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Abstract

Parametric instabilities in laser-plasma interactions are investigated in the ultra-
relativistic regime, including the leading-order term of the Landau-Lifshitz radiation
reaction equation. After a detailed exploration to the theory of parametric instabilities,
the effects of the radiation reaction force on the growth rate are discussed by compar-
ing to the results without radiation reaction force. The radiation reaction force leads
to merging of the two Raman branches and also excites new modes, e.g. the so-called
quasi-modes. Furthermore the radiation reaction force increases the endurance of the
short wavelength perturbations. Increased endurence affects the quality of the laser pulse
shape, which is important particularly for experiments, which require a precisely-shaped
laser pulse.



Zusammenfassung

Der Einfluss der Strahlungsrückwirkung auf parametrische Instabilitäten in Laser-
Plasma Interaktionen wird, unter Berücksichtigung des Terms erster Ordnungs der
Landau-Lifschitz Gleichung, untersucht. Einem detaillierten Theorieteil folgt die Unter-
suchung der Effekte der Strahlungsrückwirkung unter anderem auf die Wachstumsrate
der Instabilität. Um den Einfluss festzustellen werden diese mit den Ergebnissen ohne
diese Erweiterung verglichen. Das Einbinden der Strahlungsrückwirkung führt zu einem
Verschmelzen der beiden Raman Zweige und regt neue Moden, u.a. die Quasi-Moden an.
Die Strahlungsrückwirkung zeigt, dass auch kurzwelligere Wellenlängen Instabilitäten
im Plasma anregen können. Dies hat einen bedeutenden Einfluss auf Experimente, die
einen in der Form wohldefinierten Laserpuls benötigen.
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1 Introduction
The area of high-power laser-plasma interaction covers a broad area of research ranging
from medical physics, new X-ray sources, next generation of compact particle accelera-
tors and laser-driven fusion [1, 2, 3, 4, 5]. The underlying advantage of using the high-
power laser-plasma interaction is to substantially reduce the size and cost of installations
required for above-mentioned applications.

The most interesting part of the theory of laser-plasma interactions are the parametric
instabilities. These instabilities belong to the class of nonlinear physics problems where
the coefficients of a second-order differential equation are time dependent. For example,
motion of a pendulum, whose length varies with time, or a child on a swing. When the
child on a moving swing sits up and down, the centre of mass of the child oscillates with
time, making it a simple pendulum whose effective length varies with time. Thus, the
motion of swing becomes unstable and leads to higher and higher swing motion, as one
might have experienced it in childhood.

In the context of laser-plasma interaction, parametric instabilities arise due to cou-
pling of the electron oscillatory motion with the plasma oscillations and are driven by
ponderomotive and relativistic effects [4, 1, 6, 7]. The stimulated Raman scattering (SRS)
is one of the most prominent examples for a parametric instability. In SRS, a pump laser
scatters into two daughter waves propagating in the same direction as the parent wave
(Forward Raman scattering or FRS) or into a single backward moving daughter wave
(Backward Raman scattering or BRS). The frequency of those waves is either upshifted,
which is called anti-Stokes mode, or downshifted, which is called Stokes mode. The re-
sults and the technique used for the solution of parametric instabilities could also be
applied to other problems of nonlinear physics.

There have been constant efforts to increase the intensities of the short-pulse lasers
around the world. With the commissioning of the Extreme Light Infrastructure (ELI)
project in Europe [8], laser pulse with intensity Il ≫ 1022W/cm2 will be available soon.
In this ultra-relativistic regime of laser-plasma interaction, radiation reaction force plays
an important role [9, 10]. Inclusion of radiation reaction force in the plasma dynamics
pushes the parametric instability research into hitherto unexplored regime where several
novel effects are expected to occur [7].

This thesis focuses on the inclusion of radiation reaction force in the plasma dynam-
ics. After describing the theory of the parametric instabilities in relativistic and ultra-
relativistic regimes, the generalised dispersion relations for the modulational interactions
in these regimes are derived and numerically solved. MATLAB code is developed espe-
cially for this purpose to correctly identify different branches of the unstable modes in
the plasma. I plot various quantities e.g. growth rates, maximum wavevectors and unsta-
ble branches in plasmas for a wide range of laser-plasma parameters, with and without
the radiation reaction force to identify the influence of it on the parametric instabilities.
Afterwards the physical implications of the results are discussed and I summarise the
findings in the last chapter. The appendix includes the MATLAB code used in this thesis
with a few explanations.
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2 Theory of parametric instabilities
The mathematical analysis of the instabilities firstly follows the books by Kruer[4] and
Gibbon[1]. For the inclusion of radiation reaction using Landau-Lifshitz equation the
calculations of Kumar et al. are followed [7]. To give a detailed overview how the dis-
persion relation could be derived from the Vlasov equation, the analysis is described in
detail. This is firstly done in the non-relativistic regime and afterwards in the relativis-
tic regime. Also a detailed overview for the growth rate of the plasma mode and the
frequency mismatches of Stokes and anti-Stokes mode in Raman scattering are given.
The last part of the theory section is the calculation of the dispersion relation taking the
radiation reaction force into account.

2.1 Two-fluid description and the dispersion relation of plasma waves
A plasma consists of two different types of particles. The heavy positive charged ions
and the less massive electrons. A collisionless plasma is assumed, so the mean free path
between particles is larger than the wavelength of the oscillations in the plasma, which
leads to the fact that collision of plasma particles can be neglected. The spot size of the
pump laser is much larger than the wavelength of this laser, so a plane-wave assumption
for the pump laser can be made. If the spot size would be of the order of wavelength a
plane-wave approximation could not be made. Only a short puls excitation would occur.

