: Examples for possible cavity geometries at A = 780nm. The cooperativity
assumes a closed transition of an atom trapped at the center of the cavity
and a single-sided cavity with T, = 1000 ppm and T}, + £ = 50 ppm. The
mode matching to a fiber is calculated with wy = 3um. Small, symmetric
radii of curvature maximize the cooperativity and, but result in lower mode
matching efficiency at the output coupler. The latter can be optimized with
asymmetric radii of curvature if the mirror diameter is large enough.
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3 Fabrication and characterization of CO,
laser-machined cavities

Past experiments in cavity QED with Fabery—Perot cavities have used ion-beam sputtered
superpolished substrates as mirrors, which feature extremely low losses and therefore
enable ultra-high finesse [92], but are limited in transverse confinement of the mode by
the minimum possible radius of curvature.!

To combine the advantages of Fabry—Perot cavities with a small mode volume and con-
sequently large coupling strength, new fabrication methods for microscopic Fabry—Perot
cavities have been developed over the last decade. The goal of these fabrication methods
is to produce substrates with a spherical, concave low-surface-roughness structure with
curvatures exceeding the capabilities of polishing methods. These can then be coated
with a highly reflective coating and subsequently be used as mirrors. The challenge
is to fabricate the structure with the desired diameter and radius of curvature, while
maintaining a shape that is as close to spherical as possible and a surface that is as
smooth as possible. Of the multiple approaches that have been tried, the arguably most
promising techniques are listed in the following.

The first possibility are silicon etching methods [93]. These have the advantage of easy
integration into microfabrication processes to create tunable cavity arrays [94]. They
can be fabricated with low surface roughness and a finesse of 6 x 10* has been reached
[95]. Silicon is not transparent at visible and near-infrared wavelengths, such that only
the high reflector can be produced with this method and the other mirror has to use
a different substrate, but can be near-planar. It is however difficult to independently
control mirror diameter and radius of curvature while maintaining low surface roughness,
because these are partly determined by the properties of silicon and the mask size and
etch time cannot be varied fully independently [95].

Controlling the shape, size, and radius of curvature, even for extremely small mode
volumes, can be achieved with focused ion beam milling [96]. This comes at the price of
increased surface roughness and reduced finesse [97], but is an interesting method for
experiments with solid state emitters, where extremely small mode volumes are necessary
to get coupling rates between the emitter and the cavity that are as large as the emitter
linewidth [98].

The most successful new fabrication method has been COg laser machining [44, 45].
With this method, the highest surface qualities have been achieved over a wide range of
parameters. COs laser machined mirrors have therefore been used in experiments with
atomic ensembles [48], singe ions [99], solid state emitters [47, 100, 101], molecules [102],
nanomechanical systems [71], and as a scanning cavity microscope [103].

!The smallest radius of curvature that has been used in a single-atom cavity experiment was 10 mm
[84]. The smallest that is currently commercially available with sufficient surface quality is 25 mm
from the company Advanced Thin Films.
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3 Fabrication and characterization of COs laser-machined cavities

3.1 CO, laser machining of glass

COg laser fabrication of mirror substrates is based on rapid laser-induced heating of
fused silica. Once the material gets hot enough, it starts to melt and then to evaporate.
As the laser beam has a Gaussian intensity profile, the spot illuminated by the center
of the beam is heated faster than the surrounding area and evaporates faster, leaving
a concave depression in the substrate. This depression is extremely smooth, because
surface tension during reflow of melted fused silica prevents rough structures when the
material resolidifies. This polishing effect of CO4 laser treatment on fused silica has been
observed to mitigate laser-induced damage [104], enables the fabrication of ultra-high-Q
microtoroid cavities [105], and creates surfaces that can be used to build high-finesse
cavities after application of highly reflective coatings [44, 45]. The process only requires
a flat fused silica substrate with a diameter larger than the size of the mirror that is
to be fabricated. A particularly interesting substrate is the end facet of an optical
fiber, because mirrors on the end facets of optical fibers enable cavities that combine
a microscopic mode volume with microscopic physical dimensions and intrinsic fiber
coupling of the cavity mode [44].

In a simple model of the fabrication process [46], COq laser light is only absorbed on
the surface of the fused silica substrate, because of the short absorption length in this
material at this particular wavelength. In the limit of a semi-infinite slab of fused silica,
the corresponding heat-flow equation can be solved semi-analytically [106], yielding a
surface temperature distribution. Under the assumption that the evaporation can be
modeled as an evaporation velocity depending only on the surface temperature, this
model predicts depressions with near-Gaussian depth profiles, which are compatible
with those observed on glass plates illuminated by COs laser beams with a waist of
wp = 26 pm [46].

According to this model, the width d of the Gaussian function

R o

which fits best to the depth z of the structure as a function of the distance r to the center,
depends on the waist wg of the beam with d < wp. In the paraxial approximation, the
phase of a Hermite-Gaussian mode is ¢(z,y,2) = —k(z + 22/(2Rx) + y?/(2Ry)) + ¢(2),
i.e., for a slowly varying Guoy phase ¢(z), the surfaces of constant phase are elliptic
paraboloids z = —(2?/(2Ry) + y?/(2Ry)) with radii of curvature Ry and Ry at their
origins. To minimize diffraction losses, the surface of a mirror should thus be as close to
an elliptic paraboloid as possible over the cross section that covers significant intensity
of the mode. The Taylor expansion of Eq. (3.1) around r = 0 is

,,,2 7.4 ,,,6

which can be approximated by a paraboloid with Ry = Ry, = d*/(2A) up to the order
O(r*/d*). For this approximation to be valid up to the desired mirror radius ry,, the
condition ry,/d < 1 needs to be fulfilled, i.e., d needs to be much larger than r,. To
get mirrors with 2d > 45 pum suitable for cavities with lengths over 140 pm and mode
matching efficiency n > 90 % (see Sec. 2.4.1), d and thus wq should therefore be on the
order of several hundred micrometers.
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3.1 COq laser machining of glass

(b)

Figure 3.1: Microscope image of an optical fiber before (a) and after (b) illumination by
a COq laser pulse with a power of P =30 W, a waist of wg = 220 um, and a
duration of 25 ms. Due to large scale melting and surface tension, the tip
of the fiber was reshaped to a convex hemisphere. From the difference in
length, the amount of material can be inferred which has been ablated by
this laser pulse.

If end facets of typical optical fibers with a cladding diameter of 125 pm are used,
the diameter of such a beam exceeds the diameter of the end facet. Nevertheless, it
should result in a structure with the desired profile in the center of the fiber end facet.
However, effects at the edge of the facet will result in different structures there and might
possibly influence the structure in the center. Additionally, surface tension will force a
minimization of the surface area in the melted state. Although desirable on small scales
for a smooth surface, melting on the scale of the substrate will result in a convex shape,
eventually collapsing the concave shape resulting from the evaporation (see. Fig. 3.1).

To prevent large scale melting, heating should be constricted to regions close to the
surface that are to be evaporated and heating of deeper regions should be avoided. Two
issues need to be addressed to achieve this goal. The first is the finite penetration depth
of the laser light. The most common wavelength at which CO5 lasers operate is 10.6 pm.
At this wavelength, there is significant disagreement in the literature about the value of
the absorption index Im(ny) of fused silica with values ranging over 0.02-0.2 [107]. These
values correspond to an absorption length of ™ = \/(47w Im(n,)) = 40 pm — 4 1m, which
is not insignificant compared to the expected depth of the structures. The absorption
depth can be reduced by an order of magnitude by using a laser with a wavelength closer
to the absorption resonance at 9.2 pm in fused silica caused by a stretching vibration
of SiO3 [107]. The second strongest COq laser transition at 9.3 pm [108] is close to this
resonance, has an absorption index (absorption length) of Im(ny) = 2 (o' = 0.41m)
[107], and can therefore be used to limit absorption to the surface of the substrate. The
second issue is thermal conduction during application of the laser pulse. Even if all
absorption happens at the surface, heat will be transferred to deeper regions if the pulse
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3 Fabrication and characterization of COs laser-machined cavities

has low intensity and long duration. To minimize this effect, the laser pulse should be
short, which requires high intensities to achieve sufficient heating for evaporation.

To estimate the size of these effects, the heat conduction model needs to be extended
to include a source that penetrates the material. For a semi-infinite solid with constant
illumination, an analytic closed form of the heat flow equation exists for the increase in
temperature AT caused by the laser [106]:

_ 252
AT(t,z) = I(lKR) <5 ierfc <§> — éexp(—az) + % exp <0é46>

x [exp(—az) erfe (0‘25 - ;) + exp(az) erfe (O‘; + ;)D .

Here, erfc(z) is the complementary error function, ierfc(z) = exp(—2?)//7 — z erfc(z)
is its integral, I is the laser intensity, R is the reflectivity of the substrate, K is the heat
conductivity, and § = 2v/Dt is the diffusion length, calculated from the heat diffusivity
D and the duration of the laser pulse ¢. This solution only considers heat transfer in the
solid and neglects potential heat conduction by air, because the typical heat conductivity
of air is two orders of magnitude smaller than the heat conductivity of fused silica. For
a~! < §, numerical evaluation of Eq. (3.3) is problematic because of over- and underflow
of function evaluations, so it is advantageous to evaluate the last part logarithmically:

(3.3)
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The function erfex(x) = exp(z?) erfe(x) is the scaled complementary error function and
can be used to calculate the logarithm In(erfc(x)) = In(erfex(z)) — 2.

Although K and D in fused silica depend on temperature, heating by a CO» laser can
be approximated with the effective values K =2Wm 'K~ and D =7 x 10" m?s~!
[109]. The refractive index of fused silica at a wavelength of 9.3 pm is n = 2 + 2i [107],

leading to a reflectivity of

AT(t,z) = I(lK_R) (5 ierfc (g) 21 exp(—az)

2
=0.4. (3.5)

n—1
n+1

Using these values, the temperature profile of a semi-infinite solid has been calculated
for a laser intensity of Iy = 0.66 GWm™2, which corresponds to the peak intensity
of a laser beam with a power of 50 W and a waist of wg = 220 pum. For comparison,
the calculation was repeated for laser beams with different absorption lengths and for
laser pulses 10 times longer (Fig. 3.2). To interpret these temperature profiles, two
temperature values are of significance. The first is the softening point of fused silica
of approximately 1900 K at which the glass starts to flow under its own weight. The
second is the temperature of 3000 K, at which the vapor pressure of fused silica reaches
1 bar and significant evaporation occurs [110]. For the parameters given above, the
latter temperature is reached after 0.22 ms. The intensity of the laser beam in all of the
comparison cases was adjusted in such a way that the surface reaches that temperature
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Figure 3.2: Temperature profile calculated using Eq. (3.4) of a semi-infinite solid illumi-
nated by a laser of uniform intensity. Blue lines show the temperature profile
after 0.22 ms of heating and green lines represent pulses with a duration of
2.2ms. The intensity of the beam has been adjusted to heat the surface to
3000 K. Dotted lines denote a hypothetical perfect absorber, i.e., =t = 0,
solid lines, dashed lines, and dash-dotted lines represent o' = 0.4 pm, 4 pm
and 40 pm, respectively.

at the end of the pulse to enable evaporation there. With the considered parameters,
there is almost no difference in the temperature profile between light at A = 9.3 pm with
an absorption length of a~! = 0.4m and light at a hypothetical wavelength with an
absorption length of 0 that is completely absorbed at the surface. Unless significantly
shorter pulses are used, the penetration depth of a laser at A = 9.3 um can hence be
neglected.

In contrast, a laser at A = 10.6 ym increases the region where the material is above
the softening point by more than 50 % for a~! = 4pm and roughly 500 % if the largest
reported value o~ ! = 40 um is used. Longer pulses have a similar effect as a penetrating
source: During the pulse, the heat can propagate through the medium and melt lower
regions. Fabrication using a wavelength with a short absorption length can thus prevent
excessive melting, if short, intense pulses are used. The short absorption length is not a
disadvantage if increased melting would be desired to smooth out large-scale roughness,
because a longer absorption length can always be mimicked by increasing the duration
of the laser pulse.

An additional advantage of using short, nonpenetrating pulses is fast resolidification
of the material, because less heat has to be transported away to cool the sample. For
uniform illumination by a laser pulse of finite duration that is absorbed directly at the
surface of a semi-infinite solid, i.e., ! = 0, the heat flow equation can be solved exactly
[111]:

I1-R

AT(t,z) = ) (dierfe(z/9) — dg ierfe(z/do)) , (3.6)

where ¢ is the time since the start of the laser pulse and 6y = 24/D(t — tp) contains
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(a) Temperature on the surface of a uniformly illuminated semi-infinite
solid calculated with Eq. (3.6). The blue line denotes a pulse with I =
0.66 GW m~2 starting at ¢ = 0 and stopping at t = tg = 0.2ms. The
green line denotes a longer pulse with ¢, = 10ty with an intensity of 0.321).
Although the same surface temperature is reached, the material cools much
more quickly after the short pulse, because the laser has added less total heat
to the substrate. (b) Corresponding temperature profile immediately after
the laser beam has been turned off (solid lines) and after 0.1 ms of cooling
in case of the short pulse (blue dashed line) and 0.5ms of cooling in case of
the longer pulse (green dashed line). In the former case, the material has
already cooled well below the softening point, while in the latter case, the
first 10 pm below the surface are still hot enough to flow.
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the duration of the laser pulse t3. Using the same parameters as above, the surface
temperatures and the temperature profiles for a pulse with 0.2 ms and 2 ms were calculated
and are shown in Fig. 3.3. The intensity of the longer pulse has been adjusted to 0.321j to
get the same temperature at the time the laser is turned off. After turn off, the material
heated by the short laser pulse cools much more quickly and the surface temperature is
below 1900 K after 60 p1s and no significant mass flow of the glass should occur after this
time. For a pulse 10 times longer, the surface also takes 10 times longer to cool to that
temperature and the material is hot enough to flow under its own weight for a much
longer time. The model can be tested by measurements of the white-light emission of a
fused silica substrate during CO- laser fabrication of mirrors with short pulses. It has
been shown [112] that the material cools quickly to half its temperature within 100 ps
after the laser beam has been shut off, compatible with the calculations of cooling by
heat transfer made above.

Since all calculations in this section have assumed a semi-infinite solid, it is questionable
how well the results hold for optical fibers. The boundary condition at the edge of the
end facet is clearly different from that of a semi-infinite solid. Therefore, only the center
of the fiber could possibly be described as a semi-infinite solid as long as the dimensions
of the fiber are much larger than the diffusion length, which is § = 2v/Dt = 50 um for
t = 1ms. This is clearly a good approximation along the length of the fiber, but is not
fulfilled in the plane of the end facets for typical fibers with a diameter of 125 pum. This
simple theory will therefore only be a good description for very short pulses, but as it
does not include material loss, material flow, or surface tension, it is unlikely to give
accurate results for long pulses, anyway. If a laser beam with a waist of 220 pm is used,
the intensity varies by less than 15% over the end facet of a fiber with a diameter of
125 pm, so uniform illumination should be a good approximation in the center of the
fiber.

3.2 Fabrication setup
3.2.1 CO, laser

The setup used to fabricate mirror substrates on fiber end facets as well as on fused silica
plates is illustrated in Fig. 3.4. The COq laser was operated at 9.3 pm wavelength and
had a maximum CW output power of 35 W. Its microwave pump could be controlled by
a TTL input to quickly toggle the laser output and perform pulse width modulation to
adjust the output power. This input was driven by a microcontroller to create pulses
with durations on the order of 1 ms with a repetition rate of 2 Hz. A small fraction of the
beam was directed onto a HgCdTe photodetector with a bandwidth of 1 MHz to monitor
the output power and determine the pulse shape. When creating pulses, a comparison to
a calibration performed at CW operation revealed that the laser output was considerably
higher in the first millisecond after turn on than the specified and measured average
output power over longer time scales (see Fig. 3.5). For unknown reasons, the pulse
shapes of subsequent pulsed were not identical, but differed significantly from pulse
to pulse. The signal of the photodetector could be integrated and used as feedback
to the microcontroller to stabilize the total pulse energy by stopping the pulse after a
predetermined pulse energy had been reached, at the cost of a varying pulse length. A
shutter with an opening and closing time of 15 ms each was used to pick single pulses for
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Figure 3.4: Setup for the shaping of fiber end facets with a CO4 laser. The orientation
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of the main COj laser beam is adjusted with gold-coated copper mirrors (D).
A small part of the beam is coupled out with a ZnSe 99:1 beam splitter (3)
and directed onto a HgCdTe photodetector (2) to continuously monitor the
laser output power. The polarization can be switched from linear to circular
by a phase shifting mirror (4), which requires an out-of-plane geometry. The
size of the beam can be adjusted with a variable beam expander (5) with a
magnification of 0.5x-2.5x. The beam is focused on the end face of an optical
fiber by a ZnSe/ZnS achromatic lens (6) with a focal length of 200 mm. To
image the generated spot, the light can be redirected with a removable mirror
(7) to a scanning slit beam profiler (8), placed at the same optical path length
from the lens as the fiber end. The fiber is placed in a metallic V-groove
holder and mounted on a six-axes positioning stage (9). To determine the
position of the optical fiber, it is illuminated by a blue LED and imaged
with a microscope @, consisting of a 4x microscope objective, a blue color
filter, an achromatic lens with 200 mm focal length, and a CMOS camera.
An example image shows a fiber with a diameter of 125 pm as imaged by the
microscope. Not shown is a similar microscope perpendicular to the figure
plane used to image the fiber in the figure plane. The schematic is not to
scale.
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Figure 3.5: Three pulses of the CO4 laser with 2 ms duration recorded shortly after each
other. The pulse shape varies significantly from pulse to pulse and the output
power is considerably higher than the maximum power of 35 W observed
during continuous-wave (CW) operation. The average power during the first
millisecond of the pulse is 47 W for the pulse marked in blue, 45 W for the
pulse in green, and 48 W for the red pulse. Most of the time a spike in laser
power is measured for 1ps directly after turning on the microwave pump.
The real duration of this spike could be even shorter, because the measured
signal is limited by the bandwidth of the detector. Due to the short duration,
the spike contains a pulse energy that is negligible compared to the rest of
the pulse. The calibration of the photodetector was performed by comparison
to a thermal power meter during CW operation. As this could not be done
with powers exceeding 35 W, the calibration for higher powers had to be
extrapolated, assuming linear response of the detector.

fabrication by opening on command to let a single pulse pass.

At an output power of 1 W, the polarization of the laser was measured to be vertical
with an extinction ratio of 60:1. Due to the damage threshold of the polarizer used for
this measurement, this could not be verified for higher output powers. Two different
configuration were used for machining fiber ends with different polarization of the COq
laser beam on the fiber end facets. In the first configuration, the beam was reflected off
a phase shifting mirror with the outgoing beam being 45° out of plane. A second mirror
reflected the beam into a plane parallel to the original plane, creating a beam with
circular polarization. In the second configuration, the phase-shifting mirror was replaced
with a gold-coated mirror that reflected the beam 90° out of plane. This resulted in
horizontal polarization of the beam after reflection off the second mirror.

The laser beam was focused on the substrate to be machined with an achromatic
ZnS/ZnSe lens with a focal length of 200 mm. Best results were achieved with the
substrate at the position of the laser beam waist. Significant deviations from this
position along the laser beam resulted in a reduced quality of the beam profile and
asymmetric structures on the substrates after machining. In front of the focusing lens,
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Figure 3.6: Example of a beam profile used for fabrication. The white lines represent the
measured intensity and the green lines are Gaussian fits thereof. From the fits
the waist can be determined to be (219 + 2) pm in the vertical direction and
(214 £+ 2) pm in the horizontal direction, with the error being the standard
deviation resulting from fits to a hundred measurements.

the size and divergence of the beam was adjusted using a variable beam expander with a
magnification between 0.5x and 2.5x. To image the resulting spot, a removable mirror
was placed between the lens and the substrate that directed the beam on a scanning-slit
beam profiler. The distance between the lens and the beam profiler was set to be the
same as the distance between the lens and the substrate, such that the spot on the beam
profiler should resemble the spot on the substrate when the mirror is removed. As the
beam profile could not be measured at the position of the substrate, this could not be
verified, but due to the large spot sizes used for fabrication, a mismatch of 5 mm between
the position of the beam profiler and the position of the substrate would result in an
error of only 5% for the beam waist as measured by the beam profiler. The beams used
for almost all fabricated mirrors had a waist in the range of 210 um to 220 pm and close
to rotational symmetry around their axes with the difference between major and minor
axis of the waist being 2% or less (see Fig. 3.6).

3.2.2 Substrate alignment

All substrates were mounted on a six-axis positioning stage that allowed translations up
to £10 mm and rotations up to £10° around its central position. When glass plates with
a diameter much larger than the beam waist were used as substrates, alignment in the
plane perpendicular to the COs laser beam axis was uncritical and the stage could be
used to create series of structures with a defined distance between them. Because of the
large Rayleigh length of the beam, alignment along the beam axis was uncritical as well.

In contrast, when end facets of optical fibers were used as substrates, alignment in the
plane perpendicular to the beam axis was crucial to fabricate useful structures, because
the center of the structure needs to be in the center of the fiber end facet to enable
good coupling between the cavity mode and the fiber mode guided by the fiber core.
To determine the position of the fibers, two microscopes with magnification close to 4x
imaged the fiber from the horizontal and the vertical direction in that plane onto CMOS
cameras. The resulting images were analyzed by an image recognition algorithm that
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could detect the position of the fiber and its orientation with respect to the camera with
a precision of 0.5 pm and 0.1°. The values produced by that algorithm could be used to
automatically position a fiber at the same position as a previous fiber, allowing iterative
optimization from one attempt to the next.

3.2.3 Characterization of structures

To optimize the fabrication process and to characterize the fabricated structures in
order to select the best ones before applying a coating, all structures were imaged with
a commercial white-light interferometer. Due to a combination of vertical-scanning
interferometry and phase-shifting interferometry, the device had a specified vertical
resolution of below 0.1 nm. The lateral resolution was diffraction limited and depended
on the objective: the 50x (5x) objective had a resolution of 0.5 pm (2.2 pm) with a field
of view of 166 pm x 125pm (1.7mm x 1.3mm). The light collection efficiency from
angled surfaces limited the maximum slope with respect to the objective that could be
successfully imaged to 27° (5.5°) for the 50x (5x) objective. Therefore, the structures
fabricated on glass plates could not be fully imaged, because the size of the CO laser
beam was larger than the field of view of the 50x objective and except for the center of
the structures, the slopes were to steep for the 5x objective. Nevertheless, the field of
view for the 50x objective was large enough to cover all areas of a structure that would
influence a cavity mode in the center of the structure and the 5x objective could be used
to measure the depth of the structure relative to the surface of the glass plate.

The end facets of optical fibers with a diameter of 125 um could be found with the 5x
objective and then fit completely in the field of view of the 50x objective, with which
all data was then taken. As the COq laser beam was larger than the end facets, they
were fully transformed during the fabrication and no reference to the original end facet
remained. Therefore, it was necessary to calibrate the angle of the reference plane in
the objective to get accurate measurements of the angle of any structure with respect
to the fiber axis. The calibration was performed by imaging a cleaved fiber end in the
V-groove holder used for fabrication and multiple rotations of the fiber by 180° around
its axis. From these measurements, the angle of the reference plane could be determined
and the stage the holder was placed on could be adjusted to compensate for this angle.
Multiple insertions of the same fiber under the same rotation into the holder showed
that the orientation of the fiber axis could be reproduced with an error of £0.1°, such
that the angle of any structure with respect to the fiber axis could be measured by the
white-light interferometer up to this error.

3.3 Fabrication results

3.3.1 Materials and substrates

The fabrication process was tested with polished substrates of three different base
materials, fused silica, N-BK7, and sapphire, to get an indication about the influence
the material composition has on the process (Fig. 3.7). As reported previously [112],
the process works very well with planar fused silica substrates. After a 1ms CO5 laser
pulse with the beam profile depicted in Fig. 3.6 at full output power of about 50 W on
average during the first millisecond (cf. Fig. 3.5), the resulting surface was very smooth
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Figure 3.7: Surface profiles after CO5 laser illumination of large substrates, consisting
of different materials. The profiles were taken at the respective center of
the resulting structures. The laser pulses were all made at full laser output
power. (a) UV-grade fused silica after a laser pulse with 1.0 ms duration. (b)
N-BK7 after a 0.95ms pulse. (c) Sapphire, after a 4 ms pulse. See text for
further description.
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and was dominated by the desired curvature with no obvious local variation (Fig. 3.7a).
In comparison, the borosilicate glass N-BK7 treated with a similar laser pulse yielded a
structure with similar depth and radius of curvature (Fig. 3.7b), consistent with similar
absorption and evaporation properties due to silica being the main component in both
glasses. In addition to the desired concave structure, however, the fabricated structure
on N-BK7 showed smaller-scale dimples, the centers of which were often too steep to be
measured by the white-light interferometer, leading to holes in the measured data. A
possible explanation for these dimples could be bubbles formed during the fabrication
process, which deform the structure locally. These dimples render the resulting structure
unsuitable as a mirror substrate and show that the process is highly dependent on the
material properties of the glass.

For comparison with crystalline materials, the fabrication process was also tried on
sapphire substrates. Due to the higher heat conductance and lower absorption index of
sapphire, more energy and therefore longer pulses were required for ablation to occur.
Although a concave structure was created (Fig. 3.7c), it was rougher, irregular, had
multiple cracks and could not be used as a mirror substrate.

Optical fibers

Although CO laser fabrication of mirror substrates on glass plates can result in micro-
scopic structures, the glass plates themselves are still macroscopic structures, which limit
optical access to the inside of the cavity and applicability in a crossed cavity geometry.
If these qualities are important, it is therefore necessary to use substrates of smaller
lateral dimensions. End facets of optical fibers are a particularly interesting option as
initial substrates, because standard optical fibers have a diameter just above the desired
mirror diameter and are cheaply available. If the mirror is centered on the end facet,
the guided mode of single mode fibers can provide intrinsic coupling to the cavity mode,
greatly simplifying that process. The material of optical fibers is almost pure fused
silica and therefore suitable for CO4 laser fabrication, except for the dopant required
to create the refractive index profile which is necessary to guide modes. Although the
dopant concentration is < 1% germanium for typical single-mode fibers for near-infrared
wavelengths, the fabrication process is highly dependent on the material composition, as
described above. To estimate whether there is an influence of the dopant, end-facets
of single-mode and graded-index multi-mode fibers were both used as initial substrates
with the only specified difference being the dopant concentration profile. Any systematic
difference in the results of the fabrication process can thus be attributed to the dopant
concentration.

Typical optical fibers are coated with an acrylate polymer that protects the fiber
from mechanical damage. Fibers with these protective coatings cannot be used as fiber
mirrors, because these polymers are not vacuum-compatible and the fibers need to be
exposed to high vacuum during the application of a highly reflective coating on the end
facet and ultra-high vacuum if used in a cold-atom experiment. As the fibers are too
fragile to consistently survive the coating process without a protective layer, fibers with
a 20 pm thick outer copper coating were used. To prepare the fibers for fabrication, the
copper coating was chemically removed over the length of a few centimeters at the end
of the fibers using nitric acid and the fibers were cleaned in an ultrasonic bath. Flat end
facets were produced with a standard telecommunication precision cleaver, which uses a
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Figure 3.8: (a) Surface profile of a fiber end after cleaving. On the left side typical
artifacts of the cleave process can be seen. (b) Histogram of the angle of the
fiber end facet to the plane normal to the fiber axis for a total of 100 cleaves.
Of these, 72 were cleaves of single mode fibers (blue) and 28 of multi-mode
fibers (green, stacked). The mean angle was 0.37° with a standard deviation
of 0.24°

diamond blade to incise the fiber and then applies pressure to induce a clean break at
this position. This method has the advantage of the preparation of fairly good plane
end facets with little effort. However, it almost always resulted in a small defect at one
point at the edge of the end facets and the resulting end facets were also not exactly
perpendicular to the fiber axis, but had an angle that varied around a mean value of
0.37° with a standard deviation of 0.24°, as measured with the calibrated white-light
interferometer and 100 cleaves (cf. Fig. 3.8). It was noticed, that particularly bad
cleaves characterized by large defects led to bad results during fabrication. Therefore, the
randomness introduced by the cleave might have had an influence on the reproducibility
of the fabrication results.

