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Fast ions have recently been found to significantly impact and partially suppress plasma
turbulence both in experimental and numerical studies in a number of scenarios. Under-
standing the underlying physics and identifying the range of their beneficial effect is an
essential task for future fusion reactors, where highly energetic ions are generated through
fusion reactions and external heating schemes. However, in many of the gyrokinetic codes
fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species,
although it is well known that to rigorously model highly non-thermalised particles, a
non-Maxwellian background distribution function is needed. To study the impact of this
assumption, the gyrokinetic code GENE has recently been extended to support arbitrary
background distribution functions which might be either analytic, e.g. slowing down and
bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with
strong fast-ion related turbulence suppression is revised with these new code capabilities
both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabi-
lization tends to be less strong but still substantial with more realistic distributions, and
this improves the quantitative power balance agreement with experiments.

I. INTRODUCTION

A major factor limiting the performance of
a fusion reactor is plasma turbulence. It is
inevitably driven by steep temperature and
density profiles and is one of the main rea-
sons for the energy confinement degradation
of nowadays tokamaks. In particular, the
ion-temperature-gradient (ITG) instability has
been identified as an important driver of
microturbulence1. Any mechanism able to re-
duce its development is extremely valuable and
can lead to an increase of the energy confine-
ment time. Among the different stabilising
mechanisms affecting the ITG microinstability,
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the presence of fast ions, generated through fu-
sion reactions and/or auxiliary heating, has re-
cently been found to have a significant impact
on plasma turbulence. Several studies have in-
deed shown that fast ions can passively dilute
the main ion species2,3, increase geometric sta-
bilisation, i.e. Shafranov shift stabilization4 and
actively stabilise linear growth rates and non-
linear fluxes through an electromagnetic stabi-
lization related to fast ion suprathermal pres-
sure gradients5,6. Furthermore, a wave-particle
has recently been identified7 through which fast
particles can affect the main ion microinstabil-
ity if the fast ion magnetic drift frequency is
close to the linear frequency of the mode. This
mechanisms can strongly reduce the thermal
ITG drive and partially suppress the ion-scale
turbulence. Other works have instead tack-
led the opposite issue, namely to which degree
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turbulence affects the fast ion background dis-
tribution function and the associated pressure
profiles8,9. Thanks to these works significant
progress in understanding the fast ions impact
on turbulence and vice versa has already been
made and a good agreement between numeri-
cal and experimental results is often achieved.
However, in some of the most prominent stud-
ies where fast ions were found to be crucial to
obtain realistic heat flux levels, the turbulence
suppression appeared to be overestimated and
power balance was, e.g., only reached with an
increased main ion pressure gradient profile. In
these works, an equivalent Maxwellian distribu-
tion function was employed for the highly non-
thermalised fast ion species. In the contribu-
tion at hand, these studies are significantly im-
proved by considering realistic fast ion distribu-
tion functions in GENE for the first time. For
this purpose, GENE has recently been modified
to account for completely arbitrary background
distribution functions, which might be either
analytic, e.g. slowing down and Bi-Maxwellian,
or numerical, e.g. extracted from specialized
beam modelling codes like NEMO/SPOT10 (for
the Neutral Beam Injected (NBI) particles) and
SELFO11 or TORIC/SSFPQL12,13 (for Ion Cy-
clotron Resonance Heated (ICRH) ions). The
associated modifications in the underlying equa-
tions and in the source code will be discussed in
the following before this new code version will
be applied to one of the aforementioned sce-
narios with substantial fast-ion related turbu-
lence suppression. In detail, this paper is orga-
nized as follows. In Sec. II the basic gyrokinetic
equations for the full electromagnetic but colli-
sionless case are discussed/derived without any
assumptions on the background distribution
function. The Vlasov equation, the moments
of the distribution function and the Maxwell
equations are self-consistently treated on the
GENE coordinate grid. The limit of validity
of the above derivation is discussed as well. In
Sec. III an introduction of a JET L-mode dis-
charge studied in this paper is presented and
the non-Maxwellian distribution functions used
in the GENE numerical simulations are defined
in Sec. III A. A linear and nonlinear analysis

with the more realistic distribution functions
for the fast ion species is respectively shown in
Sec. III B and Sec. III C and finally in Sec. IV
general conclusions are drawn.

II. NON-MAXWELLIAN GYROKINETIC
EQUATIONS

All the simulations presented in this work
have been performed with the gyrokinetic code
GENE, which solves numerically the Vlasov-
Maxwell system of equations on a five di-
mensional grid for each time step. GENE
can either be operated in the local flux tube
approximation14, in a radially global torus
geometry15 or as a flux-surface code16. Fur-
thermore, full electromagnetic effects, realistic
collision operators15 and experimental geome-
tries can be included. In the following section
the basic gyrokinetic equations are re-derived
in the full electromagnetic case without any as-
sumption on the shape of the background dis-
tribution function in a collisionless framework.
Collisions will, however, be included in the nu-
merical simulations of Sec. III as they may im-
pact the microinstabilities directly. Invoking a
separation of the collisional and turbulent time
scales, their effect on the background distribu-
tions is neglected for now and Maxwellians are
considered in the linearized Landau-Boltzmann
collision operator. A more consistent treat-
ment involving a collisional operator for non-
thermalized distributions will be studied in a fu-
ture publication. This general derivation allows
a very flexible treatment of non-thermalised
fast ion species, able to capture asymmetries
and anisotropies of the background distribution
function which might arise from the different
heating schemes of a tokamak reactor.