The first equation on the way to the dispersion relation is the Vlasov equation, which
describes the evolution of a collisionless plasma:

∂fj
∂t

+ v · ∂fj
∂x +

qj
mj

(
E +

v
c
× B

) ∂fj
∂v = 0, (1)

with a phase space distribution function fj(x,v, t), the magnetic respectively electric
field B and E as well as the charge and mass of the particles qj , mj . From this equation
can be seen that the phase-space density changes on a dynamical trajectory. By deriving
the moments of this equation a fluid-like approximation for the components of a plasma
is obtained. Now assuming a cold plasma approximation as well as a short pulsed laser,
leads to the consideration that the electrons move quickly while the ions more or less
stay at their positions leading to a constant background (Zn0i with the charge state of
the ions Z and the density n0i). For this the electron motion can be assumed to be the
main part of the high frequent density fluctuations.
Using Maxwell’s equations the following force equation (3) is derived from the moments
equations as well as neglecting the Lorentz-force. For the description of the dynamics in
a collisonless cold plasma the continuity equation, the force equation and the adiabatic
equation are necessary:

∂ne

∂t
+∇(neve) = 0, (2)

∂

∂t
(neve) +∇(neve²) = −neeE

me
− 1

me
∇pe, (3)
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pe

ne³
= constant (4)

where e is the charge of an electron, me is the electron mass, ne is the electron density,
ve is the mean thermal velocity of the electrons and pe is the electron pressure. After
derivation by time of continuity equation (2) and inserting into the spatial derivation of
the force equation (3) using the symmetry of second derivatives it is obtained:

∂2

∂t2
ne −∇²(neve²)−

e

me
∇(neE)− 1

me
∇²pe = 0. (5)

Using the Poisson equation the electric field can be related to the density distribution:

∇E = −4πe(ne − Zn0i). (6)

The next step is to linearise the equations (ne = n0+ δe, pe = Σe+ δp, ve = v0+ δv, with
perturbation of the quantities δ it is assumed v0 = 0). The result of this linearization is:

∇(δE) = −4πeδn, (7)

δp = 3mve²δn, (8)
∂2

∂t2
δn− ne

me
δE − ∂2

∂x2
δp = 0. (9)

Now taking a wavelike ansatz for every component (δn, δE, δp, δv ∼ e−i(wt−kx)) the
plasma oscillations can be described with:(

∂2

∂t2
− 3ve²∇² + ωpe²

)
δn = 0, (10)

with ωpe = (4πe²n0/me)
1/2 the electron plasma frequency with electron density n0 =

Zn0i. From the fourier-analysis of equation (10) the dispersion relation for the plasma
wave becomes:

ω² = ωpe² + 3k²ve². (11)

The frequency of this wave is mostly ωpe with a small thermal correction depending on
the wavenumber.

2.2 Dispersion relation of parametric instabilities in a plasma
If the pressure term is now neglected instead of the Lorentz force in equation (3) the
new force equation is:

∂

∂t
(neve) +∇(neve²) = −nee

me

(
E +

v
c
× B

)
. (12)

For more uniform descriptions of the electric and magnetic field the potential notation is
used: E = −∇Φ−∂A/∂t and B = ∇×A with Φ the electric potential and A the vector
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potential. For the next step Poisson’s equation, the vector identity a × (b × c) = b(a ·
c)−c(a ·b) as well as the following Maxwell equation ∇× (∇×A) = 4πJ/c+1/c ∂E/∂t
are needed. After identifying J =

∑
i einivi and using Lorenz gauge (∇ · A = 0) the

resulting dispersion relations are:

ω² − ωpe² = 0, (13)

ω0² − ωpe² − k²c² = 0. (14)
A coupling of these two dispersion relations can be seen by Raman scattering. To describe
this it is needed to introduce the ponderomotive force.
The ponderomotive force is the coupling of an electro-magnetic wave into the oscillation
of an inhomogeneous plasma. The force equation is:

∂pe

∂t
+ ve∇pe = −e · E(x, t), (15)

pe = mve is the momentum of the electrons. Assuming E(x, t) = E(x)sin(ωt) the
ponderomotive force Fp is:

Fp = − e²
4meω

∇E2(x). (16)

This force is the reason why a light wave that propagates in a plasma can excite an
instability. The ponderomotive force leads to instabilities which can be calculated by
Raman scattering. Raman scattering describes the coupling of a pump-light into a scat-
tered light wave plus an electron plasma wave. The first steps to calculate the Raman
instabilities is to identify the matching conditions for the wave numbers and frequencies:

ω0 = ωs + ωek, (17)

k0 = ks + k, (18)
where ω0 and k0 are frequency and wavenumber of the incident light wave, and s stands
for the same quantities of the scattered light wave. ωek and k are the frequency and
wavenumber of the electron plasma wave. The idea of Raman instability analysis is to
use Ampère’s law and then separate the current density into a transverse part which
describes the light wave and a longitudinal part which describes the electrostatic plasma
wave:

∇× B =
4π

c
J +

1

c

∂E
∂t

. (19)

Expressing the field in terms of potential, as well as using Lorenz gauge and vector
identities leads to: (

1

c²
∂2

∂t2
−∇²

)
A =

4π

c
J − 1

c

∂

∂t
Φ. (20)

Via Poisson’s equation written in terms of potential (∇²Φ = −4πρ) and the continuity
equation ∂ρ/∂t +∇J = 0 the connection between the current J and the potential Φ is
calculated as:

∇ ·
(

∂

∂t
∇Φ− 4πJ

)
= 0. (21)
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Hence Jt ∼ A it is ∇Jt = 0 which leads to ∂(∇Φ)/∂t = 4πJl. Now equation (20) can be
written as: (

1

c²
∂2

∂t2
−∇²

)
A =

4π

c
Jt. (22)

If furthermore A · ∇ne = 0 the transverse current could be expressed by Jt = −neevt

with vt the oscillation velocity of an electron in an electric field of a light wave if |vt| ≪ c.
The transverse velocity can be determined as:

vt =
eA
mc

, (23)

because of ∂v/∂t = − e
mc∂A/∂t. Equation (22) leads to:(

1

c²
∂2

∂t2
−∇²

)
A = − 4πe

mc²neA. (24)

The next step is to linearise this equation via A = Al + δA, where Al is the large
amplitude light wave and δA its perturbation. Also linearising in ne = n0 + δne, with
background plasma density and its perturbation leads to:(

1

c²
∂2

∂t2
−∇²

)
(Al + δA) = − 4πe

mc²(n0 + δn)(Al + δA). (25)

Hence Al and n0 are taken as constant and all terms containing δ² are neglectable:(
1

c²
∂2

∂t2
−∇²

)
δA = −4πn0e

mc² δA − 4π(n0 + δn)e

mc² Al. (26)

Now the plasma frequency can be identified as ωpe² = 4πn0e/m which leads to equa-
tion (27) where RHS is the transverse current times the large amplitude light wave:(

∂2

∂t2
− c²∇² + ωpe²

)
δA = −4πe

m
δnAl. (27)

Taking again the continuity equation (2) and the pressure neglecting force equation:

∂

∂t
(ve) + ve∇ve = − e

me

(
−∇Φ+

v
c
× (∇× A)