The removal of the copper coating was considerably more time-consuming than
mechanical removal of acrylate polymer coating on standard fibers. Therefore, single-
mode and multi-mode fibers with a similar refractive index profile, but an acrylate
polymer coating were used for iterative alignment of the fabrication setup and copper-
coated fibers were used only after the setup had been adjusted to produce the desired
results.

3.3.2 Diameter, depth and radius of curvature
Glass plates

Glass plates as initial substrates have the advantage of a uniform surface that can be
described by a simple model. The glass plates used were circular with a diameter of
7.75mm and a thickness of 4 mm. These dimensions are much bigger than the diameter
of the COg5 laser beam, the penetration depth, or the diffusion length during pulses with

40



3.3 Fabrication results

(a)

®) 450

460
440

W
S
(@n)

Diameter (pm)
W
o O
o O

360
340
320

3.6
3.0
2:4, .~
g
=
18 =
B,
]
1.2 R
- 0.6
45 4
X (pm)
- |
]
] m .
] | ]
u e © o © ° o |
L @ ) i
. e
. —
| | | | L l |
4 6 8 10 12 14 16 18

Pulse duration (ms)

Figure 3.9: (a) Edge of a structure on a glass plate fabricated with a CO2 laser pulse

of 18 ms duration. On the left the unmodified glass plate starts and the
concave part of the structure extends to the right. In between there is a
ridge that is rougher than the original glass surface and the center of the
fabricated structure. (b) Inner diameter of that ridge as a proxy for the
structure diameter in the direction that was vertical during fabrication (blue
squares) and in the horizontal direction (green circles) as a function of the
pulse length. The structures are not rotationally symmetric, but are on
average b % larger in the vertical direction.
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Figure 3.10: Depth of structures fabricated in glass plates with COq laser pulses of
varying duration. The data points are measurement results and the solid
line is a linear fit through the origin, which results in an ablation speed of
v =(6.640.1)mms™!

durations on the order of milliseconds. Therefore, the glass plate can be described as a
semi-infinite solid if the position of the laser beam is sufficiently far away from any of
its edges and under this condition, the resulting structure should be independent of its
position on the substrate.

At the edge of the structure, there was not a smooth transition from the unmodified
glass plate to the concave part in the center of the structure. Instead, the fabrication
process resulted in a ridge that was higher and rougher than both the unmodified
substrate and the center of the structure (Fig. 3.9a). The most likely explanation is the
resolidification of glass that had been evaporated from the center of the structure. Between
this ridge and the center of the structure, the slope was too step for interferometric
measurements such that only the extent of the ridge and the center of the structure
could be measured. Therefore, the inner diameter of the ridge was taken as a proxy for
the structure size, in the absence of other suitable criteria. The resulting diameter as
a function of the pulse duration at full output power of the CO5 laser is depicted in
Fig. 3.9b. The diameter was mainly determined by the diameter of the laser beam, with
only a slight dependency on the pulse duration. The structures were slightly elliptic,
with the diameter in the vertical direction being 5% larger than the diameter in the
horizontal direction with a standard deviation of 3%. The orientation is compatible
with the orientation of the CO3 laser beam, which was also slightly larger in the vertical
direction by 2% (Fig. 3.6).

The depth of the structure as a function of the pulse duration, defined as the height
difference between the unmodified glass plate and the height minimum of the structure,
is plotted in Fig. 3.10. The data shows a linear dependence of the depth on the pulse
duration with a constant evaporation speed of (6.6 +0.1)mms~!. This is in direct
contradiction of the model presented in Ref. [46], which would predict the depth to
exponentially increase with the pulse duration. The difference is in the parameter regime.
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Figure 3.11: Curvature along the major axis, i.e., the axis with the largest radius of
curvature, of the structures fabricated on glass plates plotted against the
COg laser pulse duration. The relation is close to linear with a fitted slope
of (0.61 +0.01) mm !t ms™*

The experiments reported on in Ref. [46], which fit the model, were done with a smaller
COg laser beam waist of 51 pm and pulses with durations of up to 50ms. Therefore
the ratio of the diffusion length ¢ = 2v/Dt to the beam waist was larger than one and
the model predicts only a small increase in temperature with longer pulse durations
in this regime, thus effectively resulting in a constant evaporation speed. In contrast,
the experiments presented here were performed with a larger beam waist and shorter
pulse duration, reducing that ratio. In this case, the model predicts a steep increase in
temperature at the center of the COs laser beam with longer pulses, up to a theoretical
temperature of 15kK for a pulse duration of 18 ms. This temperature is much larger
than the boiling point of fused silica, such that heat loss due to evaporation has a strong
influence on the temperature distribution and cannot be ignored as it has been in the
model. As an alternative, one can assume that in the center of the beam the material
quickly heats up until it reaches a steady-state temperature, at which heat loss from
thermal conduction and evaporation equals heating by the laser beam. In that case, the
steady-state temperature in the center of the beam can be determined from the velocity
of the evaporation front with

B -U
kg In(v/vg)

where vg = 3800ms~! and U = 3.6eV [46]. This is consistent with the observation
of the temperature of fused silica as measured by black body radiation asymptotically
approaching 3100 K, when continuously heated by a COq laser beam [109].

This simple model fails to make a prediction of the curvature at the center of the
fabricated structures, because it is not accurate enough to estimate the relative ablation
velocity, which determines the radius of curvature. A plot of the curvature in the center
of the structure against the pulse duration (Fig. 3.11) also reveals a close to linear

T = 3150K, (3.7)
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Figure 3.12: Profile of the surface of a fiber end facet after illumination with the COq
laser. In the center a concave structure has been formed by evaporation.
Due to the high surface tension at the edge of the end facet, the edge shows
a convex shape. Note that the diameter of the measured surface is less than
the diameter of an untreated end facet (Fig. 3.8), because the edge becomes
too steep to be measured with the white-light interferometer.

relationship with a slope of (0.61 £ 0.01) mm~! ms~!. This suggests that the curvature
depends linearly on the depth, but the proportionality factor of (92 + 2) mm~2 remains
to be explained by a quantitative model.

Fiber end facets

The structures fabricated on fiber end facets differed from those fabricated on glass
plates, because of the finite size of the end facet, which at a diameter of 125 pm was
considerably smaller than the 1/e? beam diameter of 440 pm, and the surface tension at
the edge of the end facet. A typical structure fabricated on a fiber end facet is shown
in Fig. 3.12. At the edge, the effect of the surface tension can clearly be seen, as the
surface has a convex curvature that increases towards the edge of the fiber, to the point
where the surface becomes too steep to be measured with the white-light interferometer.
In contrast, the curvature of the structure is concave at its center due to ablation of the
material, similar to the structures fabricated on glass plates.

At full output power of the COs laser, the minimum pulse length that was observed
to have an effect on the fiber end facet was 0.24 ms, in good agreement with the value
of 0.22ms at which the surface reaches 3000 K that was calculated in Sec. 3.1. Longer
pulses in the range of 0.65 ms—1.15ms resulted in the desired structures. In contrast to
the structures fabricated on glass substrates, where the depth of the structure could
be referenced to the untreated surface and a linear relation between pulse length and
structure depth was observed, structures on fiber end facets required a different definition
of structure depth because the whole fiber end facet was modified by the laser pulse.
Nevertheless, one might expect the height differences between the lowest and the highest
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Figure 3.13: Depth of the fabricated structure, defined as the height difference between
lowest and highest point of the structure as a function of the pulse length for
multi-mode fibers (green circles) and single-mode fibers (red squares). No
clear relation between pulse duration and structure depth can be made out.

Multi-mode fibers seem to require shorter pulse durations that single-mode
fibers.

point of the structure to depend on the duration of the CO4 laser pulse. However, there
was no clear relation between pulse length and structure depth for those fabricated on
fiber end facets (Fig. 3.13). The only thing that could be observed was that multi-mode
fibers required shorter pulses to achieve a certain structure depth than single-mode
fibers. This hints at subtle differences in the behavior during ablation caused by different
dopant concentration profiles. There are two possible reasons for the observed depth
distribution. The first one is the fluctuation of the laser output power from pulse to
pulse, which could not be controlled (cf. Fig. 3.5), such that two pulses with the same
length do not have the same pulse profile and thus might lead to different structures.
The second reason might be the preparation of the initial fiber end facet by cleaving,
which results in different surfaces from fiber to fiber (cf. Fig. 3.8) and might also lead to
different results under the same conditions. These two issues would be the prime targets
for improvements to the reproducibility of the fabricated structures, but at the moment
the data is not sufficient to quantify their influence.

To determine the curvature of the structure, an elliptic paraboloid can be fitted to the
measured structure. However, the surface is not exactly an elliptic paraboloid, which
is especially evident at the convex edge of the structure. Therefore, the best fitting
paraboloid depends on the region of interest chosen for the fit (Fig. 3.14). An estimate
of the effective radius of curvature, which is the radius of curvature of spherical mirrors
which would produce the mode with the most overlap with the real cavity mode, can be
made by using a region of interest around the center of the structure that has roughly
the same size as a typical cavity mode. To this end, a square region of 10 pm x 10 pm
around the center was chosen and the curvature was extracted from a paraboloid fitted
to the measured structure over that region. For every fiber, this method resulted in two
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Figure 3.14: Radius of curvature in the center of a structure along the major axis (solid
blue line) and minor axis (dashed green line) as extracted from fits of elliptic
paraboloids with a square region of interest with different side length. The
dotted red line denotes the coefficient of determination of these fits. The
radii of curvature are fairly constant for small ROIs with a high coefficient of
determination, indicating that the structure is very similar to a paraboloid.
For larger ROIs, the fitted radius of curvature starts to change with a
simultaneous drop in the coefficient of determination, which shows that the
surface starts to deviate from a paraboloid.

9 I I I I T I I
8 i
7 |
g 6 7
~
Z 51 4
g
ERY :
c 3l |
=
O 9L |
1F i
O | | | | | | |
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Depth (1um)

Figure 3.15: Curvature along the major axis in the center of the structure for single-mode
fibers (red squares) and multi-mode fibers (green circles) plotted against the
depth of the structure. A larger depth is correlated with a larger curvature.
The solid blue line is a linear fit to all points with slope (2500 4= 300) mm 2
and intercept of (—4.5 4+ 1.1) mm~!,
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Figure 3.16: Effective mirror size, defined as the width of a square region of interest
where an elliptic paraboloid provides a good fit to the surface (see main text
for details), plotted against the curvature in the center of the structure for
single-mode fibers (red squares) and multi-mode fibers (green circles). For
single-mode fibers, the width decreases with the curvature, for multi-mode
fibers, the relation is not as evident.

radii of curvature from 120 pm to 1.3 mm and corresponding curvatures from 8.3 mm™!

to 0.77mm™!. As in the case with glass plates, the curvature can be related to the
structure depth using a linear model (Fig. 3.15), but the slope of (2500 4 300) mm ™2 is
much larger and the intercept is not at the origin, but zero curvature is reached at a
depth of (1.8 + 0.5) pm. The larger slope is not surprising, since the size of the structure
has to be smaller to fit on the end facet of the fiber and this smaller structure needs to
be more curved to reach the same depth, but a quantitative description of this relation is
yet to be found for the parameter regime described here. The nonzero intercept might be
explained by the convex ridge at the edge of the fiber being formed by the surface tension
acting on molten glass before any ablation occurs, such that the fabricated structure
can have a nonzero depth without any curvature in the center. As there is no reference
to the position of the untreated end facet left after the CO4 laser pulse, measurements
of the surface profile cannot determine its relative position to the convex ridge, so this
explanation cannot be verified with this method.

Although the measured diameters of the structures were up to 90 pm, it is obvious
that the convex edge does not fit a concave paraboloid and is therefore not suitable as a
cavity mirror. The size of the part of the surface that is useful as a mirror substrate is
thus smaller than the structure itself and can be estimated by finding the largest region,
where a paraboloid fits the measured surface. As the transition from a good fit to a
bad fit is continuous, one needs to find a criterion at which point to reject the fit due to
excessive deviation. One possible criterion is to calculate the coefficient of determination
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R?, which is defined as
>(z—G)?
2 1

1

where z; are the measured values of the surface profile, z is their mean value and (; are
the values explained by the best fitting paraboloid. One can now define the effective
mirror size as the maximum size of a square region of interest where the deviation of
the coefficient of determination from 1 is smaller than 10 times its minimum deviation.
The resulting effective mirror size is plotted against the curvature in the center of the
structure in Fig. 3.16. From this analysis it can be deduced, that for single-mode fibers
the effective size of the mirror decreases with increasing curvature, indicating that deeper
and thus more curved structures reduce the usable size of the entire structure. The
mean value of the effective mirror sizes calculated with this method is 47 pm with a
standard deviation of 12 pm, which is on the order of the required mirror size for a cavity
with a length of 140 pm and mode matching efficiency of 90 % calculated in Sec. 2.4.1.
Doubling the allowed deviation of the coefficient of determination results in sizes less
than 7% bigger, but the criterion chosen is nevertheless somewhat arbitrary. Due to the
continuous transition from a parabolic shape to a nonparabolic shape, any model that
assumes a finite diameter and discards all light outside of this fixed shape, is too simple
to describe losses due to mirror size in a cavity. A more thorough, but computationally
much more expensive treatment of this issue can be made using an analysis of mode
mixing in a cavity, which will be described in Sec. 3.5.5.

3.3.3 Eccentricity

The fabricated structures were in general not rotationally symmetric, but slightly elliptic
with the curvature varying with direction. This ellipticity allows two axes in the plane
perpendicular to the fiber axis to be distinguished: one with the largest radius of
curvature R, the major axis, and one with the smallest radius of curvature R, the
minor axis. The amount of ellipticity can be quantified using the eccentricity €, which is
defined as

e=4/1——. (3.9)

The eccentricity of the structure can be understood geometrically as the eccentricity of
the spheroid that provides the best description of the surface or as the eccentricity of
the ellipses formed by the contours of the surface.

To calculate the eccentricity, the curvatures of the minor and major axis in the center
of the best fitting elliptic paraboloid were extracted as described in the previous section.
The result is shown in Fig. 3.17. Structures fabricated on glass plates with a circularly
polarized CO4 laser beam showed a consistent orientation of the major axis of the radius
of curvature along the major axes of the beam (compare to Fig. 3.6), but the mean
eccentricity of 0.31 (standard deviation 0.03) of the radius of curvature was larger than
the measured eccentricity of the COq laser beam of 0.21 4 0.06. This could either be
due to an enhanced sensitivity of the fabrication process to the eccentricity of the beam,
resulting in amplification, or due to the beam profiler not measuring at exactly the same
distance from the lens as the glass plate and thus measuring a different value for the
eccentricity than was actually used.
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Figure 3.17: Eccentricity (radial axis) and orientation with respect to the CO9 laser beam
of the major axis (polar angle). To reflect the m-periodicity, all points have
been duplicated and rotated by m. The angles are relative to the horizontal
direction during fabrication. (a) Eccentricity of structures fabricated on
glass plates using circular polarization of the COs laser. All major axes lie
close to the vertical direction with a mean eccentricity of 0.31 (dashed blue
line, standard deviation 0.03). (b) Eccentricity of structures fabricated on
fiber end facets with light polarized linearly in the vertical direction (green
triangles) and circularly (red circles). With linear polarization most major
axes are rotated by about 90° with respect to the polarization axis with
a mean eccentricity of 0.48 (green dashed line, standard deviation 0.07).
Structures fabricated with circular CO4 laser polarization had no preferred
orientation and a mean eccentricity of 0.29 (red dashed line, standard
deviation 0.11). Adapted from Ref. [113].

Using the same beam on fiber end facets yielded a similar mean value of 0.29 (standard
deviation 0.11) for the eccentricity, but with no preferred orientation (Fig. 3.17b). This
suggests that either minor differences in alignment of the fiber or the initial cleaved
surface have an influence on the orientation of the eccentricity that is at least as large as
the influence of the eccentricity of the COq laser beam. With linear polarization of the
COg laser beam in the horizontal direction, the fabricated structures on fiber end facets
showed an increased eccentricity of 0.48 (standard deviation 0.07) and the major axes
of most of the structures were aligned with the major axis of the COy laser beam and
rotated by 90° with respect to the polarization axis. The increased eccentricity of the
structures with linear polarization suggest that the polarization of the CO5 laser beam
influences the fabrication process. However, as circular polarization was achieved with
a phase shifting mirror that required an out of plane beam path, the beam had to be
realigned when the polarization was switched from linear to circular. Therefore it cannot
be completely excluded that because of the beam realignment, the eccentricity of the
beam was considerably different in these two situations and that this is the only reason
for the observed difference. There are two arguments against the latter scenario: First,
for both configurations, the eccentricity of the beam as measured by the beam profiler
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matched within the error bars. Second, with linear polarization the fabricated structures
had consistently higher eccentricities than those achieved with circular polarization,
despite trying several beam configurations. Nevertheless, additional measurements would
be necessary to unambiguously confirm the dependency on COq laser polarization.

3.3.4 Surface roughness

For applications in quantum information processing, it is of utmost importance to keep
the intrinsic losses of a mirror as low as possible (cf. Sec. 2.1). The quality of the
substrate before the coating process sets a limit to the quality of the coated mirror
surface that determines the intrinsic losses of the final mirror. Therefore the fabrication
process of the surface has to ensure that the surface is as smooth as possible to minimize
scattering losses.

To be suitable for a high finesse cavity, the deviations of a mirror surface from its
perfect form need to be much smaller than the wavelength of the desired resonance.
In that case, diffuse scattering can be neglected and only diffractive losses have to be
considered [114]. For a plane wave with normal incidence on a plane, slightly rough,
reflecting surface, these losses Ly can be treated statistically and expressed as a function
of just one parameter, the root mean square (RMS) roughness ogys [114, 115]:

Ao 2
Lo — (RMS) (3.10)

Although cavity mirrors are usually not plane, the RMS roughness value has been
employed to estimate the quality of substrates for ultra-low-loss mirrors and values of
orMs < 0.1nm have been reported for highest-quality superpolished substrates [92].
These values are given under the assumption that the mirror surface can be characterized
with global curvature, which determines the geometry of the mode, and a microroughness
parameter that can be treated statistically and determines the losses.

At < 0.1 nm, the vertical precision of the white-light interferometer used to measure
the surface profile of the CO» laser machined structures was sufficient to estimate whether
these could reach the required surface quality. To eliminate the global shape, a function
describing that curvature needs to be fitted to and subtracted from the data. The
choice of this function is somewhat arbitrary and hints at the underlying drawback
of this method, namely that there is no clear distinction between global shape and
microroughness. For the data presented here, a fourth-order polynomial was chosen in
order to maintain comparability with Refs. [44, 46].

However, even with the same function for the global shape, the value for the RMS
roughness is not well defined, because it depends on the size of the region of interest
(ROI) from which the data for the calculation is taken (Fig. 3.18). Hence, Eq. (3.10)
predicts very different scatter losses, depending on how large the ROI is chosen. Taking
one single-mode fiber (magenta dashed line in Fig. 3.18) as an example, the predicted
losses would be 8 ppm for a 8 um x 8 um ROI, which is on the order of a typical 1/e?
diameter of a fiber cavity mode, but 2% for a 40 pm x 40 pm ROI, which is on the order
of the mirror size required by a simple clipping model for 1 ppm losses (see Sec. 2.4.1).
It is therefore evident that the description by an RMS roughness parameter is too simple
for this kind of structures.
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Figure 3.18: RMS roughness as a function of the side length of a square region of interest
(ROI) in the center of two structures fabricated on multi-mode fibers (solid
lines) and of three fabricated on single-mode fibers (dashed line). In general,
the variation of the surface and thus the calculated roughness are low on
small length scales and grow with the size of the ROI. On large length scales,
the behavior of single-mode and multi-mode fibers is consistent within
the fiber type, but multi-mode fibers show much smaller deviations than
single mode fibers. The inset shows a zoom into the lower left part of the
graph. On small scales, some single-mode fibers show a steep increase of the
roughness that might be linked to the properties of the core (cf. Fig. 3.19).

Nevertheless, the measurements reveal that the CO4 laser fabrication process results
in locally very smooth structures with the measured RMS roughness for small ROIs
approaching 0.1 nm. Deviations from the perfect shape occur mostly on scales comparable
with the mode size, which can not be adequately described as microroughness. The
measurements also show a distinct difference in the behavior of single-mode and multi-
mode fibers during the fabrication process, with structures fabricated on multi-mode
fibers showing far less deviations from the global shape than single-mode fibers. The
difference can be seen in Fig. 3.19: The residual height after a fourth-order polynomial
has been subtracted shows a bump in the center of the structure that has roughly the
size of the differently doped core for the single-mode fiber. The height of this bump is
only a few nanometers, less than 1% of the wavelength the cavity is supposed to be
operated at, but might lead to a worse performance of cavities built from single-mode
fibers compared to cavities with multi-mode fibers, especially for longer cavities with a
larger mode diameter on the mirrors.

The white-light interferometry (WLI) measurements of the CO2 machined structures
showed ring-like features after the subtraction of a fourth-order polynomial, which might
be either due to the fabrication process or artifacts of the measurement method. The WLI
method scans the position of the objective relative to the measured object and extracts
the height of the surface from the interference fringes. Vibrations during this scan can
lead to a global modulation of a linear slope, because contours with the same height
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Figure 3.19: Residual deviation from a fitted fourth-order polynomial for two COq laser-
machined structures fabricated on (a) a single-mode fiber (the same as the
red dashed line in Fig. 3.18) and (b) a multi-mode fiber (cyan solid line in
Fig. 3.18). The single-mode fiber shows a bump in the middle, likely caused
by the properties of the differently doped core, which the multi-mode fiber
does not show. Both measurements show ring-like deviations which might
be either due to the fabrication process or a measurement artifact of the
white-light interferometer (cf. Fig. 3.20).

are measured at the same time and this effect was observed on tilted plane substrates.
Applied to the convex shape of the fabricated structures, this effect could lead to ring-like
features. To avoid this, all measurements were averaged over 20 scans, but a residual
effect might persist. Therefore, atomic force microscopy (AFM) measurements were
performed on a few samples to validate the WLI measurements (Fig. 3.20). Measurements
on single-mode fibers also showed ring-like features, demonstrating that they are at least
partly an effect of the fabrication process, but they were less pronounced. This could
be either due to residual artifacts of the WLI measurements or due to masking by the
increased noise floor of the AFM measurement and additional measurements would be
required to fully determine the origin of these features. The lateral resolution of the
AFM measurement was a factor of 4 better than the diffraction-limited WLI resolution
and could have revealed deviations with a spatial frequency beyond the detection limit of
the WLI. No such irregularities were detectable above the noise floor of the AFM, which
sets a limit of orms < 0.29nm or 22 ppm losses due to microroughness undetectable by
the WLI measurements.

3.3.5 Photonic crystal fibers

As described in Sec. 2.4.1, coupling of a fiber cavity mode to the guided mode of a
single-mode optical fiber is inefficient for long, symmetric cavities (cf. Fig. 2.8), because
matching the mode size on the mirrors to the fiber mode would require highly curved
mirrors, which would then result in a mismatch of wavefront curvature. This can be
alleviated by using single-mode fibers whose guided mode has a larger diameter that can
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Figure 3.20: Comparison of atomic force microscopy (AFM) measurements (a,c) and
white-light interferometry (WLI) measurements (b,d) of a single-mode fiber
with a fourth-order polynomial subtracted. The top row (a-b) shows a
20pm x 20pm ROI. Although ring-like features can be seen with both
methods, they are more pronounced with white-light interferometry, which
also yields the larger roughness value (orms,wrr = 0.58 nm > orMS AFM =
0.51 nm. The opposite is true for a smaller ROI of 10 pum x 10 pm in the
bottom row (c-d). The calculated roughness value for the AFM measurement
is orms,AFM = 0.29nm and the deviations are correlated with the horizontal
scanning direction of the AFM tip. The noise floor of the WLI measurement
is clearly lower (orms,wr1 = 0.17nm) and the ring structure persists.
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Figure 3.21: Depth profile of a endlessly single-mode photonic crystal fiber after a 3 ms
pulse of the COg laser. The holes that form the photonic crystal structure
have completely collapsed on the surface, such that the structure could be
coated and used as a mirror in a high-finesse cavity. The structure has
a larger diameter than those on standard single-mode fibers because the
diameter of the used photonic crystal fiber was 200 pm instead of the usual
125 pm.

be matched to the size of the cavity mode with less curved mirrors, thus achieving a
better mode matching efficiency. One way to increase the diameter of the guided mode is
to use endlessly single-mode photonic-crystal fibers [116], which can be made to support
single modes with very large diameters [117]. These have the additional advantage
that they have no cut-off wavelength for single mode operation and can therefore guide
light with very different wavelengths, which could be interesting for far off-resonant
intra-cavity traps at twice the resonant wavelength to provide homogeneous coupling
over all trapping sites [118]. Therefore, it was tested, whether the fabrication process
also works with photonic crystal fibers, where the holes of the photonic crystal structure
pose a potential complication.

An endlessly single-mode photonic crystal fiber with a core diameter of 8 pm and
an outer diameter of 200 pym was machined with a COq laser pulse of 3.0 ms duration
and a beam waist of 230 pm. The laser was operated at full output power, but the
beam was enlarged by partially closing an iris, which reduced the power reaching the
fiber. The resulting structure is shown in Fig. 3.21. In the center, no trace of the
holes that form the photonic crystal structure can be found, as the laser heats the fiber
enough to collapse the holes. The fabrication process thus results in a surface that is
suitable as a mirror substrate, without any additional steps in the process. Whether
the holes in the unmachined surface require different laser parameters to achieve the
same desired structures could not be determined, because the different fiber diameter
already demanded a longer pulse and no regular single-mode fibers with this diameter
were available.

To measure the depth of the region where the holes were collapsed by the CO» laser,
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Figure 3.22: Microscope image of a photonic crystal fiber after machining with a COq
laser pulse coming from the right. The edge of the end facet is convex and
rounded due to surface tension (cf. Fig. 3.12). The concave shape in the
center of the end facets cannot be seen from this angle. The image is similar
to an image of a regular single-mode fiber, except for the vertical lines in
the center of the fiber which are an artifact of the photonic crystal structure.
Because the CO4 laser pulse collapsed the holes, these lines do not reach the
end facet. From the position at which the lines end, one can estimate the
region from the end facet where the holes are collapsed to be (13 £ 2) pm
deep.

the fiber was glued into a slitted cylinder and the structure on the end facets was carefully
polished away until the holes reappeared. The amount of material that had been polished
away could then be calculated from the reduced distance of the polished fiber end facet
to the cylinder surface to be (13 4+ 1) pm, in good agreement with an estimate from a
microscope image of the fiber (Fig. 3.22).