A. Vlasov equation

The Vlasov equation determines the time
evolution of the distribution function of each
plasma species and in the gyro-center coor-
dinate system (X, vq, µ) can be written as
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follows17

(1)
∂F

∂t
+
dX

dt
· ∇F +

dvq
dt

∂F

∂vq
+
dµ

dt

∂F

∂µ
= 0.

Here, X represents the centre of gyration, vq
the velocity along the magnetic field line and
µ the magnetic moment. Expliciting the time
derivatives of the coordinates15, Eq. 1 can be
written as

(2)

∂F

∂t
+
[
vqb̂0 + (~vE + ~v∇B + ~vc)

]
·
{
~∇F −

[
q~∇φ̄1 +

q

c
b̂0

˙̄A1,q

+ µ~∇
(
B0 + B̄1,q

)] 1

mvq

∂F

∂vq

}
= 0.

Here, the curvature, E × B0 and ∇B0

drift velocities have been defined as ~vc =
v2q
Ω

(
~∇× b̂0

)
⊥

, ~vE = c
B2

0

(
~B0 × ~∇ξ̄1

)
and

~v∇B0 = µ
qB2

0

(
~B0 × ~∇B0

)
. Furthermore, ξ̄1 de-

notes the modified potential ξ̄1 = φ̄1− vq
c Ā1,q +

µ
q B̄1,q; Ω = qB0

mc the gyrofrequency and b̂0 =
~B0

B0
the unit vector along the magnetic field.

The overbar denotes gyroaveraged quantities,
which in the local code approximation reduce
to the mere multiplication of Bessel functions,
i.e. φ̄1 = J0 (λ)φ1, Ā1,q = J0 (λ)A1,q and
B̄1,q = I1 (λ)B1,q, where I1 (λ) = 2

λJ1 (λ) and

λ = k⊥
Ω ( 2B0µ

m )1/2. Furthermore, B0 denotes
the background magnetic field, E the perturbed

electric field defined as ~E = ~∇ξ̄1, q and m, re-
spectively, the charge and the mass of the con-
sidered species, c the speed of light and k⊥ the
perpendicular wavenumber.

An often employed approach in gyrokinetics
is the splitting of the distribution function of
each species into a background component and
in a small fluctuating part, i.e. F = F0 + F1

(so-called δf). While many derivations like the
previous one for GENE rely on local Maxwellian
distributions, here we relax such assumption on
F0. The gyrokinetic δf ordering, i.e. n1/n0 ∼
ε� 1, allows us to greatly simplify the numer-
ical solution of Eq. 2. It is indeed possible to

separate the time scale of variation of the back-
ground from the one of the fluctuating quan-
tities through the expansion parameter ε. The
zeroth order term of the Vlasov equation, which
reads as

(3)
∂F0

∂t
= b̂0 ·

(
vq~∇F0 −

µ

m
~∇B0

∂F0

∂vq

)
is exactly zero for local Maxwellian background
(defined in Eq. 25). The mirror force term -
right hand side of Eq. 3 - does not modify F0.
The zeroth order quantities can hence be con-
sidered time independent on the turbulent time
scale. For the case of an arbitrary background
distribution function, Eq. 3 is not necessarily
zero and the degree of violation of Eq. 3 must
be studied case by case. In section III A an
accurate analysis of Eq. 3 is done for the nu-
merical distribution functions employed in this
paper. The turbulent evolution of the system
is determined by the first order term of Eq. 2.
It is convenient, at this point, to introduce a
field aligned coordinate system, defined through
the metric coefficients gij = ∇ui · ∇uj , with
ui = (x, y, z), x radial direction, y binormal di-
rection and direction parallel to the magnetic
field z. The strong anisotropy of plasma tur-
bulence with respect to the magnetic field, i.e.
k⊥/kq << 1, enables further simplification of
the first order term in Eq. 2, which becomes

∂g1

∂t
+

C

JB0

{
vq∂zF1 −

(
q

m
∂zφ̄1

∂F0

∂vq

+
µ

m
∂zB0

∂F1

∂vq
+
µ

m
∂zB̄1,q

∂F0

∂vq

)}
+
c

C

(
g1ig2j − g2ig1j

γ1

){[
∂iξ̄1 +

µ

q
∂iB0

+
v2
qm

q

(
∂iB0

B0
+
βp
2

∂ip0

p0

)]
·
[
∂jF0 + ∂jF1

−
(
q∂j φ̄1 + µ∂jB0 + µ∂jB̄1,q

) 1

mvq

∂F0

∂vq

]}
= 0.