)
, (28)

and splitting the velocity into a transverse and a longitudinal part vt and vl it can be
seen that ve = vl + eA/mc. By using a vector identity and the previous result, the time
derivative of the longitudinal velocity becomes:

∂

∂t
vl =

e

m
∇Φ−∇

(
vl +

eA
mc

)2

. (29)

The second term can be identified as the ponderomotive force. Again linearising the
equation the results for equation (2) and equation (29) are:
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∂

∂t
δn+ n0∇δv = 0, (30)

∂

∂t
v =

e

m
∇Φ− e²

m²c²∇² (AlδA) . (31)

Taking the spatial derivative of equation (31) and the time derivative of equation (30)
the change of electron density by variation of the electro-magnetic density is:(

∂2

∂t2
+ ωpe

)
δn =

n0e²
m²c²∇² (AlδA) . (32)

For further analysis Al = A0cos(k0x − ω0t), the fourier-analysis of equation (27) as
well as equation (32) are used.
Because of (cos(k0x− ω0t)) =

1
2 [δ(k + k0, ω + ω0) + δ(k − k0, ω − ω0)] it is obtained:

(ω² − k²c² − ωpe²)δA(k,w) =
4πe²
2m

A0 [δne(k + k0, ω + ω0) + δne(k − k0, ω − ω0)] , (33)

(ω² − ωpe²)δne(k,w) =
k²e²n0

2m²c² A0 [δA(k + k0, ω + ω0) + δA(k − k0, ω − ω0)] . (34)

To finally derive the dispersion relation δA is eliminated in equation (34) by using
equation (33) and neglecting terms of δn(k ± 2k0, w ± 2w0) as nonresonant:

ω² − ωpe² =
ωpe²k²vos²

4

[
1

D(k + k0, ω + ω0)
+

1

D(k − k0, ω − ω0)

]
, (35)

where D(k, ω) = ω²− k²c²−ωpe² and the oscillation velocity vos = e²A0²/m²c² . If back-
and sidescatter are neglected as nonresonant the growth rate is determined as:

(ω² − ωpe²) [(ω − ω0)² − (k − k0)²c² − ωpe²] =
ωpe²k²vos²

4
. (36)

The fastest growth occurs if the scattered light is resonant i.e.
(ω − ω0)² − (k − k0)²c² − ωpe² = 0. (37)

For ω = ωpe + δω with δω ≪ ωpe and a resonant scattered wave, using (ω − ω0)² =
(ωpe + δω − ω0)² = (ωpe − ω0)² + 2δω(ωpe − ω0) + δω², whereas δω² is neglectible, leads
to:

(ω² − ωpe²) · 2δω(ωpe − ω0) =
ωpe²k²vos²

4
, (38)

therefore:
δω² = − ωpek²vos²

16(ωpe − ω0)
, (39)

δω = ±i
kvos
4

(
ωpe

ωpe − ω0

) 1
2

= iΓ, (40)

where Γ is the growth rate. The last result is true because ω0 > ωpe. The wavenumber k
is determined by equation (37)

k = k0 +
ω0

c

(
1− 2ωpe

ω0

) 1
2

. (41)
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2.3 Calculation of frequency mismatch in Raman scattering
To investigate the physics of Raman scattering the dispersion relation is used:

D± = (ω ± ω0)² − (k ± k0)²c² − ωpe² = 0. (42)

In case of FRS the wavenumber is k = kp ≪ k0 and in case of BRS k = 2k0. Therefore it
is obvious that in FRS both modes, Stokes and anti-Stokes mode can occur. In case of
BRS only Stokes mode occurs due to (ω+ω0)²− (3k0)²c²−ωpe² is inharmonic. Taking a
look at FRS it becomes clear that there has to be a frequency mismatch between Stokes
and anti-Stokes mode. Because Stokes mode is the more likely event D− = 0, ω = ωpe is
assumed. Using the binomial formula leads to:

ωpe² − k²c² = 2(ωpeω0 − kk0c²), (43)

which leads to
D+ = 2(ωpe² − k²c²) = 4(ωpeω0 − kk0c²). (44)

The frequency mismatch ∆ω can be calculated by subtracting the following expression
from ω − ω0

ω + ω0 =
√

D+ + ωpe² + (k + k0)²c².

If this value is equal to zero there is no frequency mismatch. Using equation (42) the
frequency mismatch can be calculated the following:

∆ω = (ωpe + ω0)−
√
(ω0 + ωpe)² +D+

= (ωpe + ω0)− (ωpe + ω0)

√
1 +

D+

ω0 + ωpe
, (45)

a series expansion of the root leads to:

= (ωpe + ω0)− (ωpe + ω0)

[
1 +

D+

ω0 + ωpe

]

= − 1

2(ω0 + ωpe)

= − 1

2ω0

(
1 +

ωpe

ω0

)−1

D+.

Now series expansion of the term in the brackets gives:

= − 1

2ω0

(
1− ωpe

ω0

)
D+

= −
1− ωpe

ω0

ω0
(ωpe² − k²c²).
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With further expansions, replacement and reexpressing the terms the final result is:

∆ω = −ωpe²
ω0²

+
9

4

ω4
pe

ω3
0

. (46)

This is smaller than the growth rate, so the assumption of little perturbations is correct.
If the frequency mismatch is to big only one mode of FRS would occur. Most likely
Stokes mode would occur because it is the energetic favourable mode.

2.4 Dispersion relation of instabilities in the relativistic regime, growth rate
of the Raman instabilities

To investigate what happens to short and ultra intense laser pulses in a plasma it is
necessary to take relativistic effects into account. It is assumed that the pump laser
propagates in the x-direction. The quantities for the density and the electro-magnetic
potential are defined as:

n =
ne

n0
,a =

eA
mc² ,

where ne is the electron density, n0 is the background of ion density and A is the
strength of the vector potential. The electric potential transforms into Φ → eΦ/mc²
and the momentum is defined as p = γu. Some equations have to be redefined in the
relativistic regime: (

∂2

∂t2
− c² ∂2

∂x2
+ ωpe²

n

γ

)
a = 0 (47)

∂p
∂t

+ cu
∂p

∂x
=

∂Φ

∂x
− 1

2γ

∂

∂x
a² (48)

∂n

∂t
+ c

∂

∂x

(
np

γ

)
= 0 (49)

∂2

∂x2
Φ = kp²(n− 1) (50)