The collapse of the holes has a detrimental effect on the coupling efficiency. In the
region near the cavity mirror, the fiber mode is not guided by the photonic crystal
structure any more, but diverges during propagation through the glass, leading to
additional mode mismatch between the fiber mode and the cavity mode compared to a
fiber mode that starts directly at the cavity mirror. The mismatch can be calculated
with the ABCD-matrix formalism for Gaussian beams [79] that accounts for refraction
at the coating layers whose curvature follows the curvature of the machined fiber end
facet. The coupling efficiency as a function of the distance between fiber mode and
cavity mirror is shown for two example cavities in Fig. 3.23. These calculations are
for Gaussian beams and do not take the exact mode geometry of the photonic crystal
fiber into account, which means that they present an upper limit of how much can
be gained with a photonic crystal fiber, where the holes are partially collapsed. For a
short, asymmetric cavity with highly curved mirrors, there is little to gain, because the
mode-matching to an off-the-shelf fiber with a mode radius of 3 um is already quite good
and gains from designing a photonic crystal fiber with the best mode radius would be
offset by the unguided propagation in the melted region of the fibers. The situation is
different for a longer, symmetric cavity with less curved mirrors. In the example depicted
by Fig. 3.23b, the off-the-shelf fiber has a mode-matching efficiency of only 45 %, which
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Figure 3.23: Coupling efficiency as a function of the fiber mode radius and the length
of the region, where the mode is not guided, i.e., the distance between
the cavity mirror and the start of the photonic-crystal fiber mode. The
cross marks the best coupling efficiency for a 13 pm thick region without
holes. The star marks a single-mode fiber with a waist of 3um. (a) Cavity
length 80 um, radii of curvature 120 pm (high reflector) and 200 pm (output
coupler). (b) Cavity length 200 pm, radii of curvature 400 pm for both
mirrors. Using a photonic crystal fiber would lead to little improvement
for short, asymmetric cavities, but to a large gain in coupling efficiency for
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3.4 Coating

Figure 3.24: Pictures of the assembly that holds the fibers during the coating process.
The fibers are kept in slitted aluminum cylinders with a steel sheet that
fits in the slit. (left) View of the back side of the holder, i.e., the side that
is not coated. Most of the fiber length is coiled up inside rings to prevent
damage by loose fiber ends during the coating process. 20 fibers fit into one
module like the one depicted here and the total assembly had 3 of these
modules. (middle) Front side of the holder, which the coating was applied
to. The facet of the module depicted here is designed to be exactly in the
coating plane and the cylinders inserted from the other side are stopped
1mm behind that plane because the diameter of the hole changes at that
point. (right) Close up of one of the cylinders inserted in the holder. The
fiber sticks out 1 mm beyond the end facet of the cylinder, such that the
end facet of the fiber is in the coating plane.

could be increased to 84 % for a fiber with a custom mode radius and no holes over a
length of 13 pm.

3.4 Coating

A batch of 59 fibers, each with a COs laser-machined structure on one end facet, and 38
COq laser machined structures on 6 glass plates were sent to the company LASEROPTIK
(Garbsen, Germany) for the application of a highly reflective coating using ion beam
sputtering [119]. For reference, 10 superpolished substrates manufactured by Advanced
Thin Films were also included in the same coating run. The glass plates were mounted
inside the coating machine using the same techniques that are used for superpolished
substrates, but the fibers required the design and fabrication of a custom holder (see
Fig. 3.24). The end of the fiber to be coated was put in a slitted aluminum cylinder with
a steel sheet matched to the slit holding it in place. These cylinders were placed into
modules that had rings to hold the rest of the fiber. The thickness of each coating layer
slightly depends on the distance from the sputter target for ion beam sputtering, leading
to a shift of the wavelength at which the coating has maximum reflectivity. Therefore,
the end facets of all fibers should ideally be at the same height in the same plane as
the reference substrate that is used to monitor the coating thickness. The cylinders
holding the fibers were designed in such a way that this is the case when the fibers stick
out by 1 mm from the end facet of the cylinder. Visual alignment of the fiber in the
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cylinder was found to be reproducible with an error of less than 100 pm. The wavelength
shift as a function of the height mismatch was specified to be less than 10 nm mm™!,
such that the error in alignment should lead to a shift of less than 1nm. Considering
the specified change in transmission of less than 0.5 ppm in a 20 nm region around the
central wavelength, this shift can be neglected.

The goal of the first coating run was to asses the performance of COs laser-machined
mirrors suitable for cavity QED experiments with neutral rubidium atoms on the Di-line
at 795 nm and the Ds-line at 780 nm, with the intrinsic losses £ as the most important
criterion. The uncertainty of the transmission of the coating limits the accuracy with
which one can determine the intrinsic losses, because it is difficult to separate these
two in a single measurement. Therefore, the mirror coating for the first coating run
was chosen to have a very low transmission of 3.5 ppm at the wavelengths of 780 nm
and 795nm to get a small absolute error on transmission measurements at the cost
of low total transmission of a cavity built from these mirrors. The transmission of
plane, superpolished substrates included as reference in the same coating run could be
determined directly by measuring the transmitted part of laser light with a power of
10 mW to 30 mW at wavelengths of 761 nm to 800 nm (Fig. 3.25). Because the light was
generated by an external cavity diode laser, spectral filtering of the light to suppress the
light produced by spontaneous emission of the laser diode was necessary for consistent
results. The measured transmission matched the targeted center wavelength very well,
but the measured transmission was slightly below target with (2.9 £+ 0.1) ppm at 780 nm
and 795 nm.

The transmission of coated fiber end facets could not be determined in exactly the same
way, because the edge of the fiber end facet was not correctly coated and transmission of
residual light in the fiber cladding distorted the results. Therefore, a spatially resolved
power measurement was performed, using an imaging system in combination with a
CMOS camera to only measure transmission of light in the fundamental transverse
mode of a single-mode fiber. This measurement yielded results compatible with the
transmission of the plane mirror in the wavelength range from 775nm to 800 nm (see
Fig. 3.25), but spurious reflections in the imaging system resulted in interference, which
limited the accuracy of the measurement.

3.4.1 Annealing

Annealing the deposited coating by heating it in an atmosphere containing oxygen can
improve the homogeneity and stoichiometry of the coating layers [120] and reduce losses
in the coating [121]. Annealing is therefore a requirement to reach the lowest possible
coating losses. The reference substrates, the structures fabricated on glass plates and
a portion of the fiber mirrors were annealed by LASEROPTIK for 5 hours at 300°C
after coating. With the same temperature and hold time, fibers were also annealed in
an oven in the MP(Q workshop at ambient atmosphere. The remaining fibers were left
untreated for comparison. As detailed in the following section, cavities with mirrors that
had been annealed showed a significant improvement in finesse on the order of a factor
of two, showing that the annealing process can reduce the losses of fiber mirrors and is
critical to achieve the lowest possible losses.

A potential complication in the annealing process is the protective copper coating of
the fibers. At the temperatures required for annealing, the copper starts to oxidize. At

58



3.5 Finesse

Transmission (ppm)

0 | L | | | |
750 760 770 780 790 800 810 820
Wavelength (nm)

Figure 3.25: Transmission of a plane mirror on a superpolished substrate. Blue dots indi-
cate the measured value with the error bars dominated by the measurement
uncertainty of the employed power meter. The solid blue line is a fit of a
parabola to the data. The solid red line indicates the targeted transmission
curve specified before the coating process. The measured center wavelength
is in agreement with the target, but the coating was slightly less transmissive
than intended. The green squares denote the transmission of a coated end
facet of a fiber, which is compatible with the plane mirror measurement in
the wavelength range of 775 nm to 800 nm

excessive temperatures and exposure times, the oxidized fiber coating became brittle,
rendering it almost impossible to handle without breaking it. After 5 hours at 300 °C,
the fibers were visibly tarnished but showed no reduced resistance to damage, such that
annealing with these parameters could be implemented for fibers without any special
consideration. Longer exposure time or higher temperatures might lead to a slight
further reduction of losses, but an exploration of these effects would require a protective
coating that is not only vacuum compatible but also more resistant to oxidation at high
temperatures, for example a protective gold coating.

3.5 Finesse

The most important characteristics of a cavity are its mode profile, which can be inferred
from the mirror geometry, and the intrinsic losses of a cavity, as discussed in Sec. 2.1. In
the limit of high-finesse cavities, the finesse is inversely proportional to the sum of all
losses, either intrinsic or extrinsic by transmission of the mirrors. If the transmission of
the mirrors is known, the finesse can be used as a measure for the intrinsic losses and if
the transmission of the mirrors is small compared against these, the finesse is a good
indicator for the performance of a cavity.
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3.5.1 Characterization methods

To calculate the finesse, the linewidth of the cavity and its free spectral range need to
be determined. The easiest way to measure the free spectral range was to tune two
lasers to cavity resonances one free spectral range apart and measure the frequency
difference of the two lasers. To ensure that the frequency difference did not amount to a
multiple of the free spectral range, the lasers were first tuned to the same fundamental
transverse mode and then one of the lasers was detuned until it was resonant with the
next fundamental transverse mode. The frequency difference between the lasers was
measured with a wavemeter that had a specified accuracy of 600 MHz. As the free
spectral range of the characterized cavities was usually in the range of several THz, the
resulting error was below 1 x 1072 and could be neglected when compared to the error
introduced by the linewidth measurement.

Two methods were employed to measure the cavity linewidth, both with advantages
for specific cavity parameters. The first method is a direct spectroscopic measurement
of the linewidth by scanning over a resonance and measuring its width. This can be
either achieved with a fixed laser frequency while scanning the cavity length or a fixed
resonance frequency while scanning the laser frequency. For short scan amplitudes, a
scan of the laser frequency by modulating the diode current and turning the grating
of an external cavity diode laser as well as a scan of the cavity length by applying a
voltage to a piezoelectric ceramic can be assumed to show a linear behavior when a
linear ramp is applied as control signal. However, in both cases, the conversion factor
from control signal to frequency can be nonlinear at large scan amplitudes, such that a
global calibration would be error prone. Therefore, the scans were calibrated locally, by
modulating the light with an electro-optic phase modulator to generate sidebands as
frequency markers. The time difference between the resonance of the carrier and each of
the sidebands with the cavity resonance was used to calibrate the current scan speed
in frequency space and convert the time axis on an oscilloscope trace to a frequency
axis. As the calibration only required one sideband, the second sideband could be used
to verify whether the scan speed stayed constant during the scan by performing two
calibrations for each trace and requiring the results to agree. An example of this method
is shown in Fig. 3.26.

The method only produces consistent results if two requirements are met: The scan
speed must be slow compared to the decay rate of the cavity, to ensure that the cavity
output depends only on the current state of the cavity and not its history. If this
condition is not met, the transmission signal has an asymmetric lineshape and the results
cannot be trusted. The second condition is that the scan is fast compared to fluctuations
of the cavity length that could result in a nonconstant scan speed, which also distorts
the results. If the cavity resonance to be measured is broad, because it has low finesse or
a large free spectral range, as it tends to be the case for fiber cavities, both conditions
can easily be met, but for narrow lines, it can be difficult to satisfy both conditions, such
that the method is more suitable for the broad resonances. Additionally, the linewidth
of the laser might not be negligible compared to the cavity linewidth for very narrow
resonances, leading to another potential source of error.

The second method to determine the linewidth is cavity ring-down [122]. When light
in resonance with the cavity is instantly switched off, the light intensity inside the
cavity decays exponentially with decay constant 2k = 2w Av, where Av is the linewidth.
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Figure 3.26: Example of a spectroscopic linewidth measurement for a fiber cavity. Side-
bands at a frequency of +1 GHz were modulated onto the probe light with
an electro-optic phase modulator. The cavity length and with it the res-
onance frequency was scanned by applying a voltage to the piezo-electric
ceramic one of the fibers was mounted on. The crosses denote the measured
transmission during the scan. The solid line is a fit of three Lorentzians
with equal width and independent location and amplitude. The sidebands
have been used to calibrate the frequency axis and the width of the peak
is 82 MHz in this instance. Averaging 100 scans over the same resonance
yielded a mean linewidth of 89 MHz with a standard deviation of 9 MHz.

Measuring the decay constant thus provides a value for the linewidth that is independent
from the influence of small-amplitude cavity length fluctuations caused by vibrations that
can distort spectroscopic measurements. Three conditions are required for an accurate
measurement: The first requires the probe light to be switched off completely to avoid
ringing of the cavity when light that is Doppler-shifted by a moving cavity interferes
with the probing light [123]. The second condition is that the switching time needs to
be short compared to the decay constant to avoid distortions of the measured decay
constant by finite switching time. Finally, the bandwidth of the detection setup needs to
be high enough to determine the decay constant. These conditions are easy to fulfill for
cavities with narrow linewidths, but are difficult for the fiber cavities investigated here,
which had decay constants on the order of a few nanoseconds. This parameter regime
can be approached by using a waveguide-based electro-optic amplitude modulator, which
has sub-nanosecond switching times, and a fast, high-gain avalanche photodiode with a
decay time of 2 ns for detection. As the waveguide-based electro-optic modulator suffered
from offset drifts due to charge accumulation, the input light to the cavity was monitored
by a DC-coupled photodetector to ensure that the remaining input light is negligible
after switching off. Before the probe light is switched off for a ring-down measurement,
it needs to be resonant with the cavity. This can be either achieved by locking the cavity
to a fixed frequency or by scanning the cavity slowly over the resonance, periodically
switching the light, and postselecting on events when the light was switched off when the
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cavity was resonant. The latter method is simpler to implement and has the advantage
that the probe light can be more intense and thus more signal can be collected in a
single trace without damage to the cavity, because it is off-resonant most of the time.

3.5.2 Reference mirrors

Cavities built from two reference mirrors based on superpolished substrates with radii
of curvature between 25 mm and infinity that were included in the coating run were
characterized to get an indication of the performance of the coating itself, independent
of possible imperfections introduced by the COy laser machining process. The best
cavity had a finesse of (3.21 4 0.01) x 105 as measured by cavity ring-down. With the
spectroscopic method, the linewidth was measured to be (1.1 +0.3) MHz. Assuming
that the laser with a linewidth of 0.15 MHz and the cavity resonances are described by
Lorentzians in frequency space and the convoluted linewidth is therefore the sum of both,
the resulting finesse is (3.0 £ 0.7) x 10°. The results of both methods agree with each
other, but the ring-down measurement is much more accurate, because of the narrow
linewidth ((0.90 £ 0.01) MHz, measured by ring-down) due to the high finesse and the
length of the cavity (0.52mm). The finesse of cavities build from reference mirrors was
found to be very sensitive to contamination with dirt during their assembly and the
finesse mentioned above was only reached after the mirrors had been cleaned multiple
times. The total losses corresponding to the measured highest finesse are 20 ppm (cf.
Eq. (2.9)). As it cannot be excluded that some of the intrinsic losses of that cavity
were due to residual contamination, this gives an upper limit on the performance of the
coating. With a measured transmission of 3 ppm for each mirror (Sec. 3.4), the intrinsic
losses by scattering and absorption on reference mirrors are therefore 7 ppm per mirror
or less.

3.5.3 Fiber cavities

To measure the finesse of fiber cavities, two fiber mirrors were clamped on top of two shear
piezo ceramics that could each be used to fine-tune the cavity length by 0.5 pm. One
of these assemblies was attached to a fixed mount and the other to a 3-axis translation
stage combined with a two-axis tip-tilt stage. Probe light was coupled into one of the
fibers by fusion splicing the uncoated fiber end to one arm of a fiber beamsplitter, whose
other port could be used to monitor the input power. The resonances of higher-order
transverse modes split into multiplets of the same order, as expected for not perfectly
spherical mirrors. Resonances corresponding to fundamental transverse modes could
be identified by the absence of such a multiplet. The position of the fiber mirror on
the stages was adjusted to obtain maximum transmission for these modes. Most of the
characterized fiber cavities showed a frequency splitting of the polarization eigenmodes
(see Ch. 4). If the frequency splitting is on the order of a linewidth, partial excitation of
a second polarization eigenmode might be mistaken for a broader line and thus lower
finesse with the spectroscopic method. The polarization of the probe light was therefore
adjusted to only excite one of the polarization eigenmodes.

The linewidths of the characterized fiber cavities were up to 90 MHz (e.g., Fig. 3.26),
corresponding to a decay time of less than 2ns, which could not be resolved by any
detector with sufficient sensitivity to measure the transmitted light. Therefore, cavity
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Figure 3.27: Ring-down measurement of a fiber cavity. The blue points denote the
measured signal on a logarithmic scale and the red line is an exponential
fit corresponding to a linewidth of (12.5 4+ 0.4) MHz. The spectroscopic
method resulted in a linewidth of (14.2 + 0.9) MHz. The ring-down method
results in a slightly smaller value, pointing at a potential systematic error
in the spectroscopic method.

ring-down was not an option to determine the linewidth for short fiber cavities, which
had a broad resonance. To compare the two methods for measuring the linewidth, both
methods were applied to select longer fiber cavities with narrow resonances (Fig. 3.27). In
general, the ring-down method resulted in slightly smaller values for the linewidth, which
suggests, there is a small systematic error in the spectroscopic method that broadens
the line. Therefore, spectroscopic measurements of the linewidth might result in a slight
underestimate of the finesse.

Using the spectroscopic method, a finesse of up to (7.8 + 1.0) x 10* was measured at
a wavelength of 780 nm for fiber cavities with mirrors that had not been annealed. With
a transmission of 3 ppm, this corresponds to 37 ppm intrinsic losses per mirror. The
same measurement with cavities that had annealed mirrors yielded a finesse of up to
(1.92 £ 0.11) x 10° (see Fig. 3.28), corresponding to losses of 13 ppm per mirror. These
losses are only 6 ppm larger than those measured for reference mirrors (see Sec. 3.5.2)
and indicate that the surface created by the CO5 laser machining process only scatters
a very small fraction of the light due to microroughness. This is compatible with the
white-light interferometer measurement of the roughness (see Sec. 3.3.4) and Eq. (3.10)
only if the evaluation of the roughness is restricted to a region with a side length smaller
than the 1/e? intensity diameter of the cavity mode. Extending this region to one that
contains 99 % of the intensity would increase the estimated additional losses due to
roughness to 21 ppm per mirror, which is clearly incompatible with the measured finesse.
This indicates that describing the roughness with one statistical parameter is inadequate
and only part of the measured roughness is microroughness in the sense that it leads to
scattering losses. The remaining deviations from a parabolic mirror shape might lead
to slight deviations from a Hermite—Gaussian field distribution, but not to additional
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Figure 3.28: The finesse of a fiber cavity consisting of one fiber mirror with 180 pm radius
of curvature (ROC, indicated by dashed lines) on a multi-mode fiber and
one mirror with 210pm ROC on a single-mode fiber plotted against the
cavity length (blue squares, left y-axis). The finesse was high for very short
cavities and dropped with length L until the start of the unstable region at
L = 180 pm, where the calculated mode size on the mirror with the smaller
ROC (blue line, right y-axis) diverges. After the end of the unstable region,
a mode could be observed again. A second cavity was built by removing
the multi-mode fiber and inserting a single-mode fiber with a mirror on top
that had an ROC of 350 um (green dots). That cavity reached a finesse of
(1.92 4+ 0.11) x 105 at L = 14.8 pm and showed a similar decline of finesse
with length. However, the finesse dropped at L ~ 100pm and no mode
could be observed beyond that length, despite the calculated mode size
on the mirror with the smaller ROC (green line) not being considerably
different than for the first cavity.

losses, because the distorted mode is an eigenmode of the cavity with nonparabolic
mirrors. These effects cannot be described with the simple stochastic scattering model
and therefore a new model is required for COs laser-machined mirrors.

The requirement for a better scattering model is further emphasized by the dependency
of the finesse on the cavity length. If scattering is described by microroughness, which
does not change with increasing cavity mode size, the finesse of a cavity should not
depend on its length, unless the instability region is approached, where the size of the
mode diverges. For cavities built from reference mirrors, this was validated by the
observation that there was no significant dependence of the finesse on the cavity length.

In contrast, the finesse of fiber cavities steadily decreased with increasing cavity length
L. For example, the finesse in the measurement shown in Fig. 3.28 for a cavity with
one mirror based on a single mode fiber and one on a multi-mode fiber dropped from
(1.69 +0.08) x 10° at L = 20.6 um to (1.03 +0.06) x 10° at L = 166.6um. Near the
instability region between L = 180 pm and L = 210 pm, the finesse dropped sharply and
no mode could be observed within that region, as expected from the paraxial theory.
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By increasing the length beyond the instability region, a mode could be observed again,
but with comparably low finesse. For a second cavity, built with two mirrors based
on single-mode fibers, the finesse showed a similar decline with length, but the finesse
dropped at L =~ 100 pm and no mode could be observed beyond that length. The stability
region for that cavity should have extended to a length of 210 pm, so it cannot explain
the sudden drop in finesse.

Previous work with fiber cavities has ascribed the sudden loss of finesse to the finite
size of the fiber mirrors and applied a simple model that defined an effective mirror size
and considered any part of the mode beyond that size to be lost [44, 121]. As the part
that is lost increases exponentially with mode diameter and thus with cavity length
(see Eq. (2.15)), a comparison with the losses independent of length, e.g., absorption
in the coating, yields a rapid decrease of finesse beyond the length where losses due
to finite mirror size start to dominate. However, this model cannot explain the drop
in finesse before that point, as already noticed in Ref. [121] and it fails to account for
considerably different mode sizes at which the finesse breaks down for the two example
cavities displayed in Fig. 3.28. Therefore, this effect also requires a different description,
which will be covered in Sec. 3.5.5.

Despite the drop in finesse, the considered cavities still have high finesse at L ~ 80 pm,
which is sufficiently large to allow for high-power laser beams perpendicular to the cavity,
e.g. for a far-detuned optical dipole trap. At this length, the cavities have approximately
20 ppm intrinsic losses per mirror. The first cavity also had a finesse exceeding 1 x 10°
up to L = 167 pm, leaving more than enough space to fit fibers with a diameter of 125 pm
inside to get a crossed cavity geometry with two fiber cavities.

3.5.4 CO, laser machined substrates

To characterize the losses of the structures fabricated with the COq laser on glass
plates, a cavity was built, which consisted of one of these structures with 360 pm radius
of curvature and a plane reference mirror. The finesse of this cavity was measured
as a function of cavity length. The result is shown in Fig. 3.29. The maximum of
(2.1 4 0.6) x 10° corresponds to intrinsic losses of 17 ppm per mirror under the assumption
that the reference mirror has the same transmission and losses as the reference mirrors
characterized in the measurement described in Sec. 3.5.2. These losses are higher than
the 13 ppm measured for fiber mirrors, but were measured at a substantially larger cavity
length of 105 pm instead of 14.8 pm. The depth of the structure machined on glass plates
sets a minimum distance at which the plane mirror can be placed, such that very short
cavities cannot be built in this configuration and a direct comparison with very short
fiber cavities is therefore not possible.

Similar to fiber cavities, the finesse decreases with the cavity length with a sharp drop
at the edge of the stability region. However, the slope of the decrease is much smaller
such longer cavities retain a much higher finesse. As the mode of a half-symmetric
resonator, which has one concave and one plane mirror, is equivalent to half the mode
of a symmetric resonator with twice the length, the measurement suggests that it is
possible to construct a high-finesse cavity with a length of up to 720 um using two of
such structures, only limited by the radius of curvature.
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Figure 3.29: Finesse of a cavity consisting of one plane reference mirror and one coated
COg laser machined structure on a glass plate with 360 pm radius of curva-
ture. Similar to the fiber cavities (cf. Fig. 3.28), the finesse decreases with
length until the length of the cavity is larger than the radius of curvature
and the cavity becomes unstable.

3.5.5 Mode mixing as model for cavity finesse

In order to understand the observed finesse of fiber cavities, a model is required that
takes irregularities with a spatial frequency comparable with the mode size into account
and can describe a mode adapted to the mirror shape. The most direct approach would
be to take the measured surface of the mirror substrates as boundary conditions and
solve Maxwell’s equations. However, the measurements described in Sec. 3.3.4 showed
that deviations from the global curvature are on the order of 107#) and a grid with this
resolution would not be computable with current technology over the volume of 10°\3
required for the cavities presented here.

An alternative is to consider a basis of Hermite—Gaussian modes, for which propagation
between the mirrors is described by the paraxial wave equation and does not need to be
calculated. Imperfect mirrors introduce a coupling between these modes, which results
in new eigenmodes of the cavity [124]. This approach has recently been employed to
describe the finesse of hybrid cavities, which have one plane mirror assumed to be perfect
and one COz laser-machined fiber mirror [125]. These calculations can be adapted to a
fiber cavity with two fiber mirrors by extending the procedure to choose the basis modes.
Although the mode could in principle be described in any basis, a badly chosen basis
would require the consideration of an infinite number of basis modes. Therefore, the
basis modes must be chosen carefully to tolerate truncation of the number of modes
without introducing excessive errors. For a cavity with one plane mirror, the waist of
the mode has to be located on the plane mirror and the propagation direction of the
mode needs to be perpendicular to the plane mirror. The basis can thus be chosen
by numerically optimizing the waist of the fundamental transverse mode to have the
best overlap with itself after being reflected by the fiber mirror. For two fiber mirrors,
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the waist position and the propagation direction are a priori unknown and need to be
optimized. However, optimizing the overlap of the fundamental transverse mode with
itself would require many calculations of the complete round-trip coupling matrix, which
is very computationally expensive and therefore unsuitable for optimization. Instead, a
two step approach can be taken, by fixing the waist position to a fixed distance from
the first mirror. The basis modes can then be optimized for the first mirror in the
same way as for a hybrid cavity. As the second step, the position and orientation of
the second mirror can then be optimized such that the chosen fundamental transverse
mode has the best overlap with itself. The individual optimization for each mirror
requires the calculation of only one overlap integral per optimization step and increases
the computational complexity only by a constant factor compared to the hybrid cavity
situation. A slight drawback of this method is that the total length of the cavity is a
result of the calculation, such that a calculation using multiple waist positions is required
to get a value for a specific cavity length.

Once the basis modes have been chosen, the mixing matrices for each mirror M;
and M can be calculated from the overlap integrals of all modes with each other after
reflection [124, 125]. These overlap integrals can only be evaluated on the area for
which the surface profile has been measured. Any amplitude of the modes outside of
this area does not contribute to the calculated overlap integral and therefore reduces
its magnitude, which can be interpreted as clipping by a finite-sized mirror. The total
mixing matrix M is the matrix product of the two single-mirror mixing matrices

M = eZFEM, My (3.11)

The eigenvectors of M describe the eigenmodes of the cavity in the chosen basis and
the losses of these modes can be calculated by £; = 1 — ||? from the corresponding
eigenvalues v;. Among these new eigenmodes, the mode that has the eigenvector with
the highest TEMgy component is the one most relevant for the experiment, as this
mode will be the one identified as the fundamental transverse mode. In most of the
cases, the TEMgy component is larger than 99 %, such that for most purposes it can
be treated like a TEMgyy mode. However, at certain lengths, this mode is considerably
mixed with another mode, such that any calculation assuming a TEMgy mode is likely
to give incorrect results. Modes for which this is the case tend to have higher losses and
can therefore be avoided by optimizing the alignment for high finesse.

For an infinitely sized, perfect mirror, all eigenvalues would be unity and for perfect,
finite-size mirrors, the losses could be calculated with a clipping model (Eq. (2.15)).
In addition to these, mode mixing describes diffraction into higher order transverse
modes which have a larger size on the mirrors and therefore higher losses. Finally, a
mode can be coupled to modes of very high order, which have to be truncated by the
calculation. These modes are not likely to be reflected into the cavity by the mirrors
and light coupled to them can be understood as scatter losses. Not described by this
model is the transmission of the mirrors, absorption in the mirror coating, and scatter
losses due to roughness not resolved by the surface measurement. These losses have to
be added to the calculated losses to get a value for the finesse.