(4)

Here, a modified distribution function g1 =
F1 − q

mc Ā1,q
∂F0

∂vq
has been introduced and the

following geometrical coefficients have been de-

fined γ1 = g11g22 − g21g12, C = B0/γ
1/2
1 and
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J = B0 ·∇z/C. Eq. 4 is solved in dimensionless
units. To aim, all the physical quantities have
been split into a dimensionless value and a di-
mensional reference part. The reference values
used for normalizing Eq. 4 are the elementary

electron charge e, the main ion mass mi and
temperature Ti, a reference magnetic field Bref

and a macroscopic length Lref . The normalized
Vlasov equation for a completely general back-
ground distribution function can be written as
follows

∂g1

∂t
= − C

JB0
vthvq

[
∂zF1 −

q

2T0vq
∂zφ1

∂F0

∂vq
− µ

2vq
∂zB1,q

∂F0

∂vq

]
+

C

JB0
vth

µ

2
∂zB0

∂F1

∂vq

+
T0

q

(
µB0 + 2v2

q
B0

)
Kx∂̂xF0 −

T0

q

[(
µB0 + 2v2

q
B0

)
Ky −

1

C

v2
qβref

B2
0

ωp

]
∂yg1

+

[
1

2vq

∂F0

∂vq

(
µB0 + 2v2

q
B0

)
Ky −

1

C

v2
qβref

B2
0

ωp
1

2vq

∂F0

∂vq
− 1

C
∂̂xF0

]
∂yξ1

− T0

q

(
µB0 + 2v2

q
B0

)
Kx∂xg1 +

1

2vq

∂F0

∂vq

(
µB0 + 2v2

q
B0

)
Kx∂xξ1 −

1

C
[∂xξ1∂yg1 − ∂yξ1∂xg1]

(5)

where the following geometrical coef-

ficients Kx = − 1
C

(
∂yB0 − γ3

γ1
∂zB0

)
,

Ky = 1
C

(
∂xB0 − γ3

γ1
∂zB0

)
; the normalized

radial derivative ∂̂x = −(∂x − µ
2vq
∂xB0

∂
∂vq

);

the normalized background pressure gradient
ωp = −Lref

∂xp0
nrefTref

and the reference thermal to

magnetic pressure ratio βref = 8πnrefTref

B2
ref

have

been defined. If the equilibrium distribution
function F0 is a local Maxwellian, Eq. 5
reduces to the gyrokinetic equation known in
literature15,17.

B. Velocity space moments

In order to treat self-consistently the Vlasov-
Maxwell system of coupled equations, the fluc-
tuating component of the fields must be evalu-
ated from the perturbed distribution function of
each plasma species at every time step. There-
fore, a general description of the various F1

velocity space moments appearing in the field
equations is presented without making any as-
sumptions on the background distribution func-
tion. The general a-th moment in vq and b-th
in µ (or, more precisely, in v⊥) in the guiding
centre coordinate system (X, θ, vq, µ) is defined
as follows

(6)Ma,b (x) = 2b/2
(
B0

m

)b/2+1 ∫
δ (X + r− x) fgc1 (X, θ, vq, µ) vaq µ

b/2d3Xdvqdµdθ.

Here, fgc1 (X, θ, vq, µ) is the perturbed distri-
bution function in the guiding centre coordi-
nate system and δ is the Dirac-delta function.

The space transformation used to link the par-
ticle coordinates to the guiding centre is x =
X + r(X, µ, θ), where r denotes the gyroradius
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vector. As the time evolution of the perturbed
distribution function (Eq. 5) is performed in the
gyro centre coordinate system it is necessary to
define an operator T ∗ which transforms F1 from
the gyro centre to the guiding centre coordinate
system. Up to the first order in the gyrokinetic
expansion17,18 this so-called pull-back operator
is defined as follows

(7)fgc1 (X, θ, vq, µ) = T ∗F1 (X, vq, µ)

= F1 +
1

B0

{[
Ω
∂F0

∂vq
− q

c
vq
∂F0

∂µ

] (
A1,q (X + r)

− Ā1,q (X)
)

+
[
q
(
φ1 (X + r)− φ̄1 (X)

)
− µB̄1,q

] ∂F0

∂µ

}
.

(8)

By performing the integrals over θ and X
and using the previously defined operator, the
generic moment of the gyro centre distribution
function reduces to

(9)
Ma,b (x) = π

(
2B0

m

)b/2+1 ∫ {
〈F1 (x−r)〉+

(
Ω

B0

∂F0

∂vq
− q

cB0
vq
∂F0

∂µ

)(
A1,q (x)−

〈
Ā1,q (x−~r)

〉)
+

[
q

B0

(
φ1 (x)−

〈
φ̄1 (x− r)

〉)
− µ

B0

〈
B̄1,q (x− r)

〉] ∂F0

∂µ

}
vaq µ

b/2dvqdµ,

where 〈...〉 = 1
2π

∫
...dθ. In the specific case of

a Maxwellian background, Eq. 9 can be greatly
simplified, i.e. the term that multiplies the vec-
tor potential is exactly zero. As it will be
shown in the next section, the latter simplifica-
tion leads to a decoupling between the Poisson
and B1,q equations and the parallel component
of the Ampere’s law. This is not necessarily the
case for non-Maxwellian distribution functions.