γ = (1 + p² + a²)
1
2 . (51)

Now little perturbations are assumed and the quantities are linearised (u = ũ → p = p̃
and u0 = p0 = 0, n = 1 + ñ,a = a0 + ã and γ0 = (1 + a0²)1/2). Fourier analysis leads to:(

∂2

∂t2
− c² ∂2

∂x2
+

ωpe

γ0

)
a0 = 0, (52)

which gives, taking a wavelike ansatz, to the usual dispersion relation:

ω0² = c²k0² + ω′2
pe. (53)
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ω′2
pe = ωpe²/γ0 determines the effective plasma wave frequency. For easier reading ωp

instead of ω′
pe is written. The next order equation gives:(

∂2

∂t2
− c² ∂2

∂x2
+ ωp²

)
ã = −ωp²ña0 +

ωp²
γ0²

(a0ã)a0. (54)

This equation is the description of FRS. If now equation (51) is evolved, assuming
p̃, ã ≪ a0, the following result can be found:

γ−1 ≃ γ−1
0 − a0ã

γ30
. (55)

With regards to the ponderomotive force, comprising a beat term (1/2 ∂a²/∂x) between
pump and scattered electro-magnetic wave leads for the first order momentum equation
to:

1

c

∂

∂t
u =

1

γ0

∂

∂x
Φ̃− 1

γ0²
∂

∂x
(a0ã). (56)

Taking a time derivative and substituting into equation (47) gives:(
∂2

∂t2
+ ωp²

)
ñ =

c²
γ0²

∂2

∂x2
(a0ã), (57)

describing the BRS.
Using the procedure of separating the quantities of equation (54) and (57) into a

product of slowly varying envelope and a fastly variying phase yields:

ñ =
n1

2
e−iφ + c.c. (58)

ã =
(a+

2
eiφ+ +

a−
2
eiφ−

)
+ c.c. (59)

a0 =
a0

2
eiφ0 + c.c. , (60)

where φ is the scattered wave and φ0 is the pump wave. The connection between φ0 and
φ is:

φ = kx− ωt, φ0 = k0x− ω0t, φ± = (k ± k0)x− (ω ± ω0)t. (61)

The different matchings can be seen for the FRS, first the anti-Stokes (k+) and
secondly the Stokes mode (k−) with a difference of k:

k+

k0 k

k− k

9



As explained before (2.3) only Stokes mode exists for BRS:
k0 k−

k

If only low frequency terms with φ = φ+ − φ0 = φ− + φ0 are taken into account, it
can be seen that only terms with a+a∗

0 and a−a0 will rise on RHS of equation (57). This
leads to

(−ω² + ωp²)
n1

2
= − c²k²

4γ0²
(a+a∗

0 + a−a0). (62)

If now De is defined as:
De = −ω² + ωp², (63)

equation (62) can be expressed as:

n1(ω, k) = − c²k²
2γ0²De

(a+a∗
0 + a−a0). (64)

This equation can be used to identify the driving current on RHS of equation (54). Taking
care of the polarisation of the pump wave vector:

a0 =
a0

2
σeiφ0 + c.c., (65)

with

σ =

{
ey
1√
2
(ey + iez)

. (66)

The first case represents the linear and the second the circular polarized light. This can
be used to calculate a0²:

a0² = a0 · a0 = (
1

2
a0σe

iφ0 +
1

2
a∗0σ

∗e−iφ0)² (67)

=

{
1
4a0²ei2φ0 + 1

2 |a0|²
1
4a

∗2
0 ei2φ0

1
2 |a0|²

. (68)

From this result the focus should be set on the circular polarized light because it is
independent from the phase. Therefore the relativistic factor can be calculated via:

γ0 =
√

1 + a0² =
√
1 +

|a0|²
2

. (69)

Calculating the nonlinear current (RHS of equation (54)) for φ± = φ± φ0 results in:

J(ω − ω0) =
ωp²
8γ0²

(
c²k²
De

+ 1

)(
|a0|²a− + a∗20 a+

)
(70)

J(ω + ω0) =
ωp²
8γ0²

(
c²k²
De

+ 1

)(
|a0|²a+ + a∗20 a−

)
. (71)
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Taking the LHS of equation (54) and defining:

D± = −ω±² + k±²c² + ωpe² = −ω² + k²c² ± 2(kk0c² − ω0ω) (72)

yields
D−a− = 2 · J(ω − ω0) (73)

D+a+ = 2 · J(ω + ω0). (74)

By multiplying equation (73) with a0 and equation (74) with a∗0 the dispersion relation
is determined as:

1 =
ωp²|a0|²
4γ0

(
c²k²
De

+ 1

)(
1

D+
+

1

D−

)
. (75)

From this equation the growth rate can easily be determined assuming ω = ωp + iΓ,
Γ ≪ ωp ≪ ω0. Starting at equation (73) and combining it with D± ≃ −2iΓ(ωp ± ω0)
as well as De ≃ −2iωpΓ, where c²kmax² = ωp². Applying algebraic transformations the
growth rate of FRS is determined by:

ΓFRS =
ωp²a0

√
8ω0

(
1 + a0²

2

) . (76)

Taking a look at the non-relativistic limit a0 ≪ 1 it becomes clear that Γ = ωp²/
√
8ω0a0

and for the ultra-relativistic limit it is obtained Γ ≃ ωp²/
√
2ω0a0 ∼ a−1

0 . For the BRS it
is assumed a0 ≫

√
ωp/ω0 and Γ ≫ ωp. The upshifted wave is neglected as non-resonant

this leads to:
D− =

ωp²a0²
4γ0²

(
c²k²
De

+ 1

)
. (77)

The maximum growth occurs for k = k0 + ω0

√
1− 2ωpω0/c ≃ 2k0. In this case is the

growth rate of BRS becomes:

ΓBRS =

√
3

2

(
ω0

2ωp

) 1
3 a

2
3
0√

1 + a0²
2

ωp. (78)

The maximum growth occurs for a0 = 2. This leads to Γ ∼ a
−1/3
0 for a0 ≫ 1.