The described calculations have been performed for the cavities whose finesse is
depicted in Fig. 3.28. The surface profiles measured by the white-light interferometer
were used as input and all TEM,,;,, Hermite-Gaussian modes with n +m < 50 (i.e., 1326
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Figure 3.30: Finesse of the fundamental transverse mode as a function of cavity length
as calculated from mode mixing with additional losses of 15 ppm per mirror
(solid lines). The measured values have been copied from Fig. 3.28 for
comparison and same colors indicate the same cavity. The calculations show
a trend of finesse decreasing with length, which is interrupted by very sharp
drops in finesse at certain lengths. The frequency of occurrence of these
drops increases with length and beyond a certain length, the cavity cannot
reach very high finesse.

modes) were considered. The resulting finesse as a function of the length with 15 ppm
per mirror additional losses due to transmission, absorption, or scattering are shown in
Fig. 3.30 with the measured values as comparison. Qualitatively, the model explains the
decrease in finesse with length and confirms that the cavity with two single-mode fibers
as substrates performs worse than the one with a single-mode fiber and a multi-mode
fiber due to larger deviations from the global curvature (see Sec. 3.3.4). It is also a
good indicator of the maximum cavity length that can be achieved with a set of mirrors
and can therefore be used to judge the quality of fabricated mirror substrates and their
suitability for a planned cavity after CO4 laser machining. Quantitatively, the calculated
values are in the range of the measured values, but an exact comparison is difficult to
make, because the calculated values depend on the alignment of the mirrors with respect
to reach other, which is unlikely to be perfect in the experiment.

A distinct feature of the calculated finesse, which is not evident from the measured
data are very sharp drops in finesse at certain cavity lengths. These occur, when the
resonance frequency of the TEMyg mode is degenerate with another transverse mode
and the overlap integral between these modes is large. The higher order transverse mode
has greater losses, such that the hybridized mode also suffers from increased loss. These
mixing resonances are very sharp and depend on the alignment. Therefore, adjusting the
alignment of the cavity for maximum transmission usually does not result in a hybrid
mode as the local optimum, because additional losses result in less signal and the hybrid
mode has less overlap with the fiber mode and thus reduced mode matching efficiency.
This effect can be observed, when one fiber mirror is translated with respect to the other
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Figure 3.31: Transmission on resonance of a fiber cavity when one of the fiber mirror is
displaced laterally with respect to the other. The cavity was scanned over
the resonance and the maximum measured transmission was recorded. The
error bars denote the standard deviation over many scans. (a) In general,
the transmission is a Gaussian function of the lateral offset (green line),
as expected for the coupling of two Gaussian modes. However, there are
significant deviations at certain positions. (b) The shaded region in (a)
with a smaller step size. Because of hysteresis in the translation stage on
direction change, the values on the x-axis are relative to the start of the
scan. The drop in transmission is very sharp and even more pronounced
than in the scan with larger step size.

in a lateral direction (see Fig. 3.31). The transmission as a function of the translation
distance is a Gaussian function, as expected for the mode matching efficiency due to the
overlap integral of the fiber mode and the cavity mode [91], but there is a very sharp
drop in transmission with a lateral width of less than 100 nm caused by mode mixing.
These resonances can be avoided by slight translation of one of the mirrors, but need to
be considered when working with cavities with imperfect mirror shapes.

3.6 Comparison of results to other approaches

The fabrication process presented here differs from previous approaches [44-46] in two
major aspect. First, the wavelength of the COs laser was 9.3 pm instead of 10.6 pm,
which was used in all other reported COs laser fabrication attempts. Second, the waist
of the CO2 laser beam was chosen to be large compared to the diameter of the fiber.
The achieved fiber-cavity finesse was higher than any other finesse for a Fabry—Perot
cavity with two microscopic mirrors that has been reported so far, but fiber mirrors with
similar losses and higher transmission have recently been fabricated with a CO4 laser
at 10.6 pm [126]. Hence, there is no indication that the wavelength of the COs laser
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directly influences the resulting surface quality and the evidence points to the coating
limiting the finesse for very short cavities.

At a cavity length of 150 pm, which would provide more than enough optical access
for single-atom cavity QED experiments and also allows a crossed cavity geometry,
the finesse exceeds 10°. This has not been achieved with any fiber cavity fabricated
differently and is owed to the large beam-diameter of the COgz laser, which enabled
the fabrication of structures that approach the diameter of the fiber. As discussed in
Sec. 3.1, a wavelength with less absorption can be simulated by decreasing the power and
increasing the pulse length and the best structures have been achieved with full power
of the CO» laser and short pulses. Therefore, a CO» laser at 10.6 pm wavelength with
the same parameters would probably have resulted in worse structures, but no attempts
at a direct comparison have been made.

The alternative to a single pulse with a large diameter is to use multiple short pulses
and move the fiber between pulses [127, 128]. With this method, high-finesse fiber cavities
longer than the ones presented here have been realized, with a cavity length of more than
1 mm [128]. However, a direct comparison is difficult, because in those instances fibers
with larger diameters were used as substrates, which allows larger structures independent
of the fabrication method. Therefore, further investigation and direct comparisons would
be required to determine which method is preferable for a given substrate and desired
cavity geometry.
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eigenmodes

The content of this chapter has been partially published in:
M. UpHOFF, M. BREKENFELD, G. REMPE, and S. RITTER. Frequency splitting of polar-
ization eigenmodes in microscopic Fabry—Perot cavities. New J. Phys. 17, 013053 (2015).

As noted during the discussion of the finesse measurements (see Sec. 3.5.3), most of
the investigated microcavities do not have degenerate polarization eigenmodes, but show
a frequency splitting between two polarization eigenmodes, ranging from sub-linewidth
to several linewidths. For a large number of applications, the polarization of these
eigenmodes as well as the size of the splitting are important parameters that need to be
controlled. Examples can be found in various fields, like metrology with cavity-enhanced
polarimetry [129-131] or cavity-ringdown spectroscopy [132, 133], but also in the intended
applications in quantum information processing. An instance of the latter is efficient
and coherent coupling of atomic states to the polarization of single photons [34, 35],
which requires the polarization eigenmodes to be degenerate. This has been achieved for
Fabry—Perot cavities built from superpolished mirror substrates [49], but microscopic,
high-finesse Fabry—Perot cavities have been observed to show an increased frequency
splitting, in this work as well as in previous experiments with the same type of cavity
[44, 48, 121]. In these works, the splitting was on the order of one linewidth, which can
have detrimental effects on all kinds of experiments [51, 134, 135] and therefore needs
to be controlled. This control can take two forms, either a reduction of the splitting
until it becomes negligible or an increase until the eigenmodes are well separated [135].
To achieve this control and identify the parameters that influence the splitting, it is
necessary to understand its source.

4.1 Potential sources

The frequency shift v of one polarization mode with respect to the mode with orthogonal
polarization can be described by the phaseshift Ap,¢ this mode acquires during one
round trip with respect to the other polarization mode:

(4.1)

The splitting in units of the linewidth Av can be expressed by this phaseshift and the
finesse F, independent of the cavity length:
ov _ Ayt VFSR _ Ay F
Av 2rAv 2w
Thus, high-finesse cavities are very susceptible to small phaseshifts, because the effect
becomes more noticeable with higher finesse. At a finesse of 10°, a phaseshift of 2 x 10~°7

(4.2)
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4 Frequency splitting of polarization eigenmodes

is sufficient to get a splitting equal to the linewidth, which means that effects on that
order of magnitude need to be considered.

Although quantum electrodynamics predicts birefringence of the vacuum [136], the
effect is so small that it has not yet been detected even in the presence of strong magnetic
fields [129]. Hence, any effect needs to be caused either by the mirrors or by the boundary
conditions imposed by them on the modes. Therefore, a single-mirror phaseshift! ¢y and
2 and a set of eigenaxes can be attributed to each mirror and the round-trip phaseshift
is a function of only these two parameters and the relative orientation of the mirrors. In
case of Api, Aps < 1 this function is [137-139]

Apy = \/Agof + Agog + 2A¢1 Ay cos (299), (4.3)

where 1 is the relative angle between the eigenaxes of the two mirrors. To determine
the origin of the phaseshift it is sufficient to first look at the effect of one mirror and
assume the other mirror to be perfect, such that Ap,y = Ap; = Agp, and return to the
two-mirror case later.

The obvious source of a phaseshift between two polarization modes at a highly reflecting
mirror is birefringence of the mirror coating. Dielectric Bragg reflection coatings, which
are used for these mirrors, do not reflect all light at the surface, but have an effective
penetration depth on the order of one wavelength [140]. Hence, a difference in the
refractive index for different polarizations with a magnitude on the order of the measured
phase shift might explain the frequency splitting. The materials used in ion beam
sputtering to apply highly reflective coatings are amorphous and should have no intrinsic
birefringence. That leaves extrinsic fields—electric, magnetic, or mechanical stress—
which could induce birefringence in the coating. In fused silica, the Kerr constant [141]
for the DC Kerr effect and the Verdet constant [142] for the Faraday effect are too
small for significant contributions of electric and magnetic fields without intentionally
applying high external fields [139]. Contrarily, ion beam sputtered coating have high
intrinsic stress [143] and mounting of mirrors can result in additional extrinsic stress,
such that the contribution of stress-induced birefringence is not negligible. Therefore,
residual frequency splittings of polarization eigenmodes of mirrors based on superpolished
substrates have been attributed to mechanical stress [134] and it has been speculated that
increased intrinsic stress is responsible for increased birefringence and thus an increase
of this splitting [121].

However, there is a second potential source of a frequency splitting of polarization
eigenmodes, not related to birefringence. A perfectly conducting mirror sets the boundary
condition that the electric field tangential to the mirror surface must vanish on the
surface (Etan = 0). If a mirror is not cylindrically symmetric, this might impose different
boundary conditions on the electric fields of different polarization. This could lead
to the polarization modes having slightly different spatial modes and thus different
resonance frequencies. As COq laser-machined mirrors do not show perfect cylindrical
symmetry, but are elliptic with a significant eccentricity (see Sec. 3.3.3 and Fig. 3.17),
these boundary conditions could be a source of the frequency splitting. However, the
effect is not evident in a paraxial descriptions of the cavity modes [144], because in that
description a propagating field has only transverse components and no longitudinal field

! Although it is possible to work with negative phaseshifts, all phaseshifts will be assumed to be positive
throughout this chapter. It is always possible to define the axes in such a way that this is the case.
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exists. The result of this approximation is the simplification of the vectorial boundary
condition Etan = 0 to the scalar boundary condition £ = 0 on the mirror surface. This
boundary condition is the same for all polarizations, enabling the description of the
polarization modes by the same scalar mode function, which have the same resonance
frequency. Hence, the effect of boundary conditions on the polarization modes can only
be explored when taking nonparaxial corrections into account.

4.2 Nonparaxial corrections

The approximations made in deriving the paraxial wave equation enable the description
of a light beam propagating in the z-direction by only transverse field components, e.g.
E = (Ex,0,0). As a consequence of these approximations, these solutions of the paraxial
wave equation are not exact solutions of Maxwell’s equations. This is most evident with
Gauss’s law, which states that in absence of electrical charges V-E=0 A purely
transverse field could only satisfy this condition, if it was a plane wave and had no
varying envelope. Therefore, any beam with a varying envelope, such as a cavity mode,
needs to have a small nonparaxial longitudinal component to fulfill Maxwell’s equations.
Solutions to these equations that contain the paraxial solution are required to quantify
this nonparaxial correction. Lax et al. [78] have shown that the vector field of a beam
propagating along the unit vector €, can be expressed as a power series in £ = 1/(kwy)

E = eb (FT + gZFZ) (4.4)
with

Fr=FY 4+ 2F® L oY

(4.5)
F,=¢FV + &FP +0(©).
The lowest order term ﬁéo) is a solution to the equation
L, - oFY)
VZEY 4+ 2ik =T =0, (4.6)
z

which is the paraxial wave equation. Corrections to the lowest order approximation
scale with £. It is interesting to note that, for a given finesse, the only way to increase
cooperativity is to increase £, so considering nonparaxial corrections becomes unavoidable
if extremely high cooperativities are desired. The parameters for the cavities presented
in this thesis lead to £ $ 1/30 and thus are still in the regime of £ < 1. Therefore,
all terms scaling with O(£2) or higher orders of ¢ will be neglected and only the first
correction {Fz(l) will be considered. This correction is a longitudinal component that
can be derived from the transverse field by [78]

i

V- £, (4.7)

¢FY
It points along the direction of propagation and is 90° out of phase with the transverse

field component. Such a field is depicted in Fig. 4.1, with the transverse field component
chosen to point along x.
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Figure 4.1: Electric field distribution of a Gaussian TEMgg-mode (wavelength 780 nm,
mode waist 3.5 um) polarized along the z-direction combined with the longi-
tudinal field of the first-order nonparaxial correction calculated with Eq. (4.7).
The scaling of the spatial axes determines the relative scaling of Fy and
E,, which does not preserve angles (most pronounced in (b)). All three
subplots contain lines that indicate the positions where Ey|g = 0 (green) and
Etan]s = 0 (red), but they can only be resolved in the enlarged plots (b) and
(c). These lines coincide at z = 0 but separate away from the cavity axis
because of slightly different radii of curvature. From Ref. [113].

On the cavity axis, the longitudinal component is zero and the boundary conditions
Eian = 0 and Ey = 0 are equivalent. When going off-axis along the polarization direction
(z in this case), the longitudinal field starts to appear and the boundary conditions
differ. The correct boundary condition for a perfectly conducting mirror, Eian = 0, is
indicated by the red lines labeled S. A mirror matching one of these lines would support
the depicted mode. The green lines, labeled S, are illustrating the boundary condition
E, = 0, which would be used for the scalar, paraxial theory. One can see that the green
lines have a larger radius of curvature (Fig. 4.1b). To describe the cavity field by a
paraxial mode function, one would have to choose an effective radius of curvature Rf{ff
larger than the actual radius of curvature Ry of the mirror. A mode with a larger radius
of curvature has a lower Gouy phase shift and thus a lower resonance frequency than
the resonance frequency one would calculate by applying the paraxial theory. Hence, the
nonparaxial correction and the modified boundary condition lead to a negative frequency
shift.

A calculation by Cullen [145], who was the first to point out the existence of this
frequency shift, will be followed to calculate its value. This calculation is extended
to explicitly include elliptic mirrors and to be valid for arbitrary Hermite—Gaussian
modes. To this end, a mode polarized in z-direction and propagating in the z-direction
is considered in the paraxial and the nonparaxial description. In the paraxial case,
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4.2 Nonparaxial corrections

the mode is described by a mode function Fy, which fulfills the Helmholtz equation
AFEy + k*Ey = 0 and vanishes on the mirror surface S, i.e., Ex|s = 0. This leads to the
resonance frequency vy, which is related to the wavenumber k by v = kc/(27). This
description is compared to the nonparaxial case, in which the transverse field component
of the vector field is described by an almost identical mode function EX =~ FEy. This mode
function matches the boundary condition Etan = 0 and thus takes nonvanishing values
on the mirror surface E’f = Ex|s- The resonance frequency oy is slightly different and it
fulfills the Helmholtz equation AEy + k2Ey = 0. The frequency difference between these
modes dvy = Dy — V¢ can be calculated using Green’s second identity

/V (EXAEX - EXAEx> dv = /S (EﬁEX - ENEX) -dS, (4.8)

where V' is a volume with surface S, and dS is an outward pointing infinitesimal area
element [146]. Under the assumption |dvy| < v, Eq. (4.8) leads to an expression for the
frequency difference [145]

c fS EE VE, -dS
drk [y E2dV

Ovy & (4.9)
where terms of order O(dvy/v) have been neglected. The volume integral has to be
taken over the whole resonator volume and the surface integral over the surface of both
resonator mirrors. To calculate the contribution of one mirror, the other mirror is set
to be a perfect planar mirror, such that Eﬁ’ = 0 on the surface of that mirror and the
corresponding surface integral is zero. Therefore, the surface integral in Eq. (4.9) only
needs to be taken over the elliptic mirror to be investigated.

To calculate the surface integral in Eq. (4.9), a transverse mode function Ey is assumed
that is separable in the x- and y-directions and, in complex notation, can be written as

Eg(%,y, Z) = eikzux(xvz)uy(y) Z)' (410)

As polarization in z-direction is assumed, the F\ field component is zero. The first-
order nonparaxial correction is the longitudinal field that can be calculated by applying
Eq. (4.7)

i OFS

me = 105

k Ox
where contributions of the order O(¢2) have been neglected. To get standing-wave
solutions corresponding to modes which have a node at the planar cavity mirror placed
at z = 0, the imaginary part of the complex mode functions is taken,

(4.11)

Ey=Im(ES),  E,=Im(EY). (4.12)
The complex mode function ET is assumed to be normalized, such that
L
/ E2dV = 2, (4.13)
v 2
where L is the length of the cavity.

The mirror placed at z = L is assumed to be elliptic, i.e., instead of being cylindrically
symmetric, it has two principal axes with two different radii of curvature Ry and Ry. To
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satisfy the separability postulated in Eq. (4.10), one of the principal axes needs to be
aligned with the polarization of the mode. This axis is taken to be the one associated
with Ry, because the mode was assumed to be polarized along the z-direction. The
mirror surface S is then described by:

2 2
S : m y

—L— -7
‘ 2R, 2R,

(4.14)

For the surface integral in Eq. (4.9), the electric field in the nonparaxial description on this
surface is necessary. This field can be calculated by taking F, and the boundary condition
Eian = 0, which requires ES = ES+ ES to be parallel to the normal N = (/Ry; y/Ry; 1)7T
of S. This condition and Egs. (4.11) and (4.12) yield

- x T OEC
E} = —-E) =R X
X TR T KRy < oz

S) . (4.15)

The remaining constituent of the surface integral in Eq. (4.9) is the expression VE,-dS
on the mirror surface S. dS = (x/Ry;y/ Ry; 1)1 da dy can be deduced from the gradient
of the mirror surface, Eq. (4.14). To approximate V Ey, further assumptions about the
mode function Ey are necessary: The gradient is dominated by fast varying z-dependence
of the carrier and contributions of the slowly varying envelope are suppressed by factor
on the order of O(£2) for the z-direction and O(&) for the transverse directions. In the
inner product with dS the transverse directions are multiplied with factors /Ry and
y/ Ry, such that these contributions are suppressed by a total factor of O(£?). Therefore,
the complete expression can be approximated by

- — 0F
VEy-dS =
0

dz dy ~ Im <1kEf> dz dy = kRe (Ef) da dy. (4.16)
z

Using Eqgs. (4.15) and (4.16) and the boundary condition for the paraxial description
Ex|s = 0, the surface integral in Eq. (4.9) can be solved by employing integration by

parts:
. -1 ORe(EY) 1
ESVE, - d§ = — Re(EY) == dody = - 417
B9 o [ [ore(ES) H  dvay =~ @an)
Inserting Eqgs. (4.17) and (4.13) into Eq. (4.9) yields an expression for the frequency
shift of the considered nonparaxial mode with respect to the prediction of the paraxial
theory due to the refined boundary condition Ex|s = 0 — FEian = 6, up to terms of the
order O(£?)

c 1
ArkL Ry’
Repeating the calculation with a mode polarized along the y-direction results in an

analogous expression for the frequency shift of that mode évy. The difference between
dvx and dvy is the frequency splitting of the polarization eigenmodes due to this effect:

ovy = (4.18)

¢ Ry — Ry

OV = 0ve = 0y = = T RUR,

(4.19)

As the phaseshift of the other, plane mirror was set to zero, this value can be converted
into an equivalent phase shift per reflection off the elliptical mirror using Eq. (4.1), which
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only depends on the wavenumber and the geometry of the mirror

1R —R
Ap=-—"2—7 4.20
Y=} RER, (4.20)
This phaseshift can also be expressed as a function of the eccentricity e:
€2
Ap = — 4.21
?= kR, (4.21)

for Ry > R,.

Taking the difference between the two approximated values dvy and dvy in Eq. (4.19)
is only valid when the resulting difference v is large compared to the terms which
have been neglected by those approximations. Therefore, Egs. (4.19), (4.20), and (4.21)
require v > E4vpsr /(2m) or equivalently, Ap > ¢4 For € S 1/30 this corresponds to
Ap > 1prad.

The calculation applies to all mode functions that meet the postulated assumptions:
They need to fulfill the Helmholtz equation, they need to be separable in the transverse
direction, and the envelope must vary slowly compared to the carrier wave to meet the
assumptions made in the approximation of Eq. (4.16). The first requirement can be
further relaxed: The mode function can fulfill the paraxial wave equation instead of the
Helmholtz equation, as long as the mode functions are polarization independent. Then,
the approximation made in going from the Helmholtz equation to the paraxial wave
equation is polarization independent and any resulting error does not matter in the first
order perturbation calculation performed here.

In particular, all Hermite—Gaussian mode functions meet these requirements. Therefore,
the fundamental as well as higher order transverse modes should show the effective
phase shift between polarization eigenmodes of Eq. (4.21) in the presence of an elliptic
mirror. The theory results in three predictions that can be experimentally tested for a
cavity with one elliptic mirror. First, the polarization eigenmodes should be of linear
polarization with the eigenaxes of the polarization aligned with the geometric principal
axes of the elliptic mirror. Second, the frequency shift is negative and increases with
smaller radius of curvature, according to Eq. (4.18). Hence, the polarization eigenmode
associated with the smaller radius of curvature should have a lower resonance frequency
than the polarization eigenmode associated with the larger radius of curvature. Third,
the magnitude of the frequency splitting should match the value predicted by Eq. (4.19).

4.3 Experimental setup

The simplest way to test the theory outlined above is a test cavity consisting of one
elliptic mirror to be tested and a known reference mirror that induces a negligible phase
shift.

4.3.1 Characterization of reference mirror

The reference mirror was based on a superpolished substrate, had a transmission of
25 ppm and a radius of curvature of 100 mm. Due to the large radius of curvature, any
eccentricity of the mirror had a negligible effect on the phase. Even if the mirror had
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Figure 4.2: (a) Experimental setup for the characterization of the reference mirror. The
test cavity is probed with circularly polarized light, which is detected using
a polarization sensitive setup. The \/2-waveplate is rotated to change
the detection basis. (b) Sketch of the measured signal. The measured
transmission was fitted by a Lorentzian for each detector and the time
difference between the centers of the peaks is converted to a frequency
difference using sidebands as markers. (c) Measured frequency differences
(blue points) for the rotation angle defined as 0° of the mirror opposite to
the reference mirror. The data has been fitted (green line) using Eq. (4.22).

been near cylindrical, i.e., an eccentricity close to 1, the phase shift would only have been
lyurad. The effect was much smaller than that, because as typical for a superpolished
substrate the eccentricity was close to zero. Therefore, only birefringence of the coating
is relevant, which can be on the order of 1 prad per reflection for this type of mirror [49].

To verify that the particular mirror used as reference is suitable as such and induces a
sufficiently small phase shift between polarization modes, it was necessary to measure
this phaseshift individually for this mirror. To this end, a test cavity with this mirror
and another mirror also based on a superpolished substrate was built, which had a
linewidth of (2.27 £ 0.06) MHz and a finesse of (1.10 £ 0.02) x 10°. The cavity was
probed with circularly polarized light to excite both polarization eigenmodes equally and
the transmitted light was detected by a polarization sensitive detection setup (Fig. 4.2a).
The frequency splitting between modes in a given basis was measured by slowly scanning
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the length of the cavity, fitting the cavity resonance at each detector with a Lorentzian,
and recording the difference in time of the central position of the fitted curves. This
time difference was converted into a frequency difference with the help of sidebands
on the light as frequency markers, similar to the linewidth measurements described in
Sec. 3.5. The detection setup could not be aligned with the polarization eigenmodes
of the cavity, because the splitting was much smaller than the linewidth of the cavity.
Instead, the basis of the detection setup was rotated with a \/2-waveplate and the
frequency difference was measured for various angles.

If the frequency splitting is much smaller than the linewidth, the frequency difference
is expected to oscillate sinusoidally with the maxima and minima occurring, when the
detection basis matches the orientation of the polarization eigenmodes. The measured
values are therefore fitted with the function

ov(B) = Asin(48 + () + b, (4.22)

where 2A is the frequency splitting between the polarization eigenmodes, ( is a phase that
accounts for the unknown orientation of the eigenmodes at the start of the measurement,
b an offset that accounts for potential systematic differences between the detectors, e.g.,
different response behavior leading to different signal delays, and § is the rotation angle
of the A/2-waveplate. The period of the oscillation is 4 times the period of /3, because
the waveplate rotates the polarization basis by 25 and the same situation is recreated
after the polarization bases have made half a turn in laboratory space. Due to the
sensitivity of the fit, this method can be used to measure frequency splittings of 1/40 of
the linewidth (Fig. 4.2c).

In order to access the individual phaseshifts of the mirrors, the mirror opposite to the
reference mirror was rotated and the measurement of the frequency splitting was repeated
for three different orientations: 0°, —45°, and 45°. The resulting frequency splittings were
(50 £ 5) kHz, (122 + 7) kHz, and (125 £ 18) kHz, respectively. With these three values,
the three unknown parameters in Eq. (4.3) can be determined. A Monte Carlo calculation
that solved for these parameters using normal distributions of the measured frequency
splittings with their standard error results in two phaseshifts A¢q = (1.6 £ 0.4) urad and
Apy = (2.8 £0.3) prad, with the errors determined from the 90 % confidence interval.

The phases ¢ from the fits can be used to calculate the relative change in orientation
of the polarization eigenmodes of the cavity, resulting in (30 £ 12)° for a rotation of the
mirror opposite to the reference mirror by —45° and (—39 £ 20)° for a rotation by 45°.
These values can be compared with the expectation that the angle a between the slow
eigenaxis of the cavity to the slow eigenaxis of the first mirror is [137, 139]

Ay sin(260)
Ap1 + Aps cos(26) )’

1
a=g arctan < (4.23)

where 0 is the angle between the slow axis of the first mirror and the fast axis of the
second mirror. Inserting the calculated phase shifts and for each mirror and assuming
that the reference mirror has the lower phaseshift leads to an expected rotation of the
polarization eigenmodes of the cavity by (32 £4)° and (—29 & 6)° for a rotation of the
opposite mirror by —45° and 45°, respectively. Assuming the other case, i.e., that the
reference mirror has the higher phaseshift, results in an expected rotation of (14 £ 2)°
and (—14+1)°. Only the former assumption leads to consistency within the errors,
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and therefore one can deduce that the reference mirror has the lower phaseshift of
(1.6 £ 0.4) prad.

4.3.2 Determination of mirror geometry

A quantitative comparison of any measured frequency splitting of polarization eigenmodes
with the theory explained above, requires knowledge of the orientation of the principal
axes for the tested mirrors where the radius of curvature is maximal and minimal,
respectively, and a precise measurement of the effective radius of curvature along these
axes.

Local fits of the mirror surface

As the surface of every fiber mirror was characterized white light interferometry, the
most obvious method to determine the radii of curvature of a fiber mirror is a fit to that
surface. However, the local radius of curvature varies on the fiber mirror surface (see
Sec. 3.3.2), which is unavoidable for any elliptic mirror, because only a perfectly spherical
mirror has a constant radius of curvature at every point on the surface. Weighting the
surface with the expected profile of the mode can be used to estimate an effective radius
of curvature at any position.

The radii of curvature extracted from fits over the whole surface were used to estimate
the size of a TEMgp-mode on the fiber mirror in a hybrid cavity with the reference
mirror. The weights W (x,y) were then chosen to be proportional to the electric field of

that mode
(z — x0)% + (y — y0)?
w? ’

W (x,y) o exp <— (4.24)
where w is the 1/e? intensity radius of the mode on the mirror. The obvious choice for
the central point (zg,yo) is the estimated center of the mirror. However, if there is an
inherent tilt of the fabricated structure with respect to the fiber axis or an additional
tilt due to the alignment, the mode might not be exactly in the center of the mirror.
Therefore, points £3 pm away from the center in each direction are also considered and
the radius of curvature is taken to be the average over these points with the standard
deviation of the radius of curvature over all points as the error.