C. Field equations

The Poisson equation and the Ampere’s law
for both the parallel and perpendicular com-
ponent of the electromagnetic potential can be
written in terms of the M0,0, M1,0 and M0,1 mo-
ments of the perturbed distribution function F1

as follows

(10)

∇2
⊥φ1 (x) = −4π

∑
j

qjn1,j (x)

= −4π
∑
j

qjM0,0,j (x) ,

(11)

−∇2
⊥A1,q (x) =

4π

c

∑
j

jq,1,j (x)

=
4π

c

∑
j

qjM1,0,j (x) ,

(12)

ê1∂yB1,q (x) + ê2∂xB1,q (x)

=
4π

c

∑
j

~j1,⊥,j (x)

=
4π

c

∑
j

qj ĉ(θ)M0,1,j (x) .
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The field equations have been written in the

particle coordinate system
(
ê1, ê2, b̂0

)
, where

ĉ(θ) is the unit vector in the perpendicular
plane, ĉ(θ) = − sin θê1 + cos θê2. From Eq. 9
it is possible to reformulate the field equations
in terms of the perturbed distribution func-
tion F1 as it is done, in dimensionless units,
in Eq. 13, 14, 15. In the following equations
the sum over all species is omitted for better
readability.

(13)
Pφ1 (x) + FA1,q (x) + T B1,q (x)

= qπn0B0

∫
J0g1 (x) dvqdµ

(14)
Lφ1 (x) +HA1,q (x) +KB1,q (x)

= qn0πβref
B0vth

2

∫
vqJ0g1 (x) dvqdµ

(15)
Rφ1 (x) +WA1,q (x) +QB1,q (x)

= B
3
2
0

qπn0vth
2k⊥

βref

∫
√
µJ1g1 (x) dvqdµ

The following operators have been defined

P = k2
⊥λ

2
De −

πq2n0

T0

∫ (
1− J2

0

) ∂F0

∂µ
dvqdµ

(16)

(17)
F =

2πq2n0

mvth

∫ [(
1− J2

0

)
vq
∂F0

∂µ

− B0

2

∂F0

∂vq

]
dvqdµ

(18)T = πqn0

∫
µJ0I1

∂F0

∂µ
dvqdµ

(19)
H = k2

⊥ −
q2n0πβref

m

∫ [
B0

vq
2

∂F0

∂vq

− v2
q
∂F0

∂µ

(
1− J2

0

)]
dvqdµ

(20)L =
q2n0πβref
mvth

∫
∂F0

∂µ

(
1− J2

0

)
vqdvqdµ

(21)K =
vth
2

∫
J0I1vqµ

∂F0

∂µ
dvqdµ

(22)Q = −1 +
πq2n0B0

mk2
⊥

βref

∫
µ
∂F0

∂µ
J2

1dvqdµ

W = −B
1
2
0

q2n0

mk⊥
βref

∫
√
µvqJ1J0

∂F0

∂µ
dvqdµ

(23)

R = B
1
2
0

πq2n0

mk⊥vth
βref

∫
√
µ
∂F0

∂µ
J1J0dvqdµ

(24)

where λDe =
√

B2
ref

4πc2nrefmref
is the normalized

Debye length. For a completely general back-
ground distribution function each component
of the fields is coupled to the others. This
system decouples for the A1,q component if
a Maxwellian distribution functions is chosen,
since F =W = L = K = 0.

III. APPLICATION OF REALISTIC FAST
PARTICLE BACKGROUND DISTRIBUTIONS

Taking advantage of these new capabilities of
the gyrokinetic code GENE, experimental dis-
charges associated to significant fast ion stabil-
isation can now be studied with the more real-
istic modelling tools for the energetic ion pop-
ulation introduced in Sec. II. The newly imple-
mented terms have been benchmarked with the
gyrokinetic codes GKW and GS2 for simplified
geometry and in the electrostatic limit in Ref. 19
and in the work at hand a realistic scenario is
extensively studied. The JET C-wall L-mode
plasma 73224 has been selected and re-analysed
with the more realistic non-Maxwellian distri-
bution functions. The experiment was per-
formed with vacuum toroidal magnetic field
BT ≈ 3.3T, plasma current Ip ≈ 2MA and with
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q95 ≈ 6. The heating power consists of 3.5MW
of ICRH in (3He)D minority scheme and of
1.5MW of NBI. Furthermore, the ICRH power
was deposited on-axis. The plasma was com-
posed of bulk thermal Deuterium, electrons and
Carbon impurities and of fast NBI Deuterium
and ICRH 3He. An accurate description of this
discharge can be found in Ref. 20–22. Experi-
mental geometry, collisions (Landau-Boltzmann
operator), electromagnetic fluctuations and ki-
netic electrons are included. The magnetic ge-
ometry and the nominal plasma parameters are
summarised in table I and the radial ther-
mal density and temperature profiles, recon-
structed by CRONOS simulations, are shown
in Fig. 1. The analysis of this discharge is per-
formed in the local flux tube approximation at
a radial position of ρtor = 0.33, i.e. where
a significant fast ion turbulence suppression is
observed. The local approach is justified by
low values of the ion Larmor radius normalized
to the tokamak minor radius, i.e. ρi/a, with
ρi = (Ti/mi)