2.5 Parametric instabilities in the ultra-relativistic regime, influence of the
radiation reaction force

The equation of motion for an electron moving in a given electro-magnetic field is still
unsolved, despite first attempts to solve it started more than 100 years ago. It is well
known that an accelerating electron emits radiation. The faster the electron moves, the
more energy it is emitting. This energy can be substantial if the motion of an electron
is ultra-relativistiv. Hence, taking only the Lorentz-force on the RHS of the equation of
motion into account, this loss of energy cannot be accounted for and leads to incorrect
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results of the electron energy computation. This problem of accouting the radiation
loss is inherently quantum mechanical in nature [10]. However, in classical regime, the
Landau-Lifshitz description of the radiation reaction force can be used [9]. In this thesis
only the leading-order term of it will be taken into account, the terms of higher order
are smaller in magnitude and can be neglected in a first approximation.

The assumptions about the plasma and laser made in the beginning (section 2.1) are
still valid. For conformity reasons and better calculations the propagation of a circularly
polarized pump laser in the plasma is considered. The following equation can be easily
derived from the Vlasov equation (1). The leading order term of the Landau-Lifshitz
radiation reaction force is included:

∂p
∂t

+v∇p = −e

(
E +

1

c
(v × B)

)
− 2e4

3me²c5
γ²v×

[(
E +

1

c
(v × B)

)2

−
(v
c

E
)2

]
. (79)

The radiation reaction term is ignored first and the equation of motion for the transverse
momentum and the time derivative of the transverse velocity solved. The electromagnetic
fields are written again in expressions of the potentials (section 2.2).

p⊥ =
e

c
A (80)

∂v
∂t

=
e∇Φ

meγ0
− e²

2me²γ0²c²
∇|A|². (81)

The scattering of the laser leads to a total vector potential of:

A =
1

2

[
A0e

iφ0 + δA+e
iktxteiφ+ + δA∗

−e
−iktxte−iφ+

]
+ c.c., (82)

which gives the plasma oszillations:

δñ =
e²k²

2me²γ0²c²De
(A∗

0δA+ +A0δA−), (83)

with De = ω² − ω′
p2, δn/n0 = (δñ/2)eiφeiktxt + c.c. and φ = φ+ − φ0 = φ− + φ0. This

equation causes an axial component of velocity and momentum. The radiation reaction
term is proportional to: (

E +
1

c
(v × B)

)2

−
(v
c

E
)2

, (84)

which is, written in terms of potentials, equal to:

=

[
−1

c

∂A
∂t

−∇Φ+
1

c
(v × (∇× A))

]2
−
[

v
c

(
−1

c

∂A
∂t

−∇Φ

)]2
. (85)

Using a standard vector identity to transform the doubled vector product yields:

=

[
−1

c

∂A
∂t

−
(v
c
∇
)

A −∇Φ+
1

c
((∇A)v))

]2
−
[

v
c²

∂A
∂t

+
v
c²∇Φ

]2
. (86)
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Now using a linear approximation, i.e. ignoring ∇φ and v∇φ terms, the radiation reac-
tion term becomes:

≃
[
−1

c

∂A
∂t

−
(v
c
∇
)

A
]2

+

[
1

c
(∇A)v)

]2
−
[

v
c²

∂A
∂t

]2
. (87)

Taking A = Ate
−iφ0 with the usual definition φ0 = k0x− ω0t leads to

∂A
∂t

= −iω0A and ∇A = ik0A. (88)

This now can be substituted into the radiation reaction term:

− 2

3

e4

m2c5
γ²v

[(
iω0

c
A − βzik0A

)2

+

(
1

c
ik0vtA

)2

−
(vt

c² iω0At

)2
]
. (89)

It is known that:

k0 =
ω0

c
ε0 with ε0 =

√
1− ωp²

ω0²
. (90)

By also ignoring the occuring βz² (linear approximation) this result becomes:

− 2

3

e4

m2c5
γ²v

[
A²

(
1− 2βz + 4βz

ω′
p²

ω0²
−

ω′
p²

ω0²
vt²
c²

)]
. (91)

Only the transversal velocity component is considered, as it is needed in the wave equa-
tion, so a perturbative approximation can be used:

p⊥ =
e

c
A⊥ and v⊥ =

e

mcγ
A⊥. (92)

Since assuming ω′
p²ω0² ≪ 1 and therefore ignoring the last two terms of equation (91)

the transverse component of the momentum becomes:

∂

∂t

(
p⊥ − e

c
A
)
= −µeω0γ

c
A|A|2(1− 2βz), (93)

where µ = 2e4ω0/3m³c7 and p⊥ can be expresses the same way as equation (82). The
procedure is again to split the momentum in a perpendicular and a p0 part. First all
eiφ0 terms have to be collected:

p0 =
e

c
A0(1− iεa20γ0), (94)

where ε = reω0/3c = 7.38 ·10−9 with re = e²/mc² the classical electron radius and a laser
of wavelength λ0 ≃ 0.8µm. Now focussing on the perpendicular part the remaining terms
are collected, the equation is fourier analyzed and the result applied to equation (82).
Rearranging the terms leads to:

c

e
p⊥ = δA+

[
1− iεa20ω0γ0

ω + ω0

]
− iεa20ω0γ0

ω + ω0

[(
1 +

a20
4γ20

)
− ω

kc

k²c²a0²
2γ0De

]
(δA++ δA−). (95)
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This leads to a wave equation for eiφ+ which is:

(ω + ω0)² − k⊥²c² − (k + k0)²c² =
ωpe²
γ0

p⊥

(c
e

)
+ ωpe²

p0

γiφ

(c
e

)
+

ωpe²
γ0

δn

n0
p0

(c
e

)
, (96)

according to equation (83). Using the quantities which were just derived, rearranging,
simplifying and ignoring the k⊥ term the wave equation (98) for the anti-Stokes mode.
The same calculations are followed for δA− which is the Stokes mode:

D±δA± =
ωpa0²
4γ0²

[
k²c²
De

(
1∓ iεa0²γ0 +

2iεa0²γ0
kc

ωω0

ω ± ω0

)
(97)

−
(
1 + 4iεγ30

ω0

ω ± ω0

)]
(δA+ + δA−). (98)

With following definition of D± and the definition of R± as:

D± = (ω ± ω0)² − (k ± k0)²c² − ωp²
(
1− iεa0²γ0

ω0

ω ± ω0

)
(99)

R± =
ω′
p²a0²
4γ0²

[
k²c²
De

(
1∓ iεa0²γ0 +

2iεa0²γ0
kc

ωω0

ω ± ω0

)
−
(
1∓ iεa0²γ0

ω

ω ± ω0
+ 4iεγ30

ω0

ω ± ω0

)]
(100)

This leads to the dispersion relation:(
R+

D+
+

R−
D−

)
= 1 (101)