For single-mode fibers, the position of the mode guided by the core can serve as a
position reference. The alignment that achieves maximum coupling to the fiber is close
to the alignment where the cavity mode is positioned close to the center of the cavity.
The alignment of the cavity that maximizes coupling to the fiber mode thus ensures that
the assumption of the position of the mode made above is justified.

For multi-mode fibers, there is no such reference, because the core extends over the
whole usable mirror surface. Careful alignment of the fiber axis with respect to the
reference mirror is therefore required for the mode to be near the center of the fiber
mirror.

Transverse mode distance

In a hybrid cavity setup with one fiber mirror and one reference mirror, a more accurate
method exists. The resonance frequency of a Hermite-Gauss TEMgmy-mode in a cavity
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Figure 4.3: (a) Setup for determining the geometry of the fiber mirror under test. (b)

Transmission of the cavity during a scan of the cavity length. (c)-(k) Mode
pattern as recorded by the camera. See text for further description and
Fig. 4.9 for the asymmetry between (i) and (k).
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4 Frequency splitting of polarization eigenmodes

with one elliptic mirror characterized by Ry and Ry and one spherical mirror with radius
of curvature Ry is given by [144]

ot (m+ 1) \/(1_ L) (-5
#(ne ) Wl LY (- b

The last two terms of the sum in the brackets are due to the Gouy phase shift, which
increases for higher order transverse modes. This leads to the distance in frequency
space between the fundamental transverse mode TEMqop and higher order transverse
mode TEMgy,o with the same q

L L
Vgm0 — Vq00 = mV;‘SR arccos \/<1 — R> (1 — R2> (4.26)

Solving for Ry and inserting L = ¢/(2vpsgr) yields

-1
- 1
Ry = c |2upsn [ 1 — cos? <(qu° ”‘100)”> : _ . (4.27)
M VFSR "~ 2vrsrR2

The effective radius of curvature along the principal axis x, Ry, can thus be determined
from measurements of the free spectral range vpsgr and the frequency difference vqmo—vqo0-
Similarly, the radius of curvature along the other principal axis, Ry, can be determined
from an additional measurement of vqon — Vgo0-

The advantage of this method is the determination of the effective radius of curvature
exactly at the position of the mode on the mirror. Therefore, any uncertainty about
the alignment of the cavity and the resulting location of the mode does not affect the
result. Hence, this method was chosen for all measurements that were made with hybrid
cavities.

However, there are several limitations of this method that have to be kept in mind.
First, the method requires knowledge about the radii of curvature of the second mirror. If
those are unknown, there are free parameters in the theory that cannot be extracted. The
method works best if the second mirror is near-planar, because then the influence of the
properties of the second mirror on the result is small and uncertainties about the second
mirror do not lead to large errors. Second, the result is not the radius of curvature of the
mirror, but the radius of curvature of the Hermite—Gaussian mode in the paraxial theory.
As explained in Sec. 4.2, this radius of curvature differs from that of the mirror. However,
with the parameters for the cavities investigated here, the resulting correction to the
Gouy phaseshift is on the order of 1 mrad (cf. Eq. (4.18)), while the total Gouy phase
shift is on the order of 1rad. Therefore, this difference can be neglected. Third, the size
of the higher order transverse mode increases with the square of the mode order. Higher
order modes thus sample a larger part of the mirror and might see a different effective
radius of curvature than lower-order modes if the curvature is nonuniform. This effect
can be minimized by restricting the measurement to the lowest-order transverse modes.
Finally, if there is significant hybridization between transverse modes (see Sec. 3.5.5),

y __ VFSR
qmn =
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4.3 Experimental setup

the Gouy phaseshift and thus the frequency difference between transverse modes will
differ from the results of the simple analysis outlined above. It is therefore important to
avoid such hybridization by imaging the mode patterns and subsequent realignment if
these patterns do not conform to basic Gaussian modes.

The images of the mode patterns required by the last point also offer the opportunity
to measure the orientation of the principal axes of the elliptic mirror. Hermite—Gaussian
modes are separable in the x- and y-direction if those are aligned with the principal
axes of the mirror. Therefore, the symmetry axes of the mode patterns conform to these
principal axes and can be used for comparison with the eigenaxes of the polarization
modes.

Fig. 4.3a shows the experimental setup to determine the geometry of the elliptic mirror
with this method. Two lasers were coupled into a hybrid cavity consisting of one elliptic
fiber mirror and the reference mirror. Behind the reference mirror, the light was detected
either with a photomultiplier to measure the transmission or a removable camera to
image the mode patterns. The fiber mirror was mounted on two parallel shear piezos in
order to tune the length of the cavity. A slow, high-amplitude linear ramp was applied to
the piezos to record the spectrum of the cavity (Fig. 4.3b). The cavity was optimized for
efficient coupling to the fundamental transverse mode to determine the radii of curvature
for the same alignment that was later used to measure the frequency splitting of that
mode. Therefore, the coupling to higher-order transverse modes decreased with the mode
number and some of the higher-order modes were not discernible from the spectrum (e.g
the TEMg;-mode in Fig. 4.3b).

As the response of the piezos was nonlinear, the scan time could not be directly
converted into frequency. Instead, the second laser was tuned until its TEMgg resonance
with the cavity occurred at the same length as the resonance of the first laser with the
modes to be measured. The frequency of these two laser was individually measured
with a wavemeter at a specified accuracy of 600 MHz. Typical lengths of the measured
cavities were around 50 pm, leading to transverse mode spittings on the order of several
hundred GHz, so the error introduced by the limited accuracy of the wavemeter was
<1%.

The mode patterns were directly imaged by placing a CMOS camera directly behind the
reference mirror without any optics in between and assigned a classification corresponding
to the most closely matching Hermite—Gaussian mode. Examples of these mode patterns
are shown in Fig. 4.3c—k. These were checked for signs of hybridization for every cavity
alignment that was measured and the cavity was realigned if such signs were visible. To
find the symmetry axes of a mode pattern, it was first converted from grayscale to black
and white using a threshold. The center of the pattern was found by averaging over
the centroids of all large connected regions. The angles of an axis through this center
were found that maximized the overlap between the image and a mirror image reflected
over this axis. These angles are then the orientation of the symmetry axes and thus the
orientation of the principal axes of the mirror.

For single-mode fibers, there is good agreement between the radii of curvature measured
using the transverse mode distance and those extracted from local fits to the surface
profile. The value gathered from the transverse mode distance is more precise and hence
the better value for a test of the theory. Nevertheless, it might not be available for
every mirror, because it requires the construction of a hybrid cavity with a mirror whose
properties are known. Especially before the coating process, local fits to the surface
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Figure 4.4: (a) Setup for direct measurement of the frequency splitting of polarization
eigenmodes. The polarization of the probe laser is set to a linear polarization
with an angle of 45° to the eigenaxes in order to equally excite both polar-
ization modes. The detection setup is adjusted to measure in the eigenaxes
of the polarization modes with a \/2-waveplate, such that each detector
(photomultipliers) records the response of one polarization eigenmode. (b)
Example trace of one measurement of the frequency splitting. The green and
red crosses denote the measured transmission by detector 1 and 2, respec-
tively, during a simultaneous scan over both resonances. The center of each
resonance is determined by fitting Lorentzians (green and red lines) to the
measured data. The x-axis has been calibrated with sideband markers to
convert scan time to frequency. Adapted from Ref. [113].

profile provide an estimate of the radii of curvature and can be used to select the fiber
mirrors with the desired properties.

4.3.3 Frequency splitting

The frequency splitting introduced by a single elliptic mirror can be directly measured
in a hybrid cavity setup by combining it with the reference mirror. As the phaseshift
between polarization eigenmodes due to the latter has been characterized to be negligible
compared to the expected phaseshift of the elliptic fiber mirror, the measured frequency
splitting and the resulting effective phaseshift can be attributed to the fiber mirror. The
setup for this method and example data are shown in Fig. 4.4.
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4.4 Results

To measure the frequency splitting of the two TEMgy polarization eigenmodes, the
length of the cavity was adjusted such that only the desired mode is resonant with a
small-amplitude scan of the cavity length. For accurate results in a direct measurement,
the detection setup needs to measure in a polarization basis that is aligned with the
orientation of the polarization eigenmodes of the cavity. This can be achieved by first
adjusting the input polarization until only one resonance is visible on the detectors if the
frequency splitting is on the order of or larger than the linewidth of the cavity, such that
it can be easily resolved. In that case, a single resonance without any visible splitting
indicates that the input polarization is aligned with one of the polarization eigenmodes.
The polarization basis of the detection setup was then adjusted until the signal on one
detector was maximal and there was no signal on the other detector. The orientation
of the \/2-waveplate in this configuration indicated the orientation of the polarization
eigenmode aligned to one detector. The polarization eigenmode aligned with the other
detector was orthogonal to that and the orientation of both polarization eigenmodes was
compared to the orientation of the principal axes of the fiber mirror.

Subsequently, the polarization of the probe laser was rotated by 45° to equally excite
both polarization modes. The length of the cavity was slowly scanned over both
resonances and sidebands were used to convert the scan time to frequency (see Sec. 3.5.1).
The resulting transmission as a function of frequency was fitted with Lorentzians and
the frequency difference was extracted from the difference of the peak positions as
estimated by the fits. After 100 repetitions the scan direction was reversed for another
100 repetitions to eliminate any systematic effects originating in different delays of the
detector responses. The frequency splitting was taken as the mean of all scans with
their standard deviation as the error. The sign of the frequency splitting, taking the
scan direction into account, determined which polarization eigenmode had the lower
frequency. The magnitude of the splitting was converted into an equivalent phase shift
between the polarization modes (Eq. (4.1)) to get a value for the fiber mirror that is
independent of the cavity length.

4.4 Results

4.4.1 Phase shift

The frequency splitting of polarization eigenmodes for ten different fiber mirrors was
measured and compared to the theory derived in Sec. 4.2. Seven of these, labeled
A—-G, were measured in a hybrid cavity with the reference mirror. For all of these, the
polarization eigenmodes were linear, their orientation matched the orientation of the
principal axes of the elliptic mirror, and the polarization eigenmode corresponding to the
smaller radius of curvature had the lower resonance frequency. All these observations
match the predictions of the theory. The remaining three fiber mirrors, labeled a—y,
were measured by rotation of one fiber in a cavity of two fiber mirrors (see the following
section). For these, only the magnitude of the splitting could be measured.

The phase shift per reflection between polarization eigenmodes as a function of the
mirror geometry is plotted for all fiber mirrors in Fig. 4.5. The measurements are in
good agreement with the values predicted by the theory without any additional free
parameters.
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Figure 4.5: Differential phase shift between polarization modes for elliptical fiber mirrors
as a function of mirror geometry. The z-axis is the eccentricity € of the
fiber mirror divided by its smaller radius of curvature Ry. Green squares:
phaseshift measured directly in a hybrid cavity with a reference mirror. The
radii of curvature were determined from the transverse mode distance. Cyan
squares: phaseshift extracted from fiber rotation. The radii of curvature were
determined from local fits of the surface profile. The letters indicate different
fiber mirrors. The blue line with slope 1/k is the theoretic dependence
predicted by Eq. (4.21) and does not depend on any free parameter. Adapted
from Ref. [113].

4.4.2 Fiber rotation

In the hybrid cavity setup used for the characterization of single fiber mirrors, the
round-trip phaseshift between polarization eigenmodes is independent of the mirror
orientation and only depends on the geometry of the fiber mirror. This leaves little
opportunity for tuning the frequency splitting of polarization eigenmodes after the mirror
has been fabricated. The situation is different in cavities built from two elliptic fiber
mirrors. According to Eq. (4.3), the angle between the polarization eigenaxes of the
mirrors tunes the round-trip phaseshift between the minimum of Ay = |[Ap1 — Aps|
and the maximum Apy, = Apy + Aps.

The round-trip phaseshift can be extracted from the frequency splitting measured
by the same method as was used for the hybrid cavity. To measure the phaseshift as
a function of the angle between the axes, one fiber mirror was rotated around its axis.
Consistent results were obtained by coupling in the probe beam through a single mode
fiber, using a multi-mode fiber for the second mirror and reoptimizing the transmission
of the fiber cavity after each rotation. Maximum transmission in such a configuration
indicated maximum coupling of the fiber mode to the cavity mode and was necessary to
ensure that the mode was at the same position on the mirror. The results for the two
fibers labeled D and E in Fig. 4.5 are shown in Fig. 4.6.
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Figure 4.6: Differential phaseshift between polarization eigenmodes depending on the
rotation angle for a fiber cavity consisting of the fiber mirrors labeled D and
E in Fig. 4.5. The error bars denote the statistical standard error of the
phaseshift and the systematic error of the rotation angle stemming from the
precision of the rotation stage. The solid green line is a fit of Eq. (4.28) to
the data. The dashed red line is a fit of the same equation, but with Ay
and Ao fixed to the values determined from individual measurements with
a hybrid cavity (see Fig. 4.5). Adapted from Ref. [113].

The measured data was fitted with the function

Agre = \/Ap? + Al + 2001 Az cos(2(0 — 9p)), (4.28)

where an additional angle ¥y compared to Eq. (4.3) accounts for the unknown initial
orientation of the fiber mirrors. This fit (solid green line in Fig. 4.6) yielded two
phaseshifts, one for each mirror. If the properties of one of the mirrors have been
characterized with a different setup, each phaseshift can be unambiguously assigned to
one mirror.

In case of the cavity built from mirrors D and E, which were both also characterized
in a hybrid cavity, the resulting phaseshifts were Ap; = (230 + 11) urad and Ap; =
(268 £+ 9) prad. These values were not consistent with the independent measurements in
the hybrid cavity of Ap; = (192 £ 13) nrad and Agy = (247 £+ 12) prad. The discrepancy
can be attributed to a difference in mode positions on the mirror between the fiber cavity
and the hybrid cavities used to characterize the fiber mirrors individually. Different
positions lead to a different local effective radius of curvature and thus to a different
phaseshift (see Fig. 4.7).

4.4.3 Higher-order transverse modes

Higher-order transverse modes are of much less practical interest in cavity QED than the
fundamental transverse mode, because they exhibit a larger mode volume and increased
spatial variation of the coupling between an emitter and the cavity mode. In fiber
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Figure 4.7: Phase shift per reflection between polarization eigenmodes calculated from
the measured surface profile of a fiber mirror for different tilt angles between
the axes of the fiber and the reference mirror (green dots). Depending on the
alignment the local radius of curvature that determines the mode is different,
leading to a variation in the expected phase shift. The blue squares denote
two measurements with the same fiber at different tilt angles that show this
expected alignment-dependent phase shift.

cavities there is the additional disadvantage of less efficient coupling to a single mode
fiber. Therefore, the investigation of the frequency splitting of polarization eigenmodes
was mainly concerned with the fundamental transverse mode. Nevertheless, it is of
fundamental interest whether the predictions of the theory also hold for higher order
modes. As the calculation in Sec. 4.2 does not depend on the transverse mode order,
Eq. (4.21) should also apply to higher order modes.

An example for the frequency splitting of polarization eigenmodes for the TEM;g
and TEMy; mode compared to the TEMyg mode is shown in Fig. 4.8. The data clearly
shows that there is a large influence of the transverse mode order: The splitting for the
TEMjp; mode has a different sign than the splitting for the TEM;y mode. However, the
deviation from degeneracy of polarization eigenmodes is not symmetric between these
two modes, but is shifted in the same direction as the splitting of the TEMgy mode.
This suggests, that there is an effect independent of the transverse mode order, which
might be described by Eq. (4.21), but it is modified by an additional effect that does
depend on the transverse mode order and has the same order of magnitude for first-order
transverse modes.

Calculations assuming perfectly spherical mirrors and using Laguerre-Gaussian modes
have shown that due to nonparaxial corrections, circularly polarized polarization eigen-
modes arise. At each mirror a phaseshift of

2l
Ap = — 4.2
Y=1R (4.29)

between these eigenmodes occurs, leading to a frequency splitting between them [147-149].
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Figure 4.8: Frequency splitting of polarization eigenmodes for the fundamental (a) and
first order ((b) and (c)) transverse modes. The red crosses denote the
transmission data of Fig. 4.3b magnified in the vicinity of the modes of interest.
The green crosses denote the transmission in the orthogonal polarization
basis recorded during the same scan. The sidebands used to calibrate the
frequency axis are visible right and left of the resonances. The green and red
lines are fits of a triple Lorentzian to the resonance and the sidebands. The
equivalent phaseshifts per reflection between the polarization eigenmodes are
0.20mrad in (a), —0.09 mrad in (b), and 0.19mrad in (c). These values are
clearly in disagreement with the theory calculated using Hermite—Gaussian
modes, which would predict the same phaseshift for all three modes.

Here, R is the radius of curvature of the spherical mirror and [ is the azimuthal mode
order of a TEMII;IG Laguerre-Gaussian mode. The fiber mirror of the cavity depicted
in Figs. 4.3 and 4.8 has a mean radius of curvature of 785 pm. A spherical mirror with
this radius of curvature would induce a phaseshift of 0.32mrad for the TEMEY mode
and —0.32mrad for the TEM(I;E;l mode, resulting in a phaseshift difference of 0.64 mrad
between these two transverse modes. The measured difference of 0.28 mrad (cf. Fig. 4.8)
is smaller by more than a factor of two and not compatible with these calculations.
Neither the calculation with Hermite—Gaussian modes, nor those with Laguerre—
Gaussian modes correctly predict the frequency splitting of polarization eigenmodes
for higher-order modes and measured values lie in between these predictions. This
suggests that neither description is adequate for higher-order modes of the presented
cavities at the precision set by the cavity linewidth. The prime candidates for a better
description would be Ince-Gaussian modes [150], which form a continuous transition
between Laguerre—Gaussian and Hermite—Gaussian modes. Indeed, a comparison of the
measured intensity patterns of higher order modes with Ince—Gaussian mode patterns
(Fig. 4.9) shows that the observed eigenmodes of hybrid cavities fit Ince-Gaussian modes
with an ellipticity parameter e;¢ ~ 4 better than Hermite-Gaussian modes. Further
theoretical studies of Ince—Gaussian modes using the methods explained in Sec. 4.2
are therefore likely to result in a better description of the frequency splitting of higher
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Figure 4.9: Comparison of intensity patterns for calculated Hermite—Gaussian modes
((a) and (b)), calculated Ince-Gaussian modes with ellipticity parameter
eic = 4 ((c¢) and (d)), and modes measured in a hybrid cavity with one fiber
mirror and the reference mirror ((e) and (f), cf. Fig. 4.3i and Fig. 4.3k). The
measured intensity patterns are clearly better explained by Ince-Gaussian
modes than by Hermite—Gaussian modes.

order modes, which would have to be confirmed by more systematic measurements.
Since descriptions by Ince-Gaussian and Hermite—Gaussian modes result in the same
fundamental transverse mode, any calculation with Ince-Gaussian modes should not
change the result reported in the previous sections for this mode of most practical
interest.

4.5 Discussion

The good agreement of the measurements and the theory predicting a frequency splitting
of the fundamental transverse mode for cavities with elliptic mirrors due to nonparaxial
corrections shows that this effect is the dominant source of the frequency splitting in
the investigated cavities. The effect is inversely proportional to the smallest radius of
curvature of one mirror and thus becomes increasingly important when minimizing the
mode volume by reducing the radii of curvature. It is therefore unlikely to be noticeable
for mirrors based on superpolished substrates. For example, a mirror with a radius
of curvature of 100 mm and the maximum eccentricity of unity, i.e., with a cylindric
geometry, would show a phaseshift of 1.2urad due to this effect at a wavelength of
780 nm. However, the effect is important for any type of microscopic, high-finesse cavity
that has mirrors with significant eccentricity. A mirror with a radius of curvature of
100 pm and an eccentricity of just 0.1 would already show a phase shift per reflection of
120 prad. Since the publication of Ref. [113], the effect has also been observed for fiber
mirrors fabricated by other groups [103, 126] and silicon mirrors fabricated with focused
ion beam milling [151]. The fabrication of fiber mirrors with low eccentricity has enabled
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the construction of fiber cavities with almost degenerate polarization eigenmodes [127].
In all cases, the published data was compatible with Eq. (4.19).

The identification of the dominant effect in combination with a quantitative theory
that depends only on the mirror geometry allows to determine the effective phase shift
per reflection of a mirror during fabrication. Optimizing the fabrication process and/or
selecting on mirrors with the desired phase shift can thus be used to tailor the phaseshift
for different applications.

The obvious path to get degenerate polarization eigenmodes is to minimize the
eccentricity of the fabricated fiber mirrors. The fabrication setup detailed in Ch. 3 can
regularly achieve eccentricities of less than 0.2 (see Fig. 3.17). At a radius of curvature
of 100 pm, this results in a phaseshift of 50prad at a wavelength of 780nm. A fiber
cavity with two mirrors exhibiting this phaseshift oriented at a random angle between
the principal axes has an expected round-trip phaseshift of 64 prad, which would result
in a frequency splitting of one tenth of the linewidth at a finesse of 10000. This value
could be further reduced by optimizing the fabrication process to yield structures with
increased rotational symmetry or rotating one fiber mirror with respect to the other
until the minimum splitting is achieved (see Sec. 4.4.2), with no theoretical lower limit if
the phaseshift of the two mirrors is equal.

The other strategy to avoid detrimental effects of the nondegenerate polarization
eigenmodes on experimental results is to maximize the splitting until one of the modes is
so far detuned that its influence can be neglected. This strategy requires the eccentricity
to be as large as possible. Eq. (4.21) sets an upper limit of 1/(kR) to the phaseshift
induced by the ellipticity of the mirror, which is achieved in the limit of a cylindrical
mirror with no curvature in one direction and ¢ = 1. With R = 100 pum, this limit is
1.2mrad at a wavelength of 780 nm, such that the round-trip phaseshift of a cavity with
two aligned cylindrical mirrors is 2.4mrad. At a finesse of 10000, the corresponding
frequency splitting is only 3.8 linewidths, which is not negligible for most applications.
Therefore, this strategy can only fully succeed in case of an additional phaseshift due
to birefringence in the coating—possibly induced by external stress—or for cavities of
higher finesse. At a finesse of 190000, this limit of ellipticity-induced frequency splitting
is increased to 73 linewidths.
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5 A quantum-repeater scheme at telecom
wavelength

The content of this chapter has been partially published in:

M. UpHOFF, M. BREKENFELD, GG. REMPE, and S. RITTER. An integrated quantum
repeater at telecom wavelength with single atoms in optical cavities. Appl. Phys. B
122, 46.

In the previous chapters, microcavities were presented that are suitable for quantum
communication experiments and can be arranged in a crossed cavity geometry. In this
chapter, the possibility of using such geometries to build a quantum repeater with single
atoms in optical cavities will be explored. The goal is a quantum repeater that has
all functionality integrated in one type of node and can operate directly at telecom
wavelength without a need for wavelength conversion.

5.1 Quantum repeaters

Quantum communication aims at the distribution of quantum states over large distances.
Heralded entanglement of remote qubits is the most valuable resource to accomplish
this, because it serves as a foundation for the most demanding applications. These
include fundamental tests of quantum physics like loophole-free Bell tests [8, 152],
deterministic teleportation [153-155] of valuable quantum states over large distances,
and device-independent quantum key distribution [13, 14].

Heralded entanglement between remote nodes has been achieved by entangling a
stationary qubit with a photon, coupling that photon to an optical fiber, and distributing
the entanglement via optical fibers and a photonic Bell state measurement [156-158].
However, losses in optical fibers lead to an exponential decrease of transmission with
length and thus an exponential decrease of the success probability. The expectation
value for the number of trials (Zy) until two nodes have been entangled is

(Zo) = L ele/Las, (5.1)
Po

where pg is the probability for one attempt to succeed without fiber losses, Ly is the
length of the fiber between the end nodes, and L, is the attenuation length of the
fiber, i.e., the length over which the transmission drops to 1/e. The quantum state of
the stationary qubit entangled with the photon needs to be stored at least until the
information about the success of the trial reaches the node. This limits the repetition
rate fy per stationary qubit at one node to

(5.2)
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where ¢; is the speed of light in the optical fiber. This limitation for the maximum
repetition rate posed by the time to communicate between nodes to exchange information
about the success of a herald is intrinsic to all heralded schemes, although the exact
relation varies between different schemes. The combination of maximum repetition rate
and expected required number of attempts limits the maximum achievable distance
L¢, when compared to a nonzero rate of spurious heralding events. This limit can be
pushed by increasing the attenuation length, which requires operation at the telecom
wavelengths from 1300nm to 1600 nm for optical fibers consisting of fused silica. At
these wavelengths L, = 22km can be achieved, close to the theoretical maximum set
by Rayleigh scattering and infrared absorption [159].

However, increasing the attenuation length does not affect the exponential scaling of
Eq. (5.1) with distance. This scaling can only be overcome with quantum repeaters [20].
The idea is to provide feedback at intermediate nodes to increase the overall probability
to produce a high-fidelity entangled state. This feedback can take the form of either
error detection [160, 161], which defines signals to identify errors that require a repeat of
a protocol step, or error correction [162—164], which protects the transmitted quantum
information with fault-tolerant codes. The simplest protocol is to divide the total
distance L¢ into N partial links with length Lo = L¢/N and to simultaneously attempt
establishment of heralded entanglement between adjacent nodes. Once entanglement
has been distributed over one link, it needs to be stored in quantum memories until
entanglement between all nodes exists. Entanglement swapping can then be used to
generate the desired entanglement between the end nodes.

The expectation value for the number of trials (Zy) until entanglement has been
generated over N links is [165]

B N /N (—1)i+!
N0 = ; <J> 1 —(1—poexp (_LO/Latt))j. (5:3)

For pg <« 1 or Lo > L, this can be approximated by

() o TN Lo/ (N L), (5.4)
Po

where Hy is the IN-th harmonic number. The insertion of additional nodes increases the
denominator in the exponential and a polynomial scaling of the time to entangle with
length can be achieved with a logarithmic scaling of the number of required qubits [20].
Realistic implementations of quantum memories and entanglement generation, dis-
tribution, and swapping will not be perfect but introduce errors. During the multiple
operations required for a quantum repeater, these errors will accumulate and the fidelity
of the final state will be reduced. This can be counteracted by producing multiple copies
of an entangled state and performing entanglement purification [20] to produce one state
that has higher fidelity with the target state. However, entanglement purification is

resource intensive and might not be optimal in every setting.

5.1.1 Performance criteria

The purpose of a quantum repeater is to enhance the success rate of a quantum com-
munication protocol. However, a repeater protocol adds additional overhead, such that
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an inefficient implementation might actually reduce this rate. To demonstrate that
a quantum repeater can achieve its purpose, its performance needs to be measured
and it is therefore not sufficient to just implement the protocol. The improved scaling
of quantum communication involving repeater nodes is only evident if the number of
nodes is a free parameter. A given system with a fixed number of nodes will still scale
exponentially with length, only with a smaller factor in the exponent. The scaling is
therefore not a good indicator for the performance of an experimental system. The
absolute rate of generated entangled pairs over a given distance is therefore the relevant
parameter. This rate needs to be compared to a reference to judge whether the quantum
repeater is beneficial for quantum communication. Several benchmarks exist and from
these several different criteria can be deduced that one might demand from a convincing
demonstration of a quantum repeater. These are listed in ascending order of difficulty,
i.e., a system that fulfills one criterion also fulfills all criteria with a lower number.

1. Demonstration of the entire repeater protocol without comparison to other systems.
The rate of entangled pairs could then be used as a benchmark for future systems.

2. The entangled pair rate of the system containing at least one repeater node is
greater than the rate using the same end nodes without any repeater node in
between. The channel losses can be chosen freely to maximize the effect. This
would serve as a proof-of-concept for the repeater protocol, but in a contrived
setting.