1/2/Ω, namely ρ∗ = 1/450 for ther-
mal ions and ρ∗fast,D = 1/150; ρ∗3He = 1/200,
respectively, for fast deuterium and helium.

A. Equilibrium distribution functions

As mentioned in section II, a δf approach
is employed for solving the gyrokinetic system
of equations where the distribution function of
each species is split into a time independent
background component and a small fluctuat-
ing part. For all the thermal species, the back-
ground F0 is assumed to be the local Maxwellian
distribution function as defined as follows

F0,M =
n0

π3/2v3
th

exp

(
−mv2

q /2− µB0

T0

)
. (25)

Here, m is the particle mass, T0 the equi-
librium temperature, n0 the particle density,
vth = (2T0/m)1/2 the thermal velocity and B0

the equilibrium magnetic field. For the case of
energetic ions the more flexible F0 setup pre-
sented in Sec. II has been implemented in the
code. GENE is now able to support a large va-
riety of different background distribution func-

tions which can be either analytical or numeri-
cal. Exploiting this feature, it is possible to cap-
ture individual asymmetries and anisotropies in
the distribution function arising from the dif-
ferent heating schemes, e.g. ICRH and NBI.
When the distribution function of the fast ion
species is calculates with Monte Carlo codes,
such as SPOT/NEMO and SELFO, irregulari-
ties of the distribution functions may appear.
Here they have been reduced by the appli-
cation of 3D Gaussian filters, also known as
Weierstrass transformation. In more detail, the
smoothed distribution functions were the re-
sult of a convolution integral, in each dimen-
sion, with a Gaussian kernel, which preserves
boundaries but reduces the high-frequency com-
ponents. For the case of NBI fast Deuterium
a numerical distribution function has been ex-
tracted from SPOT/NEMO simulations with
4191 test particles and has been interpolated
on the GENE coordinate grid. In Fig. 2a) the
numerical SPOT/NEMO distribution function
is shown on the GENE vq − µ grid. A veloc-
ity space structure similar to a slowing down
distribution can be identified with a cut-off ve-
locity vq,c ∼ 1.5. Furthermore, a strong veloc-
ity anisotropy between co-passing and counter-
passing fast particles is observed. In the next
paragraph a linear analysis is performed study-
ing the impact of the different backgrounds on
the more unstable growth rates and frequen-
cies. Regarding the NBI fast deuterium, the
results obtained with the SPOT/NEMO distri-
bution function are compared to the ones ob-
tained with the analytic slowing-down function
derived in Ref. 24 and, e.g., used in Ref. 25 for
modelling fusion born alpha particles. The lat-
ter is a solution of the Fokker-Planck equation
with an isotropic delta-function particle source
and is defined as follows

F0,s =
3n0

4π log
(

1 +
v3α
v3c

)
[v3
c + v3]

Θ (vα − v) .

(26)
Here, the birth velocity is defined through
the birth energy Eα in the follow-
ing way vα = (2Eα/mα)1/2 , while
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FIG. 1. Radial profiles of main ions (blue line) and electron (red line) a) temperature and b) density for
the discharge 73224.

TABLE I. Parameters at ρtor = 0.33 for the JET L-mode discharge 73224 according to Ref. 22 and 23. T
represents the temperature normalized to the electron one, R/LT,n the normalized logarithmic temperature
and density gradients and ν∗ the electron-ion collision frequency normalized to the trapped electron bounce
frequency.

R ŝ q Te/Ti R/LTi R/LTe R/Lne ν∗

3.1 0.5 1.7 1.0 9.3 6.8 1.3 0.038
nfD n3He TfD T3He R/LTfD R/LT3He

R/LnfD R/Ln3He

0.06 0.07 9.8 6.9 3.2 23.1 14.8 1.6

vc = vth,e

(
3
√
πme
4

∑
main ions

niz
2
i

nemi

)1/3

rep-

resents the crossover velocity. Furthermore, Θ
is the Heaviside step function.