The growth rate of FRS is:

ΓFRS = −ωpe²εa0²
2ω0

± ωp²a0√
8γ0²ω0

cos(θ/2)× 4

√
(1 + ε²a0²γ40)2 + ε²a40γ0²

(
ω0

ωp

)
(102)

θ = tan−1

(
−εa0²γ0(ω0/ωp)

1 + 2ε²a0²γ40

)
.
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3 Numerical analysis of the dispersion relation
For comparison the plots including radiation reaction (RR) force effects are shown next
to those which do not include radiation reaction effects. To obtain the results the dis-
persion relations were normalized by dividing with ω6

0 respectively ω8
0. This leads to a

normalisation of k by k0 using equation (90). The normalised plasma frequency ωp is
calculated via ωp/ω0 =

√
n0/γ0nc. If n/γ0nc > 1 there will be no zeroth order propa-

gation, because k0 would become imaginary (equation (90)). The values fulfilling this
conditions are marked in the plots. From now on the quantities represent the normalised
quantities, e.g. k stands for k/k0. The roots of the sixth order equation yields either four
real and two complex conjugated solutions or six real solutions. In case of taking care
of radiation reaction force eigth complex solutions are obtained. The imaginary part of
the solutions implicates the growth rate. A negative growth rate indicates that the mode
is damped, an imaginary part of order 10−8 or lower indicates a stable solution, and a
positive imaginary part leads to a growth of the mode.

3.1 Growth rate and the related frequency for different parameters
First of all some specific solutions of the dispersion relation for different values of a0 are
plotted. The plots show the growth rate (solid line) and its related frequency (dashed
line), which is the real part of this solution, versus a range of k. At low n/nc and
a0 radiation reaction does not play any role (Figs. 1 and 2). The position as well as
the magnitude of the unstable branches are the same. Radiation reaction leads to longer
edges of the unstable branches, because the damping term leads to a continuous evolution
in the k-space.

The different branches can be easily identified in both pictures. The branch on the
left, in the low k-value regime, belongs to the modulational instabilities. The second
branch is the Stokes mode of FRS. The beginning of the third branch is the anti-Stokes
mode of FRS and at k ≈ 2 the instability of BRS is placed. If the parameters change,
the branches can broad and at some points merge [6] and can be also seen in Fig. 9. To
investigate the influence of radiation reaction effects on this merging and broadening the
laser amplitude is raised to a0 > 10.

Rising the laser amplitude up to a0 = 20 leads to interesting effects (Fig. 3 and 4). In
the case without RR force the two first branches narrow and the third branch broadens
up but there is no merging of the branches. Including RR leads to a merging of the
two Raman branches and a new branch occurs near to k = 1, which is close to laser
mode. This case, where a new branch emerges, has not been taken into account before.
The merging of the branches leads to a larger scale of k vectors which could excite an
instability. So it has to be taken into account that in this region also instabilities will
occur.
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Fig. 1: Growth rate and its related frequency at n/nc = 0.1 and a0 = 0.05 without RR
force

Fig. 2: Growth rate and its related frequency at n/nc = 0.1 and a0 = 0.05 including
RR force

If the laser amplitude is raised further to a0 = 40, a completely new phenomena can
be seen. Comparing the two results (Figs. 5 and 6) it can be seen, that they both contain
a nearly similar big branch.
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Fig. 3: Growth rate and its related frequency at n/nc = 0.2 and a0 = 20 without RR
force

Fig. 4: Growth rate and its related frequency at n/nc = 0.2 and a0 = 20 including RR
force

In the case of radiation reaction force the so-called quasi-modes occur, plotted by the
blue lines. Those modes are fixed to a specific range of k but their magnitude is quite
smaller than the magnitude of the other modes which exists at the same k value. Due
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to this mismatch of the magnitudes only the dominant mode will be the driving one for
the instability.

Fig. 5: Growth rate and its related frequency at n/nc = 10 and a0 = 40 without RR
force

Fig. 6: Growth rate and its related frequency at n/nc = 10 and a0 = 40 including RR
force. Quasi-modes represented by the blue line
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Fig. 7: Growth rate and its related frequency at n/nc = 10 and a0 = 250 without RR
force

Fig. 8: Growth rate and its related frequency at n/nc = 10 and a0 = 250 including RR
force, quasi-mode plotted in red line

Increasing the laser amplitude of the pump laser up to a0 = 250, again a quasi mode
occurs, shown by the red line. Including radiation reaction force leads to a merging of
all unstable branches. If the density of the plasma is decreased the quasi-mode will move
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to lower k and become a modulational instability. The merging of the branches leads to
an enhancement of the growth rate, especially for FRS.

3.2 Parameters map for the number of unstable branches
As could be seen in the section before, the number of unstable branches depends on
the density n/nc and laser amplitude a0. To see an overall behaviour of the plasma
instabilities the number of different unstable branches are plotted with plasma density
and laser amplitude.

The results can be seen in Fig. 9 without RR force and in Fig. 10 with RR force. For
the purpose of identifying a branch a limit for the growth rate to exceeds 10−6 is set.
This threshold is choosen because imaginary parts below this value can be assumed not
to have any effects on the plasma. Two branches are distinguished as different if the
imaginary part of this solution falls below 10−8. These two thresholds cause the spiky
area in the upper middle of Fig. 10, as well as to the blue part in the upper left corner,
because certain modes in this region do not exceed this threshold.

Fig. 9: Number of unstable branches without RR force. The colorbar indicates the
number of unstable branches.

In Fig. 9 five different domains are existing. The sixth one, the dark blue, is the region
of no zeroth order laser propagation. Of course this domain, as well as the low a0 domains
stay the same in case of radiation reaction (Figs. 10 and 2). The merging of the Raman
branches at low density starts at a0 ≤ 1, depending on the density.
On the right side of Fig. 10 in the lower green area one quasi mode exists below a big
branch. This quasi mode splits into two quasi modes if a0 is increased (Fig. 6). The result
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Fig. 10: Number of unstable branches including RR force. The colorbar indicates the
number of unstable branches.

of the area of highest a0 and n/nc is shown in Fig. 8. If the laser amplitude stays at the
same level and the density is decreased, this spike moves quickly near to k ≈ 10−1. If
the n/nc is unchanged and the a0 is decreased, this quasi mode becomes again a single
mode, the modulational instability (Fig. 4).