3. The same comparison as above, but with the lowest technologically feasible channel
losses. This results in the largest distance between nodes necessary for repeater
nodes to be beneficial and would establish the usefulness of the protocol for
long-distance quantum communication.

4. The system needs to outperform the best system without a repeater node that has
been demonstrated so far.

5. The entangled pair rate is higher than the rate a hypothetical ideal system could
achieve without repeater nodes using the best currently available photon channel.

The fifth criterion would be a final, unequivocal test of the quantum repeater concept,
but a quantum repeater would already be of practical interest if it met the other criteria.
All operations of a repeater implementation have to be efficient to beat the third criterion
and such a system might therefore also be the most efficient one without repeater nodes,
such that the third and fourth criterion coincide. In any case, the current distance record
for heralded entanglement is 1.3km [8] and the fourth criterion is hence not available
for longer distances, yet. Therefore, the third criterion is the one that can be evaluated
to show practical relevance of a quantum repeater system. Comparing the system with
itself also has the advantage that the situations with and without repeater nodes can
be evaluated in exactly the same way, which allows to directly assess the impact of the
repeater nodes. For these reasons, the third criterion will be used in this chapter to
evaluate repeater performance.

So far, possible reductions in fidelity by the repeater nodes have been neglected. There
are multiple ways to modify these criteria to account for potential errors. The first one
is to set a threshold fidelity with a target state and count all entangled pairs that exceed
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that fidelity. If the systems clear the threshold with and without repeater nodes, the
entangled pair rates can be directly compared. The other extreme is to demand that
every purified state of the system with repeater nodes has a fidelity with the target
state that is at least as high as the fidelity of the state produced by the system without
repeater nodes. The entangled pair rate can then be multiplied with the purification
efficiency for comparison. If the modified rate of the system with repeater nodes is
higher, it is certainly better in all applications. However, for some applications, the
system with repeater nodes might already outperform the system without if just the
rate is higher, but the fidelity is slightly lower. To address these situations, the tradeoff
between rate and fidelity needs to be quantified. This can be achieved by choosing an
entanglement measure [166] and compare the entanglement contained in an ensemble of
states produced in a given time interval. However, the entanglement quantified by these
measures is not necessarily extractable, so it is not immediately clear how useful the
measure is in a particular setting. If the application is quantum key distribution, the
secret fraction, i.e., the fraction of unconditionally secure key bits that can be extracted
from one entangled state by classical postprocessing [167], is a convenient measure for
the tradeoff between fidelity and rate. Multiplied with the entangled pair rate, the secret
fraction gives the length of the secret key per unit time, which can be easily compared
across different systems. It is, however, specific to quantum key distribution and useless
to assess the suitability in other quantum communication protocols. The choice of the
method to account for potential errors introduced in the repeater nodes is thus not
universal, but depends on the intended application.

5.1.2 Other approaches

Since the original proposal for quantum repeaters [20], very active research has been
conducted theoretically and experimentally to develop a system that could fulfill the
criteria mentioned in the previous section. The first proposal for an implementation was
the Duan-Lukin-Cirac-Zoller protocol [168] that showed how to implement a quantum
repeater with atomic ensembles and linear optics. However, this simplicity comes at
the price of intrinsically low efficiency. Although the exponential speedup provided by
a quantum repeater would in theory enable a quantum repeater at any efficiency, this
requires quantum memories with exceptionally long storage time. These storage times
could be reduced by multiplexing multiple quantum memories, such that a generated
pair only needs to be stored until one of the multiple entanglement distribution attempts
running in parallel has succeeded [169]. Since the publication of the original proposal,
much progress has been made in improving protocols, storage time, efficiency, and multi-
mode capability of atomic ensembles, but so far no system good enough in all aspects
has emerged that could be used to demonstrate a quantum repeater [170]. The same
protocols can also be applied to ion-doped solids, which have the potential advantage
that their large inhomogeneously broadened absorption could be used to store many
temporal modes in the same crystal [171].

A different approach is taken by research on single emitters. These are not as
easily multiplexed as ensembles, but have the advantage that deterministic entanglement
swapping is possible [172], which increases the potential rate of entangled pairs. Therefore,
there have been proposals how to implement a quantum repeater with single neutral
atoms and ions, quantum dots, and nitrogen-vacancy centers [173, 174]. The necessary
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properties, which are highly efficient gates between stored qubits [175, 176], long coherence
times for stored qubits [177], and an efficient interface to photons [34, 35], have been
shown individually for single emitters, but remain to be combined in a single system.

Besides these potential implementations of a quantum repeater that are close to the
original proposal, there are also alternative concepts being investigated. Instead of
mediating entanglement distribution with single photons, bright laser pulses could be
used to carry quantum information encoded in continuous variables [178, 179]. These
schemes perform entanglement distribution with unity efficiency and thus promise an
increased rate, but transmission losses degrade the fidelity. Therefore, repeater stations
would need to be fairly close together and frequent entanglement purification would be
necessary. The loss in fidelity can be traded against efficiency, by adjusting the brightness
of the pulse and in the single photon limit, the qubit-based scheme is recovered [180].

All of the previously mentioned schemes are based on the idea of large-distance
entanglement swapping, which requires classical communication of the measurement
results between nodes. The necessary time for these communications to happen and
thus the repetition rate is limited by the speed of light. The repeater could therefore be
operated much faster if the information to correct errors due to photon loss or protocol
operations was sent with the qubit, such that the remote node can immediately perform
the corrections. By encoding the quantum information in fault-tolerant blocks, ultra-fast
long-distance quantum communication would be possible [181]. However, the demands
required of the quantum-logical operations are quite challenging, equal to a small-scale
fault-tolerant quantum computer.

In summary, there are many promising approaches how to build a quantum repeater,
but none of them is at the stage, where it is feasible to implement them, yet.

5.2 Entanglement generation at telecom wavelength

In principle, a quantum repeater could be operated at any wavelength, because the
better scaling ensures that a system with repeater nodes will always outperform a
system without, if the distance is far enough. However, if the attenuation at the
chosen wavelength is high, this would require a large amount of nodes and memories
with extremely long coherence times. To be competitive in long-distance quantum
communication over optical fibers, a quantum repeater is therefore virtually required to
distribute entanglement using photons at a telecom wavelength to minimize attenuation
in the fibers. Implementing this with single atoms in optical cavities by a direct coupling
of an atomic ground state with a telecom wavelength photon would require an atomic
transition from such a state at that wavelength. Unfortunately, there are no suitable
transitions for atoms that are easily laser-cooled and an indirect method has to be found
to utilize the advantages of atomic systems for quantum communication. Very active
research has recently been going into the development of external devices that can convert
the frequency of photons carrying quantum information [40, 41]. Another approach that
is being pursued is the generation of two-color entanglement by spontaneous parametric
down-conversion with one photon at telecom wavelength and one compatible with a
quantum memory for photons [182, 183]. After storage of the latter photon, the quantum
memory is entangled with the telecom photon, which can be used to distribute the
entanglement.
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Figure 5.1: (a) Experimental setup for the generation of entanglement between a single
atom and a telecom photon using a cascaded scheme. The atom (black dot)
is trapped at the crossing point of two cavity modes. The red cavity is the
entangling cavity at wavelength A\¢ and the blue cavity is the heralding cavity
at wavelength A,. Both cavities are single-sided, with one mirror having a
higher transmission (indicated by lighter colors) than the other. (b) Required
scheme of atomic energy levels. The black lines and solid arrows indicate the
ideal process, starting from initial state |g). Gray lines stand for additional
energy levels not part of the ideal scheme and gray dashed arrows show
potential unwanted decay paths. The letters a®) — ¢ indicate the relative
transition amplitudes. Adapted from Ref. [184].

These efforts have the disadvantage that they require an external device with different
technology that needs to be matched to the quantum memory. This additional complexity
and the additional inefficiencies that are likely to arise in these approaches could be
avoided by finding a scheme to directly generate entanglement at telecom wavelength
with a single atom. This can be achieved by using transitions at telecom wavelengths
between excited states and then transfer the atomic part of the resulting state to a
long-lived ground state. These transitions have been used for wavelength conversion [40]
and entanglement generation using cascaded transitions [42] in atomic ensembles. In the
following, it will be explained how a related cascaded scheme can be used to generate
entanglement between a single atom and a telecom photon with high efficiency due to
cavity enhancement.

5.2.1 Cascaded scheme

The experimental setup required for the scheme is depicted in Fig. 5.1a. A single atom
is trapped at the crossing point of two perpendicular cavity modes. The cavities are
both single-sided and one of them is at a wavelength Ay in the near-infrared or visible
spectrum, corresponding to an atomic transition from its ground state. This cavity
will be called the heralding cavity. The other cavity, called the entangling cavity, is at
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wavelength )¢, addressing a transition between excited states, which should be at a
telecom wavelength. The atom is excited by control lasers perpendicular to the plane
spanned by the cavities.

The level scheme of the atom is required to be similar to those of bosonic alkali atoms in
the manner depicted in Fig. 5.1b. To store the atomic part of the generated entanglement,
two long-lived states |+1), are necessary, which are assumed to be Zeeman sub-levels with
mp = 1. The same is assumed for two intermediate states |£1);, which are short-lived
and coupled to |+1); via a m-transition at Ap. The intermediate states are coupled by a
transition at \; to the excited state |e), which has mp = 0. An initialization procedure,
e.g., optical pumping, leaves the atom in the initial state |g), which also features mp = 0.
The control laser has two frequencies and mediates a two-photon transition from |g) to
le), far detuned from an intermediate state |k). The heralding cavity is resonant with
the transition from |f) to |¢) and one of the polarization eigenmodes is m-polarized. The
entangling cavity is resonant with the transition from |i) to |e) and supports o~ - and
oT-polarization. This description is consistent with the quantization axis pointing along
the axis of the entangling cavity.

After initialization in |g), a two-photon control pulse can be used to produce a telecom
photon on the transition from |e) to |+1),, similar to direct entanglement schemes at
near infrared wavelengths [34]. The envelope of this photon can be controlled with the
shape of the control pulse. If the cooperativity of the atom with the entangling cavity is
large, the photon is emitted into the entangling cavity with probability close to unity in
a superposition of the polarization states |[o™), and |o~),. Correspondingly, the atom is
transferred into a superposition of the states |—1); and |+1),. Because of the symmetry
of the atomic states, the magnitudes of the transition matrix elements have to be equal
and the system is in the maximally entangled state

) = == (1= 1)+ 1 107),) (5.5)

The relative sign of the transition matrix elements for the chosen transitions determines
the relative phase ¢, which can take the values 0 and 7.

As |£1); quickly decay, this entangled state between the atom and a photon at A is
short-lived and not suitable to store the entanglement. Instead, the target state is the
state 1

W2 = 5 (1= o)+ 1) o) ) (5.6)
where the relative phase ¢ can again take the values 0 and 7. This state can be reached by
the emission of a m-polarized photon at A\,. A high-cooperativity heralding cavity that is
resonant with this transition and only supports m-polarization enhances emission via this
decay path compared to all other undesired decay paths and enables efficient collection of
the m-polarized photon. This photon heralds the successful completion of the scheme and
the creation of the desired entangled state. If no such photon is detected, spontaneous
emission might have occurred and the scheme can be restarted. A quantum repeater
system requires high success probabilities for entanglement generation. These can be
achieved with this scheme, if both cavities are single-sided and have high-cooperativity
coupling to the chosen transition, i.e., if they are optimized for single-photon production
as outlined in Sec. 2.1.
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Element |f) |7) le) Ah At

Rubidium 52815 5°Pyjp 42Dz, 795nm 1476 nm
52812 5°P3jy 4°Dsjp  780nm  1529nm
52512 5Py 6%Sy,  795nm  1324nm
52812 5°Pyp  62S15 780nm  1367nm
Cesium 62512 6Py 7°Syp  895nm 1359nm
62512 6°P3p  T7°Sy,  852nm  1470nm
Francium 725y, 7?Pi;5 8255 817nm 1333nm

Table 5.1: The elements and atomic states with which the cascaded entanglement scheme
could be implemented to generate entanglement between an atom and a
photon at telecom wavelength. Atomic level data from Ref. [185].

All bosonic alkali atoms have transitions that are suitable for the described scheme.
Of particular interest are those elements which have a fitting transition at telecom
wavelength and are listed in Tab. 5.1. Out of these, rubidium offers the widest choice of
wavelengths for the telecom photon. The isotope 87Rb has a nuclear spin of 3/2, which is
the lowest available in naturally occurring isotopes of bosonic alkali atoms and limits the
number of additional hyperfine states that could complicate atomic state preparation.
Therefore, 8"Rb is the prime candidate to implement the scheme.

5.2.2 Implementation with 8"Rb

To judge the potential of the cascaded entanglement generation scheme, it is necessary
to choose a particular implementation to analyze in detail. The choice of the excited
state determines the telecom band the entangled photons are in. Rayleigh scattering is
reduced in the S-band (1460 nm-1530 nm) compared to the O-band (1260 nm-1360 nm)
[159], such that the typical fiber attenuation is lower in the former band. Choosing
the 42D, /2 state of rubidium' therefore extends the range of the generated entangled
photons compared to the 625, /2 state. As the intermediate state, the 52P, /2 state offers
the advantage of a larger hyperfine splitting and thus a cleaner scheme compared to
the 52 P, /2 state. With these states, one way to implement the scheme is the following
(see Fig. 5.2): The hyperfine state |F=1;mp=0) of the state 55}, is chosen as the
initial state |g) and |[F=2;mp==%1) as the final states |+1);. The 52P 5 |F'=1;mp==1)
states are taken as the intermediate states |+1); and the 4?Dj o |F"=1;mp=0) state
as the excited state |e). The intermediate state |k) for the two-photon control can be
implemented with the 52 P; /2 state. With this choice, two m-polarized control lasers at
wavelengths of 780nm and 1529 nm are necessary to excite the atom from |g) to |e).
The entangling cavity needs to be resonant at A\ = 1476 nm, which puts the resulting

The 42D5/2 state is 13 GHz detuned from the 42D3/2 state and would be another option at almost
the same wavelength. However it offers no advantage and limits the available schemes, because it
does not couple to the 52P1/2 state.
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Figure 5.2: Atomic energy levels for a specific implementation of the cascaded entan-
glement generation scheme with 8"Rb (compare Fig. 5.1). For clarity, the
level spacings are not to scale and Zeeman substates of the hyperfine levels
irrelevant for the scheme are not drawn. Adapted freom Ref. [184].

entangled telecom photons in the S-band of optical fiber communication. The herald
photons will be emitted in the near-infrared from the heralding cavity resonant at
Ap = 795 nm.

Cavity parameters

COs laser-machined mirrors as described in Ch. 3 are ideally suited for the cavities
required by this scheme, because they provide high cooperativity, enable single-sided
cavities, and can be fabricated in a size small enough for the desired geometry of
perpendicular cavities with single atoms coupled to both modes. Therefore, the cavity
parameters chosen to analyze the implementation are derived from the results described
in Ch. 3. This fulfills two purposes. The first is to provide a realistic setting that
estimates how the scheme performs with current technology and the second is to assess
the suitability of the described cavities for quantum communication protocols.

The entangling cavity is assumed to be consisting of two fiber mirrors with the standard
fiber diameter of 125 pm. According to the considerations in Sec. 2.4 concerning the
possibility of trapping an atom with a far off-resonant dipole trap, the length of this
cavity is taken to be 75 um. Asymmetric radii of curvature of 200 pm for the output
coupler and 100 um for the high reflector result in a maximum coupling efficiency of
96 % at the output coupler between the cavity mode at A\; and the mode of a standard
telecom single-mode fiber with a mode-field diameter of 10 pm (see Sec. 2.4.1). The waist
of this cavity mode is 4.8 pm. Due to the asymmetry of the mirror curvatures, the waist
position is not at the center of the cavity, where the atom is assumed to be trapped,
but the mode radius there is increased to 5.3 pm. The decay rates of the 42Dy /2 state
have been calculated by Safronova et al. [186] and are I'q; = 27 x 1.62 MHz for decay to
the 52P1/2 state and T’ = 27 x 0.30 MHz for decay to the 52P3/2 state. |F"=1; mp=0)
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decays at \; to |F'=1;mp==+1) with a probability of 5/12 each and the matrix elements
of these decay paths have opposite signs, such that 0 = 7 in the intermediate state
(Eq. (5.5)). Inserting these parameters into Eq. (2.7) results in a coupling strength
lgs| = 27 x 70 MHz.

From Fig. 3.28, parasitic losses of 20 ppm per mirror can be inferred for a cavity length
of 75 m at a wavelength of 780 nm. At the larger wavelength Ay, scattering losses due to
microroughness decrease (cf. Eq. (3.10)), but losses due to mirror size increase because of
the larger mode. In total, the losses are expected to be similar and the parasitic losses at
At are assumed to be the same as at A = 780 nm. The transmission of the mirrors can be
freely chosen before the coating process and 10 ppm are chosen for the high reflector and
600 ppm for the output coupler. With these parameters, the decay rate for the cavity
field is kY¢ = 27 x 95 MHz for decay by transmission through the high reflector and an
additional k| = 2m x 8 MHz for decay caused by all other loss channels. The entangling
cavity should support degenerate polarization eigenmodes which can be achieved with
the methods described in Ch. 4.

For later extension to a quantum repeater node, the heralding cavity needs to be long
enough to fit two entangling cavities inside, perpendicular to it (cf. Sec. 5.4 and Fig. 5.7).
A cavity length of 400 pm could accommodate two fiber cavities with a fiber diameter of
125 um and a lateral separation of 200 um. Therefore, the heralding cavity is assumed to
have this length and identical radii of curvature of 500 pm. The mode waist of such a
cavity is 7.9 pm at A\,=795nm. The decay rate on the rubidium Dj-line from 5P, /2 to
5251/2 is Ty = 2 x 5.75 MHz and the relative transition strength from |F'=1; mp=+1)
to |F'=2;mp==£1) is 1/4 each. The matrix elements for both transitions have the same
sign, such that the phase of the intermediate state is unchanged in the final state, i.e.,
6=0=n. Using these values, the calculated coupling strength for the heralding cavity
is gn = 27 x 16.3 MHz.

A fiber cavity with a length of 400 pum is difficult to achieve with the mirrors presented
in Ch. 3, and fiber integration is not necessary for the heralding cavity, because the herald
photon does not need to be transmitted to another location, but can be immediately
detected. Therefore, CO2 laser-machined glass plates are assumed as mirror substrates.
According to Fig. 3.29%, 20 ppm losses per mirror are possible at \,. Together with
10 ppm transmission of the high reflector, this leads to total losses of 50 ppm and a
corresponding field decay rate of HL = 27 x 1.5 MHz. A transmission of 400 ppm for
the output coupler results in k¢ = 27 x 11.9 MHz. This cavity is assumed to have a
large frequency splitting of polarization eigenmodes, with one of the eigenmodes being
aligned to m-polarization with respect to the quantization axis of the system. The other
eigenmode is assumed to be far detuned, such that its influence can be neglected in the
simulation. As discussed in Sec. 4.5 this is not the case if the eccentricity of the mirrors
is the sole cause of frequency splitting, such that additional birefringence would need to
be induced to fulfill this assumption.

2Note that the data in that figure shows a measurement of a half-symmetric cavity. To get the value
for a symmetric cavity of a certain length, the losses of the CO2 laser-machined mirror at half the
length needs to be extracted from that measurement.
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Efficiency

Using these parameters, the system was numerically simulated to calculate the expected
efficiency of the proposed entanglement generation scheme. The interaction Hamiltonian
for the ideal system in rotating wave approximation is:

Higeal /Tt = gt (0c,~1,04 o+ + 041,04 - + hoc.)
+ g ((0-1,,-1, + 041;,41¢) an,r + h.c.) (5.7)

Q
+ 5 (Oge +0ug).

where oy denotes the atomic transition operator from state |y) to state |z), ayy)p, the
photon annihilation operator for the mode with polarization p in the entangling (herald)
cavity, and §2 the two-photon Rabi frequency.

Atomic and cavity decay can be modeled incoherently with the Lindblad superoperator

1
L[Ap] =3 (2ApAT _pATA - ATAp) (5.8)

acting on the density matrix p, the atomic operators

/1 /5 )
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and the cavity operators
Ac = {V2ky aygrs V26 ag o3 V264 ang) - (5.10)

These operators take into account that the level structure of 8Rb contains extra levels not
present in the ideal system. To keep the dimensionality of the Hilbert space manageable,
far-detuned levels were neglected and a dump level |w) was introduced as the final
destination of all atomic decay outside the ideal system. The only levels that could
not be addressed this way were the hyperfine states of the 42Dy /2 state, which have
small hyperfine constants [187] and thus cannot be treated as far-detuned. Due to
the polarization of the control laser and the selection rules of a two-photon process
that is off-resonant from the intermediate state, the hyperfine states with quantum
number F” = 0 and F” = 2 cannot be excited and only the |F"=3; mp=0) = |d) state
can become relevant. This state has a detuning of Ay = 124 MHz [187] from state
|F"=1; mp=0) and can be excited by the two-photon control if it is short and thus has
a high bandwidth. This would reduce the efficiency of the entangled-photon generation,
because this state does not couple resonantly to the entangling cavity. The Hamiltonian
of the system thus has to be modified to account for this state:

(5.9)

ﬁ

Q
Hsys/h = Hideal/h + Ado-d,d + 5 (Ug,d + O-d,g) (511)
The corresponding Lindblad master equation
d i
” = "7 Heyspl + > LA (5.12)
A€(AaUAL)
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Figure 5.3: Expectation value of the output of the entangling cavity (solid blue line) and
the heralding cavity (dashed green line) for two different control pulses. The
control pulse (dotted red line, right vertical axis) is a Gaussian function with a
full width at half maximum of (a) 5.9 ns and (b) 118 ns. For the short control
pulse depicted in (a) the bandwidth of the entangled and herald photon
is limited by the coupling strengths and the bandwidths of the respective
cavities. Spectral and temporal correlations are therefore suppressed. For
the long control pulse depicted in (b) the envelope and bandwidth of the
photon is determined by the control pulse, creating spectral and temporal
correlations between entangled and herald photon (cf. Fig. 5.5). In both
cases, the probability to emit an entangled photon is 1.4 times higher than
the probability to emit a herald photon, mainly because the cooperativity for
the latter process is lower, which results a higher probability for spontaneous
emission. Adapted from Ref. [184].
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was integrated to calculate the independent expectation value of the entangling- and
heralding-cavity output (Fig. 5.3). For short control pulses, the spectral and temporal
properties of the herald and entangled photon are independently determined by the
coupling strength and the bandwidth of the respective cavities. The bandwidth of the
herald photon is therefore different from the bandwidth of the entangled photon and only
weak correlations exist between these properties. For long control pulses, the bandwidth
of the two-photon state is determined by the bandwidth of the control pulse and the
arrival times of the herald and entangled photon are more strongly correlated, because
most of the time the herald photon will be emitted slightly after the entangled photon
(see also Fig. 5.5). In this case, the frequencies of the two photons is also correlated,
because their sum is constrained by the narrow bandwidth of the two-photon state.
The overall success probability py; is the probability that both processes succeed,
i.e., an entangled telecom photon is emitted into the optical fiber and a herald photon
is emitted through the output coupler of the heralding cavity. This probability could
only be extracted from the independent expectation values if the probabilities for both
processes were uncorrelated. However, there are correlations between these processes;
e.g., spontaneous decay of state |e) to a state that does not couple to the heralding
cavity will prevent emission into the entangling cavity as well as into the heralding
cavity. Therefore, a Monte-Carlo wave-function method [188-190] was employed to
investigate correlations between the cavity outputs. From this information, pny = 0.57
was extracted for long control pulses. This value was independent of the length of the
control pulse, except for very short control pulses, which resulted in significant excitation
of the detuned hyperfine state |d) and thus in a reduced efficiency (see Fig. 5.4). For
long control pulses, the success probability is mainly limited by spontaneous decay of
the 52P, /2 state, which prevents the generation of a herald photon (24 % probability),
and parasitic losses in the entangling and heralding cavity (8% and 7% probability,
respectively). Further improvements in the fabrication and coating processes of the COq
laser-machined mirrors could reduce the intrinsic losses of the cavities, which would also
allow higher cooperativities while maintaining the single-sidedness (see Sec. 2.1). This
could increase the efficiency of the scheme to the point where it is almost deterministic.

5.2.3 Fidelity

The protocol requires the atom to be initialized in |g), which can be achieved by optical
pumping. There is no fundamental limit how well the state can be prepared and a detailed
comparison of the various strategies that could be employed for optimal preparation is
beyond the scope of this work. Therefore, it is assumed that initialization is perfect, i.e.,
in every trial the state |g) is prepared with unit efficiency. As further assumptions, the
two-photon control is far detuned from |k), such that no state besides those considered
can be excited, and the hyperfine splitting of the intermediate state |i) is much larger
than the bandwidths and coupling strengths of the cavities, which is the case for 52P; /2
and the parameters listed above. If these conditions hold, the fidelity of the intermediate
state with the ideal state |¥1) only depends on the geometry of the system, and a fidelity
very close to unity should be possible. The correct mapping from the intermediate state
to the final state is heralded by the emission of a m-polarized herald photon at wavelength
An- The probability for such an event to be a dark count of the detector is negligible
when state-of-the-art detectors are used, because a very short interval of interest can be
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Figure 5.4: Overall success probability ppt (blue dots and solid line, left axis) and expected
contrast in a two-photon interference experiment (green crosses and dashed
line, right axis, see Sec. 5.2.4) as a function of the full width at half maximum
(FWHM) of a Gaussian control pulse. For each point, the amplitude of the
control pulse was set to the minimum value that depletes the initial state,
using a threshold of < 1% remaining population. The results of numerical
simulations (dots and crosses) haven been connected by lines to guide the eye.
The efficiency is close to constant for long pulses, but drops for very short
pulses. The reverse is true for the contrast and the best working point to
optimize both values is between 5ns and 10ns FWHM of the control pulse.
In the following the value 5.9 ns will be used for the FWHM of the control
pulse. Adapted from Ref. [184].

selected and the efficiency to get a photon out of the cavity in this interval is high. A
selection on those events with a detection of a herald photon of the correct polarization
should therefore result in a very high fidelity for the final entangled state between the
photon at A; and the atomic state. Nevertheless there are effects that could potentially
deteriorate the fidelity, although they are of marginal importance for the particular
implementation and parameters chosen here.

Free-space decay

Any excited atom-cavity system with finite cooperativity has a chance for decay of the
atomic state via free-space emission. This disrupts the ideal protocol and might result in
the creation of a state different from the desired one. However, in most of the cases, no
telecom photon or no herald photon is emitted from the cavity and the lack of a detection
of either signals an error that can be used to discard the atomic states. This results in
a reduced efficiency but not a reduced fidelity, such that only erroneous processes that
result in the creation of at least one telecom photon and one herald photon can affect
the fidelity. Such processes can occur if the intermediate states |+1); can decay back to
the initial state |g) or any other state that can be excited by the two photon control. In
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5.2 Entanglement generation at telecom wavelength

that case there is a chance to create a second or even multiple telecom photons, resulting
in an undesired multi-photon entangled state. Because the atomic part of this state can
contain a contribution of the intermediate states |£1);, this state can be accompanied
by a correctly polarized herald photon and can therefore not be discarded by selection.
In principle, the presence of multiple telecom photons could be detected, but especially
after transmission through a lossy channel, a fraction of these events cannot be detected.