For the case of the ICRH 3He, nu-
merical distribution functions extracted from
TORIC/SSFPQL and SELFO are used both in
the linear and turbulence analysis presented in
this work. Interface routines between these dif-
ferent codes and GENE have been implemented.
The SPOT/NEMO and SELFO numerical dis-
tribution functions, here employed, had already
been used in Ref. 6 to calculate the fast ion
profiles for the equivalent Maxwellian distri-
bution function respectively for the NBI and
ICRH-driven fast ions. In Fig. 2b) the phase
space structure of 3He distribution functions ex-
tracted from TORIC/SSFPQL is shown on the
GENE coordinate grid. No significant differ-
ence with the SELFO background is observed.
Similar to the NBI fast Deuterium which has
been approximated by a slowing down distribu-
tion (Eq. 26), a first order analytical approxima-

tion is employed for the ICRH generated 3He.
Namely a bi-Maxwellian distribution function

F0,aM =
n0

π3/2vth,qv2
th,⊥

exp(−v2
q /v

2
th,q −

µB0

T⊥
),

(27)
is used in order to account for the velocity
space anisotropies arising from the ICRH heat-
ing. Here, Tq and T⊥ are respectively the
parallel and perpendicular temperatures. The
T⊥/Tq = 2.2 and LTq/LT⊥ = 3 anisotropies
have been extracted from SELFO simulations
and are consistent with the ones evaluated with
TORIC/SSFPQL. Furthermore, the fast parti-
cle temperatures have been defined as the sec-
ond order moment of the numerical distribu-
tion functions25,26, i.e. NEMO/SPOT for the
NBI fast deuterium and TORIC/SSFPQL and
SELFO for the ICRH 3He, namely

T =

∫
v2F0,numericald

3v∫
F0,numericald3v

. (28)

One of the major constraints on the analytic
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FIG. 2. θ-integrated a) SPOT/NEMO and b) TORIC/SSFPQL numerical distribution functions on the
(vq, µ) velocity grid, respectively for NBI fast Deuterium and ICRH 3He.
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FIG. 3. Comparison between the time scale of vari-
ation τF0 of the backgrounds employed in the tur-
bulence analysis of Sec. III C and the average time
of GENE nonlinear simulations - red dotted line -
in units of cs/a.

derivation of Sec. II is set by Eq. 3. The
time scale of background distribution variations
τF0

= F0/(∂F0/∂t) described by the zeroth or-
der Vlasov equation should always be well sepa-
rated from the turbulent time scale. While this
can be easily shown for local Maxwellians and
slowing down backgrounds, other distribution
functions like the numerical and bi-Maxwellian
ones require a more detailed study of Eq. 3.
However, it is worth specifying that the F0 pro-
vided by heating codes is not the solution of
the simple Eq. 3, where the equilibrium is estab-
lished only by the mirror force. On the contrary,

the numerical backgrounds are the steady-state
solution of the kinetic equation which includes
also collisions and sources/sinks. These distri-
bution functions represent the equilibrium be-
tween the fast ion excitation (or birth) process
and the collisions, and hence they are not ex-
pected to be modified on turbulence timescales.
With the assumption that the time scale char-
acteristic of the mirror force, τF0 , is much faster
than the collisional one, it is possible to reduce
the study of evolution of the numerical back-
ground by solving Eq. 3. Corresponding results
are shown in Fig. 3 and demonstrate that the
average time - normalized to cs/a - required in
the GENE nonlinear simulations to reach a sat-
urated turbulence state is several order of mag-
nitudes smaller than τF0

. Therefore, if F0 is
perturbed, it reaches a new equilibrium on a
much longer time scale than the one turbulence
need to reach saturation. The background dis-
tributions can thus be considered constant in
time.

B. Linear growth rate analysis

This section adresses the impact of the more
realistic distribution functions on the ITG mi-
croturbulence. Although a true comparison
with experiments can only be made with fully
nonlinear simulations (see next session), it is
still possible to extract valuable information
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about the expected nonlinear sensitivity of the
ITG dominated physics on the different fast
ion backgrounds from the single mode analy-
sis in the framework of the quasilinear theory.
Previous studies shown in Ref. 19 are here ex-
tended by including growth rates and frequen-
cies obtained with the fast-ion numerical distri-
bution functions. To resolve the fine velocity-
space structure of the numerical backgrounds,
68 points have been used for both the vq and the
µ GENE grids with simulations box sizes of re-
spectively (9, 3) in normalized units. For the an-
alytic backgrounds, 32 vq points and 48 µ points
have been found to be sufficient. A first lin-
ear analysis is performed on the NBI fast Deu-
terium. In Fig. 4 the GENE growth rates and
frequencies are shown for different kyρi values
or equivalently for different toroidal mode num-
bers n. All the plasma species have been mod-
elled with a local Maxwellian with the excep-
tion of the NBI fast Deuterium which, instead,
has been modelled with the different analytical
(slowing down) and numerical (NEMO/SPOT)
distributions introduced in the previous para-
graph. The growth rates and frequencies have