3.3 Maximum growth rate
Figs. 11 and 12 show the maximum growth rate which is excited with respect to a0
and n/nc. It is important that this growth rate is not determined at a fixed k. It is the
maximum value occuring in the numerical solution. For easier comparison the log10 of
the growth rate is plotted. Because of this logarithmic plotting, the down right corner,
which is the area of no zeroth-order propagation, stays white. It corresponds to the same
blue in Figs. 9 and 10.

It can be seen that the maximum of the growth rate stays more or less the same in
Figs. 11 and 12. The growth rate including radiation reaction effects is slightly higher,
mostly in the region of high a0 and n/nc ≈ 10−1. This is in accordance with the results
of Kumar et al. [7]. Without radiation reaction force the total maximum of the growth
rate is ≈ 0.57 which matches well with Ref. [6].
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Fig. 11: Maximum growth rate without RR force

Fig. 12: Maximum growth rate including RR force
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3.4 Maximum k value of an instability
The last quantity compared in the analysis part is the maximum k value, at which an
instability can be excited. The maximum k value is again plotted using a log10 scale
(see Figs. 13 and 14).

Fig. 13: Maximum k value without RR force

In the low a0 regime the plots are more or less the same, as expected. At low density
and laser amplitude the maximum k value which excites an instablity is nearby k = 2
which is identified as BRS. This maximum value grows rapidely in the relativistic and
ultra-relativistic regime. In case of no radiation reaction this growth is limited to k = 355.
On including the radiation reaction force the maximum k value for which an instability
is escited becomes higher. The upper limit is set to k = 500. If the maximum k gets
higher, the possible wavelength λ = 2π/k becomes smaller. Due to this short wavelength
perturbations the shape can be destroyed. This could be interesting if the shape of a
laser pulse plays an important role.
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Fig. 14: Maximum k value including RR force
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4 Conclusion of the results
The inclusion of the leading-order term of Landau-Lifshitz radiation reaction equation
brings up new interesting effects. The most important fact is the merging of the two
Raman branches (Fig. 4). This causes a larger unstable range, i.e. the parametric insta-
bilities occur in a large range of wavelengths. The merging of the Raman branches can
cause the growth rate to become higher, as different modes can easily overlay, which has
effects on nearly every application of high-intensity laser-plasma interaction. Also the ex-
istence of new instabilities as in Fig. 4 and the excitation of quasi-modes indicates new
physical phenomena. Those quasi-modes can be very important in multi-dimensional
laser-plasma interaction.

Radiation reaction effects do not influence the overall maximum growth rate for a
large range of parameters. But as it can be seen in section 3.2 the growth rate of FRS or
the modulational instability can also be slightly increased at higher value of laser vector
potential, where radiation reaction force effects are supposed to be strongest. Also the
merging of the branches will lead to an enhancement of the growth rate.
Most of the previously mentioned effects by radiation reaction can also be seen in Fig. 10.
Instead of five different unstable domains corresponding to instabilities, eight different
domains are obtained, showing the impact of radiation reaction force clearly on the
parametric instabilities. The exact implications of these unstable domains needs further
investigation. It seems that the quasi modes arise mostly in the high density regime.
There are some points where the modulational instability changes its position on the k
axes and becomes a quasi mode. This point in between where the two branches overlap
could also introduce some new effects.

In conclusion, the main effect of radiation reaction is the merging of the two Raman
branches as well as excitation of new modes. The study of these modes and the effect of
the merging open up the possibility for new effects in laser-plasma interaction.
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Development of MATLAB code for numerical solutions
This part of the thesis describes the development of MATLAB code for the numerical
analysis of the dispersion relation in laser-plasma interaction. It is based on the code
which was developed for the Projektpraktikum ”Numerical solution of dispersion
relation in laser-plasma interactions” carried out at MPIK Heidelberg.

The code consists mainly of three different parts: The header, the calculation of the
dispersion relations roots and the sorting algorithm.

The header defines:

• The number of points investigated for each quantity

• The definition of the maximum k value investigated and the numer of different k
steps

• For some applications it is useful to investigate the k range on a logarithmic scale.
Also a linear scale could be used for other applications

• ε which could be set to be 0 to obtain the results without radiation reaction

• ’dense’ and ’power’ contain the values of a0 and n/nc investigated in the loop

• Empty arrays to improve the code performance

%------Header -----%

points = 250;
iterations = 10000;
kmax = 3;
khelp = kmax * logspace(-4,0,iterations);
k = khelp-khelp(1);
sorted = zeros([8 iterations]);
r = zeros([8 iterations]);
eps = 7.38*10^(-9);

J = [ 1; 2; 3; 4; 5; 6; 7; 8 ];
maxgrowth = zeros([points points]);
solofdisp = zeros([points points]);
dense = logspace(-2,1, points)';
power = 2.5*logspace(-1, 2, points);

The next part is embedded into two different loops, one for different density values
as well as one for different intensity values. For each of this values the coefficients and
quantities used in the calculation of dispersion relation are determined. To ensure only
considering physical solutions the loop breaks if ωp ≥ 1.
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for l= 1:1:points
for j = 1:1:points

%------Calculation of the parameters-----%

a0= power(j);
n = dense(l);
y0 = sqrt( 1+ (a0^2) / 2);
wp = sqrt ( n / y0 );
e0 = sqrt(1 - wp^2);
x = 1i *eps*a0.^2*y0;
b = a0^2 / (4 * y0^2);
c = 1i * 4 * eps * y0^3;

if wp >= 1
continue

else

[...]

end
end

end

If this condition is true, a new loop begins which calculated different values for k. For
each value of k the polynomia p of dispersion relation is calculated via its coefficients
(C1-C6), and its roots are stored in the array r. For some investigation e.g. the number
of instable branches it could be useful to create the k value logspaced

%----Calculation of the polynomial dispersion relation and its solution ---%

% k = linspace(0, kmax, iterations) %only for variable kmax
for m=1:1:length(k);

%------Coefficients of dispersion relation polynomia -----%
C6 = -5 - 2 * e0^2 * k(m).^2 + (-1 + 2 * b) * wp^2;