There are two possibilities to minimize multi-photon events. First, an implementation
should be chosen in such a way to minimize decay from the intermediate states to the
initial state, such that with high probability, spontaneous emission puts the atom in a
state that cannot be excited by the control lasers. Second, the protocol can be executed
quickly compared to the duration of atomic decay, such that in most of the cases the
control lasers are already turned off when spontaneous decay occurs and the atom cannot
be reexcited. In the limit of fast excitation, for example with a picosecond pulsed laser
[191], multi-photon events would be eliminated. However, if the pulse is too short, any
possibility of influencing the temporal envelope of the generated photons with the control
lasers disappears, and the pulse might get too spectrally broad. This would result in the
excitation of detuned states, like |d), which do not couple to the entangling cavity, and
thus in reduced efficiency.

The Monte Carlo wave-function method was used to estimate the amount of multi-
photon contributions for the particular implementation and parameters described in
Sec. 5.2.2 and a short control pulse with a full width at half maximum (FWHM) of
5.9ns. An upper bound was obtained by assuming the worst case, which is the dump
level being equal to the initial state, i.e., all decay to the outside of the simulated system
ends up in a state that can be efficiently excited by the control laser. A comparison
of the number of desired quantum trajectories to the number of those resulting in the
generation of multiple telecom photons and at least one herald photon, yielded a bound
of less that 0.4 % for events that can not be discarded by selection on correct herald
photons. In the realistic case, not all decay will end up in a state that can be efficiently
excited, so the real fraction of multi-photon events is expected to be even lower.

Second polarization mode

So far, the second polarization mode of the heralding cavity has been assumed to be far
detuned. If this is not the case and the second polarization mode is near-resonant or even
degenerate, it can enhance decay of the intermediate state |¥); to a state that contains
the mp = 0 Zeeman sublevel and, in case of F' > 2, the mp = £2 Zeeman sublevel of
|f). This process emits a photon with a linear polarization perpendicular to 7 into the
cavity, which can be detected and selected against. A degenerate second polarization
mode therefore obviously reduces the efficiency. In addition, it also introduces a state-
dependent probability for the generation of m-polarized herald photons and thus reduces
the fidelity of the final state.

To show the mechanism and calculate the size of this effect, the intermediate state
|[¥1) (Eq. (5.5)) is rewritten in a linear polarization basis for the entangled telecom
photon:

1) = o (W10 + [10) (5.13)
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with

W) = 5 1), (=1 = +1))
1 (5.14)
“Ijl,V> = \ﬁ ‘V>t (‘_1>i + |+1>i) :
Here, it is assumed that the phase 6 = 0 = m, results for the other possible phase
combinations are analogous.
The polarization eigenmodes of the heralding cavity are assumed to be polarized along
m and V. H-polarization is then parallel to the heralding cavity axis, i.e., the longitudinal
polarization, and is not supported by the cavity. The worst case is degeneracy between
these polarization eigenmodes, which results in the same enhancement factor of the
heralding cavity for each decay path, such that the final state is determined just by the
relative transition amplitudes a), b"), and ¢\) (see Fig. 5.1). Because free-space decay
is isotropic, it can never result in a state-dependent decay probability. Therefore, it is

assumed to be insignificant in the following calculation of the worst case. Under these
assumptions, |¥1) decays to |¥3) = 1/v2 (|¥3n) + |¥3v)) with

1
Vo) = —ap e
VIl oy o LR
| I (01-1) - ¥ 141 (515)

+ \}i [V (cl=2); + ¢ [+2); + (a4 a) |0);)

and
1
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VIEE b2 4 b2 4 B
| w0113 - 0 41 (516)

+ =V (el=2) +¢ 142+ (a =) 0)) |

Due to the symmetry of Clebsch-Gordan coefficients, a’ = +a, b/ = b, and ¢/ = +c¢
and the choice of basis states is such that all transition amplitudes are real. If a’ = +a,
the term a — a/ = 0 vanishes and |¥; y) does not decay to |0); via the heralding cavity,
because of destructive interference, while the heralding cavity enhances the decay from
|1 u) to |0);. In that case, |¥1y) has a higher probability to emit a 7-polarized herald
photon, because it has less decay paths than |V ;). If a’ = —a, the situation is reversed,
and |Uy ) is more likely to emit a correctly polarized herald photon. In either case, a
state dependency of the emission is introduced, which results in unequal amplitudes
of the final entangled state upon selection on events with a m-polarized herald photon.
Therefore the final state cannot be maximally entangled, but its entanglement depends
on the value of the transition amplitude |a| compared to |b| and |c|.

To quantify the reduction in fidelity, the case a’ = a, b’ = b, and ¢ = c is explicitly
calculated. All other cases can be calculated the same way with the same result for
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the fidelity reduction. The normalized final state |¥3) selected on the emission of a
m-polarized herald photon is

—

W3) = —= (7l ([¥s.m) + [¥3v))

-5

(V282 | H), (|-~ [+1)) + V262 + 207 + 2 [V), (|- + [ +1),)]
(5.17)

where N and N = 4(a® + 2b? + ¢?) are normalization constants. This state is not
maximally entangled, but has a reduced fidelity with the ideal final state |¥3) of

1 1+/(2a% + 2b2 + ¢2) (2b% + 2)
F = [(W|W3)[* = 2+2\/ pER TR : (5.18)

A fidelity close to unity is reached if |a| is small compared to |b| and |c|. This is the
case for the transition from 52P ;5 |[F'=1) to 525 ;o |[F'=2) in ®*"Rb that is used in the
implementation proposed in the previous section. There, a = a’ = —1, b=V = /3, and
¢ = ¢ = —+/6 and the resulting reduction in fidelity is 1 — F' = 0.15 % in the worst case
of the heralding cavity having degenerate polarization eigenmodes. For implementations
with different transitions, the effect can be worse. For example the transition from
5P )5 | F=1) to 528 5 |[F'=1) for the same isotope has a = —a’ = =1, b= —b' =1, and
c=c =0, and a corresponding fidelity reduction of 1 — F = 2.9%.

The size of the effect decreases with increasing detuning of the second polarization
mode of the heralding cavity and vanishes if it is far detuned. This is also the condition
for maximum efficiency, such that for optimum performance, the frequency splitting of
polarization eigenmodes should be as large as possible.

5.2.4 Indistinguishability

Once entanglement has been created between a single atom and a telecom photon, the
entanglement must be distributed to provide heralded entanglement between remote
nodes. This could be either achieved by heralded storage of the entangled photon at the
remote node [37] or by an optical Bell state measurement on the polarization of two
telecom photons entangled with an atom at their node of origin [192, 193]. So far, no
scheme has been found to implement the former efficiently with telecom photons and
alkali atoms, so entanglement distribution has to be implemented with the latter method.
An optical BSM is based on two-photon interference at a beam splitter and only provides
the correct result if the photons are indistinguishable in their temporal, spectral, and
spatial properties. It has been shown that photons from spatially separated sources with
single atoms in optical cavities interfere under exactly controlled experimental conditions,
with the contrast limited by the movement of the atoms [194]. This limitation would be
reduced with photons that have a duration of a few nanoseconds, which is much shorter
than the inverse of typical trap frequencies of less than 1 MHz, and could be eliminated
with atoms cooled to the ground state [86]. I should therefore be possible to generate
indistinguishable photons with a scheme similar to the one presented in Ref. [194].
However, the cascaded scheme for entanglement generation poses the additional
challenge that the herald photon at each node can potentially reveal information about
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the temporal or spectral properties of the corresponding entangled telecom photon, which
allows to determine the source of a telecom photon and renders telecom photons from
different sources distinguishable. Cascaded decay via two photons in free space will result
in strongly correlated arrival time distributions for the two photons, because the photon
created by the second part of the cascade can never be emitted before the photon emitted
by the first part, but will, in most of the cases, be emitted with a short delay. The first
photon therefore has an exponentially rising envelope up to the detection time of the
second photon, when conditioned on the arrival time of the latter [195]. If the heralded
entanglement generation scheme would be implemented without cavities, it would, for
example, be possible to exclude that a telecom photon emitted after a herald photon
came from the same source, thus revealing that it was generated by and is entangled
with the other node. In that case the photons would be perfectly distinguishable and
would not interfere, such that no entanglement is created between the remote nodes. The
problem could be circumvented by imposing the additional condition of similar detection
time to the herald photons and discarding all events where this was not the case. This
would, however, severely limit the efficiency.

The correlation between the emission times of herald and entangled telecom photon
can be at least partially erased by the cavities, because the cavity does not immediately
decay after a photon has been emitted into it but stores the photon on average for one
lifetime of the cavity. If the lifetime of the heralding cavity is much longer than the
duration of the wave packet of the entangled telecom photon, the arrival-time distribution
will solely depend on the properties of the heralding cavity and not be correlated with
the arrival time of the telecom photon. In that case, the detection time of the herald
photons contain no information about the temporal properties of the telecom photons
and distinguishability by that criterion is prevented. This would be ideally implemented
by a short entangling cavity with large coupling strength to the atom that quickly decays
in combination with a short control pulse to generate a telecom photon with a narrow
envelope in time. The heralding cavity should have a longer lifetime, which can be
achieved by increasing the cavity length.

Numerical calculation of the photon indistinguishability

As a measure for the indistinguishability of the telecom photons generated by the cascaded
entanglement scheme for the parameters given in Sec. 5.2.2, the expected interference
contrast C' in a Hong-Ou-Mandel experiment [194, 196, 197] was calculated. This required
knowledge of the arrival time distribution of the telecom photons, conditioned on the
detection time of the herald photons. The Monte-Carlo wave-function method was used
to simulate a large number of arrival-time pairs. To estimate a smooth distribution of the
events as a function of the arrival time of herald and telecom photon, the simulated data
was processed with a kernel density estimator [198, 199]. A two-dimensional Gaussian
function was chosen as the kernel with the bandwidth set to 6k and 6y, for the axis
corresponding to the arrival time of the telecom and herald photon, respectively. As the
output of a kernel density estimator depends on the bandwidth of the kernel if the dataset
is finite, the bandwidth was chosen to be larger than the bandwidth of any process
occurring in the system, such that the resulting distribution is likely undersmoothed,
in order to derive a lower bound for the indistinguishability. The resulting density
function was evaluated at different arrival times of the herald photon to generate the
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Figure 5.5: Envelope of a telecom photon entangled with the atom conditioned on the
detection of an early (dashed blue line), average (solid gree line), and late
(dotted red line) herald photon. The insets show the unconditional probability
for detection of a herald photon with these detection times marked in the
respective line style. (a) Control pulse with a FWHM of 5.9ns (cf. Fig. 5.3a)
with herald detection at 15ns, 22ns, and 35ns (all times are relative to the
times axes of Fig. 5.3). Correlations between arrival time of the herald photon
and the telecom photon are weak, therefore the resulting telecom photons
are near-indistinguishable. (b) Control pulse with a FWHM of 118 ns (cf.
Fig. 5.3b) with herald detection at 125ns, 175ns, and 225ns. There are
strong temporal correlations between herald and telecom photons, such that
the latter can be distinguished if the arrival time of the former is different.
The dotted red line shows signs of undersmoothing due to finite sample size.
The oscillations of the photon envelope are caused by Rabi oscillations with
frequency 2gy,.

conditional arrival time distributions of the telecom photons. Examples for a short
and a long control pulse are shown in Fig. 5.5. The short control pulse resulted in a
telecom photon with a duration shorter than the lifetime of the heralding cavity, resulting
in nearly indistinguishable photons. In contrast, when the situation of a long control
pulse was simulated, the envelope of the generated two-photon state had a much longer
duration than the lifetime of the cavity (see Fig. 5.3). Projecting this two photon state
by detecting one of them, also projects the arrival time of the other photon, resulting in
very narrow conditional distributions such that telecom photons can be distinguished if
the respective herald photons are detected at different times.

From the conditional probability distributions, the contrasts conditioned on a detection
of the herald photons at specific times can be calculated. An average over these contrasts
weighted by the arrival time distribution for the herald photons yields the average contrast
C. The fidelity of a remote entangled state created by an optical BSM is F' = %(1 +C)
[200], under the assumption that no errors are introduced by other processes.

The expected average contrast was calculated for Gaussian control pulses of different
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Figure 5.6: (a) Proposed experimental setup at one node to perform entanglement
swapping. Two atoms are simultaneously coupled to the mode of the heralding
cavity. A single photon source, which could be another single atom coupled to
a cavity, produces a single photon that is reflected off the resonant heralding
cavity and detected afterwards. Detection of this auxiliary photon heralds
the success of the gate. (b) Circuit diagram of the entanglement swapping
protocol. The aforementioned setup equals a controlled-Z gate between
the two atoms at the repeater node. This gate combined with single-qubit
Hadamard gates (H) and state-detection of the atoms at the repeater nodes
forms an entanglement swapping protocol. The resulting two-atom state
between atoms at the two outer nodes is one of the four Bell states, which
can be mapped to a specific Bell state with single-qubit rotations (X and Z)
that depend on the outcome of the state detection.

width and is compared against the expected efficiency in Fig. 5.4. For long control pulses,
the efficiency is high, but the indistinguishability is reduced, because of correlations
between arrival times. For very short control pulses, there is little correlation between
arrival times, resulting in near-indistinguishability of the generated telecom photons and
high contrast regardless of the arrival time of the herald photons, but the efficiency is
low. For the considered parameters, control pulses between 5ns and 10 ns are optimal,
because both efficiency and contrast are near their respective maxima. At a control
pulse FWHM of 5.9 ns, a contrast of C' = 0.97 can be reached with efficiency pp; = 0.54,
which suggests that fidelities close to 0.99 should be efficiently possible with the realistic
parameters described in Sec. 5.2.2.

The fidelity could be further improved at the cost of efficiency by selecting on events
with close arrival times for herald and telecom photons, because the duration of the
telecom and herald photon exceeds the timing resolution of most commercially available
single-photon counters. In the limit of stringent selection on identical arrival times for
either the herald or entangled photons and if there is not other effect that renders the
telecom photons distinguishable, a contrast of unity could be reached.

5.3 Entanglement swapping

The key idea of a quantum repeater is to perform entanglement distribution over
independent links, store the entanglement in quantum memories until success on every
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link, and then use entanglement swapping to create entanglement between the end points
of a link chain. This requires at least two entanglement distribution links to remote
nodes for each repeater node. Entangling cavities based on fiber mirrors have a small
enough size that a parallel pair fits into a heralding cavity with the parameters described
in Sec. 5.2.2, with their axes perpendicular to the heralding cavity axis and a single
atom trapped in each entangling cavity in such a way that they both couple to the
heralding cavity (see Fig. 5.6a). This allows to use the heralding cavity for heralding
the entanglement creation in both entangling cavities, if a control pulse is applied to
each atom in an alternating pattern while the other atom is detuned, for example by
applying a local light shift. With this setup it is possible to perform the entanglement
generation and distribution schemes outlined in the previous sections individually to
each atom until they have succeeded for both.

Entanglement storage

Once entanglement has been created, it needs to be stored. The energy difference between
the Zeeman substates |—1); and |+1);, which form the atomic part of the final state
of the entanglement generation scheme (Eq. (5.6)), is susceptible to fluctuations of the
effective magnetic field [201], which limits the coherence time of this state. To extend the
possible storage time, the atomic part of the entangled state can be transferred to states
that have similar energy shifts when exposed to magnetic fields and are thus much less
sensitive to magnetic field fluctuations [202]. A state-selective, high-fidelity microwave
or Raman pulse could be used to transfer one of the Zeeman states (e.g., |—1);) to the
other hyperfine ground state with the same mp, such that the atomic qubit is encoded
in the states |0) = |F=2;m¢=+1) and |1) = |F=1;my=—1). The Zeeman shift of these
two states is equal to first order, when a moderate magnetic field of about 3.23 G is
applied, which extends the possible coherence time to several seconds [38, 39].

Atomic Bell-state measurement

To complete entanglement swapping, a mechanism to detect the collective Bell state of
the two quantum memories is required. For a quantum repeater, the efficiency of the
entanglement swapping scheme is crucial, because an entanglement swapping attempt
might be at the end of a time-consuming entanglement build-up, all of which would have
to be repeated if the entanglement swapping attempt fails. In principle, it would be an
option to map the atomic state to a photonic state and then perform an optical Bell
state measurement (BSM). However, this requires two potentially inefficient mapping
processes and photon detections and is intrinsically limited to an efficiency of 50 %,
because an optical BSM using linear optics cannot discriminate between the Bell states
|®~) and |®T) [203]. Tt is therefore more efficient to perform the BSM directly on the
atoms. The heralding cavity, which can couple to both atoms, is an obvious choice to
provide an interaction mechanism to perform that collective measurement and multiple
schemes to perform a cavity-mediated two-atom quantum gate have been proposed
[204—206]. Of these, the gate based on the reflection of a single photon from the cavity
[36, 205] is the most suitable, because it requires a single-sided cavity and can operate
with high efficiency even in the intermediate coupling regime [36]. The gate is based
on the mechanism that the reflected photon introduces a phase shift of 7 if the cavity
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does not couple to an atom, but no phase shift if the cavity is resonantly coupled to
an atom with sufficiently high cooperativity. Of the states |0) and |1) described above,
only |0) couples to the m-polarized cavity mode resonant with the transition from |f)
to |i) (compare the level scheme in Fig. 5.2). The reflected photon only introduces a
phase shift of |r), if both atoms are in |1), because in any other case at least one atom
is resonant with the cavity and no phase shift occurs [43]. The reflection of a photon is
therefore equivalent to a controlled-Z quantum gate between the two atoms.

With this controlled-Z gate, single-qubit rotations by microwave or Raman pulses,
and cavity-assisted, hyperfine-state detection [48, 56], the quantum circuit for entangle-
ment swapping depicted in Fig. 5.6b can be implemented. The Hadamard single-qubit
rotations and the controlled-Z gate map the four Bells states onto four separable atomic
states, which can be unambiguously detected with hyperfine-state detection performed
individually on each atom. After this operation on two atoms at a repeater node that
were entangled with two atoms at remote nodes, the latter are entangled and in one of
the four Bell states, depending on the result of the state detection. This results also
indicates which single-qubit rotations to apply at one of the remote nodes in order to
obtain the same Bell state in every attempt.

Efficiency

The controlled-Z gate fails if the photon is not reflected by the cavity, either because it
never arrived there, or because of parasitic losses in the cavity. These cases can be ruled
out if the photon is detected after reflection, which can thus be used as a herald for the
successful operation of the gate. If all events without detection of the reflected photon
are discarded, which will be necessary to reach high fidelity with realistic parameters,
a photon-detector efficiency 7, below unity will further decrease the efficiency. The
efficiency of the entanglement swapping protocol is therefore

Pes = ppnhRavg (5.19)

Here, p;, is the probability of a photon arriving at the cavity, which is given by the
efficiency of the single-photon source including possible transmission losses. Rayg is the
reflectivity of the heralding cavity, averaged over the possible number of atoms that are
resonantly coupled to the cavity. During the BSM, both atoms are equally likely to be
in |0) or |1), such that

1
Ravg = Z (Rg +2R; + RQ) , (5.20)

where Ry, R1, and Rs are the reflectivities if the cavity is empty, or is coupled to one or
two atoms, respectively. These values account for the probability of the photon being
lost, either by spontaneous emission or because of cavity decay via any other path than
the output coupler. These losses are minimized if the coupled atom-cavity system has
high cooperativity and the transmission of the output coupler is dominant compared to
all other losses. In the limit of a perfectly single-sided cavity and infinite cooperativity,
the efficiency reaches unity. To calculate the expected efficiency for the proposed system,
the parameters listed in Sec. 5.2.2 are used. The coupling strength for the heralding
cavity gn has to be modified, because in a system with two entangling cavities and two
atoms, the atoms cannot be both trapped at the center of the heralding cavity. Instead,
it is assumed that the atoms are trapped on the heralding cavity axis, £100 pm from
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its center. At these points, the cavity field is weaker than at the center, reducing the
coupling to g, = 15.1 MHz. These parameters result in Ry = 60 %, R; = 55%, and
Ry =73 %. The average of these values over all possibilities is Rayg = 61 %.

For the detection efficiency, a value of n, = 80 %, is assumed, which can be achieved
with current technology [207]. Single atoms trapped in optical cavities are also highly
efficient single photon sources [208] and with optimized parameters, efficiencies exceeding
Pp = 80% can be easily reached (compare Fig. 2.3). Single-qubit rotations and state
detection of atomic states can be implemented in such a way to give a result in every
trial and therefore have an efficiency of unity. The total success probability of the
entanglement swapping process is therefore pos = 39 %

Fidelity

A state-dependent reflectivity of the cavity and selection on the detection of a reflected
photon can distort the amplitudes of a quantum state and lead to a reduced fidelity.
The worst case is an equal superposition of those atomic states that have the highest
reflectivity differential. With the parameters listed above, |¥) = (|00) 4 [01)) /v/2 is an
example for such a state. The gate would map this state to the state

\/m (\ﬁ\oo + /Ry |01) ) (5.21)

The fidelity of this state with the ideal state is

) =

2

F_’<\I/]\i/>‘2_‘(1(00]+ (01]) (f\oo +\ﬁ|01)

2(R2 + Ry)

(VR + VR))
- 2Ry + 2R, '

(5.22)

The reflectivity is determined by the single-sidedness of the cavity and the cooperativity
of the system. With these two parameters the reflectivities Ry and R; can be tuned
to the same value. However, for a finite cooperativity, R and Rs differ, such that this
reduction of fidelity is intrinsic to the scheme. Only in the limit of infinite cooperativities,
R and Ry both approach unity and the difference vanishes. Nevertheless, the effect can
be minimized if the cooperativity is high and even a significant difference has only a small
effect. For the parameters listed above with a 18 % difference in reflectivity, the reduction
in fidelity by this effect is at most 0.5%. The detection of the individual hyperfine
state of the atoms could potentially introduce additional errors, but these should be
small because the atoms are assumed to be separated by 200 pm, are therefore easily
addressable with laser beams, and cavity-assisted state-detection of hyperfine states has
been shown to reach fidelities very close to unity [48]. Errors will therefore be mainly
technical, with the most important error source being the mode matching between the
mode of the incident auxiliary photon and the cavity mode [36]. The heralding cavity is
assumed to be based on laser-machined glass plates, for which the mode can be matched
in free space with an unrestricted number of optical elements. Therefore, mode-matching
close to unity and a high-fidelity implementation of this entanglement swapping protocol
should be possible.
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Figure 5.7: Scheme for a quantum repeater with two elementary links (N = 2), i.e., two
end nodes and one central repeater node. Entanglement generation between a
single atom and a telecom photon according to the scheme discussed in Sec. 5.2
is performed concurrently in every entangling cavity (red). Herald photons
in the near infrared are collected by the herald cavities (blue). The telecom
photons are interfered at a beam splitter to perform entanglement distribution
via photonic Bell-state measurements. The herald cavities are used to perform
an atom-atom gate mediated by the reflection of a photon generated by a
single-photon source (SPS). Together with single-qubit rotations and state-
detections, this gate implements entanglement swapping between the atoms
(Sec. 5.3). The grayed-out cavities and arrows indicate the possibility to
extend the system with further repeater nodes. From Ref. [184].

5.4 Quantum repeater performance

The protocols for entanglement generation, entanglement distribution, and entanglement
swapping described in the previous section can be combined to a quantum repeater
protocol (see Fig. 5.7). The elementary unit of this scheme is a quantum repeater node
that consists of two atoms, each coupled to a telecom-wavelength entangling cavity, and a
perpendicular heralding cavity that couples to both atoms. An elementary link between
neighboring nodes is formed by an optical BSM, i.e., the interference of two telecom
photons from these nodes at a beam splitter and detection with a polarization-sensitive
setup. Two links connecting two end nodes with one repeater node form the most simple
implementation of the proposed repeater protocol. The scheme can be easily extended
by inserting identical additional repeater nodes and thereby increasing the number of
links. In the following, the performance of such schemes with realistic parameters (see
Tab. 5.2) will be analyzed and compared to the situation without repeater nodes.
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Parameter Symbol Assumed Value

Entangling cavity Herald cavity

Radius of curvature (output coupler) Roc 200 pm 500 pm
Radius of curvature (high reflector) Ry, 100 pm 500 pm
Cavity length L 75 pm 400 pm
Transmission (output coupler) Toe 600 ppm 400 ppm
Parasitic losses T + L 50 ppm 50 ppm
Coupling efficiency to fiber mode € 96 % -
Photon-detector efficiency n 80 % 80 %
Distance atom—center of cavity de 0pm 100 pm
Single-photon-source efficiency Dp 80 %

Cycle time between attempts teye 100 ps

Speed of light in fiber cf 2 x 10° kms™!
Attenuation length of fiber Latt 22 km

Table 5.2: All parameters that have been assumed for the calculation of the repeater
performance. All other parameters are derived from these and the properties
of 8"Rb.

5.4.1 Success rate

For successful entanglement distribution between adjacent nodes, first a telecom photon
and a herald photon needs to be generated at each node, which happens with probability
prt- As a compromise between efficiency and indistinguishability (Fig. 5.4), a control
pulse of 5.9ns FWHM duration is assumed, which results in py; = 0.53 when the reduced
coupling of the heralding cavity to atoms not trapped at its center is accounted for.
Second, detection of the herald photons with probability 7, needs to be successful. As
in Sec. 5.3, a photon detection efficiency of n, = 0.8 is assumed. Third, the optical
BSM needs to be successful. Conditioned on two incident photons, this probability is
n?/2, where n; is the detection efficiency for the telecom photons, which is assumed
to be 1, = 1, = 0.8 The factor 1/2 accounts for the inability to distinguish the ®+/—
Bell states in an optical BSM, such that only those trials can be considered successful
where one of the U1/~ states has been detected. The total probability for successful
entanglement distribution ignoring attenuation in the fiber links is therefore

1
Po=3 (Premume)” (5.23)

which is pg = 5.8 % for the parameters given here.
With this number and Eq. (5.3), the expected number of trials (Zx) to generate N
entangled pairs can be calculated. If the entanglement swapping scheme was successful
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5 A quantum-repeater scheme at telecom wavelength

in every trial, this number would be equal to the expected number of attempts (ny)
until the entire protocol has succeeded and one entangled pair has been created between
quantum memories at the end nodes. However, the proposed entanglement swapping
mechanism has a failure probability 1 — pes. Because the mechanism is heralded, this
failure can be detected, but the involved entangled pairs have to be discarded and
entanglement has to be reestablished, which increases the expected number of trials.
The exact size of that increase depends on the strategy when entanglement swapping is
attempted and two different strategies will be considered in the following.

The first strategy is to build up entanglement until all N pairs are entangled and then
perform N — 1 entanglement swapping attempts. If all attempts succeed, one entangled
pair is created. If one or more attempts fail, all entangled pairs are discarded and the
protocol is restarted from the beginning. With this approach, the expected number of
trials to create one entangled pair is

(nN) = ~x—1 (5.24)

The other considered strategy takes the opposite approach. Instead of delaying all
entanglement swapping attempts until the end, each entanglement swapping step is
attempted as soon as the necessary entangled pairs have been generated. If that attempt
fails, only the involved pairs are discarded and all other entangled pairs are kept. For
N = 2, these strategies are obviously equivalent, because there is only one entanglement
swapping attempt involved. However, for IV > 2, the second strategy results in a larger
average number of entanglement distribution attempts for each instance of the protocol.
However, each instance of that protocol will succeed eventually, thereby reducing the
total number of trials to generate an entangled pair. It is difficult to find a closed-form
expression for (ny) in this case, because the entanglement swapping process can fail
repeatedly, which leads to an infinite amount of possibilities of how the protocol can
succeed. Therefore, a Monte Carlo simulation of the protocol was performed for N =4
and different values of the total distance L with 10 runs per calculated point, and (n4)
was determined by extracting the mean number of trials from the generated data (see
Fig. 5.8).