been normalized to cs/a with cs = (Te/mi)
1/2

.
A low sensitivity to the change of the fast Deu-
terium distribution function is observed. The
velocity space anisotropies, well captured only
from the numerical NEMO/SPOT distribution,
do not significantly modify the linear results
and only a relative difference of a few percent,
i.e. <∼ 10%, is observed. The slowing down dis-
tribution function seems to be a better approxi-
mation for the numerical NEMO/SPOT results
than the local Maxwellian. Furthermore, for
this specific choice of fast Deuterium param-
eters, lower growth rates are found with the
more realistic distributions. A similar analy-
sis can be performed for the ICRF-heated 3He.
All the thermal plasma species have been mod-
elled with a local Maxwellian while the NBI
fast Deuterium background is either described
by a Maxwellian or a slowing down, which has
been found to be the best analytical approxi-
mation to the NEMO/SPOT distribution. In
Fig. 5, linear growth rates and frequencies are
displayed for different 3He backgrounds. In con-

trast to the previous results for fast deuterium,
it is shown that the ICRH 3He has a signifi-
cant impact on the linear ITG physics and dif-
ferences of ∼ 50% are observed. A change in the
background distribution and its radial deriva-
tive leads to a consequent change of the reso-
nant ITG-fast ion stabilisation, which is par-
ticularly relevant in this discharge7. For nomi-
nal parameters, the resonance ITG stabilising
mechanism is predicted to be much more ef-
fective for the ICRF-heated 3He than for the
NBI fast Deuterium, which might explain the
lack of sensitivity of the fast Deuterium results
to the different backgrounds. Moreover, with
the more realistic 3He distribution functions a
weakening of the still substantial fast ion sta-
bilisation is observed. Fig. 4 also contains sim-
ulation results without fast ion effects for ref-
erence. These have been obtained by remov-
ing all kinetic effects and by consistently modi-
fying the overall geometrical pressure gradient.
The dominance of the kinetic effects on setting
the difference between ”with” and ”without”
fast ions has been well established from ded-
icated scans involving turning on and off the
various physics effects (modification of drift fre-
quency, Shafranov shift, kinetic effects) in previ-
ous work on similar discharges27. These results
are consistent with experimental observations6

and predict an overestimation of equivalent-
Maxwellian fast-ion stabilisation for the nom-
inal plasma parameters. According to quasilin-
ear models an increase in the linear growth rates
might lead to a relative increase of the non-
linear fluxes, greatly improving the agreement
with experiments. Furthermore, an excellent
agreement between the linear results obtained
with TORIC/SSFPQL and SELFO is shown in
Fig 5. The bi-Maxwellian has been found to be
a good analytical approximation for the growth
rate analysis to the numerical distributions in
the low kyρi ∼ 0.1 − 0.3 wave number range,
where most of the transport typically originates
in nonlinear ITG simulations.
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FIG. 4. GENE calculation of the linear growth rates (a) and frequency (b) for different kyρi and toroidal
mode numbers n for different distribution functions for the fast Deuterium.
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FIG. 5. GENE calculation of the linear growth rates (a) and frequency (b) for different kyρi and toroidal
mode numbers n for different distribution functions for the fast 3He.

C. Turbulence analysis

The impact of more realistic fast-ion distribu-
tion functions on the turbulent transport of the
low-beta JET discharge 73224 is studied with
GENE nonlinear simulations. The physical pa-
rameters are the same as in table I. The radial
box size is 175ρi and the minimum finite kyρi is
set to 0.05. We used 192 grid points in radial di-
rection, 48 modes in the binormal direction and
32 points along the field line. As for the linear
simulations, a high velocity space resolution is
required to resolve the fine velocity structure
of the non-Maxwellian distribution functions.

In velocity space, 68 points and 68 equidistant
symmetric grid points have been used for the
numerical distributions and 48, 32 for the an-
alytical backgrounds for resolving respectively
the µ and the vq space with a (µ, vq) box size
of respectively (9, 3) in normalized units. The
first nonlinear analysis presented in this pa-
per aims at studying the main ion and elec-
tron fluxes. In a previous publication6, it has
been shown that a reasonable agreement be-
tween the numerical and the experimental val-
ues - extracted from CRONOS28 interpretative
simulations - could only be achieved by includ-
ing equivalent Maxwellian fast ions in the nu-
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merical simulations. However, the experimen-
tal fluxes were matched only by an increase of
the main ion temperature gradient of ∼ 20%
which may be due to an overestimation of the
fast particle stabilizing effects at the nominal
plasma parameters. In Fig. 6 a comparison be-
tween the nonlinear results obtained with the
more realistic fast ion distribution functions
and their analytic approximations is shown for
values of the main ion temperature gradients
inside the experimental error bars. In order
to keep the same notation as in Ref. 20–22,
the particle and heat fluxes are normalised, re-
spectively, to ΓgB = vth,iρ