C5 = 8 * e0^2 * k(m) + 2 * wp^2 * (x + b * (c + 3 * x));
C4 = 4 + e0^4 *k(m).^2 *(-4 + k(m).^2) + (5 - 2* b)* wp^2 - [...];
C3 = -2 *(wp^2* (b* c *(-2 + wp^2) + 2 *b* wp^2 * x + [...];
C2 = -4* b* e0* k(m)* wp^2* x + 2 *b *e0^3 *k(m).^3 [...];
C1 = 2* wp^2 *(2* b *e0^3* k(m).^2* x - b *e0* k(m)* wp^2[...];
C0 = -wp^2 * (wp^4 *x* (2* b* c + x) + e0^4* k(m).^2 [...];
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p = [1 0 C6 C5 C4 C3 C2 C1 C0];
r(:, m) = roots(p);

As the roots command does not store the values belonging to each other in the same
column of r one needs the next part, the sorting algorithm.
Having a look into the solutions given by the roots command the sorting algorithm is
specified. The solution one obtains are, depending on the values of a0 and n/nc, for the
low k regime:

• Two values with real part at ≈ ±2, representing the Stokes respictively the Anti-
Stokes mode

• Two values with real part at ≈ ±1, which represent the pump laser mode

• Two values with real part at ≈ ±ωp representing the plasma mode

• And two values with real part ≈ 0 which grow over the time

Mostly the real part of five of those modes is bigger than zero, in a few rare cases the
roots give only four real parts bigger than zero.
For the first value of k (m=1) the results are sorted in the order described before, using
different conditions and an index vector J, to assure that no value could occur twice.

%------Definition of the order in the first solution -----%
if m == 1

mode1 = find( real(r(:,1)) > 1.5);
sorted(1,1) = r(mode1,1);
J = allindex(allindex ~= mode1);

mode2 = find( real(r(J,1)) < -1.5);
sorted(2,1) = r(J(mode2),1);
J = J(J ~= J(mode2));

[~, lasermode] = min( abs(1 - (1./real(r(J,1)) )));
sorted(3,1) = r(J(lasermode),1);
J = J(J ~= J(lasermode));

[~, antilasermode] = min(abs(1+(1./real(r(J,1)))));
sorted(4,1) = r(J(antilasermode),1);
J = J(J ~= J(antilasermode));

[~, plasmamode] = min( abs(1-(wp./real(r(J,1)))));
sorted(6,1) = r(J(plasmamode),1);
J = J(J ~= J(plasmamode));

[~, antiplasmamode] = min( abs(1+(wp./real(r(J,1)))));
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sorted(5,1) = r(J(antiplasmamode),1);
J = J(J ~= J(antiplasmamode));

sorted([7,8],1) = r(J,1);

Now proceeding to all further columns of r. Using a loop (for g = 1:1:8) for every
entry of the row determined at m-1, one finds the corresponding value in the right now
calculated roots. A switch-case structure, based on the index of the row which is sorted,
is used to improve the speed of the procedure because of investigating different r arrays
lead to following results. It can be seen that the laser mode stays nearby 1, and the
two first modes are mostly easy identifiable. Therefore the sorting of this values follows
the same procedure (case1, 2, 3, 4). The algorithm takes the specified cell of the
sorted array(sorted(g,m-1)), then, using the find command, those cells in r(g,m) are
matched, if the difference of both real parts is smaller than 0.05. If more than one value
fulfills the condition, a second condition finds the solution with the smaller difference in
the imaginary parts. The identified entry is then stored into sorted(g,m) and its index
is removed from the indexing vector J.

switch g
case {1, 2, 3, 4}
I = find( ((abs( real(sorted(g, m-1)) - (real(r(J, m))) )) < 0.05));

if numel(I) > 1
diim = min( abs( imag(sorted(g, m-1)) - (imag(r(J(I), m))) ));

new = find( abs( imag(sorted(g, m-1)) - (imag(r(J(I), m))) ) == diim);
M = I(new);

sorted(g, m) = r(J(M),m);
index(g) = J(M);

J = J(J ~= J(M));

else
sorted(g, m) = r(J(I),m);
index(g) = J(I);
J = J(J ~= J(I));

end

The matching condition for the fifths column (case 5) uses that only three modes
have a negative imaginary part. In the rare case that two negative values are left, the
minimum distance between the real part of the corresponding and the matching ones is
determined.

case 5
I = find( real(r(J,m))<0);
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if numel(I) > 1
H = find( min( abs( real(sorted(g,m-1)) -real( r(I,m)))));
sorted(g, m) = r(J(I(H)),m);
index(g) = J(I(H));
J = J(J ~= J(I(H)));

else
sorted(g, m) = r(J(I),m);

index(g) = J(I);
J = J(J ~= J(I));

end

case 6 has the special, that one of the modes beginning at 0 grows and the real
parts of them cross as well as the imaginary parts. For the seventh column the same
procedure is followed. Firstly the algorithm controls if the real parts of the remaining
entris are nearby. If this occurs, it picks the value with the lowest distance, taking care
about imaginary as well as real part. If this is not, it finds the entry with the minimum
distance in the real part as well as the second minimum. If the second minimum is nearby
the minimum, it takes a look at the imaginary parts and compares the distances. There
is a double check, that if both, imaginary and real part of two entrys are close to each
other, it takes the original value.

case 6,7

if (abs(real(sorted(g, m-1))-(real(r(J, m))))<1e-3) == logical([1 1 1]')
[~, I] = min( abs( (sorted(g, m-1)) - ((r(J, m))) ));
sorted(g, m) = r(J(I),m);
index(g) = J(I);
J = J(J ~= J(I));

else
[~, I] = min( abs( real(sorted(g, m-1)) - (real(r(J, m))) ));
T = J( J ~= J(I));
[~, K] = min( abs( real(sorted(g, m-1)) - (real(r(T, m))) ));

if (abs(1-real(r(T(K),m))/real(r(J(I),m)))<0.1
&& abs(imag(sorted(g, m-1)))>1e-10)

[diim, M] = (min(abs(imag(sorted(g, m-1))
-(imag(r([J(I);T(K)],m)))));)

if M ==1
sorted(g, m) = r(J(I),m);
index(g) = J(I);
J = J(J ~= J(I));

else
if abs(1- (imag(r(J(I), m)))/ diim) < 0.1
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sorted(g, m) = r(J(I),m);
index(g) = J(I);

J = J(J ~= J(I));
else

sorted(g, m) = r(T(K),m);
index(g) = T(K);
J = J(J ~= T(K));

end
end

else
sorted(g, m) = r(J(I),m);
index(g) = J(I);
J = J(J ~= J(I));

end
end

The last entry is the one which was not used before.

case 8
sorted(g, m) = r(J, m);
index(g) = J;
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