To convert (ny) into the expected duration of the protocol (Tx), it was assumed that
the protocol is perform synchronously at every node with a fixed duration for every
attempt and the atom is cooled and repumped with a sequence of duration 7 after each
trial. In that case the expected time until the protocol succeeds over distance L = N L
is

Ct

(T) = (nn) (LO + 7) (5.25)

For a typical propagation speed of light in optical fibers ¢ = 2 x 10°kms~! and a
conservative estimate of 7 = 100 ps for the time necessary to cool and repump the atom,
the possible repetition rate over long distances is limited by the communication time
Lo/cs. For example, with these parameters, the repetition rate at Ly = 80 km is limited
to 2kHz, although the time allocated for cooling and pumping the atom would allow a
repetition rate of 10 kHz.

In principle, the protocol does not need to be synchronized at each node and the
timings could be dynamically adjusted to minimize the time between attempts. For
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Figure 5.8: Probability density distribution for successfully generating an entangled pair
as a function of the protocol duration, for the case of attempting entanglement
swapping as soon as possible and keeping uninvolved pairs in case of failure.
The distribution was calculated by a Monte Carlo simulations for N = 4
and L = 99km using 10° simulated runs of the protocol. The red vertical
line marks the expectation value. Due to the long tail of the distribution,
the expectation value is larger than the median value, with 63 % of the runs
having a shorter duration than the expected value. For comparison, the cyan
dashed line marks the expected protocol duration for the other entanglement
swapping strategy under the same conditions, which results in an entangled
pair only in 5.9 % of the cases.

example, the atom could be immediately cooled and repumped if the entanglement
generation process did not result in a successful detection of the herald photon, and
it would not be necessary to wait for the result of the photonic BSM. However, such
dynamical adjustments would need to be communicated to the other node, such that the
telecom photons arrive at the same time and interfere at the place of the photonic BSM.
Such adjustments would therefore also be limited by the communication time with little
potential gain.

The inverse 1/(1x) of the expected duration to generate one entangled pair between
the memories at the end nodes was calculated for different total distances L, using the
parameters listed in this section. The resulting expected entangled pair rate is shown in
Fig. 5.9 for N =1, N =2, and N = 4. For the latter, the different strategies of keeping
or discarding entangled pairs when entanglement swapping fails are also compared. The
calculation for NV = 1 corresponds to entanglement distribution with only one elementary
link and no repeater node between the end nodes. It serves as a reference for the third
performance criterion listed in Sec. 5.1.1, which was the comparison of a repeater system
with and without repeater nodes. This direct entanglement procedure has reduced
overhead compared to repeater protocols and is thus the best-performing protocol if
the distance is short. The addition of one repeater node increases that overhead, but
improves the scaling as outlined in Sec. 5.1 and breaks even at 41 km total distance. At
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Figure 5.9: Expected rate of entangled pairs at end nodes separated by total distance
L. The blue dashed line indicates the situation without repeater, which
corresponds to N = 1. The green solid line denotes the situation with one
repeater node (N = 2). The remaining two lines both indicate N = 4,
with the red dashed line corresponding to restart from the beginning on
failure of entanglement swapping and the brown dash-dotted line denoting
entanglement swapping as soon as possible and keeping entangled pairs if
possible. The protocol with no repeater node has a lower overhead and is
therefore the best strategy for short distances. Protocols with more repeater
nodes have a higher overhead, but better scaling, such that they are clearly
superior over a larger distance. From Ref. [184].

a separation of 100 km, the repeater protocol with one repeater node is clearly superior
and generates entangled pairs approximately four times faster than direct entanglement.

Extending the repeater protocol to the next swap level requires three repeater nodes
and four elementary links. Such a system would outperform the single-repeater-node
system after 150 km and would lead to a performance improvement over the N = 1 case
of 14 at this distance. If entangled pairs are not all discarded after a failed entanglement
swapping attempt, but uninvolved entangled pairs are kept, the entangled-pair rate
increases by another factor of approximately 2.4. As a result, the addition of two
additional repeater nodes already leads to an improvement after a distance of 82 km if
this strategy is chosen.

5.4.2 Required memory time

The analysis of the entangled-pair rate suggests that any repeater implementation could
beat direct transmission if the total distance is long enough. However, increasing the
distance also increases the time the quantum memories have to store the entangled
pairs. Realistic implementations will suffer from decoherence of the stored quantum
states, which will limit the maximum duration of the repeater protocol. It is therefore
important to consider the expected required storage time, i.e., the interval between the
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5.4 Quantum repeater performance

generation of the first entangled pair that contributes to the final state and the successful
completion of the protocol. This time must be compared to the coherence time of the
quantum memories to estimate whether the latter is sufficient to enable completion of
the protocol without excessive degradation of the stored state. It is assumed that all
memories decohere equally and it does not matter whether an entangled pair is stored
at its original location or has been transferred to another memory by entanglement
swapping.

If the protocol is restarted from the beginning whenever an entanglement swapping
attempt fails, the expected required storage can be calculated by employing Eq. (5.3)
and the repetition rate. Once the first entangled pair has been generated and is stored
in quantum memories suffering from decoherence, N — 1 entangled pairs still have to be
generated in a repeater protocol consisting of N elementary links. This does not account
for the case that two entangled pairs are generated in the same attempt, which would
be 3 x 1072 for the parameters considered here and L = 0 and exponentially decreases
further with increasing distance. This case is therefore neglected. The expected number
of cycles (my) the first entangled pair has to be stored is therefore

(mn) = (Zn-1) + 1, (5.26)

where the additional cycle accounts for the trial that it takes to generate the first
entangled pair itself. Analogous to Eq. (5.25), this number of cycles can be converted
into time by multiplying it with the time allocated for one attempt.

The analysis is more complicated if only the pairs involved in a failed entanglement
swapping attempt are discarded, because any generated entangled pair might be discarded
later on and thus might not have to be stored until the end of the protocol. Therefore,
(my) was extracted from the Monte Carlo simulations of the repeater protocol that were
used to calculate (n4). For each run, the required storage time was the interval between
the simulated generation of the first entangled pair that was never discarded and the end
of the protocol. The expectation value was calculated as the average over 10% runs. A
bootstrap [209] was performed on the calculated values to estimate the 95 % confidence
interval to be smaller than 4-0.2 %.

The results for N = 2 and N = 4 with both entanglement-swapping strategies are
shown in Fig. 5.10. The single repeater node requires a storage time of 59 ms (980 ms) for
a total distance of 100 km (200 km). Increasing the number of repeater nodes increases
the overhead, such that a larger storage time is required for short distances, but improves
the scaling for longer distances. Three repeater nodes decrease the required storage
time at the two distances mentioned above to 53 ms and 260 ms if uninvolved entangled
pairs are kept in case of a failed entanglement swapping attempt. A further decrease is
possible by discarding all pairs in case of a failed entanglement swapping attempt, which
limits the duration of the protocol and cuts the required storage time by a factor of
2.4 for the considered parameters, resulting in 22 ms and 110 ms for 100 km and 200 km,
respectively.

The two strategies when to perform entanglement swapping are not the only possibilities
how entangled-pair rate can be traded against required storage time. For example, a
limit to the number of attempted entanglement swapping attempts could be imposed
to cut the long tail of the distribution (compare Fig. 5.8). As an alternative, a time
limit could be set at which the protocol terminates if it has not been successful yet.
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Figure 5.10: Expected required time an entangled pair needs to be stored in quantum
memories for the repeater protocols to succeed. The coherence time of the
atoms used as memories should be much larger than this value for a given
distance L to prevent severe degradation of the final state. The line styles
corresponding to different repeater protocols are the same as in Fig. 5.9.
Similar to the entangled pair rate, increasing the number of repeater nodes
improves the scaling, but comes at the cost of larger overhead. Without
repeater nodes, the entanglement only has to be stored for the time it takes
to communicate between the end nodes. Adapted from Ref. [184].

With these strategies, the repeater could be optimized to extract the highest possible
entangled pair rate out of a system with limited coherence.

The values for the storage time given here are the expected times the quantum states
need to be stored and provide a timescale on which decoherence should be minimal.
Therefore, the coherence time of the atom has to be much longer than that to minimize
the effect of decoherence on the fidelity of the final state. If this is not the case, a specific
error model for the decoherence of the system would be needed to quantify the influence
of the storage time on the fidelity. For the suggested states in 8"Rb, coherence times of
several seconds have been demonstrated in magnetic traps [38, 39]. It should therefore
be possible to reach the required storage time for the quantum repeater protocols and
the parameters discussed here with a setup optimized for high coherence.

5.4.3 Secret-key rate

In order to asses the suitability of an imperfect repeater protocol for device-independent
quantum key distribution, it is necessary to convert the entangled-pair rate into a
secret-key rate by calculating the secret fraction. This also allow for a combined analysis
of efficiency and fidelity of the protocol for this particular application. In absence
of experimental data, this requires the creation of an error model that details which
errors the implementation of the protocol could introduce. As detailed in Sec. 5.2.4, the
heralded entanglement generation process between an atom and a telecom photon does
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not result in perfectly indistinguishable photons. It is therefore necessary to consider the
implications of a contrast C' below unity in the photonic BSM for the repeater protocol.
If the photons are distinguishable, they do not interfere and the resulting state is a mixed
state. However, classical correlations remain, such that the created state is not fully
random. For example, if the input states are perfect and the result of the photonic BSM
would indicate the state [U'*) = (|10) + |01))/+/2, the density matrix for the resulting
mixed state for C < 1 after entanglement distribution is

pea = C[UT) (U] + é (1 =) (]10) (10[ 4 [01) (O1]). (5.27)

A second important error source might be the two-atom gate used for entanglement
swapping. To analyze the influence that potential errors introduced by the gate can have
on the protocol, a generic error model is assumed. In this model, the gate with operator
Gk, between qubits k and [ has a probability P to perfectly execute’ and result in the
density matrix kalpigil for an initial density matrix p;. If the gate fails, the state of the
involved qubits is completely random with density matrix p;*, = 1/4. In either case, all
other qubits are not affected by the gate at all. Under these assumptions, the density
matrix for the mixed state after application of the gate is

Pg = ng,lpigli,l + (1 = P)piy ® Tripi, (5.28)

where Try ) denotes the partial trace over qubits k and [. The fidelity of this state with
the ideal state is F' = (1 + 3P)/4. This error model could be refined to account for
specific errors encountered in the experiment, and other errors, like decoherence of the
quantum memories, errors occurring during single-qubit gates, or degradation of the
photonic qubit during transmission, could be modeled in the same manner. To limit the
parameter space, only the two error sources listed above with parameters C' and P will
be considered in the following, representative for errors that occur during entanglement
distribution and entanglement swapping.

The tensor product of two instances of peq yields the two-pair state after entanglement
distribution. The gate error model of Eq. (5.28) is applied to this state and the other
operations required to complete entanglement swapping are assumed to be implemented
perfectly. The resulting density matrix after entanglement swapping is

pes = PC2 W) (W] 4 (1 P)1
4
) (5.29)
+ <P0(1 — )+ 51— C)2P> (]10) (10| 4 |01) (01])

This state can be rewritten in the Bell basis by applying the identity [10) (10]+|01) (01| =
[UH) (UF| + &) (U~ |, which results in

Pes = AL [UT) (UF] + X [U7) (B[ + A3 [@F) (DT | + Ay [07) (7] (5.30)

3The calculation here is only concerned with undetectable errors, which will impact the final state.
All errors that can be detected affect only the efficiency and it is assumed that the state has been
renormalized after all events with a detected error have been discarded.
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with
1 ) 1
)\121(1+P+2PC) )\321(1—P)
h h (5.31)
)\221(1+P—2PC2) A= ;(1=P).

With these equations, the secret fraction for entanglement-based quantum key distribution
can be calculated by following Ref. [167]. The resulting error rate ey,ey,e, for the three
bases are

ex =X+ Ay = % (1-pPC?), (5.32a)
1

ey =X+ A3 =75 (1- PC?), (5.32Db)
1

&=X+M=5(1-P). (5.32c)

Because the error rate is lower in the z-basis, it is an advantage to generate the key in
this basis, such that the quantum bit error rate () = ¢,, and results in other bases are
only used to estimate the error rates. In this case, the unconditional fraction in the limit
of infinitely long keys is

o) - (L) g (Ll el )

2 1—¢,

with the binary entropy h(p) = —plogs(p) — (1 — p) logy(1 — p).

The calculation can be extended to N = 4 by building the tensor product of two
instances of pes (Eq. (5.29)) and applying another imperfect entanglement swapping
procedure to it. The resulting error rates are

eN=1) = % (1- P3C4) 7 (5.34a)
6§]N:4) — % (1- P3C4) 7 (5.34b)
(V=) _ % (1 P = QW=1, (5.34c)

The secret fraction as a function of the interference contrast and the fidelity a perfect
input state would have after being subject to the atom-atom gate used for entanglement
swapping is shown in Fig. 5.11. If the interference contrast and the gate fidelity are
both perfect, the secret fraction is unity, i.e., from one entangled pair, one secret bit
can be extracted. If these values decrease, the secret fraction very quickly drops. For
an interference contrast of C' = 0.97 and N = 2, the fidelity of a perfect input state
needs to be F'=95% (F =89 %) to retain a secret fraction of r = 0.5 (r = 0.25) and if
F < 83 % no unconditionally secure key can be extracted at all. An extension to N = 4
raises the requirements for the interference contrast and the gate fidelity. For the same
interference contrast, F' =99 % (F = 97 %) is necessary for a secret fraction of r = 0.5
(r =0.25) and the minimum fidelity for a nonzero secret fraction is F' = 95 %.
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Figure 5.11: Secret fraction as a function of the interference contrast and the fidelity of
a perfect input state after the application of the entanglement-swapping
gate for a repeater protocol with (a) N =2 and (b) N = 4. In both cases,
a considerable secret fraction can only be achieved if the gate fidelity and
the interference contrast are both high, with the requirements increasing
for more repeater nodes. If one of the errors is too big, no unconditionally
secure key can be extracted at all (area shaded red).
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Figure 5.12: Different protocols of entanglement swapping and one round of entanglement
purification for N = 2 (a,b) and N = 4 (c—e) . One can either perform
entanglement swapping first and then purify the final state (left, (a) and (c))
or purify first at each node and then swap (right, (b) and (e)). For N > 2
other combinations between these two extreme choices can be found. The
colored ellipses indicate the atom-atom gates that need to be performed.
Starting with entanglement purification generally increases the number of
required gates.

5.4.4 Entanglement purification

Errors occurring during operations of a quantum repeater protocol accumulate and
reduce the overlap of the target state with the state that is actually produced. Increasing
the number of repeater nodes also increases the number of operations that have to be
performed, such that the probability to get the desired final state decreases exponentially
with the number of nodes. To cover very long distances, it is therefore essential for a
quantum repeater to correct the accumulated errors by entanglement purification [20].
Entanglement purifcation protocols take multiple input states that are not maximally
entangled to generate one state with increased entanglement.

An implementation of the protocol proposed by Deutsch et al. [160] requires atom-
atom gates, single-qubit rotations, and state detection, all of which is possible with
the quantum repeater node proposed in this chapter. Although the gate proposed in
Sec. 5.3 can only mediate interactions between atoms in the same cavity, there is a
variant that can perform gates between atoms in remote cavities by reflecting a single
photon subsequently from both cavities [43]. With this remote gate, any number of
entanglement purification rounds could be performed by providing multiple copies of
each repeater node and performing remote gates between those.

However, the entanglement purification protocol itself might introduce errors, possibly
so severe that there is no gain in entanglement purification. To quantify the effect of
entanglement purification, the error models described in Sec. 5.4.3 are assumed. As the
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atom-atom gates for entanglement swapping and entanglement purification share the
same physical mechanism, they are likely suffering from the same error sources in an
experimental implementation. It is therefore assumed that all atom-atom gates have the
same error probability P. There are different possibilities how to order entanglement
swapping and entanglement purification in a repeater protocol (see Fig. 5.12). In
one extreme case, multiple entangled pairs are generated at the end nodes without
entanglement purification, which is then only performed at the end of the protocol.
The opposite case is to perform entanglement purification directly after entanglement
swapping and then swap the purified entangled pairs to generate one entangled pair at
the end nodes.

The protocol variants for one round of entanglement purification and N = 2 and
N = 4 were analyzed by assuming imperfect entanglement distribution with interference
contrast C' and calculating the final density matrix pr and the fidelity F' = (U |pg|¥T)
with the desired |¥T) state after the protocol has been performed with imperfect gates
that fail with probability 1 — P. For N = 2 these fidelities are

_ 1+ P(1+2C?
V= - 2 ( 4+ ) (5.35a)
1+ P*42C*P* +2C2P3(1 + P)
F, = .35b
4+ 4C4 P4 (5.35D)
14+ P54+ C*P*(1+ P)+2C?*(P2 +5P°
R, = LH P+ C P+ P)+ 200(P7 +5P7) (5.35¢)

A(1 + C2P2)2

for the protocol without purification and those depicted in Fig. 5.12a,b. The fidelities
for N = 4 and the variants shown in Fig. 5.12c—e are

(N=1) 14 P3(1+2C*)

F, = n (5.36a)
oo It P8 +2C8P% +2C*P>(1 + P?) (5.36b)
°c 4+44C8P8 ‘
= 1+ P%+ C8P8(1 + P) +2C*P*(1 + 2P3 4 3P9) (5.360)
4(1 + C4P4)2 ‘
Fe=qat é2P2)4 [1+ PP+ PP+ P 4+ 4C3(P + P (5.36d)

+4C%(P® + Py + C*(6P* + 38PM)]

The fidelity difference between Fy and Fy, Fy, Fe, and F; as a function of the gate
fidelity F' = (1 + 3P)/4 and interference contrast C' is shown in Fig. 5.12. For high
interference contrast, it is best to purify at the end of the protocol. That strategy
minimizes the number of necessary atom-atom gates and is thus least sensitive to gate
errors. As discussed in Sec. 5.2.4, an interference contrast of C' = 0.97 could be reached.
In this case, the gate fidelity would need to be more than F > 97% for N = 2 and
F > 95% for N =4 in order to obtain any gain from entanglement purification. If the
interference contrast is considerably below unity, entanglement purification as early in
the protocol as possible is the strategy that is most beneficial [210]. In combination with
low gate errors, this is also the situation where entanglement purification would lead to
the largest improvements in fidelity. In any case, the fidelity of the gates needs to be
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(a) N=2, swap first (b) N=2, purify first
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Difference in fidelity of the final entangled state with and without purification.
Red shading indicates an increase in fidelity after purification, and blue
shadings denotes a net loss in fidelity due to errors introduced during
purification. (a) and (b) show the different protocols for N = 2 (cf. Fig. 5.12a
and Fig. 5.12b, respectively), and (c) and (d) show the extreme cases for
N =4 (cf. Fig. 5.12c and cf. Fig. 5.12e, respectively). If the interference
contrast is near unity, it is better to perform entanglement swapping first,
because less atom-atom gates need to be performed (see Fig. 5.12). But if
the contrast is bad, it is better to purify first and then swap. Entanglement
purification has the most benefit for intermediate contrast and near-perfect
gates.
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quite high for any gain to be possible at all. For N = 2 that threshold is at F > 91 %
and for N =4 it is at F < 93 %.

If the atom-atom gates were executed perfectly, any target fidelity could in principle
be reached with multiple rounds of entanglement purification. However, this comes at a
cost of efficiency, for several reasons. First, entanglement purification requires at least
two entangled pairs to generate one pair, such that the final number of entangled pairs
is cut at least in half. Second, entanglement purification requires its input pairs to exist
concurrently, such that once one entangled pair is generated, it needs to be stored until
the other pairs are also ready. This reduces the rate compared to concurrent independent
generation of several pairs. Finally, the purification process does not succeed with unity
efficiency, but fails with a probability that depends on the fidelity of the input states.

In the context of quantum key distribution this tradeoff between fidelity and efficiency
can be quantified with the secret-key rates (see Sec. 5.4.3). These are compared for the
different protocols in Fig. 5.14. It is evident that if the interference contrast and thus
the fidelity of the input states is high enough, the potential improvements in fidelity
are not sufficient to offset the loss in efficiency. This is the case if C' > 0.55 for N = 2
and C' > 0.83 for N = 4. The greatest factor in the secret-key rate can be gained if
the interference contrast is quite bad, such that the resulting entangled state without
purification does not meet the threshold required to extract an unconditionally secure
key, resulting in a secret-key rate of zero. A purified state exceeding that threshold
would result in a nonzero secret-key rate and could therefore be required to generate a
secret key at all. However, the secret-key rate would be quite low in this case, which
could only be improved with higher-fidelity input states, which would then not benefit
as greatly from entanglement purification. This suggests that the best strategy is to
prioritize enhancements of the fidelities of all substeps of the repeater protocol and only
turn to entanglement purification if there is no other way to meet a required threshold
fidelity [170]. Considering that the entanglement distribution process proposed here
should be able to reach an interference contrast of C' = 0.97 and the atom-atom gates
will not work without errors, the repeater implementation with few nodes proposed here
is unlikely to benefit from entanglement purification.
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Figure 5.14: Secret-key rate of various purification protocols for perfect atom-atom gates
and (a) N =2 and (b) N = 4. The rates have been normalized to the secret-
key rate of a repeater protocol with fidelity unity and without purification.
The black dotted lines show the rates without purification as a function
of the interference contrast. In comparison, the blue dashed lines show
the protocols with entanglement purification last (see Fig. 5.12a,c) and the
red solid lines show the protocols with entanglement purification first (see
Fig. 5.12b,e). Although all rates increase with better interference contrast,
the benefit of entanglement purification is reduced and turns into a loss if
the interference contrast is high enough.
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6 Summary and outlook

During the project that is the subject of this thesis, fiber cavities suitable for quantum
communication experiments with single atoms have been developed. End facets of
optical fibers were shaped with a COs laser, resulting in near-spherical surfaces with
microroughness below 0.2nm RMS. After the application of a highly reflective coating,
these surfaces had ultra-low parasitic losses, such that cavities consisting of two fiber
mirrors showed a finesse of up to 1.9 x 10°, which is the highest finesse for a fiber
cavity reported so far. The parameters chosen for the COs laser machining allowed
the fabrication of structures approaching the diameter of the fiber, which allowed the
construction of high-finesse fiber cavities with a length of up to 180 pm, limited by the
radius of curvature of the mirrors. This allows for more than enough optical access to
an atom trapped at the center of such a cavity in future experiments and opens up the
possibility of a crossed-cavity geometry. The dominant source of the frequency splitting
of polarization eigenmodes has been understood to originate from the geometry of the
cavity mirrors and the derived analytical model has been experimentally confirmed.
The gained knowledge can be used in the construction of future cavities, such that the
polarization eigenmodes are either degenerate or have a large frequency splitting.
Although the developed fiber cavities are already at a stage, where they could be
successfully used in quantum communication experiments with single atoms, there is still
potential for further improvements. An issue during the fabrication of the fiber mirrors
was the shot-to-shot reproducibility. Increasing it would allow for better targeting and
fine-tuning of the mirror geometry. The most promising approaches would be better
stabilization of the CO2 laser power in pulsed operation and improved preparation of the
fiber end facets, for example by polishing them to a flat surface with a defined angle before
the fabrication process. A more reproducible process would also aid the derivation of a
quantitative model that could be used to guide future fabrication efforts. The observed
difference in the behavior of single-mode and multi-mode fibers when subjected to a COq
laser pulse points to an influence of the fiber core on the shape of the surface. Exploring
different dopants and dopant concentrations might be a path to get single-mode fibers
with a shape even closer to spherical, such that losses in long cavities due to imperfect
surfaces are minimized. The losses could also be reduced by a coating of better quality.
The measurements of the quality of mirrors applied on reference substrate suggested that
6 ppm losses are caused by the coating itself, compared to 1 ppm that have been achieved
previously [92]. As there is no apparent reason why reaching these lower losses might
not be possible with fiber cavities, work together with commercial coating companies
might be able to reduce the intrinsic losses. For experiments at telecom wavelengths,
the coatings would also need to be tested at these wavelength. Although there is no
indication that the coatings should perform worse at these wavelengths, a confirmation
is necessary. Directly coupling the cavity mode to a single-mode fiber is a simple way to
integrate these devices into a fiber-optic network, but the efficiency is intrinsically limited
by the wave-front curvature of the cavity mode. This limitation could be overcome
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6 Summary and outlook

by combining single-mode fibers with micro-optic components to provide perfect mode
matching, e.g., with a piece of graded-index fiber of defined length functioning as lens
[211]. Finally, the full potential of the control over the frequency splitting of polarization
eigenmodes can only be realized if both spherical and cylindric structures can be realized
while maintaining the quality of the resulting surfaces. Reproducibly achieving extreme
values of the mirror eccentricity could be a subject of further investigation.

A potential application of the developed cavity technology is the construction of a
quantum repeater node that can enhance entanglement generation between distant nodes.
The scheme presented in this thesis enables entanglement generation with alkali atoms
directly at telecom wavelength, eliminating the need for wavelength conversion. The
produced telecom photons are expected to be highly indistinguishable, which should
allow for high-fidelity entanglement distribution with a photonic Bell-state measurement.
Two entangling cavities at telecom wavelength could be placed into one herald cavity
due to the small outer dimensions of fiber cavities. This geometry would allow to
perform atom-atom gates mediated by photons reflected off the herald cavity. These
gates could be used to implement efficient entanglement swapping and even entanglement
purification, all functionally integrated into one repeater node. Numerical simulations
based on the parameters that were achieved in the fiber-mirror fabrication show the
possibility for the repeater node to outperform direct entanglement generation without
further developments in cavity technology.

Toward this goal of a quantum repeater, there are a few intermediate steps that are yet
to be taken. On the technical side, an experimental platform needs to be developed that
can load, cool, and control single atoms at the crossing points of multiple cavity nodes.
This platform must be reliable enough, such that multiple instance can run concurrently
in the multi-node network that is required to demonstrate the full repeater scheme. The
first step toward this goal is an experiment with a single atom coupled to two crossed
cavity modes. This would not only serve as a technology demonstration, but the ability
to independently tune two cavity modes strongly coupled to an atom would open up a
new range of experiments. These experiments include, for example, the generation of
two-mode squeezed states [212] or cross phase modulation of two photons due to giant
Kerr nonlinearities in four-level electromagnetically induced transparency [213, 214].

There are also steps toward a quantum repeater that could be addressed in existing
single-atom—cavity experiments. The quantum repeater concept relies on the ability to
store quantum states long enough for the protocol to complete. The necessary coherence
for the suggested states has been shown in small atomic ensembles in magnetic traps
[38, 39]. However, it has not yet been demonstrated for a single atom trapped in a
cavity and needs to be investigated to determine and reduce the limiting decoherence
mechanisms, which could then be used to derive an error model for the decoherence
during the storage of entangled pairs. Another aspect of the proposed repeater scheme
that needs to be explored is the atom-atom gate mediated by the reflection of a single
photon. The phase-shift mechanism required for this gate has already been demonstrated
to be suitable for atom-photon gates [36]. Combined with the emerging ability to perform
experiments with two atoms coupled to one cavity mode in a controlled manner [215-217],
a reflection-based atom-atom gate could soon be demonstrated. An investigation of the
main sources of error in such an experiment could be used to refine the generic error
model that was used in the derivation of fidelity and secret-key rate for the proposed
protocol.
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The demonstration of an elementary quantum network with single atoms in optical
cavities [50] has shown the great potential of these system for quantum communication.
This potential could be amplified by the new capabilities offered by the small size
and large coupling strength that fiber cavities can provide. The possibility to directly
couple single atoms to telecom-wavelength photons could be used to extend the distance
between end nodes for distributing heralded entanglement by more than an order of
magnitude. This range for quantum communication could be increased further with
quantum repeaters. Further development of these systems could one day realize the
dream of a global infrastructure for quantum communication [218].
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