2
ini/R

2
0 and QgB =

vth,iρ
2
iniTi/R

2
0. Furthermore, the NBI fast deu-

terium has been modelled either with a local
Maxwellian or with a slowing down distribution
function. Considering the NEMO/SPOT distri-
bution was numerically challenging in the full
nonlinear GENE turbulence simulations. An
increased number of markers is most likely re-
quired in NEMO/SPOT simulations in order to
obtain a smoother numerical distribution com-
pared to the coarse function with 4191 test par-
ticles used in this paper. However, as shown
in the previous paragraph, no significant dif-
ference is expected by employing the numeri-
cal distribution function for the NBI fast deu-
terium. The values of the fluxes are computed
as a time-average over the saturated state of
the simulations. In Fig. 7 the time trace of
the main ion and electron fluxes obtained with
slowing down NBI fast deuterium and numeri-
cal TORIC/SSFPQL helium is shown with the
corresponding average value used for Fig. 6. A
significantly better agreement between numeri-
cal and experimental results is achieved with the
more realistic distribution functions for the fast
ion population. The experimental results are
well reproduced by GENE simulations inside
the temperature gradient error bars with both
analytical (slowing down, bi-Maxwellian) and
numerical (SSFPQL/TORIC-SELFO) distribu-
tion functions. In line with the linear results,
a corresponding ”weakening” of the (still sig-
nificant) fast ion stabilisation is observed and,
for the range of parameters here exploited, the
bi-Maxwellian distribution is confirmed to be

a good first order approximation to the more
realistic backgrounds. Furthermore, a good
agreement between GENE simulations based on
TORIC and SELFO is here confirmed by the
nonlinear results. The impact of the different
fast ion distribution functions on the nonlin-
ear transport levels can be further investigated
through the study of the zonal flow structure.
It has been shown in several publications29–31

that zonal flows - as major nonlinear satura-
tion mechanisms - can play a significant role in
the reduction of turbulent fluxes. In gyrokinetic
simulations, zonal flow activity is often mea-
sured through the E × B shearing rate defined
as follows

ωZF =
d2φzon

d2x
. (29)

Here, φzon is the zonal component of the elec-
trostatic potential. In Fig. 8, the ratio between
ωZF, averaged over all the kx mode compo-
nents, and the linear growth rate at the ky of
the transport flux maximum is shown for dif-
ferent values of the main ion temperature gra-
dients and for the different fast ion distribu-
tion functions used in the nonlinear analysis
of Fig. 6. A qualitative though correlation be-
tween < ωZF >kx /γlin and the turbulent flux
levels is observed in Fig. 8. The zonal flow ac-
tivity increases with a decrease of the main ion
temperature gradients and lower fluxes are ob-
served in GENE numerical simulations. These
results suggest that the zonal flows are also af-
fected by the more realistic fast-ion distribution
functions and they are overestimated in the case
of equivalent Maxwellian distributed fast ions.
A more quantitative analysis will be done in fu-
ture.

IV. CONCLUSIONS

In the present paper the collisionless δf
gyrokinetic Vlasov-Maxwell coupled equations
are re-derived for a completely arbitrary back-
ground distribution function in the full electro-
magnetic case. As a meaningful example for
a possible application, a previous study on a
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for different main ion temperature gradients and fast ion distribution functions.
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particular low beta JET plasma with signifi-
cant fast ion stabilisation is revised with more
realistic distribution functions for the fast ion
population compared to the results obtained
with equivalent Maxwellian background distri-
butions. The bulk plasma is composed by Deu-
terium, electron and Carbon impurities, while
the fast particles are NBI fast deuterium and
ICRH accelerated 3He. Electromagnetic effects,
collisions and experimental geometry are taken
into account in the simulations. In the linear
analysis it is found that with the more realis-
tic distribution functions the fast ion stabilisa-
tion still holds, even if it is weakened. This
is in line with the previous nonlinear findings
where gradients higher than the nominal ones
had to be employed in order to match the ex-
perimental heat fluxes in the presence of fast
particles22. The impact of the different non-
Maxwellian backgrounds is studied separately
on each fast ion species and a lack of sensitiv-

ity to the NBI fast ion distribution is observed.
Generally, the choice of the 3He background dis-
tribution - particular, its anisotropies and asym-
metries - has a stronger impact on the linear re-
sults than the fast deuterium backgrounds. As
discussed in this paper, a change in the back-
ground distribution affects the resonant ITG-
fast ion stabilisation which, for this JET dis-
charge, is particularly strong only for the fast
helium population. These linear results are con-
firmed by GENE nonlinear turbulence simula-
tions. An improved agreement between the ex-
perimental and numerical results is achieved for
the main ion and electron fluxes at the nomi-
nal plasma parameters when more realistic fast-
ion distribution functions are employed. Addi-
tionally, for the range of parameters considered
here, the bi-Maxwellian and the slowing down
distributions are shown to be good first order
approximations for the fast helium and deu-
terium numerical backgrounds. A good agree-
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ment between nonlinear GENE results obtained
using TORIC/SSFPQL and SELFO distribu-
tion functions is here confirmed. First results
suggest that the choice of the background distri-
bution function has also an impact on the level
of zonal-flow activity.
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